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Econometrica, Vol. 48, No. 6 (September, 1980) 

A DIFFERENTIAL APPROACH TO DOMINANT STRATEGY 
MECHANISMS1 

BY JEAN-JACQUES LAFFONT AND ERIC MASKIN 

This paper shows how a number of questions about dominant strategy mechanisms in 
models with public goods can be conveniently formulated as systems of partial differential 
equations. The question of the existence of dominant strategy mechanisms with given 
desirable properties becomes equivalent to the integrability of these equations. 

1. INTRODUCTION 

FOLLOWING Vickrey [11], Clarke [27], and Groves [6] a number of papers2 have 
explored the properties of dominant strategy mechanisms, in particular in the 
framework of the so called "free rider problem," where elicitation of truthful 
evaluation of public goods is sought. 

This paper shows how a number of questions about dominant strategy 
mechanisms in models with public goods can be conveniently formulated as 
systems of partial differential equations. The question of the existence of 
dominant strategy mechanisms with such desirable properties becomes equivalent 
to the integrability of these equations.3 

In addition to enabling us to derive rapidly and-strengthen a variety of known 
results on incentives, our approach permits us to develop certain new theorems 
and to provide an insight into the common mathematical structure of several 
apparently different questions. 

In Section 2, we establish notation and in the following section substantially 
strengthen the Green-Laffont [5] characterization theorem. Section 4 contains a 
condition on the class of utility functions which is necessary and sufficient for the 
existence of balanced incentive compatible mechanisms. This condition is used to 
prove an impossibility theorem for two-agent models and some possibility and 
impossibility results for models with more than two agents. Finally in Section 5 we 
consider coalition incentive compatibility. Our results are essentially negative, 
centering around a general necessary condition for the existence of mechanisms 
which are incentive compatible for a class of coalitions. 

2. THE MODEL 

We consider an economy with n (n - 2) consumers (indexed by i = 1, . . . , n) 
and two commodities, one public and one private. 

The utility function of consumer i, ui(K, xi), is additively separable between the 
public good K and the private good xi, i = 1, . . . , n, and without loss of generality 

1 Maskin's research was supported, in part, by the National Science Foundation and Laffont"' 
research was supported by Cordes n. 136-77. 

2 See, for example, Green and Laffont [3, 5]. 
3 In Laffont and Maskin [10], we apply this approach to mechanisms for which the solution concepi 

is taken to be the maximization of expected utility. 
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we write it as: 

ui (K, xi) = vi (K, Oi) + xi 

where As, lying in a space Oi, is a parameter of the valuation functions and where 
for simplicity we assume that the quantity K of public good ranges in the set 
R = ]0, ao[.4 

The decision maker is supposed to know the functions vi(,) (possibly 
identical for all consumers) but is ignorant of the true value 6i of the parameter 6i 
which identifies agent i's tastes for the public good. The purpose of a mechanism is 
to choose an optimal level of the public good in this framework of imperfect 
information. More formally, a mechanism is a mapping, f( ), from the "strategy 
spaces"5 0= [in 1 Oi into R+ xR n composed of a decision function, d( ) from 0 
into R+, and of an n-tuple of transfer functions t( ) = [t1(* ),... , tn( 4)] from 69 
into R. d ( * ) associates to any n-tuple 0 of announced parameters a quantity d (0) 
of public good, while ti(6) is a transfer of the private good to agent i, i = 1, . . . , n. 
The mechanism is said to be continuously differentiable or C1 when the function 
f( ) is continuously differentiable. 

Since the endowments of the private good play no role in the paper we will write 
the utility function of an agent i faced with a mechanism (d(), t()) as: 

vi (d (0), As) + ti (0) (i=1 ,n). 

A mechanism f( ) = [d( ), t()] is said to be strongly individually incentive 
compatible (s.i.i.c), if the truth is a dominant strategy for each consumer; that is, if 
for any i, any 0 E 96 

vi(d(oi, 0-i), oi) +ti(Oi, 0-i) 

vi (d (0i, 0-i), oi) +ti (0i, 0-E) 

ASSUMPTION 1: For i = 1, . . . , n, let 0i be an open interval in R and vi: R+ x 

0i -e R be a continuously differentiable function such that for any 0 E 0 = HI71 0i, 
there exists K*(0) E R+ for which (i)X=1 vi(K*(6), Oi) = maxK>O =1 vi(K, Os), (ii 
K*(0) is continuously differentiable.7 

