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Abstract 

We argue that Arrow’s (1950), (1951) independence of irrelevant alternatives condition (IIA) is 

unjustifiably stringent. Although, in elections, it has the desirable effect of ruling out spoilers and 

vote-splitting (Candidate A spoils the election for B if B beats C when all voters rank A low, but 

C beats B when some voters rank A high - - because A splits off support from B), it is stronger 

than necessary for this purpose. Worse, it makes a voting rule insensitive to voters’ preference 

intensities. Accordingly, we propose a modified version of IIA, MIIA, that is still strong enough 

to rule out spoilers and, in a precise sense, is a necessary and sufficient relaxation of IIA for 

taking account of intensities. Rather than obtaining an impossibility result like Arrow’s, we show 

that a continuous voting rule satisfies MIIA, Arrow’s other conditions, May’s (1952) axioms for 

majority rule, and a much weakened version of Young’s (1974) consistency condition if and only 

if it is the Borda count (Borda 1781), i.e., rank-order voting. Because every other condition we 

impose is satisfied by virtually all voting rules used in practice and studied in theory, this result 

establishes that MIIA is the axiom uniquely distinguishing the Borda count from those other 

voting rules.  
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1.  Arrow, May, Young, and Borda 

    A.  Arrow’s IIA Condition 

In (1950) and (1951), Kenneth Arrow introduced the concept of a social welfare function 

(SWF) – a mapping from profiles of individuals’ preferences to social preferences.1 The 

centerpiece of his analysis was the celebrated Impossibility Theorem, which establishes that, 

with three or more social alternatives, there exists no SWF satisfying four attractive conditions: 

unrestricted domain (U), the Pareto Principle (P), non-dictatorship (ND), and independence of 

irrelevant alternatives (IIA). 

Condition U requires merely that a social welfare function be defined for all possible 

profiles of individual preferences (since ruling out preferences in advance could be difficult). P is 

the reasonable requirement that if all individuals (strictly) prefer alternative x to y, then x should 

be (strictly) preferred to y socially as well. ND is the weak assumption that there should not exist 

a single individual (a “dictator”) whose strict preference always determines social preference. 

These first three conditions are so undemanding that virtually any SWF studied in theory 

or used in practice satisfies them all. For example, consider plurality rule (or “first-past-the-

post”), in which x is preferred to y socially if the number of individuals ranking x first is bigger 

than the number ranking y first.2 Plurality rule satisfies U because it is well-defined regardless of 

individuals’ preferences. It satisfies P because if all individuals strictly prefer x to y, then x must 

 
1 Formal definitions are provided in section 2. 
2 As used in elections, plurality rule (the predominant election method in the U.S. and U.K.) is, strictly speaking, a 
voting rule, not a SWF: it merely determines the winner (the candidate who is ranked first by a plurality of voters). 
By contrast, a SWF requires that all candidates be ranked socially (Arrow 1951 sees this as a contingency plan: if 
the top choice turns out not to be feasible, society can move to the second choice, etc.). See Section 5 for further 
discussion of voting rules.  
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be ranked first by more individuals than y.3 Finally, it satisfies ND because if everyone else ranks 

x first, then even if the last individual strictly prefers y to x, y will not be ranked above x socially.   

Alternatively, consider instant-runoff voting (called ranked-choice voting in the United 

States, preferential voting in Australia and the United Kingdom, and Hare’s rule or single-

transferable vote in some of the voting literature), in which x is preferred to y socially if x is 

dropped after y in the candidate-elimination process (the candidate dropped first is the one who 

is ranked first by the fewest voters; her supporters’ second choices are then elevated into first 

place; and the process  iterates). It is easy to check that it too satisfies the three conditions. 

By contrast, IIA – which requires that social preferences between x and y should depend 

only on individuals’ preferences between x and y, and not on preferences concerning some third 

alternative – is satisfied by very few SWFs.4  Even so, it has a compelling justification: to 

prevent spoilers and vote-splitting in elections. 5 

To understand the issue, consider Scenario 1 (modified from Maskin and Sen 2016). 

There are three candidates – Donald Trump, Marco Rubio, and John Kasich (the example is 

inspired by the 2016 Republican presidential primary elections) – and three groups of voters. 

One group (40%) ranks Trump above Kasich above Rubio; the second (25%) places Rubio over 

Kasich over Trump; and the third (35%) ranks Kasich above Trump above Rubio (see Figure A).  

 

 
3 This isn’t quite accurate, because it is conceivable that x is never ranked first. But we will ignore this small 
qualification. 
4 One SWF that does satisfy IIA is majority rule (also called Condorcet voting), in which alternative x is socially 
preferred to y if a majority of individuals prefer x to y. However, unless individuals’ preferences are restricted, social 
preferences with majority rule may cycle (i.e., x may be preferred to y, y preferred to z, and yet z preferred to x), as 
Condorcet (1785) discovered (see formula (4) below). In that case, majority rule is not actually a SWF (since its 
social preferences are intransitive). That is, majority rule violates U. 
5 Eliminating spoilers and vote-splitting has frequently been cited in the voting literature as a rationale for IIA. See, 
for example the Wikipedia article on vote-splitting https://en.wikipedia.org/wiki/Vote_splitting, especially the 
section on “Mathematical definitions.” 
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40% 25% 35% 
Trump Rubio Kasich 
Kasich Kasich Trump 
Rubio Trump Rubio 

 

Figure A: Scenario 1 

 

Many Republican primaries in 2016 used plurality rule (called “first-past-the-post” in the 

U.K.); so the winner was the candidate ranked first by more voters than anyone else.6 As applied 

to Scenario 1, Trump is the winner with 40% of the first-place rankings. But, in fact, a large 

majority of voters (60%, i.e., the second and third groups) prefer Kasich to Trump. The only 

reason why Trump wins in Scenario 1 is that Rubio spoils the election for Kasich by splitting off 

some of his support;7 Rubio and Kasich split the first-place votes that don’t go to Trump. 

 An SWF that satisfies IIA avoids spoilers and vote-splitting. To see this, consider 

Scenario 2, which is the same as Scenario 1 except that voters in the middle group now prefer 

Kasich to Trump to Rubio (see Figure B).  

 

 

 

 
6 In actual plurality rule elections, citizens simply vote for a single candidate rather than rank candidates. But this 
leads to the same winner as long as citizens vote for their most preferred candidate.  
7 In common parlance (arising from plurality rule and  runoff elections), candidate A spoils the election for B if (i) B 
wins when A doesn’t run, and (ii) C wins when A does run (because some citizens vote for A, and these votes would 
otherwise have gone to B). In Arrow’s (1951) framework (which we adopt here), however, there is a fixed set of 
candidates, and so we interpret a “candidate who doesn’t run” as one ranked at the bottom by all voters (since a 
candidate ranked at the bottom has zero effect on what happens to other candidates – just like a candidate who 
doesn’t run). Similarly, we interpret “some citizens voting for A” as their ranking A first (i.e., above B and C), since 
in plurality and runoff elections, one can vote for only a single candidate (presumably, one’s top choice). Thus, 
formally, A is a spoiler for B if B beats C when all voters rank A at the bottom, but C beats B when some voters 
switch to ranking A at the top (with no other changes to the preference profile). 
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40% 25% 35% 
Trump Kasich  Kasich 
Kasich Trump  Trump 
Rubio Rubio Rubio 

 

Figure B: Scenario 2 

 

Pretty much any non-pathological SWF will lead to Kasich being ranked above Trump in 

Scenario 2 (Kasich is not only top-ranked by 60% of voters, but is ranked second by 40%; by 

contrast, Trump reverses these numbers: he is ranked first by 40% and second by 60%). 

However, if the SWF satisfies IIA, it must also rank Kasich over Trump in Scenario 1, since each 

of the three groups has the same preferences between the two candidates in both scenarios. 

Hence, unlike plurality rule, a SWF satisfying IIA circumvents spoilers and vote-splitting: 

Kasich will win in Scenario 1.   

But imposing IIA is too demanding: It is stronger than necessary to prevent spoilers (as 

we will see), and makes sensitivity to preference intensities impossible.8  To understand this 

latter point, consider Scenario 3, in which there are three candidates x, y, and z and two groups of 

voters, one (45% of the electorate) who prefer x to z to y; and the other (55%), who prefer y to x 

to z (see Figure C).  

