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1. Introduction

Public economics has recently witnessed major advances in the theory of incentives.
Procedures that enable decision makers to take correct public decisions despite imper-
fect information have been designed and their properties studied.! These procedures
are typically games in which decisions are taken (in game theoretical language, outcomes
result) on the basis of information revealed (the strategies selected) by private individ-
uals. One class of procedures, moreover, has the property that revelation of the truth
constitutes a dominant strategy; that is, an individual does best by revealing the truth
regardless of the behavior of others.?

The limitations of these procedures are numerous and will not be reviewed here.
One major drawback of the dominant strategy mechanisms, however, is that they
work only for a limited class of social welfare functions. Indeed, Roberts (1979) and
Laffont and Maskin (1979a) showed that, essentially, only the linear social welfare
functions can, in general, be optimized incentive compatibly. This limitation forces
us either to weaken the strong incentive requirement of dominant strategies (see, for
example, Laffont and Maskin, 1979b) or to lower our sights to second-best optimiza-
tion in the design of incentive compatible mechanisms,

Any second-best problem requires a detailed specification of the constraints and,
in particular, the available instruments. In incentives theory, the description of the in-
struments is the difficult part, and we do not yet have a characterization of the various

See, for example, Green and Laffont (1979) and Laffont (1979).
?  See Laffont and Maskin (1979a).
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approaches to set up appropriate incentives. For example, one may design pure domi-
nant strategy mechanisms which use no information besides that which individuals re-
veal, or one may, as in the optimal tax literature, make use of additional data, such as
incomes. If certain information is available only ex post, one may introduce ex post
penalty functions.

At this stage of our study of incentives, the generality of a second-best study can
only be very limited and based on a rather restrictive description of available instru-
ments. In this chapter we explore a very special type of second-best problem where a
second-best optimum is obtained by approximating the social welfare function of in-
terest with one that can be implemented by a dominant strategy mechanism.

In section 2 we describe the model and summarize the major theorems of incentive
theory that we use. Section 3 solves the second-best problem in a simple case. Section
4 states the general nature of the problem. The appendix analyzes implementation of
the “maximin” social welfare function.

2. The model

We consider a society with n(n > 2) agents, indexed by i = 1, ..., n, and one private
good, say income. The utility function of agent i depends on his consumption of pri-
vate good x;, i = 1, ..., n, and on a public decision, K. The cost (in private good) of the
public decision for agent i, ¢;(K), is defined ex ante. Social cost is ¢(K) = Z¢,(K).
Agent s initial endowment of private good is X;. We assume that his utility function is
quasi-linear, i.e.

u, (K, x; = ¢;(K))

wi(K) +x; — ¢;(K)
v,(K) +x;.

Thus, w;(K) is the gross and v;(K) the net willingness to pay for the public decision, K.
For mathematical convenience, we parameterize the net willingness to pay functions.
Fori=1, .., n,let © be an open interval of IR and let v;: R, x©; > R be acon-
tinuously differentiable function.

A social welfare function isa mapping F: IR?" - IR, where F(z,, ..., Ups X1y eeey Xpy)
is the social welfare level attached to the net willingness to pay vector (v, ..., v,) and
the private consumption levels (x,, ..., x,,). We shall suppose that F is increasing and
twice continuously differentiable and that it satisfies the following two assumptions.

Assumption 1: The matrix of second-order partials of F with respect to the v,-’s is
negative semi-definite.

Assumption 2: There exist functions K*(+), x,(*), ..., x,,(+), from© =II_ , ©; to IR,
such that K*(-), x; (+), ..., x,,(+) are continuously differentiable and, for all 0 € ©,
K*(8),x,(8), ..., x,,(6) solve the problem:
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max F(vl (Kaol)’ sery vn (Kv on)’ X1, ---rxn), (*)
such that
n n

x;<ZXx;-cK), x>0, i=1,..n

1
i=

i=

-
-

) The functional forms v;(-, -) are assumed to be known publicly, but the true value,
6;, of the parameter 6; is known only to agent i, a priori. We can represent the family
of possible vectors of valuations by

¥ ={v,(+,0,). s U (+,0,)16,,...,0, €0, x..x0,}.

