Chapter 16

A DIFFERENTIAL APPROACH TO EXPECTED
UTILITY MAXIMIZING MECHANISMS*

JEAN-JACQUES LAFFONT and ERIC MASKIN

1. Introduction

Good collective decision-making often requires discovering personal charac-
teristics, including preferences, known only by private agents. Unfortunately
it may not be in the interest of an agent to reveal this information if he knows
how it will be used. Consequently, a fundamental problem of collective
decision-making is to design procedures which both elicit private information
and make good decisions. Formally speaking the problem is that of designing
a game form’the equilibria of which coincide with the optima of the chosen
welfare criterion. There are several alternative equilibrium concepts available,
A game form satisfying the above coincidence property may be called
incentive compatible with respect to the corresponding equilibrium notion.

The strongest notion is that of dominant strategies. Following Vickrey [10],
Groves [5] and Clarke [3] have exhibited classes of dominant strategy game
forms (‘mechanisms’) whose dominance property is due to appropriate trans-
fers of a private good among agents. Unfortunately, as shown in Laffont and
Maskin [8], these transfers sum to zero only for exceedingly restricted classes
of utility functions. To overcome this lack of balance one must therefore drop
the requirement of dominant strategies and appeal to weaker equilibrium
notions.

One possibility is Nash-equilibrium, an approach explored in Groves and
Ledyard [6], Hurwicz [7], Maskin [9) and elsewhere. In another line of
research d’Aspremont and Gérard-Varet [1] and Arrow [2] have applied the
expected utility equilibrium, pioneered by Harsanyi, to the design problem. In
this paper we extend the differential approach of our above cited paper to
characterize and study the family of individually incentive compatible expec-
ted utility maximizing mechanisms.

We shall throughout confine our discussion to a mode! of one private and
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one public good, which we develop in section 2. In section.3 we charactel:ize
dominant strategy mechanisms for arbitrary decision funcftlons as a technical
preliminary. Section 4 provides a complete charactenzation of the exl?ecited
utility maximizing mechanisms. We also show that only in a very limited
family - namely the linear family -of welfare critena. basec? on valuat.non
functions can one in general construct individually incentive compatible
expected utility maximizing mechanisms. In section 5 the mechanisms studlgd
by d’Aspremont and Gérard-Varet [1] and Arrow [2] are shown to be special
cases of the class exhibited in section 4. In section 6 we show that none of
these mechanisms satisfies individual rationality but that a property called
individual rationality on average obtains in a large class of cases. In section 7
we briefly explore the possibility of designing mechz%msms which allow for
coalition formation. We conclude with a consideration of the case where
agents’ expectations about others depend on their own characteristics.

2. The model

We consider an economy with n (n =2) consumers (indexed by i=1,...,n)
and two commodities one public and one private. The utility function of
consumer i, u;(K, x;) is additively separable in the public good K and the
private good x;, i = 1,..., n, and is written
v(K, 8)+ x; D
where 6; belongs to an open interval ; in R." 3 .
The theory developed below can be trivially extended to utility functions of
the type
vi(K, 6;) + i(x;), with ¢i()>0,
when the functions ¢;(-) are known by the designer. o .
We assume that K is a real number; generalizations to multidimensional

project spaces are entirely straightforward. _ ) )
The designer is supposed to know the valuation functions vy(.,.) (possibly

identical for all consumers) but is ignorant of the true value 6; of the
parameter 6, which identifies agent i’s tastes for the public good. The purpose
of a mechanism is to choose an ‘optimal’ level of the public good within this
framework of incomplete information. More formally, a mechanism is a

mapping, f(-), from the strategy spaces

© =[] 6; into RxR",

=1
composed of a decision function, d(-), from & _into R and of an n-tuple of
transfer functions, t(-) = [£,(*), . . . , t(*)], from © into R". d(-) associated to any

'Generalizations to muitidimensional parameter spaces are straightforward.
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n-tuple @ of announced parameters a level d(8) of public good, while £;(8) is a
transfer of the private good to agent i, i = 1,..., n. The mechanism is said to
be continuously differentiable or C' when the function f() is continuously
differentiable.