 

 

 
8 Arrow (1950), (1951) assumes that a SWF is a function only of individuals’ ordinal preferences (for the motivation 
behind this assumption, see footnote 9), which means that preference intensities cannot directly be expressed in his 
framework. However, this does not not rule out the possibility of inferring intensities from ordinal data, as we argue 
below. And even if one takes the view that preference intensities have no place in political elections, they are central 
to much of welfare economics (in which the “candidates” are the policy alternatives), which is also covered by 
Arrow’s framework.  
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45% 55% Under the Borda count  
x y        x gets 3 × 45 + 2 × 55 = 245 points 
z x        y gets 3 × 55 + 1 × 45 = 210 points 
y z        z gets 2 × 45 + 1 × 55 = 145 points 

                                                     so the social ranking is  
x
y
z

 

Figure C: Scenario 3 

 

For this scenario, let’s apply the Borda count (rank-order voting), in which, if there are m 

candidates, a candidate gets m points for every voter who ranks her first, 1m   points for a 

second-place ranking, and so on. Candidates are then ranked according to their point totals. The 

calculations in Figure C show that in Scenario 3, x is socially preferred to y and y is socially 

preferred to z. But now consider Scenario 4, where the first group’s preferences are replaced by x 

over y over z (see Figure D).  

 

 

45% 55% Under the Borda count, the 

 

 
social ranking is no

    
,w  a
   

y
x
z

   

violation of IIA as applied to x and y  
        
        

x y 
y x 
z z 

Figure D: Scenario 4 

 

As calculated in Figure D, the Borda social ranking becomes y over x over z. This violates IIA: in 

going from Scenario 3 to 4, no individual’s ranking of x and y changes, yet the social ranking 

switches from x above y to y above x. 



7 
 

However, the anti-spoiler/anti-vote-splitting rationale for IIA doesn’t apply to Scenarios 

3 and 4. Notice that candidate z doesn’t split first-place votes with y in Scenario 3; indeed, she is 

never ranked first.  Moreover, her position in group 1 voters’ preferences in Scenarios 3 and 4 

provides potentially useful information about the intensity of those voters’ preferences between x 

and y. In Scenario 3, z lies between x and y – suggesting that the preference gap between x and y 

may be substantial. In the second case, z lies below both x and y, implying that the difference 

between x and y is not as big. Thus, although z may not be a strong candidate herself (i.e., she is, 

in some sense, an “irrelevant alternative”), how individuals rank her vis à vis x and y is arguably 

pertinent to social preferences,9 i.e., IIA should not apply to these scenarios.  

Let us make this more precise. Imagine that from the perspective of an outside spectator 

(or society), an individual’s utilities      ,  ,  and u x u y u z  (where u captures preference 

intensity) are drawn from an unknown joint distribution  , ,x y zp u u u , where 

   , ,  prob ( ) , ( ) , ( )x y z x y zp u u u u x u u y u u z u    . Assume that p is exchangeable in the sense 

 
9 One might wonder why, instead of depending only on individuals’ ordinal rankings, a SWF is not allowed to 
depend directly on their cardinal utilities, as in Benthamite utilitarianism (Bentham, 1789) or majority judgment 
(Balinski and Laraki, 2010). But it is not at all clear how to ascertain these utilities, even leaving aside the question 
of deliberate misrepresentation by individuals. Indeed, for that reason, Lionel Robbins (1932) rejected the idea of 
cardinal utility altogether, and Arrow (1951) followed in that tradition. Notice that in the case of ordinal preferences, 
there is an experiment we can perform to verify an individual’s asserted ranking: if he says he prefers x to y, we can 
offer him the choice and see which he selects. But there is no known corresponding experiment for verifying 
cardinal utility - except in the case of risk preferences, where we can offer lotteries (in the von Neumann-
Morgenstern 1944 procedure for constructing a utility function, utilities are cardinal in the sense that they can be 
interpreted as probabilities in a lottery). Yet, risk preferences are not the same thing as preference intensities. And 
taking account of risk preferences in social choice situations in which the alternatives entail no uncertainty (e.g., in 
an election, an alternative is simply a candidate, not a lottery) seems of dubious moral relevance (for that reason, 
Harsanyi’s (1955) derivation of utilitarianism based on risk preferences is often criticized). Finally, even if there 
were an experiment for eliciting utilities, misrepresentation might interfere with it. Admittedly, there are 
circumstances with ordinal SWFs when individuals have the incentive to misrepresent their rankings (which is the 
subject of the Gibbard 1973/Satterthwaite 1975 theorem). But a cardinal SWF is subject to much greater 
misrepresentation because individuals have the incentive to distort even when there are only two alternatives (see 
Dasgupta and Maskin 2020). Thus, we are left only with the possibility of inferring preference intensities from 
ordinal preferences. 



8 
 

that, for any permutation   of , ,x y z ,         , , , ,x y z x y zp u u u p u u u   , reflecting the idea 

that, from a sufficiently ex ante perspective, the spectator can’t distinguish among the three 

alternatives.10 

Then,  

(1) ( ) ( )  between  and E ( ) ( )  not between  and u x u y z x y u x u y z x y           

That is, the expected difference between  u x  and  u y  is bigger if z lies between x and y in the 

individual’s ranking than if it does not.  

 To see why (1) holds, assume that    u x u y , and note that the left-hand side of (1) 

(where ( ) ( ) ( )u x u z u y  ) is then 

 (2)      , ,   , ,
r t s r t s

r s p r s t p r s t
   

  . 

By contrast, if, say, ( ) ( ) ( )u x u y u z   (the argument is symmetric if ( ) ( ) ( )u z u x u y  ), the 

right-hand side is  

(3)      , ,   , ,
r s t r s t

r s p r s t p r s t
   

  . 

Now, from the exchangeability of p, the denominators of (2) and (3) are equal. Fix , ,r s t  such 

that r t s  . From exchangeability,  , ,p r s t  in (2) equals  , ,p r t s  in (3). But the coefficient 

of  , ,p r s t  in (2) is r s , whereas that of  , ,p r t s  in (3) is r t . Since the former is bigger 

than the latter, (1) is established. 

 
10 If the SWF is chosen well before it is used, then society won’t at that point even know the identities of the 
alternatives that will arise in those uses. Thus, even if it turns out that, in some uses, the utilities corresponding to 
alternatives are asymmetrically distributed, each of the permuted distributions will be equally likely from an ex ante 
perspective, and so our exchangeability assumption will hold. 
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 Thus, the spectator can make inferences about an individual’s expected preference 

intensity differences from purely ordinal data – despite knowing nothing (other than 

exchangeability) about the distribution that the intensities are drawn from. Notice, however, that 

(1) is the only such inference that the spectator can make without more information about the 

distribution. For example, the spectator can’t compare

( ) ( )  above  and  with E ( ) ( )  below  and u x u y z x y u x u y z x y         . 

 In view of all this, we propose the following relaxation of IIA.11 Under modified 

independence of irrelevant alternatives (MIIA), if given two alternatives x and y and two profiles 

of individuals’ preferences, (i) each individual ranks x and y the same way in the first profile as 

in the second, and (ii) each individual ranks the same number of alternatives between x and y in 

the first profile as in the second, then the social ranking of x and y must be the same for both 

profiles.  

If we imposed only requirement (i), then MIIA would be identical to IIA.  Requirement 

(ii) is the one that permits preference intensities to figure in social rankings. Specifically, notice 

that, since z lies between x and y in group 1’s preferences in Scenario 3 but not in Scenario 4, 

MIIA does not require the social rankings of x and y to be the same in the two scenarios. That is, 

accounting for preference intensities is permissible under MIIA. 

Even so, MIIA is strong enough to rule out spoilers and vote-splitting (i.e., a SWF 

satisfying MIIA cannot exhibit the phenomenon of footnote 7). In particular, it rules out plurality 

rule: in neither Scenario 1 nor Scenario 2 do group 2 voters rank Rubio between Kasich and 

 
11 Other authors who have considered variants of IIA include Brandl and Brandt (2020), Dhillon and Mertens 
(1999), Eden (2020), Fleurbaey, Hansson (1973), Mayston (1974), Suzumura, and Tadenuma (2005) and (2005a), 
Osborne (1976), Roberts (2009), Saari (1998), Young (1988), and Young and Levenglick (1978). 
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Trump. Therefore, MIIA implies that the social ranking of Kasich and Trump must be the same 

in the two scenarios, contradicting plurality rule.   

 Runoff voting12 is also ruled out by MIIA. Under that voting rule, a candidate wins 

immediately if he is ranked first by a majority of voters.13 But failing that, the two top vote-

getters go to a runoff. Notice, that if we change Scenario 1 so that the middle group constitutes 

35% of the electorate and the third group constitutes 25%, then Trump (with 40% of the votes) 

and Rubio (with 35%) go to the runoff (and Kasich, with only 25%, is left out). Trump then wins 

in the runoff, because a majority of voters prefer him to Rubio. If we change Scenario 2 

correspondingly (so that the 25% and 35% groups are interchanged), then Kasich wins in the first 

round with an outright majority (of 60%). Thus, runoff voting violates MIIA (and so does instant 

runoff voting) for essentially the same reason that plurality rule does.  