4 Generalizations to multidimensional project spaces are straightforward. 

6Because only agent i may know Oi, he is of course not constrained to reveal his true parameter. 
-i 

= (Ol 9Oi-1 Oi+.. On) and 0 = (0i, O-i). 
7 Several possible alternative sets of postulates on the v ( ) functions imply (i) and (ii). For example, 

(ii) is obtained with v (. , 0) strictly concave in K (as a consequence of the implicit function theorem). 
To infer (i) one may assume that, for any 0 in an open interval of R, there exists K1(0), K2(0) such that 

O<K1(0)<K2(0) and 

-K (K, 0)<0 for any K a K2(0), 
aK( 

-vi(K, 9)>0 for any K ---ki(0). aK 



DOMINANT STRATEGY MECHANISMS 1509 

Under Assumption 1, strong individual incentive compatibility implies 

6*) 3d ", a ti, 
s(d (Oi, 0- i), Oi) - (Oi, 0- i) + (Oi, 0- i) = ? aK aoj , 

Since we require this equality for any Oi in ei9 we deduce the identity: 

() atj ad 
(1) t(60)- a v(d (0), Oi)d^ (0). 

aj aK aoj 
A mechanism f(* ) = [d(* ), t(* )] attains success if 

n n 

fi vi (d (0), 00) = fi vi (K* (0"), 'o"i),8 
i=1 i=1 

implying, with differentiability, 

(2) E (d (0), Oi) _ . aK 

Implicitly differentiating (2) yields 

(3) ad(o) a2v-/aKa6, if defined. 

E (a2 v1/aK2) 
j=1 

Finally, a mechanism is said to be satisfactory if it is both successful and s.i.i.c. 
Clearly, (1) and (2) apply to a satisfactory mechanism. 

3. CHARACTERIZATION OF SATISFACTORY CONTINUOUSLY DIFFERENTIABLE 

MECHANISMS 

We begin with a characterization theorem of all satisfactory C1-mechanisms for 
a given family of admissible valuation functions. 

V={IV,( * a0 ...) * Vn( (' 6On)/ 0 E= 19} 

THEOREM 3.1.: Let V be an admissible family which satisfies Assumption 1. 
Then (a) there existsatisfactory C1-mechanisms, (b) a C1-mechanism (d( ), t( )) 
is satisfactory if and only if 

n n 

(4) . Evi (d ( ""), 0"i) = fi vi (K * (O), 0"i) for all 0 E 19 
i=l i=l 

and 

(5) ti(0) = E v(d (0), 6j) + hi(6.i) (i = 1, . . ., n) 
ioi 

where hi() is an arbitrary C1-function from Ili,je into R. 
8 Without a lower bound on the consumption of the private good, this is a necessary condition for 

Pareto optimality. 
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PROOF: That a C1-mechanism (d( * ), t( * )) satisfying (4) and (5) is satisfactory 
can be immediately verified, establishing the sufficiency of (b). 

Choose d( ) which is C2 and satisfies (4). The C1-mechanism (d( ), t*(.)) 
where for all i, t* (0) = Xipo (d(0), 0j), satisfies (5) and therefore is satisfactory, 
establishing (a). 

Finally, consider a satisfactory C1-mechanism (d( ), t( )). From s.i.i.c. of 
(d( ), t( )) and (d(* ), t*(* )) we have 

ati ai) ad(0) 

- i (ia, avd) 
aoj 

Integrating (6) yields 

ti(0i, 0-i) = tt (0i, 0-i) + hi(O-i) (i = 1, . . ., n). 

Q.E.D. 

The mechanisms satisfying (4) and (5) have been called Groves mechanisms in 
Green and Laffont [5] (see Groves [6]). In Green and Laffont [5], a similar 
characterization is given in the discrete and continuous cases. In the continuous 
case, no restriction beyond continuity is imposed on the admissible family of 
valuation functions. 

Theorem 3.1 shows that if one restricts the admissible to the class of differenti- 
able functions indexed by a single parameter 0 in an open interval, no satisfactory 
mechanisms beyond the Groves class can be found. The theorem applies, for 
example, to the family of quadratic functions 

V(K, Oi) = 6iK -K2/2, 

where 6i belongs to a given open interval of R, i = 1, . . . , n. The theorem 
strengthens Theorem 3 in Green and Laffont [5]. 

