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We study the Markov perfect equilibrium (MPE) of an alternating move, infinite horizon 
duopoly model where the strategic variable is quantity. We exhibit a pair of difference- 
differential equations that, when they exist, differentiable MPE strategies satisfy. For quadratic 
payoff functions, we solve these equations in closed form and demonstrate that the MPE 
corresponding to the solution is the limit of the finite horizon equilibrium as the horizon tends 
to inlinity. We conclude with a discussion of adjustment costs and endogenization of the timing. 

1. Introduction 

In Maskin andTirole (1982,1985), we presented a theory of how oligopolistic 
firms behave over time. We studied an explicitly temporal model stressing the 
idea of reactions based on short-run commitments. When we say that a firm 
is committed to a particular action, we mean that it cannot change that 
action for a certain finite (although possibly short) period, during which time 
other firms might act. By a firm’s reaction to another firm, we mean the 
response it makes, possibly after some lag, to the other’s chosen action. 

To formalize the ideas of commitment-based reactions, we introduced a 
class of infinite-horizon sequential duopoly games. In the simplest version of 
these games, the two firms move alternatingly. Thus, when a firm picks its 
action, it has perfect information about the current action of the rival. The 
fact that after choosing an action a firm cannot change it for two periods is 
meant to capture the idea of short-run commitment. 

A firm maximizes the present discounted value of its profits. Its strategy is 
assumed to depend only on the physical state of the system (i.e., to be 
Markov). In our model, the state is simply the other firm’s current action. 
Hence, a strategy is simply a dynamic reaction function. A Markov Perfect 
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Equilibrium (MPE) is a pair of reaction functions that form a perfect 
equilibrium. See section 2 below for a brief discussion and Maskin-Tirole 
(1982) for a more extended motivation of the MPE concept. 

Maskin and Tirole (1982) applied this framework to a natural monopoly 
situation and provided a link between the older literature on fixed costs as 
an entry barrier and the more recent discussion of contestability. Maskin and 
Tirole (1985) examined dynamic price competition and developed equilibrium 
explanations for kinked demand curves, price cycles, excess capacity and 
market sharing. 

In this paper, we adapt the alternating model to classic Cournot com- 
petition. Although we shall refer to a firm’s choosing a ‘quantity’, one should 
think of this choice as that of capital or capacity [cf. Kreps and Schienkman 
(1983) or Maskin and Tirole (1982)]. That is, the quantity-setting game is the 
reduced form of a more complicated game in which long-run competition is 
conducted through capital and short-run competition through prices. 

Section 2 recalls our infinite horizon duopoly model with alternating 
moves and develops the first-order conditions for differentiable reaction 
functions to form a MPE. These lead to a pair of difference-differential 
equations in the two reaction functions. Payoff functions are thereafter 
assumed to be quadratic. Section 3 shows that, given the quadratic assump- 
tion, there exists a unique MPE with linear reaction functions. This 
equilibrium is dynamically stable. Moreover, when firms discount the future 
heavily, the equilibrium strategies coincide with standard Cournot reaction 
functions. However, as firms grow more patient, competition becomes 
increasingly intense. 

In their pioneering contribution, Cyert and de Groot (1970) analyzed the 
finite horizon analogue of the model studied in this paper. Even in the quadratic 
case, the finite horizon equilibrium cannot be exhibited in closed form, and 
so Cyert and de Groot were compelled to use numerical methods to solve it. 
In section 4, we use a contraction mapping argument to show that, as the 
horizon lengthens, the finite horizon equilibrium strategies converge to their 
infinite horizon counterparts discussed in section 3. Thus, the nature of 
equilibrium is robust to the length of the horizon. 

Section 5 alters the model by imposing a cost on a firm for changing its 
quantity. The cost is assumed to grow with the size of the change in output. 
In this case, we show that, for any discount factor, the steady-state 
equilibrium converges to the static Cournot outcome as adjustment costs 
become large. 

One restrictive feature of our analysis is that it relies on a model where 
firms’ relative timing is exogenous. Both alternating and simultaneous move 
timings are, a priori, arbitrary. Asynchronism forces firms to react to one 
another; simultaneity, by contrast, does not permit reactions in our sense, 
since all firms commitments expire at the same time. In our previous papers, 
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we argued that the timing of the game should not be imposed but instead 
result from the adjustment technology and the strategic interactions. In 
section 6 we discuss the issue of endogenous timing for the Cournot 
framework. 