From our previous discussion, observe that, as a relaxation of IIA, MIIA is not only 

strong enough to rule out spoilers but—when the SWF is adopted before its applications are 

known—necessary and sufficient for making all possible inferences about utility differences 

(necessary in the sense that IIA must be relaxed at least this much to take account of (1), and 

sufficient in the sense that no greater relaxation MIIA would yield any further intrapersonal 

comparisons of intensities).  

We now turn to the other (much weaker) axioms we will invoke.  

    B.  May’s Axioms for Majority Rule 

When there are just two alternatives, majority rule is far and away the most widely used 

democratic method for choosing between them. Indeed, almost all other commonly used voting 

 
12 Used in France, Brazil, and many other countries for presidential elections and in some U.S. states for 
congressional elections. 
13 Like plurality rule, runoff voting in practice is usually administered so that a voter just picks one candidate rather 
than ranking them all (see footnote 6). 
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rules – e.g., plurality rule, runoff voting, instant runoff voting, and the Borda count – reduce to 

majority rule in this case. 

 Kenneth May (1952) crystallized why majority rule is so compelling in the two-

alternative case by showing that it is the only voting rule satisfying anonymity (A), neutrality 

(N), and positive responsiveness (PR). Axiom A is the requirement that all individuals be treated 

equally, i.e., that if they exchange preferences with one another (so that individual j gets i’s 

preferences, individual k get j’s, and so on), social preferences remain the same. N demands that 

all alternatives be treated equally, i.e., that if the alternatives are permuted and individuals’ 

preferences are changed accordingly, then social preferences are changed in the same way. And 

PR requires that if alternative x rises relative to y in some individual’s preference ordering, then 

(i) x doesn’t fall relative to y in the social ordering, and (ii) if x and y were previously tied 

socially, x is now strictly above y. 14 

C. Young’s Consistency 

 Peyton Young (1974) provided a well-known characterization of the Borda count in 

which the central axiom is a consistency15 condition: if the top social alternative for each of 

several different populations is x, then x must be the top social alternative for the union of those 

populations.  

 This is a very strong condition. Indeed, Young (1975) shows that, together with U, A, and 

N, it implies that the SWF must be a scoring rule: there are m nonnegative numbers 1,..., ma a  

such that each time an alternative is ranked first it gets 1a  points, each time it is ranked second 

 
14 May (1952) expressed the A, N, and PR axioms only for the case of two alternatives. In section 2 we give formal 
extensions for three or more alternatives (See also Dasgupta and Maskin 2020). Our formulations are weak enough 
so that they apply to practically every SWF in the literature. 
15 Moulin (1988) calls this axiom “reinforcement.” 



12 
 

2a  points, etc. Alternatives are then ranked socially according to their point totals. The set of all 

scoring rules includes both the Borda count and plurality rule (for which 1 0a   and 

2 0ma a    ). 

 We shall invoke a far weaker axiom called ranking consistency (RC), which requires only 

that if the entire social ranking is strict and identical for each of several disjoint populations, 

then its (unique) top-ranked alternative must be socially top-ranked for the union. In fact, RC is 

so mild that (as far as we can tell) it is satisfied by every standard voting method used in practice 

and nearly every one studied in the literature (see Section 2).  

    D.  Borda’s Rule and Condorcet Cycles: A Special Case 

 The main result of this paper establishes that a continuous16 SWF satisfies U, MIIA, A, 

N, PR, and RC (the other Arrow conditions – P and ND – are redundant) if and only if it is the 

Borda count.17 Checking that the Borda count satisfies the six axioms18 and continuity is 

straightforward.19 We have already noted that U and RC are almost universally satisfied by 

SWFs in the literature. The same is true of A, N, PR, and continuity. Thus, our main result20 

 
16 An SWF is continuous if the set of profiles for which x is weakly preferred socially to y  is closed. We express 

this formally in Section 3. 
17 Saari (2000) and (2000a) provide a vigorous defense of the Borda count based on its geometric properties.  
18 Notice that the Borda count implies a particular way of making interpersonal comparisons, e.g., if individual 1 
ranks x two positions above y, that preference is exactly cancelled by two individuals who rank y one position above 
x. Observe, however, that none of our axioms speaks directly to interpersonal comparisons at all; such comparisons 
are an emergent property of the joint imposition of the axioms. 
19 To see that the Borda count satisfies MIIA, note that if two profiles satisfy the hypotheses of the condition, then 
the difference between the number of points a given voter contributes to x and the number she contributes to y must 
be the same for the two profiles (because the number of alternatives ranked between x and y is the same). Thus, the 
differences between the total Borda scores of x and y – and hence their social rankings – are the same. To see that 
the Borda count satisfies RC, imagine that the Borda ranking for x and y is the same for each of several disjoint 
subpopulations. Because the Borda scores for the union of the subpopulations are just the sums of those for the 
individual subpopulations, the Borda ranking of x and y for the union population must coincide with that for the 
subpopulations. 
20 The result is “tight” in the sense that dropping any single condition renders it invalid. Majority rule satisfies 
everything but U. Runoff voting and instant runoff voting satisfy everything but MIIA. The weighted Borda count 
(where different individuals have different weights) satisfies everything but A. The asymmetric Borda count (where 
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implies that, for standard voting rules, MIIA is the axiom that uniquely distinguishes the Borda 

count.  

To illustrate a central idea of the proof, let us focus on the case of three alternatives x, y, and 

z and suppose that F is a SWF satisfying the six axioms. We will show that when F is restricted 

to the domain of preferences ,  ,  
x zy
y z x
z x y

  
 
  

 (i.e., when we consider only profiles with preferences 

drawn from this domain), it must coincide with the Borda count.  

Consider, first, the profile in which 1/3 of individuals have ranking
x
y
z

; 1/3 have ranking
y
z
x

; 

and 1/3 have ranking
z
x
y

.21 We claim that the social ranking of x and y that F assigns to this 

profile is social indifference: 

(4) 

1 3 1 3 1 3

    x z y F
x yy x z

z y x
  

If (4) doesn’t hold, then either 

(5) 

1 3 1 3 1 3

   x z y F x
y x z y
z y x

 

 
x, say, gets 1k t   points every time someone ranks it in position t but y gets 2k t   points for this position) 
violates only N. The SWF in which all alternatives are deemed socially indifferent regardless of individuals’ 
rankings satisfies everything but PR. For RC, consider the following SWF devised by G. Gendler for the case 

3X  : For a given profile, rank x above y socially if and only if 

     2 2 0,2 1 2 1 1 2 1 2                 where k for 1, 2k  , is the fraction of individuals in the profile 

who rank x k places above y and k  is the corresponding fraction who rank y k places above x. Gendler (2023) 

shows that this SWF satisfies all the axioms except RC. After the proof of the main theorem, we give an example of 
a non-Borda SWF that satisfies all axioms except continuity. 
21 From A, we don’t need to worry about which individuals have which preferences. 
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or 

(6) 

1 3 1 3 1 3

   yx z y F
xy x z

z y x

 

If (5) holds, then apply permutation   – with ( ) ,  ( ) ,x y y z    and ( )z x   – to (5). From 

N, we obtain  

(7) 

1 3 1 3 1 3

  yy x z F
zz y x

x z y

 

Applying   to (7) and invoking N, we obtain 

(8) 

1 3 1 3 1 3

  z y x F z
x z y x
y x z

  

But the profiles in (5), (7), and (8) are the same except for permutations of individuals’ 

preferences, and so, from A, give rise to the same social ranking under F, which in view of (5), 

(7), and (8) must be  

x
y
z
x

 , 

violating transitivity. The analogous contradiction arises if (6) holds. Hence, (4) must hold after 

all. From MIIA and (4), we have  

(9) 

1 3

  

a b
x z y F x y
y x z
z y x

 , for all 0a   and 0b   such that 2 3a b   

From PR and (9), we have 
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(10) 

1

  

a b a b
x z y F x
y x z y
z y x

 
, where 2 3a b  ,  and , ,1 0a b a b   , 

and  

(11) 

1

  

a b a b
x z y F y
y x z x
z y x

 
, where 2 3a b   , and , ,1 0a b a b   .   