Since the endowments of the private good play no role in the paper we will
henceforth write the utility function of an agent i, for a mechanism (),

t(-)), as
v:i(d(6),6)+1:6), i=1,...,n

Faced with a mechanism the agent chooses his answer 6, We may be
interested in a number of solution concepts for this game form.

We may require, for instance, that 6; be a dominant strategy for each agent.
In Laffont and Maskin [8) we characterize and study the mechanisms for
which the truth is a dominant strategy, i.e. for which Vi, V6 €

vi(d(6,, 8-,), 6;) + 1,(6;, 6_,) = v,(d(8, 0_,). 6,) + 1:(6,, 0.,),

where 0_;,=(6,,...,6,,0i,...,6,) and for which the decision function
maximizes the sum of the valuation functions.
Here we consider a more general decision function K *(0,,...,6,) which

maximizes the welfare criterion
F=F((K,8),...,uv(K,86,)

and we make the following assumption.

Assumption 1. Fori=1,...,n,let v;:RXx @,~ R be a continuously differen-
tiable function such that for any 8 € @, there exists K*(8) such that (i) K*(9)
maximizes F(v(K, 8)),.. ., v.(K, 6,)), and (ii) K*(8) is continuously differen-
tiable.

In the next section we adapt the results of Laffont and Maskin [8] to this
slightly more general framework. We find that it is impossible in general to obtain
balanced mechanisms (i.e. such that =7, #;(6) = 0) if one insists on the dominant
strategy requirement.

A possible solution to the balance problem, first explored by d’Aspremont
and Gérard-Varet [1], is to weaken the solution concept and require only that
the truth be an equilibrium with respect to expected utility maximization.

Let fi(6_;; 6;) be the probability density function reflecting agent i’s expec-
tations about the strategies, 8_;, of the other agents when his own parameter is
6. One case where f; might depend on §; is when [i represents the conditional
distribution derived from the joint and presumably publicly known dis-
tribution of 6.

A mechanism [d(-), t(-)] is said to be individually incentive compatible with
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respect to expected utility maximization (EIIC) iff for any i

f [vdd(6;, 6.)), 6]+ t:(6,, 6_)1f(6_.; 6,) do_,
6.,
> f [0:d(B, 6_0), 61+ 1,(8, 0_)1f(6_1; 6,)d6_,, for any 6,
9.,

Throughout the paper (but see section 8), we shall assume that the designer
knows the expectations of individuals, not just the functional forms (f;). We can
therefore assume that the density function f; does not depend on the unknown
parameter §; (i.e. fi(6_;; 6;) can be written as fi(8.)).

3. Dominant strategy mechanisms

We present here some preliminary results on dominant strategies adapted
from Laffont and Maskin [8]. We consider the problem (dominant strategy
problem, DSP) of choosing transfer functions #(8), i=1,...,n so that

Vi=1,...,n,V6,V0,
8; = 6; maximizes v;(K*(8), §,) + 1,(6) on 8,

where K*(8) is an arbitrary decision function satisfying Assumption 1.

Proposition 3.1. Under Assumption 1, if there exists a C' solution t =
(ti,....t,) to the DSP, then t;(8) must be of the form

—_ [9vioK* o -
ti(6) = faK 26, deé; + hi(8.), i=1,...,n

where h;(-) is an arbitrary function of 6_;.

Proof. Let t be a solution to the DSP. If 6; is an optimal strategy for the
player i given 6; and 6_;, then

ﬁ * -_ “. ﬂ: 0 ! -g—t-‘» -. Y= f =
aK(K (6,0.),6) 20, (0"0“)+ao.~(0"0") 0, i=1,...,n.

Since the optimal solution of agent i’s problem must be the truth for any 6_;
and any 6; we have the identity

A

aK*
5k (K*(0).0) %0~ (6).

o

6, 9)=
Hence

1(8) = - f TR (K*©0).0) 25" (6) a0, + ht6.,),

where h;(-) is an arbitrary function of 9., Q.E.D.
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Proposition 3.2. Under Assumption 1, if K*(0) maximizes 2", Api(K, 6,).
Ai>0,i=1, , n, then a solution to the DSP exists and is such that

1:(6) = — 2 Avi(K, 6)) + hi(6_,),
where hi(8_;) is an arbitrary function of 6
Proof. t(0) is a solution to the DSP since
.. o 1 . )
ol K*(8, 6., 6) + > Aw(K*(6,0.), )
ij#i
= u(K*(8, 0.0+ - %, Av(K*(6, 0.0, 6)
1 j#i

from the definition of K*(6) and, therefore, 6; = 6; is a dominant strategy for
agent i. Thus,

av; aIK*
faK 26, dé; differs from — EA,v,(K 9)

only by a function of 4_;, so that
1 E
A IZ Avi(K, 6;)+ hi(6-))

provides a description of all the solutions to the DSP Q.E.D.