The problem of the decision-maker is to choose a public decision which maximizes
social welfare, even though he does not know the vector 8 = (4, ..., 5"). One approach
the decision-maker could follow is to behave as a Bayesian statistician and solve the
program:

max f F(vl (K,ol)’ ---vvn(Kyon)’xla--',xn)dw(ol’-"son)
K,x,,...xn 20 6E0O

s.t.

AvE

n
—

n
X< Z % - c(K),
i i=1

where ¥ (6,, ..., 8,,) is his subjective prior distribution on §. Let Kg,x,p,.., X, g be
the solution and let V5 be the optimal value of the maximand:

Vg=E, F(v,(Kg,0,), ...,v,(Kg.0,), X5, ... X, p)-
In contrast with this Bayesian optimum is the “first best” optimum, given by:
VFB = Ew F(vl (K*(0)7 0] )’ seey Vn (K*(o)’ 0"), X1 (o)a sesy xn (0))3

where the functions K*(+), x,(+), ..., x,,(+) are as in assumption 2.

Is it possible for the decision-maker to improve on ¥V and, perhaps, even to attain
Vep? To do better than Vg, the decision-maker must make the private agents partici-
pate in the decision process. The most straightforward way of doing so is simply to
ask them to reveal their true characteristics. Unfortunately, agents will, in general,
find it in their interest to misrepresent these characteristics. That is to say, they will
view themselves as playing a game where the outcome (a vector (K, x,, ..., x,)) depends
on their strategy (professing a characteristic). The difficulty this strategic behavior
creates for public decision-making is sometimes called the free rider problem.

Recognizing that agents will behave strategically, the decision-maker can consider
his problem as that of designing a game or procedure, the equilibria of which come as
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close as possible to solving the first-best optimization. Formally, the decision-maker
must choose strategy spacesS,, ..., S, and functions

K,xy,..x,: Six..x§, >R,

where K(sy, ..., 5,) is interpreted by the public decision-taker as the consequence of
strategies sy, ..., 5, and x;(sy, ..., §,,) as agent i’s consequent private consumption level.
To be able to speak of the equilibrium outcomes of such a procedure, one must first
state the solution concept. The strongest solution concept is that of dominant strate-
gies. In a dominant strategy equilibrium each player employs a strategy that he would
be willing to use regardless of the strategies chosen by other players.

It tumns out that for dominant strategy equilibrium, there is no loss of generality
in assuming that an agent’s strategy space is his space of characteristics (i.e. §; = ©;)
with the truth as a dominant strategy (see Green and Laffont, 1979, theorem 4-8).
Consequently, we say that the free rider problem is solvable for ¥"and F if there exists
a procedure g(+) = (K(+), x;(+) ..., x,,(+)) form © into IR}*! such that for any § € ©:

Viv6,c 00,(K(6,,0_)0,) +x,6,,0_)> v (K©,,0_)).0) +x,0,,0_))
and g(f) solves the first-best optimization (*).3 (%)

We now review some results on the free rider problem’s solvability. Let.#, be the
class of “linear” social welfare functions:

n
F(v,,...,v,,,x,,...,x,,)=El N@ +x), N>0, i=1,..,n

Let ¥" be the family of quadratic net willingness-to-pay functions:

2 2
¥q=46,K -(52-) N —(%)IG,-G @, forall i}.

Theorem 1 The Impossibility Theorem (Green and Laffont, 1979; Hurwicz, 1975).
For all F € #; there exists a family ¥"such that the free rider problem is not solv-
able for¥"and F.