But (9), (10), and (11) collectively imply that x is socially preferred to y if and only if x’s Borda 

score exceeds y’s Borda score,22 i.e., F is the Borda count23. Q.E.D 

 The domain ,  ,  
x z y
y x z
z y x

  
 
  

 is called a Condorcet cycle because, as Condorcet (1785) 

showed, majority rule may cycle for profiles on this domain (indeed, it cycles for the profile in 

(4)). This domain is the focus of much of the social choice literature, e.g., Arrow (1951) makes 

crucial use of  Condorcet cycles in the proof of the Impossibility Theorem; Barbie et al (2006) 

show that it is essentially the unique domain (for three alternatives) on which the Borda count is 

strategy-proof; and Dasgupta and Maskin (2008) show that no voting rule can satisfy all of P, A, 

N, and IIA on this domain. One implication of our result in this section is that there is a sense in 

which the Borda count comes closer than any other voting rule to satisfying these four axioms on 

 
22 Alternative x’s Borda score is 3 2 1a b a b    , and y’s Borda score is 3(1 ) 2a b a b    . Hence, x is Borda-

ranked above y if and only if   
3 2 1 3(1 ) 2 ,a b a b a b a b          

which reduces to 2 3a b  , i.e., we obtain formula (10). 
23 Notice that, for this special case, we did not need to invoke axiom RC. This is because for profiles on this domain, 
we can infer social indifference between x and y using A, N, and MIIA alone (as we do for the profile (4)). 
Similarly, the symmetry of (4) dispenses with the need for a continuity assumption. For the general proof, we will 
show, roughly speaking, that any profile can be decomposed into subprofiles for each of which such symmetry 
considerations are enough to imply that the social ranking is Borda. We then apply RC and continuity to conclude 
that the same is true of the social ranking for the combined profile. 
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a Condorcet cycle domain - - it satisfies P, A, and N and captures (through MIIA) the “essence” 

of IIA. 

    E.  Outline  

 In Section 2, we lay out the model and the axioms. Section 3 introduces the critical 

concept of an indifference curve for a SWF. In Section 4, we show that a SWF satisfying our 

axioms must be the Borda count. Section 5 concludes the paper by discussing a few open 

questions. The proofs in Sections 3 and 4 are given for the case of three alternatives. The 

Appendix generalizes the arguments to any number of alternatives. 

2. Formal Model and Definitions  

Consider a society consisting of a continuum of individuals24 (indexed by [0,1]i ) and a finite 

set of social alternatives X , with 1X m  .25 For each individual i, let i  be a set of possible 

strict rankings26 of X for individual i, and let i  be a typical element of  (i ix y   means that 

individual i strictly prefers alternative x to y). With a continuum of individuals, we can’t literally 

count the number of individuals with a particular preference; we have to work with proportions 

instead. For that purpose, let   be Lebesgue measure on [0,1] . Given profile  , interpret 

({ })ii x y  as the proportion of individuals who prefer x to y.27 To apply our ranking 

consistency condition, we need to consider subpopulations of [0,1]. Accordingly, we define a 

 
24 In assuming a continuum, we are following Dasgupta and Maskin (2008) and (2020). Those earlier papers invoked 
this assumption primarily to ensure that ties are nongeneric. The assumption plays that role in this paper too, but 
more importantly, it guarantees together with our continuity assumption that ties actually occur. Indeed, our proof 
technique relies critically on analyzing a SWF’s indifference curve, i.e., the set of profiles for which there are ties. 
25 X is the number of alternatives in X. 
26 Thus, we rule out the possibility that an individual can be indifferent between two alternatives. However, we 
conjecture that our results extend to the case where she can be indifferent (see Section 5).  
27 To be accurate, we must restrict attention to profiles   for which { }ii x y  is a measurable set. 



17 
 

social welfare function (SWF) F to be a mapping such that for all subsets C of positive measure 

 0,1C  , 
    

: i
i C

F

  , where is the set of all possible social rankings (here we do allow for 

indifference and the typical element is 


). 

 The Arrow conditions for a SWF F are:  

Unrestricted Domain (U): The SWF must determine social preferences for all possible 

preferences that individuals might have. Formally, for all [0,1]i , i  consists of all strict 

orderings of X. 

Pareto Property (P): If all individuals (strictly) prefer x to y, then x must be strictly socially 

preferred to y . Formally, for all  0,1C  of positive measure, all profiles 
 

i
i C

  ,  and all 

, ,x y X if ix y  for all i, then ,Fx y where ( )F F  


. 

Nondictatorship (ND): There exists no individual who always gets his way in the sense that if he 

prefers x to y, then x must be socially preferred to y, regardless of others’ preferences. Formally, 

for all  0,1C  of positive measure, there does not exist i C such that for all 
 

i
i C

   and all 

, ,x y X  if 
i

x y , then ,Fx y where ( )F F  


. 

Independence of Irrelevant Alternatives (IIA): Social preferences between x and y should depend 

only on individuals’ preferences between x and y, and not on their preferences concerning some 

third alternative. Formally, for all  0,1C   of positive measure, all 
 

, i
i C

     and all 

, ,x y X  if, for all i, i ix y x y  , then F
 ranks x and y the same way that F

 does, where 

( )F F  


 and ( )F F   


.  
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 Because we have argued that IIA is too strong, we are interested in the following 

relaxation:  

Modified IIA: If, given two profiles and two alternatives, each individual (i) ranks the two 

alternatives the same way in both profiles and (ii) ranks the same number of other alternatives 

between the two alternatives in both profiles, then the social preference between x and y should 

be the same for both profiles. Formally, for all  0,1C   of positive measure, all  , 
 

i
i C

  , 

and all , ,x y X  if, for all i, ,i ix y x y       , i i i iz x z y z x z y     and 

   i i i iz y z x z y z x     , then F
 and F

 rank x and y the same way, where ( )F F  


 

and ( )F F   


.28 

May (1952) characterizes majority rule axiomatically in the case 2X  . We will 

consider natural extensions of his axioms to three or more alternatives: 

Anonymity (A):  If we permute a preference profile so that individual j gets i’s preferences, k gets 

j’s preferences, etc., then the social ranking remains the same. Formally, fix  0,1C   of positive 

measure and a (measure-preserving)29 permutation of society : .C C   For any profile

 
i

i C
  , let 

  be the profile such that, for all i, ( ) .i i


  Then ( ) ( ).F F     

Neutrality (N): Suppose that we permute the alternatives so that x becomes y, y becomes z, etc., 

and we change individuals’ preferences in the corresponding way. Then, if x was socially ranked 

above y originally, now y is socially ranked above z. Formally, for any permutation : X X  , 

 
28 There is a similar condition developed in Maskin (2020). 
29 Because we are working with a continuum of individuals, we must explicitly assume that 

( )({ }) ({ }),i ii x y i x y    which holds automatically with a finite number of individuals.  
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 0,1C   of positive measure, and any profile ,i
ieC

   let 
  be the profile such that, for all 

,x y X  and all ,i C  ( ) ( ).i ix y x y    Then, ( ) ( )F Fx y x y  
 

 for all , ,x y X

where ( )F F  


  and ( )F F   


. 

Positive Responsiveness (PR) 30: Consider alternatives x and y and a profile such that each 

individual top-ranks either x  or y .31 If we change some individuals’ rankings so that either (a) if 

y was preferred to x, now x is preferred to y, or (b) x moves up (weakly) relative to other 

alternatives, y moves down (weakly) relative to other alternatives, and no other alternative 

moves, then (i) socially x moves up weakly relative to y, and (ii) if the set of individuals in (a) 

has positive measure and x and y were originally socially indifferent, x is now strictly preferred 

to y socially. Formally, suppose, for  0,1C   of positive measure,   and   are two profiles 

on 
 

i
i C
 such that, for some ,  x y X and all j C , either 

j
x z for all z x or 

j
y w  for all 

w y , and for all   and i ij i y x x y   ,  

(*)  j jx z x z  , ,j jw y w y  and j jr s r s  for all ,  z x w y   and       

     , { , }.r s X x y   

Then, (i)  F Fx y x y 
 

 and F Fx y x y   where ( )F F  


 and ( )F F


  


, and (ii) if, 

in addition   and 0, then i i F Fi y x x y x y x y       .  

 As defined, PR applies only to profiles in which every individual ranks either x or y (the 

two alternatives being compared); as footnote 31 explains, we make this restriction to ensure that 

 
30 For a different generalization of PR to more than two alternatives, see Horan, Osborne, and Sanver (2019). 
31 We place this restriction on profiles to make PR weak enough to be satisfied by all SWFs mentioned in this paper. 
In particular, it is satisfied by plurality rule, which takes account only of individuals’ top-ranked alternatives. 
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the axiom holds for an reasonable SWF. However, a SWF satisfying U, PR and MIIA will also 

satisfy ordinary PR (for which the restriction to top-rankedness is not made). This is intuitive 

because, for an individual who prefers x to y, MIIA and U allow us to move x, y, and all 

alternatives between them up in the individual’s ranking so that x is now top-ranked but the 

social ranking of x and y doesn’t change. Here is a formal proof.  

Lemma 0: A SWF that satisfies U, PR and MIIA also satisfies ordinary PR.  

Proof: Suppose that   and   are two profiles such that, for some ,x y X  and all 

  and i i ij i y x x y   , condition    in the definition of PR holds but for which individuals 

do not necessarily rank x or y at the top.  Assume that  

(12) Fx y
 .  