The second principal merit of the approach taken here is its constructive 
character, which, given an admissible family of valuation functions, enables us to 
construct the transfer functions explicitly. This feature is particularly useful in the 
sections to follow where additional constraints such as balance or coalition 
incentive compatibility9 are imposed on the mechanisms. 

To illustrate this constructive character, let us consider the quadratic case and 
obtain the associated transfer functions. We have 

n 

d E aan d() 1 
n dSj n 

9 The approach taken here sheds some light on the mathematical origin of the arbitrary functions 
hi( ) which here become simply constants of integration. 
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and the differential equation (1) becomes: 

ati 11 
a (0 -- 

Oi Oi n(-- + -2 E i. 

Hence, 

ti(0i, 0-i) =2(1 -- ei2 +12( E Ii + hi (O-i). 

It is then merely a matter of calculation to check that this expression differs from 

F n 

E Avj(d(69), iT) = = 2n2(Z ') . 

by a function of 0-i. 
One might believe that the smaller the admissible set, the stronger the charac- 

terization theorem; when agents have less opportunity for misrepresenting their 
preferences, there are ostensibly fewer constraints on potential mechanisms. As a 
referee pointed out to us, however, this intuitive argument is incorrect in general 
because as the admissible set shrinks, the set of possible mechanisms itself shrinks. 
Indeed, it is possible (as the referee has shown) to give examples of domains V1 
and V2, with V2 a proper subset of V1, such that there exist successful, non- 
Groves mechanisms for V2 but not for V1. Of course, as Theorem 3.1 demon- 
strates, such examples are impossible if V2 consists of differentiable functions 
indexed by a parameter whose domain is an interval. Independent of our work, 
Holmstrom [8] established the more general result that every successful 
mechanism on a smoothly connected admissible set is in the Groves class. 
Therefore, his theorem generalizes Theorem 3.1, although his proof is noncon- 
structive. 

4. BALANCED MECHANISMS 

A well known deficiency of Groves mechanisms is the fact that they are not in 
general balanced; that is the sum of the prescribed transfers, X,=1ti(0), is not 
identically zero10 over the range of parameters 0 e 9. 

By restricting the space of admissible functions one might hope to be able to 
obtain balance through an appropriate choice of the arbitrary functions hi(*) in 
the Groves mechanisms. Indeed, Groves and Loeb [7] have shown that, for n ? 3, 
there exists a balanced satisfactory mechanism for the quadratic family, VQ= 
{01K - (K2/2), . . ., 0nK - (K2/2), 0 e 9}. 

First, we give a necessary and sufficient condition for an admissible family of 
valuation functions to admit a balanced satisfactory mechanism. 

'0 See Green and Laffont [3], Hurwicz [9], Walker [12] for different proofs of the nonexistence of 
balanced Groves mechanisms. 
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THEOREM 4.1: Under Assumption 1 there exists a balanced satisfactory Cn- 

mechanism for the class of admissible Cn-functions 

'V=IV1(' * 01) ** Vn(' , On)/O(= E 91 

if and only if 

(7) E a [av ad 1 ]-- for somed(* ) satisfying (4). 
j= aoL-L aK ao, 

PROOF: Suppose there exists a balanced satisfactory Cn-mechanism 
(d(* ), t(* )) with respect to 'V. Then, 

n 
Z t'(0)3O 

i=l 

or, from (5), 

(8) i[ dd-j+hj(-_,) -0. ~~LaK a O1 

Differentiating (8) with respect to 01,..., On, we obtain 

n 
)an-1 avi aKd(O 

1~=1aoj aK aoi 

which establishes necessity. 
Reintegrating (9) successively with respect to 01, . O, 0n regenerates (8). Hence 

sufficiency. Q.E.D. 

The main interest of Theorem 4.1 is to permit a direct check of possibility of 
balance for a given admissible family without actually attempting to construct the 
transfers. 

We next prove an impossibility theorem in the case of n = 2, with an assumption 
of sufficient richness of the admissible class. 

We first observe that there are rather trivial but large admissible families with 
respect to which balance is possible. For example, choose K E R+, let = (9= 

02-** On= O and take. 

IF= {v( )Iv: R+ X ( e- R, v is C', and v(K, )=max v(K, G) for all Ge E }. 
K e+ 

"The operator an-l/ao_i is defined as an-/alo ... a0i_1a0i+1 . . aOn. 
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Let 

VT ={V(1 *, GD,..., Vn ( On) I 9i~)6e 6?, Vi GE 

Then the mechanism which always chooses K and makes no transfers is 
obviously satisfactory and balanced for any number of agents. To rule out such 
degeneracies, we must invoke a requirement of richness for our admissible family. 