4. Characterization of balanced EIIC mechanisms

Consider the problem of chopsing tpe functions ¢,,.. ., 1, such that =7, ¢, =0
and so that for all i and all 6, 6, = §, maximizes

f [0:(K*(8), ) + 1,(8)},(6_.) d6._,

where K = K*(6) (assuming it exists) maximizes the function F =
F(v(K, 8y),...,v.(K,8,)). Call this the expected utility problem (EUP) for F.

In the following proposition we characterize the set of transfer function
vectors t =(t,,...,t,) which solve the EUP if a solution exists. We shall
subsequently (Proposition 4.2) characterize the family of F's for which the
EUP can be solved.

Proposition 4.1. Under Assumption 1, if there exists a C' solution to the
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EUP for F then ¢ is a solution iff

Vit(8) = f ¢.-(o)f.~(0-.-)do-.~—nl,2 f ¢(0)fi(0-)dé-; + H(8),  (2)
i
8-

8.,

where
dy; aK*
. = - ; ) — H
00 = - [ 2% K~0), ) 25 (046,

and where {H;} is a collection of functions such that 2i.1H;=0and

f%’_i(a)f,-(o.,)da_,- =0, forall 6,€ 8,
e,

Proof. Suppose that t* solves the EUP. From incentive compatibility, we
have Vi, V6, € 6,

& [ rone0d0 =2 [ wke), i ., .
6. 6.

at the point 6, = 6,
Reversing the order of integration and differentiation in (3) we obtain

% f t?(éi’ o—l)fl(ol)d0‘
e,

— av; - s 0K* .
_of oK (K*(6,0.).6) 5~ (6. 6-)1,(6.) do.. @

Replacing 6; by 6;, reintegrating (4) with respect to 6; and reversing the order of
integration yields

fti’(O)fi(G )de_, = - f ¢i(0)fi(6-))d6_; + C*¥, )

8., e,

where C¥ is a constant. Consider the set of equations

[ worio.yde = - [ eore9a0,+c, )

6., e,

where C, is a constant. _
The set of solutions to (6) consists of ¢ = (ty,...,t,) such that

70) = - f (0)fi(6-,) 40, + Fi(8),

e,
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where H; is a function such that

f aHa( )f.(o ) de.,

It is immediate that if ¢ solves (6), then ¢ solves the EUP iff =0,¢,=0.
Choose

@i (0)f;(6_;)d6 P
Notice that

[ H@10 a0
is a constant and that

- 1

ti(0) = f wi(0)fi(0-))d6_; - n—1 2 f ¢i(0)f;(6-;) d6_, + Hy(#). )

#i
8.

.

Then, if ¢, satisfies (7) for all i, ¢ solves the EUP for F iff SiH =0.
Q.E.D.

5. Existence of balanced EIIC mechanisms

D’Aspremont and Gérard-Varet [1] have exhibited a class of balanced EIIC
mechanisms which can be derived as follows. Suppose one restricts the
transfer functions to be additively separable, i.e.

1(8) = 2 ri(6;)

and suppose that the decision function K*(8) maximizes /., A,(K, 6,).
Revelation of the truth 6;, under expected utility maximizing behavior, then
leads to the necessary condition?

av; IK* ari(6;
’--% a0, * Ee. ra:) = ®
or
dv; K*

rﬁ(ai)——f(E.,aK 0 )da+c

Switching the operators f and E, » we have
9y, IK*
ri(6;) = 3K 26, ——dé; + C;.

P E()=Jg_ ()(0-)d0..
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But from Proposition 3.2 we get

u(0) = Ev, [ An(K*(0), )+ hto )

= E,, %; Awi(K*(9), 8)) + C.