2. The model and Markov Perfect Equilibrium 

In this section we describe the main features of the exogenous timing 
duopoly model [for further discussion of this model, see Maskin and Tirole 
(1982)]. Competition between the two firms (i= 1,2) takes place in discrete 
time with an infinite horizon. Time periods are indexed by t ( = 0, 1,2,. .). 
The time between two consecutive periods is 7: At time t, firm i’s instanta- 
neous profit ni is a function of the two firms’ current quantities (as we 
mentioned in the introduction, these quantities are really a ‘shorthand’ for 

technological scale) ql, f and q2,t, but not of time: Z7i=17i(q,,,,q2.1). We 

assume that ZZ’ is twice continuously differentiable, with nii ~0, lli<O and 
ZIij<O, where subscripts denote partial differentiation (for instance, Hij is the 
cross partial derivative of Z7 with respect to ql,t and q2,t). Thus, firm i’s 
profit is concave in i’s output and, like marginal profit, decreases with i’s 
competitor’s output. Static reaction curves are consequently well-defined and 
downward sloping. 

Firms discount the future with the same interest rate r; thus, their discount 
factor is 6 =exp( --rT). Firm i’s intertemporal profit at time t is 

f. 6”wq 1,r+sqz,t+s . 1 

Let us now consider the timing of quantity setting. In odd-numbered 
periods t, firm 1 chooses its quantity, which remains unchanged until period 

t+2. That is, ql,f+l=ql,f if t is odd. Similarly, firm 2 chooses quantities 
only in even-numbered periods, so that q2,t+ 1 = q2,1 if t is even. 

Firm i’s strategy is assumed to depend only on the payoff-relevant state, 
those variables that directly enter its profit function. That is, we suppose that 
strategies are Markou. In period 2k+ 1, when it is firm l’s turn to pick a 
quantity, the payoff-relevant state is simply firm 2’s current output: q2, 2k+ 1 = 

q2,2k. Firm l’s choice of quantity is, therefore, contingent only on q2,2k. 

That is, its reaction function takes the form q1,2k+ 1 =R,(q,,,,). Similarly, 
firm 2 reacts to firm l’s quantity according to a reaction function R2(.), 
where q2,2k+2 =RZ(q1,2k+ 1). We shall call these Markov strategies dynamic 

reaction functions. In this paper, we consider only deterministic reaction 
functions. 

As we argue in Maskin and Tirole (1982), the Markov assumption has 
appeal because it entails the simplest behavior on the part of firms that is 
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consistent with rationality. Moreover, it gives rise to reactions that are closer 
in spirit to those of the informal industrial organization literature than do 
those of the supergame approach to oligopoly [e.g., Friedman (1977)], where, 
typically, a firm necessarily reacts not only to its competitors but to itself. 
Finally, as we shall see in section 5, it enables us to ignore the distinction 
between a horizon that is literally infinite and one that is long but finite (by 
contrast, again, with the supergame literature, where the distinction remains 
important). 

We are interested in pairs of dynamic reaction functions (R,,R,) that form 
perfect equilibria. Perfection requires that, starting in any state, a firm’s 
dynamic reaction function maximizes its present discounted profit given the 
other firm’s reaction function. We call such a pair of strategies a Markov 
Perfect Equilibrium (MPE). Note that because each firm has an incentive to 
use non-payoff-relevant history only if the other firm does, a MPE remains a 
perfect equilibrium when strategy spaces are unconstrained. 

If (R,, R2) is an MPE, then clearly, at any time 2k+ 1 and given any time 

2k move q2,2k by firm 2, the move ql,2k+l =R,(q,,,,) maximizes firm l’s 
present discounted profit given that thereafter both firms move according to 
(R1,R2). The analogous condition holds for firm 2. Indeed, from dynamic 
programming, these two conditions suffice for (R,,R,) to constitute a MPE. 
That is, it is enough to rule out profitable one-shot deviations. Hence, 
{R1,R2) is a MPE, if and only if there exist valuation functions {(V,, IV,), 
(V,, W,)} such that for any quantities {ql,q2) 

l/lb21 =max Ifl’(4, q2) + ~W,(dl, 
4 

(1) 

Rl(q& argmax {Wq, q2) + dW,(q)), 
4 

(2) 

(3) 

and similarly, for firm 2. I/,(q,) is firm l’s valuation (present discounted 
profit) if (a) it is about to move, (b) the other firm’s current quantity is q2, 

and (c) firms use {R,,R,) forever more. 
We first show that equilibrium dynamic reaction functions are necessarily 

downward sloping. This property relies only on the assumption that the 
cross partial derivative lZij is negative. 