We must show that Fx y
 . Consider profiles ˆ   and ˆ  , where ˆ   is the same as   except 

that, for each individual, alternatives x, y, and all alternatives between them are moved to the top 

of the individual’s ranking (without changing the ranking of those intermediate alternatives or 

the alternatives not between x and y) and ˆ   has the corresponding relation to  . We will show 

that ˆ   and ˆ   satisfy ( ) of the definition of PR. Note first that, from (12) and MIIA,  

(13) ˆ
Fx y
 . 

 Suppose, for  ˆ ˆ and i ij i y x x y    and some z x , that  

(14)  ˆ
jx z  

Assume first that z lies between x and y (including y) in ranking j . Then from (14), 

j jx z y   and so from (  ) 
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(15) jx z  

But (15) implies  

(16)  ˆ
jx z  

Assume next that z does not lie between x and y in ranking j . If z also does not lie between x 

and y in ranking j , then (15) implies that (16) holds. If z does lie between x and y in ranking 

 ,j
  then (16) holds once again provided that jx y . Thus, suppose instead that 

(17) j jy z x    

But then, from    applied to x and y, either j jz y x   or  j jy x z  . Yet, in the former 

case, y rises relative to z in going from j  to j  and in the latter case, x falls relative to z in 

going from j  to j
  − both violations of   . Thus, we conclude that (14) always implies (16). 

Similarly, we can show that ˆ ˆ
j jw y w y   for w y  and ˆ ˆ

j jr s r s   for  , ,r s x y . 

That is, ˆ   and ˆ  , satisfy   . PR then implies, from (13) that  

ˆ
Fx y
  

MIIA then implies Fx y
 , as we needed to show. The argument is completely analogous for 

showing that F Fx y x y   and, given   and 0i ii y x x   , that  F Fx y x y  . 

Hence, ordinary PR holds. 

   Q.E.D. 

Henceforth, we shall always interpret PR as “ordinary PR.” 
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Ranking Consistency (RC): If, given a profile of individual preferences, each of a set of disjoint 

subpopulations has the identical strict social ranking, then the (unique) top-ranked alternative for 

that ranking is also the (unique) top-ranked alternative for the union of those subpopulations. 

Formally, consider a partition 1,..., kC C  of  0,1  and a profile   on 
 0,1

i
i
  For each  1, ...h k  let 

h
  be the restriction of   to the individuals in hC  and suppose that    1  kF F       , 

where   is a strict ranking. Then, if x y  for all y x , we have  Fx y


  for all y x .  

 We are not aware of a SWF actually used in practice that fails to satisfy RC. Indeed, RC 

holds for almost any SWF studied in the literature32. For example, besides scoring rules (which 

include plurality rule and the Borda count), it is satisfied by instant-runoff voting,33 Coomb’s 

rule (which is the same as instant-runoff voting except that instead of eliminating the candidate 

ranked first least often, it drops the candidate ranked last most often), ordinary runoff voting34 

and majority rule.35 RC also holds for a wide array of Condorcet-conforming voting methods 

(methods that elect a Condorcet winner if one exists and otherwise rank candidates some other 

 
32 This is in contrast with ordinary consistency (Young 1974), which, in combination with U, A, and N, is satisfied 
only by scoring rules. 
33 Suppose that, given profile  , each of the subpopulations 1 , ..., kC C eliminates alternative mx first in an instant 

run-off election, then 1mx  , and so on until only 1x remains (so that the social ranking for each subpopulation is 

1 2 mx x x     ). Because mx is eliminated first in each subpopulation, it must be ranked first least often in the 

overall population [0,1] , and so will be eliminated first in the instant runoff. But then the same argument applies to 

1mx  , etc. In other words, the social ranking for [0,1] is, again, 1 mx x    .  
34 For 3X  , ordinary runoff voting is the same as instant runoff voting (assuming that individuals vote according 

to their rankings). For 3X  , all alternatives that don’t get into the runoff are considered socially indifferent to one 

another. Thus, in the latter case, RC is vacuously satisfied since the social ranking can't be strict. 
35 Suppose that, given profile  , the majority social ranking in each subpopulation 1,..., kC C is 1 2 mx x x     . 

That is, for every r s , a majority of individuals in each subpopulation kC prefer rx to sx . But then a majority of 

individuals in the overall population [0,1]  must also prefer rx to sx . And so, the same majority ranking 

1 2 ... mx x x    holds for [0,1] . Majority rule actually satisfies the stronger condition, ordinary consistency. But 

because it fails to satisfy U, it doesn’t violate Young’s (1978) scoring-rule theorem. 
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way). For example, the Kemeny-Young method – in which the social ranking minimizes the sum 

of the Kendall tau distances (the Kendall tau distance between two rankings is the total number 

of discordant pairs) between it and the individuals’ rankings—satisfies RC,36 as do Copeland’s 

method,37 Smith’s method,38 Baldwin’s method,39 Tideman’s ranked-pairs method,40 and the 

minimax Condorcet method41 (these last two satisfy RC for the case 3X   only). Finally, we 

note that two other popular methods – approval voting42 and range voting43 ‒ also satisfy RC 

(strictly speaking, neither is a SWF in our formal sense, since we require that the social ranking 

depend only on ordinal information about individuals’ preference – and both rely on cardinal 

data). 

 
36 See the Wikipedia article on the Kemeny-Young method https://en.wikipedia.org/wiki/Kemeny-Young_method.   
37 In Copeland’s method, alternatives are ranked socially according to how many other alternatives they defeat by a 
majority in a pairwise comparison. This method satisfies RC because if, for a given subpopulation, there is a strict 
social ranking of the m alternatives, then the top-ranked alternative must defeat each of the other 1m alternatives 
(i.e., it is a Condorcet winner), the second-ranked alternative must defeat all but the Condorcet winner, etc. And if 
this same social ranking holds for all other subpopulations, then it must also hold for the overall population.  
38 The Smith set is the smallest set of alternatives each of which defeats any alternative not in the set by a majority in 
a pairwise comparison. Smith’s method chooses the Smith set as the top indifference curve in the social ranking, the 
Smith set for the remaining alternatives once the top indifference curve is removed, etc. It satisfies RC because if, as 
RC demands, the social ranking is a strict ordering, then the ranking is the same as for majority rule. 
39 Baldwin’s method is a variant of instant-runoff voting in which if no alternative is ranked first by a majority of 
votes, the alternative with the lowest Borda score is dropped, and the process iterates with this reduced set of 
alternatives. It is a Condorcet-conforming method because the alternative with the lowest Borda score can’t be a 
Condorcet winner. It satisfies RC by argument similar to that for standard IRV. 
40 In the ranked-pairs method (Tideman 1987), for each pair of alternatives x and y, x is provisionally ranked above y 
socially (for a given profile) if and only if a majority of individuals prefer x to y. These pairwise rankings are then 
sequentially locked in: first, the ranking for the pair for which the majority is largest, then the one for the second-
largest majority, etc. If, however, we reach a pair for which locking in would create a Condorcet cycle, that pair is 

skipped. To see that the method satisfies RC for three alternatives, assume  , ,X x y z , and suppose that the social 

ranking is x y z  for each subpopulation. Within a subpopulation, the only way that the majority ranking between 

some pair could differ from the social ranking of that pair is if a majority prefer z to x but the majorities for x over y 
and y over z are bigger. But then the same must be true for the overall population: the only way that an overall 
majority could prefer z to x is if the majorities for x over y and y over z are bigger, so that the overall social ranking 
is still x y z  . 
41 In the minimax Condorcet method with three alternatives, the alternatives are socially ranked according to 
majority rule unless there is a Condorcet cycle, in which case the social ranking corresponding to the narrowest 
margin is reversed. Thus, in this case, the method is the same as Tideman’s. 
42 In approval voting, each individual approves or disapproves each alternative, and alternatives are ranked 
according to their approval totals. RC is satisfied because approvals are additive across subpopulations.  
43 In range voting, an individual “grades” each alternative on a numerical scale, and alternatives are ranked 
according to their total grades. RC is satisfied because total grades are additive across subpopulations.  
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We now define the Borda count precisely:  

Borda Count: Alternative x is socially (weakly) preferred to y if and only if x’s Borda score is 

(weakly) bigger than y’s Borda score (where x gets m points every time an individual ranks it 

first, 1m  points every time an individual ranks it second, etc.). Formally, for all  0,1C  of 

nonzero measure, all , ,x y X and all profiles 
 

i
i C

  ,  

(**)   ( ) ( ) ( ) ( ),
i iBorx y r x d i r y d i    


 

where  ( )  1
i ir x y X x y     and Bor


 is the Borda ranking corresponding to  . 