The ry(), j# i, are irrelevant for incentive compatibility. They can be
chosen to balance the budget in, for example, the following simple and
symmetric way:

1
ry(8) = = - 1;i(6)).
Deleting the constants (C;) one obtains

1(0) = E, , %Z A K*0),6)-—— 3 E, LS auk*0).0). (9
i n—1{ At

The fact that this solution to the necessary condition (8) is a solution to the
expected utility incentive compatibility problem is derived immediately from
Proposition 3.2.2

The mechanisms specified by (9) coincide with the d’Aspremont Gérard-
Varet (AGV) mechanisms when all the (A;) are equal. The preceding argument
provides, therefore, a constructive way of obtaining the AGV mechanisms,
which appear as a special case of the general class of expected utility
maximizing mechanisms exhibited in section 4.

We have just shown that when F is a weighted sum of valuation functions,
then solutions to the EUP for F exist. We shall now demonstrate that if F is
anything else, then if the class of valuation functions is sufficiently large, the
EUP problem has no solution.

For convenience, we shall make the following assumption about F.

Assomption 2. F is strictly concave and 3F/dv; > 0 Vi.

Assumption 2 is not actually necessary, but one can argue that most interes-
ting nonlinear welfare criteria will satisfy its stipulations anyway.

We shall work with a particular small class Vg of valuation functions;
namely, one where players 2 through n have quadratic valuation functions
and player 1 has a quadratic valuation function with an additional constant
term. That is

VQ={0|K—K2+a,02K~K2,...,0,.K—K2|069=r16.-,a€R},

i=1
where 6, is a bounded open interval of the real line.

’If the valuation functions are all strictly concave, one can show directly that the truth is the
best strategy with a transfer function as defined by (9). The argument consists of proving that the
second order conditions of the expected utility maximization problem are fulfilled at all critical
points.

“‘See also Arrow [2].
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The reasons for considering the family Vg are, that (1) it is a very small
class of preferences and one which would be likely to be contained in most
design problems of interest, and that (2) quadratic preferences are ordinarily
the most promising class for positive results (see, for example, section 7 on
coalitions); therefore, it is especially interesting when results are negative for
this class (or, as in this case, a slightly modified version of this class). We
shall make one more simplifying assumption.

Assumption 3. VO €E 6, Va, €R there exists a unique K which maximizes
F(vy(K, 6,, a)), vK, 8,),...,v.(K,8,)), where the valuation functions are
those of class V.

We can now state our impossibility result.

Proposition 5.1. If F and V|, satisfy Assumptions 1, 2 and 3, there exists no
solution to the EUP for F.

Remark. This result may seem to contradict Arrow’s finding (2) that, for any
welfare criterion F for which the welfare maximizing choice K* satisfies
(3K*/36,)(3’v/3K36,) =0 for all i, there exists an EIIC mechanism. The
resolution of the discrepancy is the observation that the condition
(0K*/30)(3%vi/aK 36;) = 0 (which Arrow calls ‘positive responsiveness’) cannot
be satisfied in general unless F is a weighted sum of individual valuation
functions.

Proof. We shall begin by reparameterizing v,. Take v, = 6,K — K>+ 86, + v,
where B, ¥ € R. Obviously the class of valuation functions {v,} is the same as
the class {,}, so the reparameterization affects the problem in no substantive
way. Take 8, = (6,, B, v). Now, suppose that t solves the EUP for F. From
Proposition 4.1

at, 00. aK*
, — (68)f.(0 d0_=—f-—-K*0,0 ——(0)f(6_,)de6_,.
ve, fao,‘ (8.0 6., o (K*(0).60 % @0 do.,
1 -1
The second order conditions for player 1's maximization problem imply,
therefore, V6,, B, ¥

(1

32 i A
= ( f [0(K*(8,, B, ¥, 8.1), 6, Br. )+ 1,61, B. 7, 0-)1f (0 .)do..)’:
1
6.,

oK* - 2 N .
-- ﬁ(o.,o-.>a;;3‘ (K*(6,, 0.,), 6),(0_)) d6_, < 0. (10)
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We may solve for 9K */38, as follows:

