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Let C(m, n) be the proportion of all n-tuples of linear orders on a set of m alternatives such
that some alternative x is rarked ahead of y in at lcast in of the orders, for each y# x. Kelly
proved that C(m, n) <C(m, :+1) for m =3 ard odd n=3, and that C(m, n)>C(m, n+1) for
m =3 and even n=2. He al:0 conjectured that C(m,n)>C(m+1,n) for m=3 and n=3 or
n=5, and that C(m,n)>C(m,n+2) for m=3 and n=1 or n=3. The first of these
conjectures is shown to be true for n =3, and for m =3 and odd n. The second conjecture is
established for m €{3, 4} and odd n, and for m =3 and all large even n.

1. Introduction

A profile is a finite list of linear orders on a finite set of alternatives. A profile is
a Condorcet profile if and only if it has a Condorcet alternative, which is an
aiternative x such that, for every alternative y# x, at least as many orders in the
list have x ranked ahead of y as have y ranked ahead of x. In other words, a
Condorcet alternative is a simple mejority alternative. The Condorcet proportion
C(m, n) for n-term profiles on m alternatives is the number of n-term Condorcet
profiles on m alternatives divided by (m!)", the total number of n-term profiles on
m alternatives.

Most of what is presently known about Condorcet proportions can be found in
Garman and Kamien [5], Niemi and Weisberg [12], DeMeyer and Plott [2], May
[11], Kelly [10], and Gehrlein and Fishburn [6, 7). All but one of these deal with
precise computations and approxiinations of C(m, n). The exception is Kelly, who
examined trends in C(m, n) and showed that

C(m,n)<C(m,n+1) for m=3 and odd n=3,
Cim,n)>C(m,n+1) for m=3 and even n=2.

}The work of Fishburn and Gehrlein was partly supported by Grant No. SOC 77-22941 from the
National Science Foundation to The Pennsylvania State University.
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Kelly also proposed:

Conjecture 1. C(m,n)>C(m+1,n) for m=3, n=3 or n=5.
Conjecture 2. C(m,n)>C(m,n+2) form=3, n=1 or ";;3'

He noted that ““proofs of these two conjectures would be important contributions
to the formal voting literature” and discussed some of their difficulties. With n as
the number of voters, Conjecture’ 1 says that, for fixed ne{3,5,6,...}, the
Condorce: proportions decrease in m=3; Conjecture 2 says that, for fixed
me{3,4,...}, the Condorcet proportion for n voters exceeds the proportion for
n+2 voters, except when n =2 since C(3,2)=C(3,4)=1.

The main purpose of this paper is to examine Conjecture 1 for n=3 and
Conjecture 2 for m =3. Section 2 will prove that Conjecture 1 is true for three
voters. Section 3 proves that Conjecture 2 is true for three alternatives and odd
numbers of voters, and Section 5 notes that Conjecture 2 is true for three
alternatives and almost all even numbers of voters n=4. In particular, for m =3
and n even, we shall prove that Conjecture 2 is true for all even n greater than
some finite N. Several ancilliary results for m =3 and n even will be noted in
Section 4. Finally, Section 6 comments on the conjectures for odd n and larger
values of m.

Although we deal only with several basic cases, the proofs ten¢ o e involved
and consume most of the paper. Our experience with these cases s g sts that the
more general cases will be extremely difficult to resolve. Nevertt ! s, we would
encourage others to try them using either extensions of the proof .hniques used
here or entirely new techniques that we cannot now foresee.

The proof in the next section is based on the proportions forr  ation described
above. Thereafter we shall turn to probabilistic proof technique 1 which C(m, n)
is interpreted as the probability that there will be a Condorcet iternative for the
m-alternative, n-voter situation in which =ach voter indepenc atly selects one of
the m! linear orders on the alternatives as his preference or er according to the

equally-likely probability distribution that assigns probability 1/m! to each of the
m! linear orders.

2. Conjecture 1 for n =3

All profiles in this section will be 3-term, or 3-voter, profiles. We shall prove
that C(m, 3) decreases in m =2, where clearly C(2,3)=1.

Theorem 1. C(m,3)>C(m+1,3) for all me{2,3,...}.

Let B(m) be the number of Condorcet profiles on m alternatives that have a
fixed alternative x as the necessarily unique Condorcet alternative. Since
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<(m, 3) = mB(m)/(m!)?, the inequality in Theorem 1 reduces to (m +1)>’mB(m) >
B(m+1) for m=2, or

(m+2)’(m+1)B(m+1)>B{m+2) form?l — ‘(1)

We shall approach (1) through a series of four le mas. The followmg mdex set
will be used in the first two lemmas and at the conclusxon of the section:

An={(a), a5, a3)€{0,1,2,.. }: a,+a,+a;<=m}.
Lemma 1. B((m+1)=3},_ m!(m—a ){(m—ay){(m—a,)!/(m—a,—a,-a,)!

Prootf. For fixed x in a set of m+1 alternatives let a; be the number of
alternatives in the set that voter i prefers to (ranks ahead of) x, for i =1, 2, 3. Then
x can be the Condorcet alternative for a profile only if (a,, a,, a;) € A,,. Given
(a,, ay, a3)€ A, there are a;!(m—aq;)! lincar orders on the alternatives in which
exactly q; alternatives are ranked ahead of x, and there are mifa,!a;!a;!(m—
a, —a,—as;)!] distinct ways that the three 2head-of-x sets with a; members can be
chosen without duplication, which is precisely what is needed for x to be the
Condorcet alternative. Therefore B(m + 1) equals the latter expression times the
product of the three g;!(m— a;)!, summed over A,,., O

Tor any m and (a,, a,, aJ) let

Frii(ay, az, a3)=(m+1-a,)(m+1—ay)(a;+1)
+(m+1—a,)(m+1-as)(a+1)
+{m+1-a)(m+1-a3)a,+1)
+(m+1—-a,)(m+1-ay)(im+1—a;),

G1(ay, @3, a3) = m!(m—a,)(m—ay)!(m—a3)!/(m—a,—a,—as)!,

with B(m+1)=X,_ Gn+1(ay, a3, a3) by Lemma 1.
Lemma 2' B(m +2) =ZA.. Fm-i-l(ah a, aS)Gm+l(al’ a,, a3)-