3. The Indifference Curve of a Social Welfare Function 

 The proof of our characterization result makes much use of a SWF F’s indifference 

curve. To define this concept, let us start with the case of three alternatives44 { , , }X x y z  and fix 

a profile  . Let ( )xyza   be the fraction of individuals who have ranking 
x
y
z

 . Then, if F satisfies 

A, the 6-tuple 

(17)  ( , , , , , )xzy yzx xyz zxy yxz zyx        

    ( ( ), ( ), ( ), ( ), ( ), ( ))xzy yzx xyz zxy yxz zyxa a a a a a             

is a sufficient statistic for   in determining social preferences F
 and we can use the 6-tuple 

interchangeably with   In particular, we can now define what it means for SWF F (satisfying 

A) to be continuous. 

 
44 The case 3X   is handled in the Appendix. 
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Continuity:  If, for any  , , ,r s x y z , the set of profiles  ( )Fr s 


is closed,45 then F is 

continuous. 

We define F’s indifference curve for x and y, ,xy
FI to be the set of 6-tuples for which 

society is indifferent between x and y according to F:  5
( )  for  satisfying (17)xy

F FI x y    . 

For example, the Borda indifference curve is given by  

(18)   2 2xy
Bor xyz zxy xzy yxz zyx yzxI             . 

  The indifference curve is useful in proving that a SWF F satisfying the axioms is the 

Borda count. In particular, we rely on the following simple result: 

Lemma 1: Suppose that F satisfies U, A, N, MIIA, and PR. If, for some ,x y X ,  

(19) xy xy
Bor FI I   

then 

(20) F = Borda count. 

In other words, to show that F and the Borda count coincide, we need show only that F’s 

indifference curve contains the Borda indifference curve. And, as the proof demonstrates, this 

follows largely because of PR and MIIA. 

Proof: Suppose that (19) holds for some ,x y X  but there exist  , , , , ,xzy yzx xyz zxy yxz zyx        

for which  

(21)        , ,x y x y
F Bor  ,  

where  ,
( )

x y
F x is the restriction of ( )F  to ,x y . Without loss of generality, we can assume that  

 
45 Just as the axioms U, A, N, PR, and RC are satisfied by virtually all SWFs in the literature, so is continuity.  
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(22)  Borx y  and  Fy x


 

(if (21) holds yet we have social indifference for the Borda count, then we contradict (19)).  

Suppose that we continuously decrease , ,  and xzy xyz zxya   while increasing yxz  by the 

same amounts. If all of ,  ,xzy xyz   and zxy  are reduced to zero, then Bory x  for the 

corresponding profile. Thus, because the Borda count is continuous, we must, before then, reach 

a 6-tuple    for which  

(23) xy
BorI  

But from PR and (22),  F
y x

 , which, in view of (23) contradicts (19).  

Q.E.D. 

 In section 1D we showed that a SWF satisfying U, A, and N must generate social 

indifference among x, y, and z46 for the profile:  ,  ,  ,  ,  ,  o o o o o o o
xzy yzx xyz zxy yxz zyx        

(24) 

 0,  1 3,  1 3,  1 3,  0,  0 ,  i.e.,

1 3 1 3 1 3                

 
Fy x z

x y z
z y x

x z y




 

 

By symmetry, the same is true for  ,  ,  ,  ,  ,  ,  oo oo oo oo oo oo oo oo
xzy yzx xyz zxy yxz yxz zyx         

(25) 

 = 1 3,  0,  0,  0,  1 3, 1 3 ,  i.e.,

1 3 1 3 1 3  =             

 
Fx y z

x y z
z x y

y z x

 
 

Consider next 

 
46 More specifically, we demonstrated social indifference between x and y, but N then implies that we have social 
indifference among all three alternatives.  
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(26) 

 
 

,  ,  ,  ,  ,  

                   = 1 2,  1 2,  0,  0,  0,  0

1 2 1 2
                   =   

xzy yzx xyz zxy yxz zyx

x y

z z

y x

            

                               

If  F
x y

 , then for permutation      ,  ,  x y y x z z        

(27)  Fy x    

for F satisfying U, A, and N, where 

1 2 1 2
  

y x

z z

x y

   

But, from A,    F F   , a contradiction of (27). Hence, 

(28)  F
x y

  

Finally, consider 

(29) 

 
 

,  ,  ,  ,  ,  

                    0,  0,  1 2,  0,  0, 1 2

1 2 1 2
                     =   

xzy yzx xyz zxy yxz zyx

x z

y y

z x

            

  

Using the same permutation as in the previous paragraph, we can again infer that  

(30)  F
x y

   

 From (28) and (30), we can deduce 

(31) * *( ) ( )F F
x y z

 
    
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and 

(32) ** **( ) ( )F F
x y z

 
   

for F satisfying U, A, N, and MIIA. 

 Now, in the following section, we will show that for any xy
BorI ,   can “essentially” be 

expressed as a convex combination of ,  ,  ,  and o oo     .47 As part of our effort to show that a 

continuous SWF satisfying U, A, N, MIIA, PR, RC coincides with the Borda count, we next 

show:  

Lemma 2: If F is continuous and satisfies U, A, N, MIIA, PR, and RC, and   is a convex 

combination of ,  ,  ,   ando oo      as defined by (24) – (27) (i.e., 

o o oo ooc c c c           , where 1o ooc c c c      and ,  ,  ,  0o ooc c c c   ), then xy
FI . 

Proof: As we have already noted, ,  ,  ,  o oo xy
FI     . So, if we could directly apply RC to the 

convex combination  of these four profiles, we would be done. But RC is considerably weaker 

than this and applies only when the social rankings for the constituent profiles are strict (and 

identical).  

 Accordingly, we first perturb each of ,  ,  ,  o oo      to make the corresponding social 

ranking x y z  ; we then make corresponding perturbations to obtain social ranking y x z  . 

Using RC, we next show that a convex combination of the first perturbations yields social 

ranking x y  and that a convex combination of the second yields y x . We finally invoke 

continuity to conclude that, when the perturbations are sent to zero,  ~ Fx y . 

 Let’s now do this in detail. From (24), (25), (29), (32), MIIA, and PR, we have  

 
47 More precisely, we may have to move z from the bottom to the top of some individuals’ rankings or vice versa, 
but from MIIA, this doesn’t affect the social preference between x and y. 
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(33) 1 3 1 3 1 3
ˆ            o

F x yy x x
yyz z
zx z

  
 

(34) 1 3 1 3 1 3
ˆ            oo

Fx y y x y
xz x z

y z z

 


 

(35) 
1 2 1 2

ˆ          F x yy x
x y z
z z

     

Now let’s perturb ˆ ˆ ˆ,  ,   ,    0byo oo       . From PR and MIIA we obtain  

(36) 1 / 3 1 / 3 1/ 3
ˆ           o

xFy x x
yy yz
zzx z


   

  

(37) 1 / 3 1 / 3 1 / 3 
ˆ             oo

F xx x y y
yxxzy
zzy zz


  

  

(38) 
1/ 2 1/ 2

ˆ         F xy x
yyx
zzz


    

  

From (26), (31), PR and MIIA,  

(39) 
1/ 2 1/ 2 

          Fx x y x
y z z y z
z y x


   




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Now for  0, ,p   (39) and PR imply that 

(40) ,

1/ 2 1/ 2 
               

  
p

p p
F

y xx x y
z zz zy

z y x


     

  

From PR, continuity, (39), and (40), we can choose 

(41)    0,p p   

small enough so that  

(42)  
   

,

1/ 2 1/ 2 
              p

p p
F

xx x y
yy z z
zz y x

 

       
  

Hence, from (36) – (38) and (42), RC implies 

(43)   ,Fx y


  

where * * ** *
, ( )ˆ ˆ ˆo o oo oo
pc c c c             . 

 Analogously, we have  

(44) 
1/ 3 2 / 3 

ˆ         

 

o

yy y x F
yx z x
zz x z



  

 
  

(45) 
1/ 3 1/ 3 1/ 3

ˆ           oo

yx y y F
xxz x
zzy z



  

  
  
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(46) 
1/ 2 1/ 2

ˆ         
yFy x
xyx
zzz



  
  
  

and  

(47) 
   

, ( )

1/ 21/ 2
           

p

p p

yy x y F
xz zx
zz y x

 

    

  


 
  

for all 0    and  p    small enough. Thus, from (44) – (47) and RC, 

(48)   ,
F

y x


 

  

where * * ** **

, ( )
ˆ ˆ ˆo o oo oo

p
c c c c     

              . 

 Now, let , 0    . From (43), (48), and continuity, we have xy
FI  . 

              Q.E.D. 

4. The Characterization Theorem 

 We are now ready to establish our characterization theorem.  