Theorem 2 The Quadratic Theorem (Groves and Loeb, 1975).
The free rider problem is solvable for¥'g and Fif Fe &, .

We say that the free rider problem is weakly solvable for ¥~ and F if there exists a
procedure g(+) = (K(+), x,(+), ..., x,,(+)), satisfying the constraints of (*) such that
K(-)= K*(-), where K* is as in assumption 2 and (#+) is satisfied. When F = 7.,
(v; + x;), weak solvability implies that the public decision is Pareto efficient and that

3 0_i=(0,,..10i-1,0i41, ., 0n) (64,0 _)=(6,,..,8i_1,04 0541, s Op)
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private consumption is feasible. However, typically X, x;(0) < Z, %; - ¢(K), so that
use of the procedure g entails some loss of private good.

Theorem 3 The Possibility Theorem (Clarke, 1971; Groves 1973; Vickrey, 1961).
The free rider problem is weakly solvable for any ¥ "x F with F e 7| .

Theorem 4 The Generalized lmpossibility Theorem (Laffont and Maskin, 1979a;
Roberts, 1979).°

Suppose the matrix of second partials of F with respect to the v;’s is strictly nega-
tive definite and that ¥~ contains ¥ o- Then the free rider problem is not weakly solv-
able for¥"and F.

As is clear from above, a weak solution to the free rider problem is already second-
best, and yet theorem 4 asserts the impossibility of such a solution for all but a narrow
class of cases.

The purpose of this chapter is to avoid the negative conclusions of theorem 4 by
relaxing the optimality requirement still further. From theorem 4 we know that it is
impossible to elicit truthful responses if a concave and nonlinear social welfare func-
tion F () is to be maximized by the decision-maker. The decision-maker can maximize
only those social welfare functions which are implementable by dominant strategy
mechanisms. The second-best problem is, therefore, to choose the best such function
given that F(+) is the actual social welfare function.

3. A solution to the second-best problem

We shall confine our study to a society with two agents and to the family of valuation
functions:

2 2

K K
Yl = n,+0,K——2,n2 +02K-—2 , mel-1,+1], 6,e[-1,+1].

From theorem 4 above we know that, other than the linear functions, there exists no
social welfare function (satisfying assumption 1) for which the free rider problem is
weakly solvable. Suppose nonetheless that the social preferences of society are repre-
sented by a function F (v, (X, 8,), v, (K, 6,)) which is symmetric and strictly concave
in the y;’s in the relevant range. The only way to elicit the true characteristics (0, , 02)
isto replace F by a linear social welfare function:

Mo (K, 0,)+00,(K,0,), Ap+2;=1, A\ 20, A, 20.

4 See also Laffont and Maskin (1980).
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This “‘surrogate” SWF can then be maximized with appropriate Clarke—Groves transfers.
The solution of the program

K2 K2
max)\l nl+01K—"—' +A2 n2 +02K—_
K30 2 2

K*0,\)=7,0, +7,0,.

is

The second-best problem reduces here to the choice of the best vector (A;, A;) given
that one wishes to optimize F(-) but that one is, for incentive reasons, constrained to
the K*(-) family of public decision functions.

Proposition 1. Under assumption 1, if F(+) and the prior distribution of the decision
maker on 8 are both symmetric, then the optimal public decision function in the class

{(K(@)=X0, +X,0,, A +A, =1}
is
0, +0
K*(0)=—-l',)—2.