2 - (0(K*(8), 8)) 32t (K*(8), 6) = O, (1n
£
because K = K* maximizes F. Differentiating (11) with respect to 0, yields
S OF 3%v 0K*  oF o%v | v, 3°F v, IK*
=1 av aK2 a0, av, aK38, < < oK avov, 3K 36,
n 2
oy O°F du_,, (12)

i1 aK aviavl ao-l

where, for convenience, the arguments have been suppressed. Solving for
3K*/50, in (12), we obtain

_(ﬁ 8% oy 3°F av,)
aK* _ _ \ov, aKao, i=1 9K 9v,00, 36,

08, $F ¥y v, 9°F ov,’
= av, aK 2 2 K 9v,9v, 3K

(13)

The denominator of (13) does not vanish because of Assumption 2. Substitut-
ing (13) into (10), we get

(aF. 6201 dy; 3'F av.) a%v,
alh 6K80| j=1 aK avlam 60, 6K80|
9.)de ,<0. 14
ZaFa 2 av’ a F av, fl( ) 1 ( )
=i ay, aK aK av,av, 9K

Or, letting D(6,, 6-,) be the denominator in (14) and substituting the explicit
functions in (14),

f[a +3 (8- 2K*) K*+é)+(5. K*) K*+B)]

Uy =l

x 118D 49, <o (15)
D(6,,6-)

Let

2

) I 302K 2+ G- 2k0Sh

Gy= | ™= 2L f(6-,) do
6= | T £46-) 30,

Choose 8, such that G(8,)#0. Such a choice is possible by the strict
concavity of F and the v;’s. Let

+2, (6~ 21(*) K*+(0, —2k% 25

- av 80
H( =I LA ! 0.,)deo_,.
(6)) D(0|, 9. fl( 1)

o,
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Then (15) can be rewritten as
BG(6)+ H(6,)) < 0. (16)

If (16) holds, choose [5 to reverse the ineguality. Note that such a choice is
possible witI)out changing the values of G(6,) and H(6;) if one simultaneously
substitutes y for y so that

';"+B=0-1 = ‘;’+é0—|
Indeed, writing 6, = (4,, é, 5':) we have
2 - -
odK*(6,,0.),6) = vi(K*(6,,0.0), 6). V6.,

Therefore, second order conditions are violated at the truth and incentive
compatibility cannot hold. Q.ED.

6. Individual rationality

By the ‘individual rationality’ of a game is meant the property that all players
are ex ante at least as well off from playing the game as from refraining from
play. For the expected utility game, this property amounts to requiring that

Vi, V6, E, [v:(K*(0), 6)) + 1:(0)] = vi(K, b)),

where K is the level of K which would prevail if the game were not played.
For convenience, we assume that K =0. From Proposition 4.1, we have, in
equilibrium,

Vi, V6, E, [v:(K*(8), 6,) + 1,(0)]
=E, [vi(x*(éi. 6.),6)+ g1~ —1— 2 E o+ H.—(o)].
j®i

Consider the case of consistent expectations, i.e. expectations derived from
the same joint probability distribution over 6. Then

Eo = EprEo f = EOJEO..,’ Vi! j‘

Since transfers are always balanced we have
2 t(0)=0
i=1

and therefore

E [i (qp,- - n_}fl- ; E.qp + Hn‘(ﬂ))] =0

=1
or

ZI EoHi(0) = 21 Eo H(8) =0,

since E, H;(6) is constant for every i from the characterization theorem.
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But suppose, as is surely possible in general, that for any i there exists §;
such that

- Eo iilK*(8, 6-), 61 <v.(0, 6).
Then '

2 B, [v;(K*(éi, 6-),6)+¢i - n—i—lz E, i + H.-(o)] <2 00, 6).

i= j#i i=

The above inequality implies that there exists for some j a 6; such that
Es [vj(K*(8}, 6.)), ) + 1,(6;, 6_)) < v;(0, 6)).

Therefore it is clear that individual rationality cannot be guaranteed in
general.