Proof. Given (a,, @3, @3) € A, Gm+1(ay, a3, @3) is the number of profiles on m +1
alternatives in which x beats each of the other m alternatives by a simple
majority. When the (m+2)nd alternative is added to such a profile, it will be
beaten by x under simple majority if and only if no more than one voter has the
new alternative ranked ahead of x. and F,..,(a,, a,, a;) is the number of ways this
can be done. Therefore B(m +2) equals F,,.,(a,, a;, a3)Gp11(ay, a3, a3) summed
over A,,. O



232

P.C. Fishburn, W.V. Gehrlein, E. Maskin

Lemma 3. If integers a=0 and b >0 satisfy b =a, then

a

145+

b

Proof. The conclusion clearly holds if a = =0orb=1.Fora>0and b> 1, the sum
in Lemma 3 equals 1+(a/b) [sum for a—1 and b—1]. If the lemma’s concluslon
holds for b—1 and all 0=<a<b-1, then the latter [sum] is b/(b—a + 1), with
1+(a/b)[b/(b—a+1)}=(b+1)/(b—a+ 1). The lemma then follows from induction

onb O

a(e— 1)+ + a(a—1)-: - b+1

b(b 1) b(b—1)-- (b— a+1) b- a+1

Lemma 4. If integers a,=0 and a,=0 satisfy a,+a,<m, then

m —a,—a,

2

a;=0

Fr.+1(ay, a3, a3)Gpii(ay, a3, a3) <

m-—a l—az

s(m+2¥%(m+1) Y Gpulay, @y a3),

ay=0

with < in the conclusion if a,+a,>0.

Proof. Given a,=0, a,=0 and a,+a,=<m, the definition of G,,,, prior to

Lemma 2 implies that

m-—a;—a,

G, .1(ay, as a3)=

03=0

m-—a
x[1e s,

When the first and fourth terms in the def.nition of F,,., that precedes Lemma 2

ml(m—a,)!(m—a,)!
m-a,—apt ")

—d (m—a,—ay) -1 ]

™ m(m—1)---(a,+a,+1)

_ m!(m—a,)!(m—a,)!(m+1)!
(m—a,—ay)(a,+a,+1)

by Lemma 3.

are grouped, we get

m-—a,—a,

'y
L

03=0

F1(ay, a3, a3)G,, 4 (a,, a3, as)=

=) (m+2)(m+1—a,)(m+1-a3)G1y(ay, az, as)

as

+Y [(m+1-a)(a;+ 1) +(m+1-ay)(a,+1)]
X(m+1-a3)Gp1(ay, ay, aj3)

= (m+2)(m +1—a,)(m +1—a;) ToUn G~ ay)l(m +1)!

(m—-a,—aj)(a,+a,+1)
+[(m+1—a)(a,+1)+(m+1—-a,)a, +1)]
m im—a)(m—a)l(m+1){(m+2)
(m—a;—ay)(a,+a,+2)
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by the result just proved and Lemma 3. The ratio of

ZF m+1(01; azp,as)Gmﬂ(ah'am @)
: a e i '

'Z Gmﬂ(al; az. as)
is therefore
(m+d(m+1—-ag)m+1-ar))+(m+2)[(m+1-a,)a,+1)
+(m +1 —a;)(a, + l)](a, +a2+ 1)/(0] + az+2)=
m+2
“ata 2 [(a,+a,+2)m?+(3a,+3a,+6)m +f(a,, a,)]
where
f(a,, az)=4+a,+a,—a?—a3—ala,—a,a3—2a,a,.
Since
2 __m+2
(m+2)’(m+1) )

x{(a,+a,+2)m?+(3a,+3a,+6)m +(2a,+2a,+4)],
and since f(a,, a,) <2a, +2a,+4 with < holding if a, +a,>0, it follows that

Z Fm-l-l(al’ as, aS)Gmi-l(al’ as, a,)s (m +2)2(m + 1) Z Gm+l(a1s a,, a3),

Qs ajs

with < holding if a,+a,>0. O

Finally, when both sides of the inequality in Lemma 4 are summed over a, and
a, for a; =0, a;=0 and a,+a,<m, we get

Z Fm-ﬂ(ah az, aS)Gm+l(alv Qas, a3)<(m +2)2(m + 1) z Gm+l(a1’ a,, 03),
A A,

given m=1. Then (1) follows immediately from Lemmas 1 and 2.

3. Conjecture 2 for m=3 and odd n

For convenience in this and the next two sections we shall let C(n) = C(3, n), so
that C(n) is the number of n-term Condorcet profiles on three alternatives
divided by 6". Our pu~pose in the present section is to prove
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Theorem 2. C(n)>C(n+2) for all odd n=1.

We shall prove this using the vernacular of the random-voters model with
{1,2,3} as the set of three alternatives. The main part of the proof will be
preceded by the following lemma in which, for even n,

Q, (t)=Probability {(number of voters who prefer 1 to 3)— (number of
voters who prefer 3 to 1)=t|n is even, in voters
prefers 1 to 2 and the other in voters prefer 2 to 1}.

By the symmetry of the conditioning event, Q,(t)=Q,(—t) for te{2,4,...,n}.

Lemma S. If n=2 is even, then Q,(0)>Q,(2)>Q,(4)>" - - > Qu(n).

Proof. Since Q,(0)=3 and Q,(2)=Q,(—2}=3, the conclusion holds for n=2.
Assume henceforth that n is even n=4 and te{-n—»+2,...,n-2,n}.
Although n is fixed in the following, the proof applies to any n as just specified. By
dividing the n voters into a subset of two voters and a second subset of the other
n —2 voters such that, within each subset the same number of voters prefer 1 to 2
as prefer 2 to 1, it is evident that

Q"(t) = % n—z(t - 2)+%Qn—2(‘) +%Qn—2(t+ 2)-

Each Q,_, term on the right-hand side can be decomposed in like manner in
terms of Q,_, and Q, (which provides the ¢ and 2 multipliers). In general, for each
positive integer k for which n—2k=2, there are integers fi(a) for ae
{0,2,4,...,2k} such that

k
9Qu(t) = £ (0)Qu—z (O + Y. fi 2N Qu-21c(t = 2j)+ Qu_az (t+2))]

i=1

with
(0> (2)> - - > [ (2k)>0.