ASSUMPTION 2: 'Vis such that (a) for all Ctd (0) satisfying (4) (ad (0)/a i) ? 0 for 
each i and each 0; (b) for all e 69, X(32vi(d(G), 0)/aK2) ? 0 for all d(* ) satisfying 
(4). 

Intuitively, Assumption 2(a) says that an agent's strategy space is sufficiently 
varied so that by slightly changing his announced parameter he can always affect 
the chosen supply of the public good. Assumption 2(b) is made only to avoid the 
unlikely event that the sum of the second derivatives vanishes along the optimal 
d(G) locus. For strictly concave functions such an event is generically impossible. 

COkOLLARY 4.1: Under Assumptions 1 and 2 there exists no balanced satis- 
factory C2-mechanism for n = 2. 

PROOF: A simple application of Theorem 4.2. A direct proof can also be given 
using Young's theorem.12 Q.E.D. 

As a further example of the use of Theorem 4.1. we show: 

COROLLARY 4.2: For n - 3, (a) there exists a balanced satisfactory Cn- 

mechanism for the quadratic class; (b) there exists no balanced satisfactory 
C -mechanism for the admissible class 

7VR ={v ( *, i) = K_-OiK2, iEeEi, i=1, ...,n} 13 

12 Young's theorem says that for a twice differentiable function f(x, y), 

dOf d2f 
dxdy dydx 

13 The reader can also verify the nonexistence of balanced Groves mechanisms for the admissible 
classes: 

v, = {OiK-log K, hi e i9}, V2-{=i log K-K, oi E ei}, 

V3 = {Oie-K+K, Oi E ei }, V4 = {Oi log K - K2, Oi E ei}, 

K3 
V5= {OiK-y 01- Ee 6, etc. 

Our conjecture is that the quadratic case is the only nontrivial case which permits balance. 
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PROOF: (a) In the quadratic case: 

avi . ad(G) 1_ 1 1-Oi+ 12 E i 
aK a o n n n n jo 

Clearly, for n > 2 

(1 0) d)0 for any i. 
ao-i aK aoi 

Hence the result by Theorem 4.1. 
Observe that, for n = 2, (10) is not satisfied (cf. Corollary 4.1). 
(b) In the case of 'VRR: 

avi ad(0) On1 - n n 
,2 

j=1/ 

So 

n-1 ~n n n a (avi a(d(69)))(1 a n - n!( 
n 

f)(+l) QED 
i=1 aoi kaK aoj 2 - 2 

5. COALITION INCENTIVE COMPATIBILITY 

The lack of robustness of Groves mechanisms with respect to manipulations by 
coalitions is a well known fact. Green and Laffont [4] prove that, in the case of a 
{0, 1} project space, no coalition incentive compatible dominant strategy 
mechanism exists even if one restricts allowable coalitions14 to a single coalition of 
any size, when no restriction is imposed on preferences. 

In this section we give a similar impossibility result for differentiable satis- 
factory mechanisms and then give a necessary condition for coalition incentive 
compatibility for a restricted class of coalitions. 

A mechanism (d(0), t(G)) is said to be strongly coalitionally incentive compatible 
(s.c.i.c.) for a class '6 of coalitions with respect to an admissible class of valuation 
functions 

Vr = .V1 01) V, O 
{ n \/O G 19 

14 The approach taken in Green and Laffont [4] is then to show that, for small coalitions, the 
probability of a large per capita gain through misrepresentation of preferences is as small as desired for 
a large economy. Therefore, if the formation of coalitions is costly, small coalitions will not form. Large 
coalitions can be excluded on other grounds, like the free rider problem of their own. Bennett and 
Conn [1] prove that coalition incentive compatibility breaks down if coalitions of size two are allowed. 
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iff:VC E 6', V(C, 0-C) E 0,15 Vc E HiGCOi, 

(11) E 
[vi(d(%C 

0-) A)ti(0 -) 
iGC 

O , [(d0-c, 0-c) c, O-+(C -)l 

ieC 

Under Assumption 1 and with the same reasoning as in Section 2, these 
conditions can be translated into a system of differential equations: 

(12) ~(d (0), 0) ~~+ 
(aK aoj a0, i 

for all j E C, and for all C in '6. 
Let us first observe that a satisfactory mechanism is s.c.i.c. for the universal 

coalition if and only if it is balanced. Suppose we have a balanced mechanism; 
then, 

(13) E (0)- j 1,.., n. 
i=1 dao 

Success and (13) imply (12). 
Reciprocally, (12) and success imply (13); therefore i=,ti(6) is a constant which 

can be chosen to be zero. 
We first show that under the assumption of sufficient richness of the admissible 

family, no s.c.i.c. C2-mechanism exists when all coalitions are allowed. 