On the other hand, there is a kind of individual rationality which can be
ensured in a wide class of cases, particularly when expectations are consis-
tent. Suppose that we think of society as facing a large number of public
decisions in the future, and of agents asking themselves if they should accept
the mechanism for this set of decisions. Individuals are not certain what the
exact nature of these projects will be, but they do have probabilistic beliefs.
One way of modelling this sitnation is to suppose that individuals are unsure
of their own characteristics as well as those of others. In this case individual
rationality becomes individual rationality on average, a concept introduced by
Green and Laffont [4] for dominant strategy mechanisms. In the simple case
of consistent expectations, this property can be written as

E4E [vi(K*(6,, 6-)), 6)+ t.(6,,0.)] = E;vi(0, ), i=1...,n

Suppose that K*(8) maximizes the weighted sum ., A,v:(K*(8), 6;), we can
then prove:

Proposition 6.1. Given Assumption 1 and consistent expectations, there
exists a solution to the EUP which is individually rational on average.

Proof. Under Assumption 1 we know that there exists a general solution
t;(8) given by Proposition 3.2. Since expectations are consistent we may write
without ambiguity
A = E, 2 Awi(K*(0), 6,).
i=1
Observe that by definition of K*(9)
A=E; 3 A0, 6)). an
=1

Suppose that t = (1,,...,1,) is a vector of transfer functions such that ¢ is a
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solution to the EUP. Then, take A, = E,(v;(K*(6), 6,) + 1,). Notice that

2 A =A. (18)
From (17) and (18) we can choose constants T),..., T, such that A, + T, =
Ey(vi(0, 6))) and =7., T, = 0. Therefore (t,+ T}, ..., t. + T,) is still a solution to
the EUP and ensures individual rationality on average. Q.E.D.

7. Coalition incentive compatibility

To approach the question of cooperation in games of incomplete information
with side payments, it is necessary to make assumptions about the in-
formation exchanges and the types of agreements which take place between
agents when they cooperate. Within the framework of our revelation game,
two hypotheses appear attractive.

Suppose first that there exists a class € of disjoint coalitions within which
knowledge of the parameters 6, of the coalition’s agents is common know-
ledge. Within each coalition a group of agents can choose or choose not to
formulate a joint strategy.

Let C be a coalition and let I be any subset of C. Expectations of the
members of the coalition about those outside C are identical (since we
assume that they share their private information).

Let fc(6-c) be the density function reflecting coalition C’s expectations. It
will also be the density function of any subcoalition of agents, since their in-
formation is the same as that of the entire coalition.

Coalition incentive compatibility for a coalition C means then

vi-CC, ig f {oi[K*(fc, 0_¢), 6]+ ti(Bc, 0-c)}fc(8-¢) dO-¢

6. ¢

= g {vi[K*(1c- B, 0-¢), 6]+ (64 b cucs 0-0)} fc(0-¢) db.c,
t€ic
6 ¢ (19)

for any 6cy, and for any 6.
Let us call

vilo., écuc, 6= j Uil K*(01 b 0-¢), 6:)fc(6-¢) db_¢,

0

.n[olcy éC\lc] = I ti(olcs éC\lC’ G’C)fC(o—C) do--(‘-
6. ¢



302 J-J. Laffont and E. Maskin

Then (19) can be rewritten as

VI CC, Y (Vilbi, b, 61+ T 6y, 6cu))

i€le

=3 (Vil6y, bcuc, 6]+ Ti(6y,, b6cul)s
1€Ic

for any 6cu., 010 b1

Then, within coalition C, we are strictly back in the framework of dominant
strategy mechanisms for the functions V(). The requirements on the T(-)
functions are the same as those for the construction of a dominant strategy
mechanism which is coalition incentive compatible with respect to all sub-
coalitions of C. The negative results obtained in Laffont and Maskin {8] apply; in
particular, Corollary (10) implies the general nonexistence of such mechanisms.

Another framework of interest is the situation in which the information
structure is not defined before the game starts. We shall assume that when a
subset of agents decides to form a coalition and to share private information,
members of the coalition are constrained to adhere to the jointly determined
strategy vector, i.e. they cannot renege.