The previous expression for Q,(t) in terms of Q,_, shows that this holds for k = 1
with f,(0)=5 and f,(2)=2. This completes the proof for n =4. When n=6,
induction on k then shows that it is generally true: assuming its truth for all k up
to some k for which n-2k=4, the breakdown of each Q,_,, in terms of
Qn—2k—2 = Qn-—2(k+1) shows that

firr(a)=2f (a—2)+5f (a)+2f (a+2)




Condorcet proportions and Kelly’s conjectures 235

for each a€{0,2,...,2(k+1)} where, by convention, f,(a)=0 for a>2k
and fu(=2)=£(2); then for a€{0,2,...,2(k+1)}, fir{@)>fisi(a+2) iff
ka(a-2)+3fg(a)>3f,‘(a +2)+2f,‘(a +4), wluch is true by the mductlon' ‘
hypothws : ' '

Since Q,(a)#0 ift ae{-2,0 2}, the eonclusnon just proved shows that, when
k=4n-2) and ¢t{0,2,...,n},

9*Q. (0=£,.(t —2)Qx(2) + £ (N Qx(0) + £, (t +2)Q,(—-2)
=3 (t-2)+3f () +3f . (1 +2),

with fi(n+2)=0 and f,(-2)=f.(2). Hence, when k=1i(n-2) and te
{0,2,...,n-2}, Qu()>Q.(t+2) iff 2£(t—2)+3£()>3f (t+2)+2f (t+4),
which is true since £, (0)>£.(2)>:-->f,(n-2)>0. O

We now prove Theorem 2. Let P,(n) be the probability that aiternative 1 is the
Condorcet alternative when there are n=1 voters and n is odd. Since r is odd,

symmetry implies that C(n)=3P;(n). Hence to prove Theorem 2 we shall show
that

P,(n)>Py(n+2) for all odd n=1.

Since P,(1)=3}>P,(3)=1;, this is true for n =1. We assume henceforth that
n=3.

Given n voters with n odd, let (a, 8) denote the event in which (i) « of the
alternatives in {2, 3} are beaten by alternative 1 by exactly one vote (¢.g., 3(n+1)
voters prefer 1 to 2 and the other 3(n —1) perfer 2 to 1), (ii) B alternatives in {2, 3}
beat alterrative 1 by exactly one vote, and (iii) the other 2 —(a + B) alternatives in
{2, 3} are beaten by 1 by three or more votes. Let P(a, B) be the probability that
(, B) obtains. Then

P,(w)=P(0,0)+P(1,0)+ P(2,0).

In addition, when two new voters are added to the n votc=s who are represenied
in (o, B}, we see that

Py(n+2)=P(0,0)+3P(1,0)+1iP(2,0)
+2P(0, 1)+§P(0, 2)+§P(1$ 1)~

For example, if (a, B) = (2, () obtains for the first n voters, then alternative 1 will
be the Condorcet alternative for the n+2 voters iff at least one of the two new
voters prefers 1 to 2 and at least one of the two new voters prefers 1 to 3. The
probability of the latter joint event for the two new voters is i3
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According to the preceding paragraph, Py(n)>Py(n+2) iff
9P(1, 0)+14P(2,0)>9P(0, 1) +'4P(0, 2)+8P(1,1).

To verify the latter inequality we use a conditional analysis of the P(a, 8) for the
n original voters as follows. Let A and A’ be respectively the event that 1 beats 2
by one vote (for the n voters) and the event that 2 beats 1 by one vote. By
symmetry, P(A)=P(A’), where P( ) denotes the probability of the event in
parentheses. Conditional analysis and symmetry considerations yield

P(1,0)=2P(1 beats 3 by =3 votes! A)P(A),

P(2,0)=P(1 beats 3 by 1 vote | A)P(A),

P(0, 1) =2P(1 beats 3 by =3 votes | A")P(A)
=2P(2 beats 3 by =3 votes | A)P(A),

P(0,2)=P(2,0),

P(1,1)=2P(3 beats 1 by 1 vote| A)P(A).

When these are substituted into the preceding inequality and P(A)>0 is
canceled, we see that P,(n)>P,(n+2) if

9P(1 beats 3 by =3 votes| A)+5P(1 beats 3 by 1 vote| A)>
>9P(2 beats 3 by =3 votes | A)+8P(3 beats 1 by 1 vote | A).

Since these conditional probabilities are not affected by the specific manner in
which A is realized - i.e., which voters prefer 1 to 2 and 2 to 1 - we fix one voter
who prefers 1 to 2 and let the remaining n — 1 voters be evenly divided between 1
versus 2. Then, with Q,,_,(t) referring to the latter n — 1 voters, it follows from the
definition of Q,_,(t) that

P(1 beats 3 by =3 votes | A)=2Q,_(2)+ 2. Qu_,(1),

>4

P(1 beats 3 by 1 vote| A)=2Q,_,(0)+1Q,_,(2),

P(2 beats 3 by =3 votes | A)=3Q,_,(2)+ 3. Qu_,(1),

x4

P(3 beats 1 by 1 vote | A)=2Q,_,(2) +1Q,_,(0).

The final equation herc uses the fact that Q,_,(-2)=Q,_,(2), and the third
equation uses symmetry as foliows: (2 beats 3 by =3 votes| A) iff {2 beats 3 by 2
votes in the n — 1 (whose probability, by symmetry, is the same as 1 beating 3 by 2
votes, i.e., ,_,(2)) and the fixed voter prefers 2 to 3 (with probability 3)} or {2
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~ beats 3 by 4 or more votes (with probability Q,_,(4)+Q,(6)+--- by

~ symmetry)}. When the four preceding equalities are substituted into the former
inequality for Py(n)>P,(n+2), we get P,(n)>Py(n+2) iff Q,_,(0)>Q,_,(2),
which is true by Lemma $ for odd n=3.

4. Some results for m =3 and even n

The obvious fact that differentiates even n from odd n is that a Condorcet
profile for even n can have more than one Condorcet alternative. Moreover, even
when an even-n profile has a unique Condorcet alternative, another alternative
can tie the Condorcet alternative so long as it is beaten by something else. For
example, we can have 1 and 2 tied with 1 beating 3 and 3 beating 2. Then 1 is the
unique Coidorcet alternative although it does not have strict majorities over both
of the other alteraatives.