Lemma 1. When they exist, equilibrium reaction functions are downward 

sloping, i.e., Ri(q) sRi($) if q>& i= 1,2. 

‘Notice that we have dropped the time subscripts from the quantities, because the dynamic 
reaction functions themselves are time independent. 
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Proof Assume, the contrary, q1 > but R2(ql) R2(Q1). By definition, 
R2(ql) is a best response to ql. Thus, 

n’(ql> R,(q,)) + aW(R,(q,)) Zn’(q1, Rz(GJ) +hW,(R,(G,)). (4) 

Similarly, R2(G1) is a best response to G1: 

(5) 

Subtracting (5) from (4), we obtain 

f12(q1> Rz(ql)) -n2(q1> RJ$J) +n”(cir, R2(&))-f12((iI, R,(q,)) 20, (6) 

which is equivalent to 

41 Rz(~I) 

4s RL 
II:,(x,y) dydxZ0. (7) 

I * 1 

But, by assumption, Z7:, < 0. Thus, (7) implies that R2(ql) 5 R2(gI). Q.E.D. 

Given the differentiability of the payoff functions, we can derive convenient 
differential conditions that characterize differentiable equilibrium reaction 
functions (if these exist). The tirst-order condition for the optimization 
problem in (1) is 

#(R,(q,)> q2) + 8’ T(R,(q,)) =O, 

or, because q1 =Rl(q2), 

W, 
n:(ql, R, ‘(41)) + 6 ~ dq (41)=@ 

(8) 

(9) 

Similarly, substituting q2 = R2(ql) in (8) we obtain 

From (l), (2), and (3) we obtain a simple equation for WI: 

(10) 

(11) 
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Differentiating (11) yields 

Substituting (9) and (10) in (12), we get 

dR2 
dqM= 

-#(q,, R; l(qJ) -dn:(ql, Mqd 
1 dn:(ql, Mq,)) +~2~:(R,&(q,N, Wql)) 

By symmetry, 

$q2) = -fl;(R, ‘(qz), 42) - ~~:V&d, q2) 
2 6n:(R,(q2), q2) + J2fl:(R,(q2), R,(R,(q,)))’ 

(12) 

(13) 

(14) 

The differencedifferential eqs. (13) and (14) have a simple interpretation. 
Consider, for example, firm 2’s optimal decision at time t when firm 1 has 
chosen q1 at time t - 1. From optimality, a small change Aq, does not affect 
firm 2’s present discounted profit. Firm 2’s profit at time t changes by 
Z7:(q,, R,(q,)) Aq, =ZI$(R; ‘(q2), q2) Aq,. Its discounted profit at time t + 1 is 

changed in two ways. There is the direct effect 61Z:(Rl(q,),q2) Vq2 but also the 
indirect effect due to firm l’s marginal reaction (dRl/dq2)(q2)17$Rl(q2), q2) Aq,. 

At time t + 2 firm l’s time t + 1 marginal reaction changes firm 2’s discounted 

profit by ~2(dRlldq2)(q2)~:(Rl(q2), R2(Rl(q2))) Aq2. From the envelope 
theorem, there are no additional first order effects from Aq, on firm 2’s 
profit. Thus, the derivative of firm l’s reaction function must satisfy (14). 

Eqs. (13) and (14) are not sufficient for (R,,R,) to form a Markov perfect 
equilibrium because they are only first order conditions. In the next section, 
we observe, however, that, for quadratic payoffs, the second order conditions 
are satisfied automatically for a linear solution. 

3. The dynamics of Cournot competition 

Henceforth, we will assume that the profit functions are quadratic and 
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symmetric. Specifically, 

P=qi(d-qi-qj) where d>O. (15) 

The quantity ZIi can be thought of as firm i’s profit in Cournot competition 
when the demand function and the production costs are linear. Then, d 

represents the difference between the intercept of the demand curve and the 
marginal cost c.’ We note that the ‘reaction’ functions3 of the standard static 
Cournot model are 

RTtqj) = Cd - qj)/23 i-l,2 (16) 

and that the static equilibrium is given by 

q”1 =q;=d/3. 