THEOREM 5.1: Under Assumptions 1 and 2, if the valuation functions are C2, 

there exists no s.c.i.c. C2-mechanism for the class of all coalitions. 

PROOF: The existence question amounts to the possibility of integrating the 
system (12) when all subsets of {1, . .. , n} are allowed as potential coalitions. 

The mechanism is in particular s.c.i.c. for a size 2 coalition; we have for a pair 
(i,j): 

ati _i ad(6) 
(14) -(0)= av(d(0), 

a_ aVfj(/ \ ad (6) 
(0)-a k(d (), 'i) a ;, 

ati atdav(___ 
(15) -(0)+-a (O) -a-(d(0), Oi) ao, ao1 aK ' o 

-K(d (06), ad) aK(dO)1 ao1 

By analogy, with previous notation: 

A_ = 10A), i a 
ril A- = 10 1 id_ ril A (0A 

A 
8) 
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Equations (14) and (15) give: 

atj v ad(6) 
(16) -(6) a v (d (6), 6 ) a o1 aK a o1 

From the Young theorem, we must have 

(17) K odK(d(O ) ad()) )--( -(d (o), 0i) ad(O) 

which reduces to 

(18) aKa, (d(0), 6i) ado( . 

Substituting (3) into (18) we obtain 

ad(o) ad (o) n a2v1 d6 I~ 
dAi daj lE d K (d ( 0), Al ) 3 aoj ao, 1=1aK 

which is impossible from Assumption 2. Q.E.D. 

It is clear from the above argument that we do not need all coalitions to obtain 
nonexistence. In fact, the proof requires only one coalition of size two. The last 
question we turn to is then, whether we can characterize the classes of coalitions 
which admit s.c.i.c. mechanisms. 

We shall establish a simple general result of which our impossibility theorem, 
using coalitions of size two, is a special case. 

To do this, we must first define what we shall call the differential incidence matrix 
for a class of coalitions '6. Divide '6 into subclasses (1, ..., '6n where lei consists 
of all coalitions in '6 containing player i. Obviously, the les's are not in general 
disjoint. Write %i = {Cil, . . ., Cim,}, where mi is the cardinality of '6'. Construct a 
EX> = 1mi x n matrix A so that the entry of row :i= 1 mi + t and column rn + q is 1 if 
individual q is in coalition C,+1,, and r = s and 0 otherwise, where r, s = 

0, 1, .. ., n - 1, t = 1, .. ., ms+1, and q = 1, . . ., n. For example, suppose n = 4 and 
6 = {{1}, {2}, {3}, {4}, {1, 3}, {1, 2, 4}, {2, 3}}. 

Then we can write 

1 = {{1}, {1, 3}, {1, 2, 4}}, 

@2 = {{2}, {1, 2, 4}, {2, 3}}, 

@3 = {{3}, {1, 3}, {2, 3}} 

'64 = {{4}, {1, 2, 4}} 



DOMINANT STRATEGY MECHANISMS 1517 

So 
0i 02 03 04 

f{1} 1 0 0 0 0 0 000 0 000 0 0 0 0 

(C1 j{1,3} 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
{1, 2, 4 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

1{2} 0 0 0 0 0 100 0 000 0 0 0 0 
(62 1{1,2,4} 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 

!{2,3} 0 0 0 0 0110 0000 0 0 00 
(19) A= 

1{3} 0 0 0 0 0 000 00 1 0 0 0 0 0 
'C3 ji1,3} 0 0 0 0 0 0 00 1 010 0 0 0 0 

{2, 31 0 0 0 0 0 000 0 1 1 0 0 0 0 0 

{4 
1{4} 0000 0000 0000 0001 
t{1, 2,4} 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 

Observe that we have labelled blocks of four columns successively 0l, 02, 03, 
and 04. This is because A is the matrix of coefficients of the system of differential 
equations which characterize a mechanism that is s.c.i.c. for the class C. In 
particular, for this 4 person example, the equations (12) can be written as: 