This section wiil focus on a specific alternative either as the unique Condorcet
alternative that beats the others or as one of the possibly more than one
Condorcet alternatives. Kelly’s Conjecture 2 for three alternatives and even n will
be examined in the next section. According to our present concerns, let {1, 2, 3}
be the set of three alternatives and let

P,(n) =Probability (alternative 1 is a Condorcet alternative and neither
2 nor 3 ties 1| n voters),

T,(n) = Probability (alternative 1 is a Condorcet alternative | n voters).

If n is odd, then T,(n)=P,(n), but if n is even, then T,(n)>P,(n) for n=2.
Theorem 3. P,(n)<P,(n+2) for all even n=2.
Theorem 4. T,(n)> T,(n+2) for all even n=2.

Theorems 2 through 4 show that T, for even n behaves in the same way as P,
for odd n, while P, for even n reverses the behavior of P, for odd n. Since ties for
the even-n case have probability zero in the limit of n, the limit probability
P,(0)—which is one-third of Guilbaud’s number [8, 9] and is approximately
0.30408— is approached from above by P, for odd n and T, for even n but is
approached from below by P, for even n.

Before proving Theorems 3 and 4 we shall establish a lemma that will be used
in the proof of Theorem 3.

Lemma 6. n[Q,_,(0)—Q,_»(4)]1=9Q,(2) for all even n=4.
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Proof. Let 2r=n-2 and partition the 2r voters who are evenly divided on 1
versus 2 in the corditioning event for Q,_»(t) into r groups of two voters each
such that, within each group, one voter prefers 1 to 2 and the other prefers 2 to 1.
'Then

n[Qn—2(0)— Qu_2(4))/2 = (r+ 1)[Q2(0)~ Q..(4)]
{21 r! 22k 5-—21:

=('+1){,¢§u K= 20019
[1+r/2] r!23k~25r—2k+2 }

T L kMk—=2)(r—2k+2)19"

which follows from the within-group probabilities of 3, 3 and 3 respectively that
both voters prefer 1 to 3, both prefer 3 to 1, and the two are divided on 1 vs. 3.
When the k =0 term is separated from the first sum and k is replaced by k+1
tkroughout the second sum, the preceding expression can be written as

[r/2] r!22k 5r—2k [v2]1 r!zzk 5r-—2k
Syr —-—
o 1){(9) * ,;.;1 (KD(r—2k)'9" = (k+ DU k—1)(r— 2k)!9'}

L ¥ ik
== 5- r
(r+ 1){(9) +k§l k!(k+1)!(r -2k)!9'}

{r/2] (r+ 1)!22k+15r—2k
=2 = $Qunf.
: kéo k1(k + DI(r—2k)!197*! 1Qa¢+1(2)

Therefore n[Q,—,(0)—Q,-.(4]1=9Q,(2). OO

Proof of Theorem 3. This proof is similar to the proof of Theorem 2 but is
slightly more complex for reasons that will become apparent. Throughout the
proof, n is even and n=2. In this context we let (a, 8) denote the event in which
(i) « alternatives in {2, 3} are beaten by alternative 1 by exactiy two votes, (ii) B
alternatives in {2, 3} tie alternative 1 (e.g., 3n voters prefer i to 2 and the other %n
prefer 2 to 1), and (iii) the other 2—(a + ) alternatives in {2, 3} are beaten by
alternative 1 by four or more votes. With P(a, 8) the probability of event («a, 8)
for n voters, the addition of two new voters to the n voters represented in (a, 8)
gives
P,(n+2)—P,(n)=[P(0, 0)+3P(1, 0)+}4P(2, 0)
+3P(0, 1) +3P(0, 2)+3P(1, 1)]

~[P(0, 0)+P(1,0)+P(2, 0)].
It follows from this and symmetry considerations that P,(n+2)> P,(n) iff

9p, +8p,+2p;>9p,+Tps
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where, given n voters,
P1=P(1 ties 2, 1 beats 3 by >4 votes),
p2=P(1 ties 2, 1 bea's 3 by 2 votes),
ps=P(1 ties 2, 1 tie: 3), o
p4=P(1 beats 2 by 2 votes, 1 beats 3 by =4 votes),
ps=P(1 beats 2 by 2 votes, 1 beats 3 by 2 votes).

Let A and B be respectively the event that 1 ties 2 and the event that 1 beats 2
by 2 votes. Then

p, = P(1 beats 3 by =4 votes | A)P(A)=p,P(A),
p.=P(1 beats 3 by 2 votes | A)P(A)=p,P(A),
ps=P(1 ties 3] A)P(A) =p3P(A),
p«=P(1 beats 3 by =4 votes | B)P(B) = p,P(B),
ps=P(1 beats 3 by 2 votes| B)P(B) = p5P(B),
where p; through p¢ are defined in context. Since P(A)=27"(,},) and P(B)=

2™"(y1), P(A)/P{B)=1+2/n. This fact and substitution of p; through p; into
the preceding inequality for P,(n+2)> Py(n) yields P,(n +2)> Py(n) iff

(1+2/n)(9p;+8p;+2p3)>9ps+Tps.

It is easily checked that this hok s for n =2, so we assume henceforth that n=4.
By viewing A as composed of two voters who are divided on 1 versus 2 plus the
remaining n—2 voters who are evenly split between 1 preferred to 2 and 2
preferred to 1, it follows that

p{ = %Qﬂ—z(Z) +%Qn—2(4) + On—Z(?ﬁ)t

pé = gon-'z(o) +gon—2(2) +%On—2(4),

P3=3Qn-2(2) +5Q,-2(0),
where Q,.»(=6)=Q,_5(6)+Q, »(8)+- -+, and where Q,.»(—2)=Q,_»(2) has
been used in p3i. Similarly, by viewing B as composed of two voters who both
prefer 1 to 2 plus n—2 voters who are evenly split on 1 versus 2,

p A = 30..—2(2) +gon—2(4) + Qu—z(?6),

p ; = %Qn —2(0) +%Qn—2(2) + %Qn~2(4) .
Substitution into the preceding inequality gives Py(n +2)> Pi(n) iff

(1+2/n)[26Q, »(0)+66Q,_»(2)+79Q,(4)+ 81Q,_(=6)]>

>[28Q._5(0)+64Q,2(2)+79Q, »(4) +81Q, »(=6)].
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Since the sum of the Q,_,(t) for even t equais 1, and since Q,_(—t)=Q,-»(t) by
the line before Lemma 5, we have

(=6 =1_10 (V-0 (=0 (4

Vn—2\f ) TT2 2N =2\V) ' Ln-2\&)  ep—-2Z\T7
When this is substituted into the preceding inequality and fractions are cleared,
we get Py(n+2)>P;(n) iff

81> ZH[Q,,._Z(O) -Q,-(2)]+29Q,2(0)+30Q,_,(2) +4Q,,(4).