Theorem: Continuous SWF F satisfies U, MIIA, A, N, PR, and RC if and only if F is the Borda 

count. 

Proof: The “if” part is clear. We shall concentrate on “only if.” 

For 2X  , the result follows from May (1952). 

Suppose that  , ,X x y z .48  

 
48 Again, the case 3X   is treated in the Appendix. 
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 Because F satisfies MIIA (in addition to A), we can reduce our 6-tuples to 4-tuples as 

sufficient statistics for profiles 


 in determining the social preference between x and y . 

Specifically, let 

 2 1 1 2 2 1 1 2( , , , ) ( ( ), ( ), ( ), ( )b b b b            
   

,  

where, for 1, 2k  , ( )k k  


 is the proportion of individuals in profile 


 who rank  x k  places 

above y  and ( )k k   


is the proportion who rank  y k  places above x . 

We will show that if  

(49) xy
BorI   

then  

(50) xy
FI  . 

Now,  

(51)  3
2 1 1 22 2 0xy

BorI             

Notice that the extreme points of xy
BorI  are    2 2 1 1, , , 0,1 3, 2 3,0      ,  1 3,0,0,2 3 , 

 1 2,1 2,0,0 , and  0,0,1 2,1 2 , since those are the points in the set on the right-hand side of 

(51) for which the non-negativity constraints are binding in two directions. Thus, we can rewrite 

xy
BorI  as 

(52) xy
BorI  Convex hull         0,1 3, 2 3,0 ,  1 3,0,0,2 3 ,  1 2,1 2,0,0 ,  0,0,1 2,1 2  

Consider xy
BorI  . We have  

(53)        0,1 3, 2 3,0 1 3,0,0, 2 3 1 2,1 2,0,0 0,0,1 2,1 2o ooc c c c        

From MIIA, we can revert to expressing this profile as a 6-tuple. Specifically, the right-hand side 

of (53) is consistent with 



33 
 

(54) 
   

   
0,1 3,1 3,1 3,0,0 1 3,0,0,0,1 3,1 3

     1 2,1 2,0,0,0,0 0,0,1 2,0,0,1 2 ,

o ooc c

c c 



 
 

where each 6-tuple takes the form  , , , , ,xzy yzx xyz zxy yxz zyx      . 

 But Lemma 2 in Section 3 establishes that the profile in (54) is in xy
FI . Thus, xy

FI  , as 

claimed. An application of Lemma 1 now completes the proof.  

            Q.E.D. 

 To briefly summarize the proof: if a profile belongs to xy
BorI , then it is a convex 

combination of , , ,  and o oo      (modulo moving z from the top to the bottom of some 

individuals’ ordering or vice versa). But, by arguments mirroring that in Section 1D, each of 

* **, , , and o oo     is in xy
FI . Using RC, Lemma 2 then establishes that the convex combination 

belongs to xy
FI . Lemma 1 then implies that F and the Borda count coincide everywhere.  

 The continuity assumption in Lemmas 1 and 2 and the Theorem guarantees that if *  is a 

profile on the boundary between the regions where ( )Fx y  and ( )Fy x , then * xy
FI  . If we 

drop continuity, the Theorem no longer holds. Now it is true that symmetry is sometimes enough 

(in conjunction with A, N, and MIIA) to guarantee that * xy
FI  , as when

   , , , , , 0,1 3,1 3,1 3,0,0xzy yzx xyz zxy yxz zyxa               or 
1 1

,0,0,0, , 0
2 2

     
 

. However, 

symmetry is not always sufficient, as with the profile  1 4,5 12,1 6,1 6,0,0  (which belongs to 

xy
BorI but is not symmetric). Thus, a SWF which coincides with Borda except at this profile and its 

permutations will satisfy all axioms beside continuity. 

5. Open Questions  

There are at least five questions that seem worth pursuing in follow-up work:  
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 First, we have assumed throughout that, although society can be indifferent between a 

pair of alternatives, x and y, individuals are never indifferent. We conjecture that if individual 

indifference were allowed, then the same axioms (with MIIA modified appropriately) would 

imply the natural extension of the Borda count, e.g., if an individual is indifferent between x and 

y, then instead of x getting p points and y getting 1p    (as would be the case if the individual 

ranked x immediately above y), the alternatives will split the point count 1 2 1p p p     

equally. Indeed, in his Harvard senior thesis (Kim 2023), Jeremiah Kim showed that this 

conjecture holds in the case 3X  . 

 Second, we have made important use of the continuum of voters in our proof. 

Specifically, the continuum, together with our continuity assumption, guarantees that there will 

be profiles for which society is indifferent between x and y, and indifference curves play a major 

role in our argument. In view of this, it would be interesting to explore to what extent the 

characterization result extends to the case of finitely many voters. 

 Third, as we noted, the Theorem does not hold without continuity. Nevertheless, we 

suspect that without continuity we could establish the counterpart of the Theorem for strict social 

preferences.  

 Fourth, this paper studies SWFs, which rank all alternatives. By contrast, a voting rule 

simply selects the winner (see footnote 2). In a previous draft of this paper, we proposed a way to 

modify the axioms to obtain a characterization of the voting-rule version of the Borda count (i.e., 

the winner is the alternative with the highest Borda score). However, that draft considered only 

the case in which social indifference curves are linear or polynomial. Whether that 

characterization holds in the more general setting of the current draft has not yet been explored.  
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 Finally, although the anonymity and neutrality axioms are quite natural in political 

elections, they don’t apply universally (think, for example, of corporate elections where voters 

are weighted by their ownership stake or amendment processes where certain alternatives – e.g., 

the status quo – may be privileged). It is clear that certain variants of the Borda count – e.g., 

where different people can have different weights or some particular alternatives get extra Borda 

points – satisfy the remaining axioms when A and N are dropped, but we do not have a full 

characterization of all SWFs satisfying those axioms.  
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Appendix 

Indifference Curves 

 Suppose 1X m  , where 2m . Choose ,x y X  and fix profile   For any ranking   

of X, let ( )a   be the fraction of individuals in  who have ranking  . If SWF F satisfies A, 

then the ( 1)! -tuple m  —where, for each  , ( )a    —is a sufficient statistic for   in 

determining the social ranking of x and y. Next, for any  1,...,k m , let  kb   be the fraction of 

individuals in   who rank  x k  places above y and  kb   the fraction who rank y k places 

above x. If in addition to A, F satisfies MIIA (which we will assume henceforth), then  

(A1) 
 

        
1 1

1 1

,..., , ,...,

               ,..., , ,...,

m m

m mb b b b

     

 



       
 

is also a sufficient statistic for   in determining the social ranking of x and y. We will go back 

and forth between  and   as representations of  . F is continuous if, for any ,x y X , the set 

 ( )Fx y 


 is closed. 

F’s indifference curve for x and y is defined as  

   2 1xy m
F FI x y     . 

In particular, the Borda indifference curve is: 

(A2)  
1

  0
m

xy
Bor k k

k

I k  


 
   
 

   . 

 The counterpart of Lemma 1 in Section 3 is: 

Lemma 1 : Suppose continuous F satisfies U, MIIA, A, N, and PR. If, for some ,x y X ,  

(A3) xy xy
F BorI I , 
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then 

(A4) F = Borda count. 

Proof: Suppose (A3) holds for some x, y, but there exists  1 1 1,... , ,...,m m        for which  

    F Bor  . 

Then, without loss of generality, we may also assume  

(A5)  Borx y  and  Fy x


 

 Let us continuously decrease 1,..., m   and correspondingly increase 1 ,..., m   . If all of 

1,..., m   are reduced to zero, then Bory x  for the corresponding profile. Thus, before then, we 

must, from continuity of the Borda count, reach a profile    for which  

(A6) xy
BorI  . 

But from PR and (A5),  F
y x

  , which in view of (A6) violates (A3). 

         Q.E.D. 

Fix any ,x y X for the remainder of the Appendix. For any  , , 1,...,r s m , let rs  be 

the 2m-tuple such that rs
r

s
r s   , rs

s
r

r s   , and for all  ,   0rs
tt r s    . It is easy to 

verify that rs xy
BorI  . In fact, the set    , 1,...,

rs

r s m



 comprises the extreme points of the convex set 

xy
BorI ,49 and so xy

BorI  consists of the convex hull of  rs . As part of our effort to show that 

xy xy
Bor FI I , we next establish 

 
49 Extreme points are the points in 

xy
BorI  for which only two components are positive, since if three or more 

components are positive, we can reduce one component and correspondingly increase another while remaining in 
xy
FI . 
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Lemma 2 : If continuous F satisfies U, A, N, MIIA, PR, and RC, then, for all r and s, rs xy
FI  . 

Furthermore, any convex combination of  rs  lies in xy
FI .  