(20) At= -Av 

where 

= (V11, V2i, V3i, V4i, V12, V22, V32, V42, Vi3, V23, V33, V43, V14, V24, V34, V44), 

avi aK 
15.. = -. _ 

VadK a01' 

t= 

(tl at2 at3 at4 atl at2 at3 at4 atl at2 at3 at4 atl at2 at3 at4 

ao1' ao1' a0l' aol' ao2' a82' ao2' o2' aO32 aO3' a93' aO3' ao4' ao4 ao4 ao4 

Observe that, in our proof of the nonexistence of a satisfactory mechanism 
which is s.c.i.c. for a class 'C containing a coalition of cardinality two, the key to the 
argument was the demonstration that, for some i # j, 

at_ avi ad(0) 
a,j aK aoj 

This idea is the basis of the following theorem which provides a necessary 
condition for coalitional incentive compatibility.16 

16 It should be possible to obtain necessary and sufficient conditions along the lines of the Frobenius 
theorem. 
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THEOREM 5.2: Suppose the admissible family V satisfies Assumptions 1 and 2. 
If (dQ( ), t( )) is a satisfactory mechanism with respect to Vand iss.c.i.c. for 16, then 
if ern?s is the (rn +s)th unit vector in Rn2 (r = 0, 1,..., n-i , .. . -, n) and 
s # r + 1, there does not exist x E X;=1mil7 such that x'A = e'.rn+t 

REMARK: There are, of course, many equivalent ways of stating this theorem. 
Among them is the statement that the null space (i.e., the kernel) of A is 
orthogonal to all unit vectors ern+s, where s ? r + 1. 

PROOF: Let (d( * ), t( * )) be as hypothesized and suppose that there exists x such 
that x'A = e'+, for some s # r+ 1. Rewriting equations (12) as At =-Av by 
analogy with our 4 person example above, and premultiplying by x gives 

(21) -ats (0) -xAt x'Av 

(d(0), Os) 
aK 80r+1 

But (21) leads to a contradiction as shown in the proof of Theorem 5.1 above. 
Q.E.D. 

Theorem 5.2 can be used to derive several corollaries. The first makes use of the 
special separable form of A. 

COROLLARY 5.1: If V satisfies Assumptions 1 and 2 and the rows of A 
corresponding to %i have rank n for some i = 1, . . . , n, then there exists no satis- 
factory mechanism with respect to V which is s.c.i.c. for '6. 

COROLLARY 5.2: If V satisfies Assumptions 1 and 2 and '6 consists of all 
coalitions of cardinality m for 2 - m - n - 1, then there does not exist a satisfactory 
mechanism with respect to V which is s.c.i.c. for W6. 

COROLLARY 5.3: Let Vsatisfy Assumptions 1 and 2 and suppose '6 contains two 
coalitions C2 and C1 such that C2 = C1 u {i} for some i. Then there exists no 
satisfactory mechanism with respect to V which is s.c.i.c. for W6. 

Note that Corollary 5.3 implies Theorem 5.1. 
We conclude by the construction of an example of mechanism which is s.c.i.c for 

a restricted class of coalitions. 
Consider the case 

K2 

v (K, 0) = OiK - 2 (i = 1, 2, 3,4) 

with '6 = {1}, {2}, {3}, {4}, {1, 2, 3}. 
17 This necessary condition can be easily tested by a variety of well known methods including the 

simplex algorithm. 
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From Section 3 we know that coalitions {1}, {2}, 13}, {4} impose 

0~ (n -1) O 
ti (0)= _ n + -I+h' E j+ hj(0j) (i = 1, 2, 3,4) 

2 n n jo 

where n = 4, 
Incentive compatibility for coalition {1, 2, 3} requires 

d - dKav [d(), ad() (f = 1, 2, 3), 
i=1 a0i 1=iaK ao 

which reduces to 

ah2 ah3 (n-1)(02 + 03) 20, 
-+ - - 2 + ao1 al n2 n 

ah1 dh3 _ (n-1)(01+ 03) 202 
+ 2 + 2 ao2 ao2 n n 

ah1 ah2 _ (n-1)(01 + 02) 203 
a03 aO3 n n 

This differential system is satisfied by 

_2 _ _ 2 (n - i) 

hl(02, 03)2= 2 0203 2 , 
2n 010 

_2____ (n-i1) 
2 00 

2n n 
h3(01, 02) = 2 2 -0102 n2 
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