Since Lemmas 5 and 6 inply that 9Q,(2) > n[Q,_,(0)—Q,_2(2)}, it follows that
the right-hand side of the preceding inequality cannot exceed 2(9)+30=48. O

Proof of Theorem 4. In the T, context let («, 8) be the event for n voters in
which (i) a alternatives in {2, 3} tie aiternative 1, (ii) B alternatives in {2, 3} beat
alternative 1 by exactly two votes, and (iii) the other 2—(a+ 8) alternatives in

A A o L b o Ta a4 Rl oAl o o _oia . PR 8% _ . % __
14, Jf AIC UECAiCil DY 4dilCinaiive 1 Dy (w0 OI MUIC VOUICS. 111C1, procccuing as
snmmers ez smennble waritle D ND) thha smenlinliilie.. ~8 7. O)
JICVI D> PIOUVId witll 1I'\Q, P) v pluuauull.y L\, P’,
A =TAn+2D=IPO O)+P(1 O)+P(2 OV-IP(0 O)+3P(1 Q)
A JRrey Z J\i* -y LAWYy W) T X \AyUJ 'V A Gy V)] (4 \VyVUj ' ga \dyuyJ
11 varm N 1wasn ay 1wasn AL 2wyara arv1
+T18F(2, V)3V, 1) TP, 2) 3K (1, 1)}

P(1,1)=2P(1 ties 3| B)P(B) =2q,P(B),
P(0,2) = P(3 beats 1 by 2 votes | B)P(B) =qsP(B),

where q, through qs are defined in context. Since P(A)=(5)2™ and P(B)=
P(Awmf{(n+2), 1t follows that

———[(99,+7q,)(n +2)—(9g, +8q,+2q

e 154 T A%

RPN
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the preceding proof shows that

= §Qn-2(0) +3Q,.:(9+Q.(>4),
qz = 30.;-2( 2) "’30»-2(0) + 50;.-2‘2), :
9= 3,0-.-2(0) +3Qn,~z(2) +Q.(>4),
Q4= gonf-z(‘fz) + 3Qn-2(0) +3Qn-2(2)o ;
45 =3Qn—_2(=2) +3Q,_2(-2)+3Q.5(0),

and since Q,_,(—t)=Q,_2(t), it follows that

(nlz)rn

81(n+2) 21(n 1) 2Qn2(0)~ Q22 - Qu 4]
+[53Q,5(0)+91Q,_,(2) + 810, _,(=4].

Ti(n)-Ty(n+2)=

Since Lemma 5 implies that the first term in brackets is positive, and since. the
second term in brackets is positive too, it follows that T,(n)> Ty(n+?2) for all
even n. O

Note on T,. The preceding expression for T;(n)— T,(n+2) implies a limit result
that will be used in the next section. Here and later we shall let f(n)-~ g(n) mean
that |f(n)—g(n)| = 0 as n — . In addition, we define K, by

(nIZ) 3

K,.= —(—"—:2)— -

Lemma 7. 3[T,(n)—Ty(n+2)JK, ~

Proof. When Q,_,(=4)=3-1Q,_,(0)—Q,_5(2) is used in the final equation of
the proof of Theorem 4, we get

3[Ty(n) - Ty(n+ YK, =3+#n[2Q,_»(0)— Q,_»(2) - Q,»(4)]
+25[12.5Q,-2(0) +10C,_>(2)].
In view of Lemmas 5 and 6, all terms on the right hand side go to zero as n gets

large except for 3. O

§. Conjecture 2 for m =3 and even n

In this section we shall prove that Kelly’s second conjecture holds for almost all
even n =4 when there are three alternatives. Throughout, the set of alternatives is
{1, 2, 3} with C(n)=C(3, n).
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Theorem 5. C(n)>C(n+2) for al' cven n greaier than some positive integer N.

In addition, C(n)>C(n +2) can be established for small even n =4 by direct
calculation. For example, C(4)= 1 and C(6)=1291/1296. Ailthough we do not
presenﬂy have a proof of C(n) > C(n +2) for all even n =4, we have no reason to
doubt its validity. -

Aloag with Ty(n) from the preceding section let

T,,(n) = Probabiiiiy (alternatives 1 and 2 are Condorcet
alternatives | n voters),

T,,3(n) = Probability (alternatives 1, 2 and 3 are Condorcet
alternatives | n voters).

3ince symmetry among alternatives implies that
C(n)=3Ty(n)—3Ty2(r) + Ty23(n),
C(n)— C(n+2)=3[T,(n)— Ty(n+2)]-{3[Tyx(n) - Tyx(n +2)]
+[T123(n +2) — Ty23(n)]}.

The limiting behavior of 3[T,(n)— T,(n +2)] is known {from Lemma 7. We shall
therefore focus on the term in braces in the prcceding expression. Let

Q,(t,, t;) = Probability {(number of voters who prefer 1 to 3)—(number
who prefer 3 to 1) = ¢, (number of voters who
prefer 2 to 3)—(number who prefer 3 to 2)=
t,| n voters, 3n of whom prefer 1 to 2 and 3n of
whom prefer 2 to 1}.

In all cases, t; and 1, are even integers and n is a positive even integer. By
symmetry, Q,(t, ;)= Q,(t; t;) = Q,(—t;, —t;). For notational convenience we
shall let Q,(¢, =t) =0, (8, t,)+Q,(t,, t,+2)+- - - with similar conventions for
Q. (=, ;) and Q,.(=t,, =t,).