Differentiating (15) and (16), we obtain partial derivatives: 

l7j=d-2qi-qj (17) 

and 

n;= -qi. (18) 

The linearity of these partial derivatives leads us to look for linear dynamic 
reaction functions: 

(19) 

where from Lemma 1, a, > 0 and bi > 0. 
Substituting (19) into (13) and (14) gives us the following two conditions in 

b, and bj: 

62bZbj2 + 26bibj_2bi[ 1 + S] + 1 = 0, i= 1,2, j+i. 

But from these two equations, it is clear that b, = b,. Hence, we can drop the 
subscripts to obtain 

62b4+26b2-2(1 +6)b+ 1 =O. (20) 

20ne can work with either of two specifications of the model. In the first, quantities and price 
are unconstrained (i.e., can be negative) and payoffs are given by (15). In the second (more 
economic) specification, quantities must be non-negative and if q,+qjzd, firm i’s profit is equal 
to -ccq, (the price cannot be negative). The two alternatives yield the same MPE, and so we 
need not choose between them. 

‘These are, of course, not truly reaction functions because, in a one-period model, there is no 
opportunity to react. 
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Eq. (20), which determines the slope of the reaction function, has two real 
roots:4 one in the interval (O,+) and the other in the interval (l/& l/6). As 
we will see below, only the former is relevant for our purposes. This root 
leads to dynamic reaction functions for which there is a steady-state output 
@= l/( 1 +b) and that are dynamically stable, i.e., starting from any produc- 
tion level (ql, qz), production converges over time to the steady-state (q’, 4’). 
The other root gives rise to a dynamically unstable path.’ 

From (13) (14), and (19), we have 

62b3ui-62b2uj+6bui+~j=(l+6)db, i= 1,2, j#i. 

Subtracting one of these equations from the other, we obtain 

But as may be readily verified, the coefficient of a, -a, does not vanish in 
the interval (O,$, and so a, =u2. We may, therefore, drop the subscripts from 
the u’s to obtain 

(1 +S)b 

u=62b3-b2b2+bb+l 
d= l+b pd,6 

3-6b 
(21) 

where the second equation in (21) is obtained using (20). 

Proposition 1. For any discount factor 6: (1) there exists a unique linear 
MPE Cgiven by (19)421)], (2) this MPE is dynamically stable; i.e., for any 

history of the game, the production levels converge to steady state outputs 
(q’,qe), (3) each firm’s steady state output q’ is equal to the static Cournot 

equilibrium output d/3 when 6 =0 [in which case, the dynamic reaction 
functions coincide with their static counterparts, given by (16)] and grows with 
the discount factor. 

4This follows because the left-hand side of (20) is negative for h = l/2 and tends to infinity as h 
goes to either plus or minus infinity and because its second derivative is everywhere positive. 

‘In our first specification (unconstrained quantities and price; see footnote 2), the two firms’ 
intertemporal payoffs fail to converge for this root; their instantaneous payoffs ‘chatter’ between 
negative and positive values that tend to - a and + m. This root can also be ruled out in our 
second specification (at least for discount factors that are not too small), because, starting from a 
point where the other firm sets q=a/h, a firm earns zero intertemporal profit, although it could 
make a strictly positive profit by playing the (unstable) steady-state output. By contrast, our 
stable root gives a piece-wise linear solution (R(q) = a - hq for 0 5 4 5 a/h, 0 for 4 2 a/h) that is an 
MPE over the whole positive quadrant (not only in the subspace [0,a/b12) as can easily be 
checked. 

6 In this case where the tirms’ marginal costs dither, the slopes of the reaction functions are the 
same and given by (20) but the intercepts differ. 
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Proof: (1) If reaction functions are linear, then because the profit functions 
are quadratic, so are the valuation functions. By definition of the reaction 

function Rl(q2), 

and so 

mRl(q,)> q2) + 6 g-wY2N =o> 
1 

[ 

n: l(Rh), q2) +6 ~W~2~~ ~(q2)+n:,(R,(y,),q,)=O. 
1 1 2 

Now, II:, is negative. Hence if reaction functions are downward sloping the 
above equation implies that the bracketed expression is negative. Thus, if WI 
is quadratic, we conclude that LZ’(q,,q,) +6W,(q,) is concave, and so the 
necessary conditions (13) and (14) are also sufficient. 