-

Proof. Suppose, to the contrary, that the optimal public decision function were K!(6)
=A8;, +(1-N)6;,Ae[0,1], A # % Then, by symmetry of the problem, K2 (8) =
(1=A\) 8, +A0is also a solution. But K*(8) = (6, +6,)/2=3 K'(6) +3 K2 (6). For
each value of (8,,0,):

F(v, (K*(6),0,),v,(K*(0),6,))

>3 F@ (K" (6),6,), 0, (K" (6),82)) +3 F(v, (K*(6),6,),v:(K*(6),6,)),

since by assumption 1 F is strictly concave in the y;’s and the v,’s are concave in X.
Taking expectation on both sides with respect to the prior distribution, we obtain:

E, F(v, (K*(6),0.),v.(K*(6),6,))
>1E, F(o, (K" (6),8,),v: (K* (6),05)) +3 E, F(v1 (K*(6),6,),v: (K?(6),62)),
contradicting the assumed optimality of K' (+) and K2(-). ®
The constraint of incentive compatibility on public decision functions leads to an

expected value of social welfare which may not actually be larger than the expected
value when the decision is taken solely on the basis of prior expectations by a Baye-
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sian statistician. With a symmetric social welfare function and a symmetric prior, a
Bayesian statistician can do no better than to set K = 0. We might ask, then, when a
revelation procedure can do better than simply fixing K at zero. We explore this ques-
tion with several examples. We shall compare the fixed K rule with the revelation
scheme that chooses K*(6) = % 0, + % 0,.

When the prior distributions on § =(8,,6,) and 7 = (n,, n,) are independent, one
may as well assume that n, =1, = 0 (see below). We shall, therefore, do so.

Example 1. Perfect negative correlation (fig. 9.1).
Distribution of 8:

6,=1,6,=-1 with probability 1/2,

6y

- 1,8, =1 with probability 1/2.

In both cases K*(0) = .1-, 0, + % 0, is identically zero. That is, under perfect negative
correlation the decision rule is the same as the a priori decision.

Therefore, under perfect negative correlation, there is no gain to using a revelation
procedure. Indeed, there is a loss if it is costly to operate.

Example 2. Perfect positive correlation (fig. 9.2).
Distribution on 6:

Tz
61
Figure 9.1
02
61

Figure 9.2
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6,= 1,0, = 1 withprobability 1/2,
0, =-1,0, =-1 with probability 1/2.
When
61=0,=1, K*=%01 "'%02 =1, vyy=0, =%,
0,=0,=-1, K*=36, +30,=-1, v, =0, =}.
The expected value of the procedure is then
Ve=1F(,2)+GIFG.1)=F(. )
Since F(-, +) is increasing, ¥} is larger than
Ve = (5)F(0,0) + (3)F(0,0)= F(0,0).

When 1, =17, =0, the public decision K* is the first-best decision.
The reason why it is possible to neglect (n, , 2 ) can now be made clear.
For each value (,, 7, ) we have:

I/I"/‘nl,‘n2 =F(12 +nl,% +ﬂz)> VB/n,,n, =F(0+m,0+n2).

Taking expectations on both sides with respect to the distribution of 1 (assumed in-
dependent of the distribution of 8), the inequality is preserved.

Summing up, we conclude that under perfect positive correlation, the revelation
procedure is valuable.

This result is really just a special case of the proposition that when the distribution
is concentrated in orthants 1 and 3 the revelation procedure is worthwhile, Since 6,
and 6, have the same sign, K*(6) = (6, + 6)/2 shares this sign and, therefore, §,K* —
K**[2>0,i=1, 2. Therefore, revelation procedures fail to be valuable only if the dis-
tribution of @ is concentrated in orthants 2 and 4. That this, however, is not a sufficient
condition for lack of value is illustrated by the next example.

Example 3. Imperfect negative correlation (fig. 9.3).
Distribution of 6:

0,=-1,8, = 3 withprobability }
-1 = 1 with probability }
= _% = 1 with probability %

=1 = -1 with probability 3.
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6,
|
N
+ | 0
1
4+
Figure 9.3
When
1 1 7 S
01-_1) 02=§’ K*="Er vl=3_2’ U2 = —33,
1 1 5 7
01 =32 02—_1) K*:—s, 1 = =3, v2=§s
1 1 5 7
01 =3 02_17 K*=E’ Uy =_.3_29 v2=§,
1 1 7 5
01'11 02=_E3 K*:;, vl=329 v2=_§