To analyze the part of C(n)—C(n+2) that involves T, and T,,3; we observe
first that

Tatm) = T 20 (20,20),

Tas(m= ()2 .00,0),

n+2
1+n/2

n\,_.[/nt+t1l
- (n/2)2 (n +2)Qn+2(>0, =0),

Tizs(n+2)= (n'/’z)z*(:—z—;)om(o, 0).

Tuln+2)= )2*"-2 1 +2(=0, =0)
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A straightforward conditional analysis on two voters who are evenly divided on 1
versus 2 shows that

O..+z(>0 >0)—%(9O..(>2 32)+7Qu(>2 0)+7Q..(0 =2)
| 46Q,0,0)+2Q,(22,-2)+20,(-2,>2)
+20..(0 "2)+2Q..( -2, 0)+Qn( -2, -2)]
=39Q,(>2, 22)+ Q,(2,2) +14Q.(0, =2)
+6Q,(0, 0)+4Q, (-2, =0)].

In like manner,

Q..+2(0, 0)=3[2Q,(2, 2) +4Q,(0, 2)+3Q,(0, 0)]
Using

Q. (=2, =2)=Q, (=0, =0)-2Q,(0, =0)+ Q,(0, 0)
and Q,(0, =2)=Q,(0, =0)—Q,(0, 0), it follows that

{3[Ty2(n)— Tya(n + 2)]+[T123(n+2)— Ti:(n)VK, =
=3Q, (=0, =0)—-3{(9n +18)Q, (0, 0)—(4n +4)Q,(0, 2)

+(n+1)Q,(2,2)]

+§(n + 1)[0.1“)9 ;0) - Qn (—29 ?0)]'
The limiting behaviors of the three parts of this expression are covered by the
following three lemmas. As before, f(n)~ g(n) means that |f(n)—g(n)|—0 as
n — », In addition, we shall write f(n)= g(n) if and only if either f(n) <g(n) for
all large even n or else f(n)~ g(n), and f(n)=g(n) if and only if g(n)=< f(n).

Lemma 8. Q,(=0,=0)~1.
Lemma 9. nQ,(t,, t;) ~3v3/(2w) for fixed (t,, t,).
Lemma 10. (n+1)[Q.(0, =0)—Q, (-2, =0)]=:9/(4m).

The proofs of these lemmas will be deferred until we see how they are used in
proving Theorem 3.

Proof of Theorem 5. Lemmas 7 through 10 along with Q,(t;, t;) ~0 show that,
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since
[C(n)—C(n+2)VK, =3[T(n n+2)I/K Q.(=0,=

9[(9n+18)Q (o, 0) . ;
—(4n+4)Q,(0, 2)+(n + l)Q @2, 2)J

—-$(n+1)[Q,(0, =0)- 0.(-2, 20)],
[C(n)— C(n+2)VK, =2 - 1+46(3V3)/(27)]-49/(4m)]
1 3- J"

— — ———

2 T

A4

Since 3—(3—+3)/w is positive (about 0.1), C(n)>C(n+2) for all large n. O

To approach the proofs of Lemmas 8 through 10 let the n =2r voters in the
conditioning event in the definition of Q,(t,, t,) be partitioned into r two-voter
groups such that, within each group, one voter prefers 1 to 2 and the other prefers
2 to 1. For the ith two-voter group let x; equal 1, 0, or —1 respectively according
to whether both voters prefer 1 to 3, one prefers 1 to 3 and the other prefers 3 to
1, or both prefer 3 to 1; let y; equal 1, 0, or —1 respectively according to whether
both voters prefer 2 to 3, one preiers 2 to 3 and the other prefers 3 to 2, or both
prefer 3 to 2. Seven of the nine (x;, y;) pairs are possible—only (1, -1) and (-1, 1)
are excluded. The probability for each pair is shown in the following matrix,
followed in parentheses by the number of groups that have that pair.

y
1 0 -1
1|3a,) #a) O
x  0|3as) 3ay) 3(al)
-1 0 §as) 3(ae)

For example, a, groups have (x;, y;)=(1,1),..., and a, groups have (x, y;)=
(0,0), with a,++--+a,=r. Note uiso thal t,=2{a,+a,—as—as] and t,=
2[(11 + A3~ As— b&sj.

Proof of Lemma 8. The analysis of the preceding paragraph implies that each
random vector (x,, y;) has mean (0, 0), covariance matrix

[t ]
. 4
9

and correlation coefficient p =1 between the two variables. Since (X x/vr, ¥ y/VD
has a bivariate normal distribution with mean (0, 0) and p =1 as n — o, standard
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tables (e.g., Yamauti [13]) show that its nonnegative orthant probability ap-
proaches } as n = =, Since t,=0e ¥ x,=0, and 1,=0 Y y, =0, it follows that

, Q..(ao ;0)~§ O

‘Prool ot lm 9, The lamce dnstnbuuon treatment for the central lumt

theorem in Bhattacharya and Ranga Rao [2] or Bhattacharya [1, Theorem 2.1]
implies that, for fixed (t,, tz),

'er(tla t2) -~ ¢V(09 0),

where ¢y, is the bivariate normal density with mean (C, 0) and covariance matrix
V as given in the preceding proof. Since

&v(0, 0) =[determinant (V1) 1"3/(27) =v27/4(27),
it follows that nQ, (t,, i,) ~3v3/2%). O

Proof of Lemma 10. Lemmas 5 and 6 show that r[Q,,(0)— Q,,(-2)]~0. Since
Q.. (1) = Q,,(t, =0) + Q,,(t, <0), and since r[Q,,(2, 0)— Q,,(0, 0)]~0 according to
Lemma 9,

0~1r[Q,,(0)-Q,, (-2)]‘
=r{{Q>(0, =0)— Q,,(-2, =0)]-[Q,,(-2, <0)— Q,(0, <O)T}
~r{{Q,,(0, =0)— Q,,(-2, =0)]-[Q,(2, >0)— Q,,(0, >0}]
- [Qz;(zs 0)—-Q,(0, 0O
=1[Q2(0, =0)- Q,,(-2, =0)]-r[Q,,(2, =0)—- Q,,(0, =0)].

Therefore
'[QZr(os ?0) = er(—zs ;0)] ~r [Qz.-(Z, 30) - Qz,. (0, ?0)].