Proof: We shall establish the lemma by induction on X . For 3X  , the result was proved in 

Section 3. Suppose that it is true for some X m . We must show that this implies the result 

holds for 1X m  .  

 Let  1 1, , ,..., mX x y z z   and  1 2ˆ , , ,..., mX x y z z  . Let F̂  be the SWF defined on 

profiles ̂  of rankings over X̂  such that, for all ˆ,v w X , 

   ˆ ˆ FF
v w v w

 
 

, 

where   is the profile of rankings on X  obtained from ̂  by adding 1mz   to the bottom of every 

individual’s ranking. Because F satisfies all the conditions of the Lemma, so does F̂ . Thus, for 

every ,r s m  and every ˆ rs  corresponding to X̂ , the induction hypothesis implies that 

ˆ
ˆ rs xy

F
I  . Finally, by MIIA, N, and the definition of F̂ , it follows that rs rs

FI   (MIIA and N 

imply that only the number of alternatives in between x and y – and not the identity of those 

alternatives – matters).   

 Next, consider 1m . From MIIA, this generates the same social preference between x and 

y as the profile 

(A7) 
1 1

1

1 1

1

21

1 1 1 1
1 1 1 1        

m

m
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mm

m m m m
x y z z

z x y

xz z

z y

y z xz









   


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
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By the same symmetry argument as in Section 1D, profile (A7) belongs to xy
FI , and thus so does 

1m . By symmetry the same is true of 1m . 

 We now want to show that ms xy
FI   for all  2,...,s m . This directly follows from A, 

N, and MIIA if s m  (see the argument for why * xy
FI  in Section 3). Thus, assume s m . 

Consider the profile 

(A8)      1 1ˆms m ss s m m s m       

Let 

     1

1

1 1

1

1 1

1
1 1      m

m

m m

m
m m

x x y

y xz

z z

z

z y z







 


 


 

 

for   small. From 1m xy
FI   and PR, 

(A9)  1mF
x y


  

From 
121 yz

FI   and PR,  

(A10)  1

1
mF

y z


  

From PR and 
111 t tz z

FI


 , 1,..., 2t m   

(A11)    1 1

1 2 1
m m

m

F F
z z z

  
   

By inductive hypothesis, we can find a corresponding perturbation 1s
  such that (A9) – (A11) 

hold when 1m
  is replaced by 1s

 . Hence, from RC, we obtain 
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(A12)  ˆ msF
x y


 , 

where      1 1ˆ ms m ss s m m s m        . 

Similarly, we can find perturbations 1m


   and 1s


   such that  

(A13)  ˆ msF
y x


 

 , 

where      1 1ˆ ms m ss s m m s m
  

        . Sending   and    to zero and applying 

continuity, we deduce that 

(A14)   ˆ msF
x y


 , 

where ˆms  is ˆ ms
  with ms

  and 1s
  replaced by ms  and 1s . And so  

(A15)  ˆ msF
x y


  . 

Now, notice that, from (A8), ˆ ms  can be rewritten as  

(A16) 111ˆ
1 1

ms ms ms

ms ms
   

 
 

If ms xy
FI  , then  msF

y x


  or  

(A17)  msF
x y


  

Let’s assume that (A17) holds. Then, from PR, there exists 0   such that ms xy
FI  , where 
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1 1

1 1

1

  ms
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s

m

s m

s m s m
x y

z z

z z

y x

z

z



 
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





 
 

 

  

Now, for 0  , 

(A18) 1 1

11

1 1

11

1
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m

s
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s

m

F

s m
s m s m

xx x y
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z z

zz y x

z

z



  









  
 


 
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(A19) 

11

11 1

11 1

1 1

2 2   

   

mm m

Fx y x

y x y

zz z

zz z



 


 

 




 

 

Hence, from (A18), (A19) and RC, 
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(A20)  ˆmsF
x y


 , 

where 

(A21)  111ˆ    
1 1

ms ms ms

ms ms     
 

 

Analogously, we can find permutations ms


   and 11


   of ms

  and 11 respectively such that  

(A22)  ˆmsF
y x


 

 , 

where ˆms


   satisfies (A20) with ms


   and 11


   replacing ms

  and 11
 . 

Letting 0   and 0    in (A20) and (A22) and applying continuity, we obtain  

(A23)  ˆ msF
x y


  

But (A15) and (A23) contradict PR. Hence, we conclude that  

ms xy
FI   as claimed. Symmetrically, we obtain sm xy

FI  . 

We have thus completed the inductive step for showing that, for all  , 1,...,r s m , 

rs xy
FI  . 

 It remains to show that all convex combinations of  rs  belong to xy
FI , i.e., xy

FI  , 

when 
,

rs rs

r s

c  , where 0rsc   for all r, s and 
,

1rs

r s

c  . We will establish this by showing 
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that, for each rs , a corresponding profile rs  (which, like rs , yields social indifference 

between x and y) can be perturbed to rs
  and rs


   so that 

(A24) 1 1

( ) ( ) ( ) ( )
...

rs rs rs rs

m

F F F F
x y z z

      
     

and 

(A25) 1 1

( ) ( ) ( ) ( )
...

rs rs rs rs

m

F F F F
y x z z

   
      

    , 

respectively. Then from RC, (A24), and (A25) x is top-ranked socially when rs
  is replaced by 

rs rsc    and y is top-ranked socially when rs


   is replaced by rs rsc

 
   . Sending   

and    to 0, we obtain from continuity that ( )~ Fx y , as claimed.  

Now, to obtain rs
 , first assume that r s . In fact, by inductive hypothesis, we may 

assume that r m . Then take ms ms
    as defined in (A18) when 0  . Then, from (A18), 

(A24) holds. For r s , we can assume s m  by inductive hypothesis. Take  

1 1

1 1

1

  rm

m
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r m

m r m r
y x

z z

z z

x y

z

z



 








 
 



 


 

Then from PR and rm xy
FI  ,  
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(A26) 
( )rmF

x y


  

Now, in rm
  the proportion of individuals who rank   1y m  places above 1z  is (slightly less 

than) 
r

r m
 while that who rank 1   1z r   places above y is (slightly more than) 

m

r m
. Since 

 
 

1
  

2
rr

r mm r
     and    11 1m r yz

FI    , PR implies that  

(A27)  
1

rmF
y z


  

 In rm
 , the proportion of individuals who rank 1tz   1 place above tz

(for 1,..., 2, ,..., 2)t s s m    is (slightly less than) 
r

r m
 while that who rank tz  1 place above 

1tz   is (slightly more than) 
m

r m
. Since m r  and 

111 t tz z
FI



  

(A28)  
1

rm

t t

F
z z


 , 1,..., 2, ,..., 2t s s m    

 Finally, in rm
 , the proportion of individuals who rank sz  1 place above 1sz   is (slightly 

less than) 
r

r m
, while that who rank 1sz   two places above sz  is (slightly more than) 

m

r m
. 

From m r , 
112 s sz z

FI


 , and PR 

(A29)  
1

rm

s s

F
z z


   

Combining (A26) – (A29), we obtain (A24). The argument for (A25) is symmetric.   

It remains to consider the case of rr
 . Again, by inductive hypothesis, we can take 

.r m  Let 
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Now for 0  , 

(A30)  
0 0 0

1 1

( ) ( ) ( )m mm mm

m

F F F
x y z z

  
    

since mm xy
FI  . From PR, and (A30), 

(A31)  
( )mmF

x y


  

and, from MIIA and (A30) 

(A32)  1 1my z z   . 

Now for (0, ),p   (A31), (A32), and PR imply 

(A33)   
1
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1 1
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1 1

1

1 1
2 2     

m

mm
p

m

m

m

pp
F y

x x y
zy z z

z
zz z

z y x













 
 

 


  

As we argue in deriving (42), continuity and PR imply that there exists ( )p p  small enough so 

that 

(A34) 
, ( )( )m
pF

x y
 

 , 

and so (A24) holds when    , ,r s m m . Analogously, we can take 
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(A35) 
, ( )

1 1
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giving us (A25) and completing the proof. 

          Q.E.D. 

Proof of Characterization Theorem 

 From Lemma 1 , we must show that if, for ,x y X , 

(A36) xy
BorI   

then 

(A37) xy
FI  . 

Now, 

2 1

1
( ) 0

m
xy m
Bor j jj

I j  


      
 

,  

where 1X m  . Observe that the extreme points of the boundary of xy
BorI  are 

   , , 1,...,rs r s m  , where rs  is defined above (just before Lemma 2*). Hence, xy
BorI  can be 

rewritten as 

(A38)     , 1,...,
Convex hull xy rs

Bor r s m
I 


  

In view of (A38), (A37) follows directly from (A36) and Lemma 2*. The result now follows from Lemma 

1 . 

          Q.E.D. 
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