Let % be the class of potential coalitions. The requirement for coalition
incentive compatibility is then

vCe<¢

1€C

> f [i[K*(6c, 0-¢), 6:1+ t:(6c, 0-¢))fc(8-c) O
0 ¢

= ;—‘ I [ui[K*(Bc, 0-¢), 6:] + ti(B¢, 8-c))fc(8-¢) b _c,
& c
for any 6c, 6 .
Let (gik = {{iy k}a {i}) {k}}

Proposition 7.1. Under Assumption 1 a necessary condition for coalition
incentive compatibility for the class 6y is

2y, aK* 2 *
3%, _ ' oK 20)

54 9K36, 96, ~°+3Kab, a6

E
Proof. From individual incentive compatibility

1
(8) = Eo i~ — 2 Eo o1 + Hi(6), @1

1
1(6) = Ey ¢j — n—_*i; Eo 1 + Hi(6). (22)
i

When coalition (i, j) forms, i and j share their information so that coalition
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incentive compatibility requires

o] g, [ aKe oy ok )
E"-»-[ao.*ao, Eo 3K 26, 9K a6, | (9
at, ot av, aK* v, aK*
A= - —— = 4+ L 2
E"w[aoﬁao,] E"-'[aK 36, T 9K 96, ] 24

Substituting (21) and (22) into (23) and (24) and switching the operators E, .
and 3/86,, 3/36; gives

2 E._[H/(8)+ H(6)]
00;

__n-2_. 99 [Q&aK* gﬂaK*]
n- |E"-* 96, *| 3K 36, T 3K 96, |’ (25)
F
36, E,_ [Hi(6)+ H(6)]

n-2p 9 [ﬂaK* i&aK*] 2
1 Eo Eo. |5k 26, Y 9K a6, | (26)

A necessary and sufficient condition for the existence of functions H,(8) +
H;(6) satisfying these conditions is, by Poincaré’s theorem, the equality of the
second cross derivatives, which is equivalent to (20). Q.E.D.

This condition (20), which i1s a joint condition on expectations, utility
functions and decision functions, is a very stringent stipulation, and is likely
not to be satisfied in most cases. Moreover, it is only a necessary condition
because H;(8) and H;(6) must also be such that

oH, o _ g OH, g _
E, 26, (0)—E9, 2, 6)=0. (04))

In addition, second order conditions must be satisfied.
Nevertheless, condition (20) is always fulfilled if utility functions are of the
quadratic type, i.e.

6K - 1K?
and if

a8, Dot g
which is a kind of anonymity requirement for the decision function K*.

Notice that (28) is fulfilled if K* maximizes the sum of the (quadratic)
valuations. This does not yet establish the existence of coalition incentive
compatible mechanisms for 6.. However, we will now show that by examin-
ing more general EIIC mechanisms than the AGV mechanisms, we can indeed
construct EIIC mechanisms (for our quadratic family) which are coalition
incentive compatible for €;.
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Let
v(K,8)=6K 31K’ i=1,...,n
then
20
K*@)="—.

If each agent i’s marginal distribution for any agent j’s strategy is
represented by a normal distribution (0, ¢?), then

v, K™ _.‘_’i( _l)_ 69, .
20, de;, = 1 = ,zﬁ—nr"'h.(e i)

aK 2n
and
__ o ( _ 1)
E, P = 2n 1 n +C,
and
__8 _1) 1 0?( _l)_;
)= -2y (l FYARCRIFIE P ol Gy g IEC'+H'(8)'
Then (25) and (26) become
a n-2
36, E, , [Hi(6)+ Hi(0)] = - 7 0
and
S B, [H(0)+H®)=-"520
a6, T ! It
Choosing
1n-2
H;i(8) = — 3ThT 6:6;,
1n-2

Hy(68) = — 5T 0:6;,

we observe that

oH, . oH, _
Es. 56, = Ev. 9 =0

To have a balanced mechanism it is enough to choose an agent k # i # j and
have
H(6) = — Hi(8) — H;(8).

Since neither H,(8) nor H;(9) depend on 6,, obviously

aH _
Es, 35 =0.