Then. since Q,(t,, =0)—Q,(t;, =0)~0 for fixed ¢, and ¢},
(n+1)[Q,(0, =0) - Q,(-2,=0)]
~n[Q,(0, =0)—Q, (-2, =0)]
=2r{Q,(0, =0)- Q,,(-2, =0)]
~r[Q,,(0, =0)—- Q. (-2, =0)]+r[ Q- (2, =0) - Q,(0, =0)]
=1[Q. (2, =0)-Q,, (-2, =0)]

-~ (f + 1)[021'(2’ BO) - 02,.("'2, ?0)]-
Therefore ,
(n+1[Q,(0, =0)— Q,(-2, =0)]~ (r+ D[Q,(2, =0) — Q,,(—2, =0)].
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We shall now show that (r+ 1)[@,,(2, =20)— Q,,(-2, =0)]<9/(4=), which estab-
lishes Lemma 10.

With the g; as defined in the matrix prior to the proof of Lemma 8,
027(2’ = (9' )’
& ,
r! 3%
Q,.(-2,20)=) —— | =—
2r( 21' = ) ( r ]
A, H (a:)\9

where A, ={nonnegative integral (a,,..., a;): a;+a,=as+ags+1, a,+a;=a,+
a¢, Y a;=r} and A,={nonnegative integral (a;,...,a,): a,+a,=as+ags—1,
a,+as=as+ag Y a;=r} Let

A3= {(al, ceey (:.7) a,+a,= as+ag, a2>0 as>0 a1+a3>a4+a6,

a3+a6<a1+a4,z ai=r+l},

A4={(a29 QAe, k’ b): 2(a2+a6+k)+b =r+ 1}9
As={b:u<r+1,r+1->b is even},

where ali variables are nonnegative integers. We shali prove that

(r+1D[Qy,(2, 20)—- Q,, (-2, =0)]
(l+ 1)![a5 - (az + 1)]3:. ’

~A2:U{as':'“} IT(a;)ay+1)9" 2
_v (r+tlas—a,)3°

% M(any 3)
3 (r+1)'ks® @
\A4 a,!ag!(a+k)!(as+k)!bh!9"

r+1-b)r+1)!5%( r+1-b \?

—2 (r+1-b)!b!9" (2(r+1—b)) &)

9 r+1\/5\t/4\r+1-b
<5;A,( b )(6) (‘9‘) ©6)
“’Zs’:?' ™

Three auxiliary lemmas will be used in verifying the preceding sequence.
We shall prove these before continuing with the proof that (r+1)
[QZr(zs ?0)— O?v{_z’ BO)]s 9/(4'")-

Lemma 11. Let B be the set of all nonnegative integral (n,, n,, ny) for which
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ny+ny+n3=n, where n is a nonnegative integer. Then

n, in
§ n,!nz!(n,+n3)!(n2+n3)! (n')2 ( )

| "Lemna 12. (2")<22"/J—z for every ne{l 2 2}

Lemm 13. Let E, be the set of all nonnegative even integers that do not exceed n,
and let A be strictly between 0 and 1. Then

> (7)ra-ari~3.

jeBa \] 2

Proof of Lemma 11. The identity

L()G)-(5)

where the sum is over all ‘nonnegative integral (x, y) such that x +y is constant,
will be used in going from line three to line four in the ensuing sequence. The
foregoing identity is noted, for example, by Feller [4, p. 62].

(n)2).

B8 m!In!(n,+ "3)'("2 +n3)!

=§ ns(m)( 2) n,Z-o n;{(m ny): mz-*:'-z-""'s’ (:’)(:2)
z (nt+n;— ")( 2n )

n=0 B—N3/ .o n+n;
« (2n—-1 L 2n

=n$ ()2 ()
n,z-o n—n; n,zao n—n;

cafars (2 A3
i) ).

Proof of Lemma 12. This foliows easily from the bounds on Stirling’s approxima-
tion for n! given, for example, on p. 52 in Feller [4]. O

Proof of Lemma 13. Let p(n) be the noted sum over E, in Lemma 13. Then

p(n+1)=(1-A)p(n)+A[1-p(n)]
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Figuratively speaking, the probability of an even number of successes in n+1
Bernoulli trials with success probability A equals the probability of an even
number of successes in the first n trials times the probability of failure at trial
n+1, plus the probablhty of an odd number of successes in the first n trials times
the probability of success at trial n + 1. Since 0<A <1, p(n) approaches the stable
p that is the solution to p=(1-A)p+A(1—p), which is p=4. O

We now return to sequence (2) through (7). Given a =(a,, ..., a;), let a’ and
a* be defined by

a,=a,+1, as=as—1, aj=gq forj¢{2,_5};

)
%k _ ® N k _ . — S
1=ae, Gg=a,; a3;=as, al=a,; af=a; forj=z{3,4,7}.

a

To go from (r+1)[Q,,(2, =0)— Q,, (-2, =0)] to (2), note first that all vectors
in A, are uniquely generated from the vectors in A, that have as;>0 by the
mapping a — a’ except for those that have a%=0. However, since

\y r! l"; 3\* l r-a,
r*D & oTi@) (5)=r+00 A,ué,go,n(a.')( )G)
<+DE,

and since (r+1)(3)" ~0 by I’'Hospital’s rule, the omission from A, of vectors that
have a, =0 will not affect the large r behavior of (r +1)Q,,(2, =0). In like manner
the 15=0 vectors can be omitted from (r+1)Q,,(—2, =0) so that

(r+D[Qy(2, 20)~ Q,(-2,20)]~ ¥ ____[ 1],
ne: o ) Ao [1(a) Lay+1 9
which verifies (2).

To obtain (3) from (2), first replace a,+1 in (2) by a3 =a,+1, then drop the
double prime to get (2) equal to

Z (r+ 1)!(05 - 02)3“’
Aso H (a9

with
A30={(a1, ey a-’): a, + as = a5+a6, a, +a3?a4+a6,

as>0, a,>0, Z a=r+1}.

Given : € A,o, the mapping a — a™ gives a* € A, if and only if ag+a;=a,+a,,
and if a,a*€ Aj,, then their terms in the A;, sum cancel since af—a¥=
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~(as—a,). After all such cancellations, A,, retains only those a for which
as+as<a,+a, and it is these vectors that comprise A,. Hence (3) equals (2).