The expected value of this decision rule is
BDF G -3+ GF(-%5.3),
which is higher or less than F(0,0) depending on the curvature of F, i.e. on the sensi-

tivity of the social welfare function to inequality (see fig. 9.4).
For the social welfare function F,, with high curvature, an a priori choice of K =0

F,

) 14
5/
— 72 \

5/ <4
]

Figure 9.4
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is better than the use of the procedure because of social aversion to inequality. On the
other hand, for F,, with low curvature, the use of the revelation procedure is advan-
tageous. Indeed, if F is linear, the revelation scheme attains the first-best.

4. The general problem
The problem can be stated in its general form as follows:
K*@,7,, ..., A,) solves the problem

n
2.(X,9,),
max = \y(K,6)

as(Ap, .., N\ ) variesinL ={A;, ., A [N + .+ X, = L, 20 i=1,..,n}

and @ varies in ©.

K*(8, A, ..., A,) describes the public decision functions which are implementable
by the Clarke—Groves mechanisms. From theorem 3 we know that they are essen-
tially the only ones implementable by dominant strategy mechanisms; therefore, we
have the complete description of the instruments.

The second-best problem is:

m:xéfF(vx (K*(6, ), 0,), ..., v,(K*(©0, N), 6,,)) d ¥ (63, .., 6,,)

s.t.

(s A)eL.

Let (¢;(6, M) denote the Clarke transfers® associated with the maximization of
25, N y(K, 6)). If F(-) depends on the levels of private goods, the problem takes
the form:

max [ F(v; (K*(0,)),6,), ....v,(K*(8,1),6,), %1 +$:1(0,}), ..., X, +¢,(6,0).
AEL ©

If the y;(-, 6;) functions are concave inK,i = 1, ..., n, the K*’s can be characterized
by the first-order condition:

n ov
N W(K*,Oi)=0, Voe0O.

i=1

S These transfers in private good ensure that a truthful answer is a dominant strategy for each
agent (see Green and Laffont, 1979).

C VTA WU e T
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The second-best problem then takes the form:

milXG{F(vx (K,0,), .., 0, (K,0,), %1 +¢1 (6,1, ..., +¢, (6,M)d ¥(8,,...6,)

s.t.
ov

i i
i§] )\i oK (K,e,‘)=0, Ve® ()\l’---»)\n)EL.
Appendix

The approach developed in the text of this chapter requires differentiability of the de-
cision functions. In this appendix we discuss the implementation of the maximin so-
cial welfare function by nondifferentiable decision functions.

Example Al.
Vi={6,K - (K?/2),6,K - (K*/2),0,eR,0, € R}, K*6)=min(6,,6,),

with zero transfers is a solution to the free rider problem for V, and F =
ming (v, (K, 0,), v, (K, 62)). Revelation of the truth is clearly a dominant strategy.

Example A2.

V= 4K~ 6,7, (K~ 0,70, R 6, < R}, K*(0)= 2322,

i.e. the decision function which implements the maxmin criterion (min; 2;(K, 8,)) co-
incides with the one which maximizes the utilitarian criterion (2, v; (K, 6,)) so that we
know that the Clarke—Groves mechanisms provide a weak solution to the free rider
problem (theorem 3).

Example A3,

Viy={nm +6,K - (K’/Z),nz +0,K - (K2/2),91 >0;,m <ng,
0,eR,6,eR,n, eIR,n, € IR},

The implementation of maxmin requires

v(6,.K)=0(0;,K) or K*=-—2—TL
8, -6,

However, we observe that for n, , n, fixed, we are back to the Yo family and we know
then that only the decision functions increasing in 6 are implementable (Laffont and
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Maskin, 1979b). Therefore the free rider problem is not weakly solvable for V since
K*(+) is not increasing in (8, , 8,).
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