Moreover, the second order conditions are also satisfied for the coalition.
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8. Dependent case

Throughout the paper we have assumed that for any i, agent i’s expectations
about the other agents, represented by f;(8 ;) were independent of his own
characteristics 6. Of course, the dependent case is also of interest: it occurs
in particular when an agent’s expectations are derived from joint knowledge,
represented by a general joint density function f(8). Then

f'(o ')=f(0 .,0,):%

[ 160000,

6 +
We denote by E, 4, the expectation operator with respect to f(6_;; 6;). In this
section we shall deal only with the welfare criterion F(v,,...,v,)=3", Ui

Suppose that one restricts the transfer functions to be additively separable,
as in section 5. The first order condition for incentive compatibility becomes

dv, OK* ir_) _
Eo.s, (aK 20 T30, =0 29

Therefore 6* = 6; must be the solution of (29) for every 6, so that we have the
identity

ori [ v 8K*

36, ] 3K ap, 1(6-50)d0-:
8.,
Hence,
n.(0:)=—fj 20 9K ... 6 d6, do, (30)

3K 80.
o
We can construct a balanced mechanism by choosing
1
1(6) = ri(6) ~ —— 3, r;(6).
n 1 i

It remains to see what happens with the second order conditions.
The second derivative is
E. [azv; aK*2+ﬂ a’K*]
*¥[aK? 36, " K 363
_E [azv, 3K**  av, a’K] B a’v, aK*
*/[8K* 98, ' oK 36; *-#% 9K 36, 36,

_I dv; 3K* af(o.,ﬂ)de,

aK 60. 06
LS
If the utility functions v;(K, 6;) are strictly concave in K
Pk _d°vi aK* (a v,/f)K:’:M‘),)2

“EemaKae o8~ e Z ) v/aK’)
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At the truth 6; = §, the second order condition reduces to

f

| v, OK* of
8K 26, 96,
i L—-—— - -
We can exhibit a large class of cases in which (31) can be expected to hold.
Consider a class of valuation functions V = {(v(-, 8y), . . ., v(-, 0,.)]0 € 0},
where @, = - .- =@, is an open interval such that

o . £ - )
(0_,'; oi)do_,-b(), + E& . . —\"_-‘—f T-—:-— l

31

VK, v0, 2% (K. 0)<0 and 9k 0y>0
¥ ly’a? ’ (] aKao. $] (]

with a welfare criterion equal to the sum of the valuation functions, we have

> ?L(K*(o), 6,) = 0. (33)
o
Therefore,
3% w0 OK* 3w
,Z‘,b?’(x + ) 36, * 3Ka0, K™ 60 =0
and so
aK*  3%'w(K*, 0.-)/ & (K™, 6)
%, 3K a6; ,2. 3K’ 0 G4

Now, suppose that each individual i thinks that his tastes are ‘different’
from those of others. This feeling of difference can be expressed formally as
follows. Each realization @ of agents’ characteristics induces a configuration

Y s LA
BK(K ’ol)y-"‘aK(K ’on)

of partial derivatives, the sum of which, by (33), is zero. Let 6*(6) be defined
so that

ve, :—,‘2 (K*(6), 6%(8)) = 0.

Then 6*(9) may be thought of as the ‘average’ of the realized 6,’s. For an
agent i to feel that he is different might be taken to mean that as 6, moves away
from 6*%(9), i.e. away from the ‘average’, the density fi(0-;; 6;) increases.
Formally, this amounts to

g{o_:w_,.; 8)=0, if 6, = 6%(0),

%(O i:8)=0, if 6, < 6%(9).

(35)



Expected utility maximizing mechanisms 307

Notice that, from (32) and the definition of 8*(9),

9 g 0. i
2k (K*(0),8) <0, if 6, < 6%(9)

v (36)
2 (K* _ .
K (K*(0),6)>0, if 6 > 0*(0).
_ Therefore, together (34), (35) and (36) imply that
_‘2”_ * &ﬂ -
3K (K*(6),6) 20, 36, (0_;;60)>0, forall @
and so
o0 aK*of
aK a6, o6, (0 0)d6. >0 (37)
6.,

Incentive compatibility is therefore possible, at least locally .}

In contrast with (35), which leads to positive results, belief by an agent that
he is ‘average’ may lead to negative results. The belief that one is average
amounts to

% (6.,0)<0, if 6 =0%0),

' (38)

Ul (6..;6)=0, if 6, <6%0).

20;
Notice that this condition leads to the reversal of the inequality (37) and
therefore to the impossibility of incentive incompatibility.

These positive and negative results agree well with economic intuition.
Roughly speaking we expect the free-rider problem to be aggravated when
agents believe that they are similar. An agent who, for example, has a strong
liking for a public project and whose liking is shared by most other agents can
understate his preference and still feel confident that the project will go
through. Not so for the agent whose preferences are atypical.
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