~ The inequalities a1 +a;>a,t+ag and a;+as<a;+a, in A; imply a1>a6 Let
k=a @, de. Smoe a,-a, a,— aa in A,-,, 3) equals f

Z (r+ 1)!k3"v ;
A az!ﬂs!(az'i' k)!(ag+ k)!as'a,!a,'9"

with
Az ={(ay, a6, k, @3, a4, a7): k>0,0a,>0,a,—as<k, ay—a,<k,
2(a2+a5+k)+(a3+a4+a-,)=r+l}.

The sum of 3%/(as!a,!a,!) over all (a,, a,, a;) for which ay+a,+a,=b is 5/b!.
Since this sum ignores the inequality constraints in Aj;, and since A, is just A,
minus its inequality constraints and with b = a;+ a4+ a,, it follows that (3) is less
than (4).

In A,, b is feasible if and only if b=0 and i(r+1—b) is an integer, in which
case r+1—b must be even. With b feasible and fixed, we next sum the terms in
(4) that involve k, a, and a¢ over all (a,, ag, k) for which a,+as+k =3(r+1-b).
By Lemma 11, this sum is

k
{az+as+k=lr+1-b) G2'a6Y (a2 + k) (as +k)! a
_ [ir+1-b)] ( r+1-b
T{Ber+1-0)]P \ir+1-b))

When this is taken account of in (4), it follows that (4) equals (5).
The term for b=r+1 or r+1-b=0 in (5) equals zero. In addition, when
r+1->b is positive and even, Lemma 12 gives

( r+1_b )2 4r+l-b——
ir+1-b)) iw(r+1-b)’

When the right-hand side of this inequality is substituted into (5) in place of its
left-hand side, we obtain (6) so that (5) is less than (6).
Finally, Lemma 13 implies that

L(E6

and therefore (6) ~9/(4w). The sequence of (2) through (7) thus shows that
(r+ 1[Q,,(2, =0)— Q5,(—2, =0)]<9/(47), and the proof of Lemma 10 is com-
plete.
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6. Additional results for odd n

- It seems apparent from precedmg sections that Kelly S conjectures are more
amenable to resolution for odd n than for even n. Therefore, in attempting to
extend the results derived above, it would appear more profitable to work initially
with odd n. The main results we have obtained for odd n are Theorem 1, which

says that
C(m3)>C(m+1,3) forallme{2,3,...}, (8

and Theorem 2, which says that

C(3,n)>C(3,n+2) forallodd n=1. )

In concluding this study we note several related results for odd n that arise from

e e 223 2T AV OV walltn AWERRRIEW AWUWALY AVA AZSL WA IUW aa

the following recursion relations in Gehrlein and Fishburn [6]:

C4,n)=2C3,n)—1 foroddn=1 (10)
C(6,n)=3-5C@3,n)+3C(5,n) foroddn=1. (11)

Theorem 6 follows the spirit of (8), while Theoa.m 7 is in the mode of (9).

Theorem 6. The following hold for all odd n=3:
(@) C(3,n)>C(4,n):
(b) C(3,n)>C(5,n);
() C(5,n)>C(6,n)=> C4,n)>C(5,n):
~ (d) C(3,n)>C(6,n) if and only if C(4, n)>C(5, n).

Proof. (a): By (10), C(4,n)—C(3,n)=C(3, n)—-1<0.
(b): If C(5,n)=C(3,n), then (11) implies that C(6, n)=1+2[1-C(5, n)},
which is false since 1+2[1-C(5, n)]>1.
(0): By (11), C(?,n)=3-4C(3, n)+3C(5, n)—C(6, n). Since
1>C(@3, n), -2+4C(3,n)—-2C(5, n)>C(5, n)— C\6, n).
But, by (10), -2+4C(3, n) =2C(4, n). Therefore
2[C(4,n)—C(5,n)]>C(5,n)—C(6, n).
(d): By (10) and (11), C(6, n)~C(3, n)=3[C(5,n)-C(4,n)]. O
Theorem 7. The following hold for all odd n=1:

(a) C4,n)>C4,n+2);
(b) C(6,n)>C(6,n+2)=> C(5,n):>C{5,n+2).
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Prook. (a): By (10), C(4, n)—C(4, n+2)=2[C(3, n)— C(3, n+2)]. Then, by (9),

CUA 0\ (A oo LD
N N1 Rl v o SR [ 0 4

by By 1), ,
/ 3[C(S n)— C(S n+2)] [C(6 n) C(6 n+2)]+S[C(3 n) C(3 n+2)].ﬁ T
Hence (9) and C(6, n)>C(6 n+2) imply that C(S n)>C(5 n+2). O

Theorems 1 and 6 imply that if C(S, n)> C(6, n) is true for all odd n 2'3, then
C(3,n)>C(4,n)>C(5, n)>C(6, n) for all odd n=3. Hence a reasonable next
step for Conjecture 1 would be to try to establish C(5, n)> C(6, n) for odd n=3.
In like manner, it follows from Theorems 2 and 7 that if C(6, n)> C(6, n+2) for
odd n=1, then C(m, n)>C(m,n+2) for odd n=1 and m {3, 4, 5, 6}. Hence a
reasonable next step for Conjecture 2 would be to try to establish C(6,n)>
C(6, n+2) for odd n=1. Moreover, If this is true, then—as shown by our final
theorem—it is true also that C(S, n)>C(6, n) for odd n 3. '

Theorem 8. If C(6, n)>C(6, n+2) for odd n=3, then C(5,n)>C(6, n) for odd
n=3.

Proof. Accume that (‘( >plﬁ r-L',\ for nrlr‘ n>2 and rontrarv to tha

- SWWAS 4 AVINIIEY LRaWE Wy WV e S v ey AV o = o/ GAXINSy \lvlluul] W iiw

theorem, suppose that C(6 n)=C(5,n) for some odd n=3. Then, by (11),
2C(5, n)=5C(3, n)—3. By (9) and Guilbaud’s result [8, 9], C(3, n)>0.912, and
therefore C(6, n)=C(5, n) implies that C(5,n)>0.78. In order for this to be
true, Theorem 7(b), the hypothesis that C(6, n) > C(6, n +2), and known values
[6] of C(5, n) require n<7. But values [6] of C(5, n) and C(6, n) give C(5, n)>
C(6,n) for ne{3,5,7}. 4
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