As we observed above, the two real solutions to eq. (20) lie in the intervals 
(O,& and (l/A l/6). Footnote 5 demonstrates that the dynamics associated 

with the latter root are not consistent with an MPE. Those associated with 
the former root, however, are consistent with equilibrium (under either 
specification of the model). Thus because the objective function is concave, 
we conclude that the symmetric reaction functions given by (19)+21) form an 
MPE. 

(2) The unique steady state (q’,qe) is given by 

q’=a-bq” (22) 

or, from (21), 

qe=d/(3-6b). (23) 

This steady state is dynamically stable because the slopes of the reaction 
functions are less than one in absolute value. 

(3) To study the behavior of the equilibrium reaction function and of the 
steady state when the discount factor varies, let us write the slope and 
intercept of the reaction function as functions of 6: a(6) and b(6). 

Lemma 2. a(6) and b(6) are dijjferentiable and satisfy 

Lemma 2, which is proved in Appendix 1, implies that, as the discount 
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factor grows, the slope and the intercept of the reaction function decrease, 
and the steady state output increases [from eq. (23)]. 

When 6 =O, the firms do not care about their future payoffs; they move 
according to their static (Cournot) reaction functions, given by (16). This can 
be seen from eqs. (20) and (21): a(0) =d/2, b(0) = l/2. As 6 grows, each firm 
takes its opponent’s reaction more seriously; a and b decrease and q’ 

increases. A numerical analysis of (20), (21) and (23) shows that when 6 
converges to 1, the limiting values of a, b and q’ are: a= 0.48d, b r0.30, 
q’r0,37d. These values are the same as those found by Cyert and de Groot 
when they numerically computed the perfect equilibrium solution for the no- 
discounting finite-horizon game and took the limit as the horizon grows (see 
the convergence theorem, Proposition 2, below for an explanation of this 
coincidence). Q.E.D. 

Remark. The convergence toward the static Cournot reaction functions 
when 6 tends to 0 is a special case of a very general result obtained by Dana 
and Montrucchio (1986). They study MPE’s of the alternating move game 
with strategies spaces that are compact and convex subsets of Euclidean 
spaces and with continuous payoff functions that are concave in a player’s 
own action. They show that equilibrium dynamic reaction functions exist for 
all discount factors 6, that valuation functions are upper semicontinuous, and 
that equilibrium converges to the Cournot reaction functions as 6 tends to 0.’ 

The dynamic reaction functions for 6 in (0,l) are depicted in fig. 1. The 
dotted lines represent the static reaction functions R”, and R; (which 
correspond to S=O), and the solid lines the dynamic reaction functions R, 
and R,. E denotes the steady state allocation, and C the Cournot outcome. 
An example of a dynamic path is also provided. 

That the outcome in our dynamic model is more ‘competitive’ than in the 
static case should not surprise us. In each period of the dynamic game, the 
firm about to move, say firm 1, takes two considerations into account: its 
short-run profit and the reaction it will induce in firm 2. Suppose that firm 2 
is currently at the Cournot level. Then a slight increase in output above the 
Cournot level by firm 1 will have no effect (to the first order) on short-run 
profit. However, because reaction functions are downward-sloping, the 
increase will induce firm 2 to reduce its output below the Cournot level the 
following period, thereby increasing firm l’s long-term profit. This argument 
suggests that firm 1 has an incentive to choose a higher output in a dynamic 
rather than in a static setting because, each time it moves, it acts as a 
‘Stackelberg leader’. Since this is true of firm 2 as well, the end result is 
output above the Cournot level (i.e., more competitive behavior) by both 
firms. 

‘They also show that any pair of twice differentiable functions is an MPE of some game for a 
small enough discount factor. 
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This result contrasts with our findings when firms compete instead in 
prices. In that case, reaction functions can be upward-sloping, and thus 
dynamic equilibrium typically entails a less competitive outcome than its 
static counterpart [see Maskin and Tirole (1985)]. 

An increase in the discount factor means either that firms have become 
more patient (r has fallen) or that the reaction lag T has shrunk. A fall in the 
interest rate makes a firm more willing to forego current profits to induce the 
other firm to curtail its output. Thus, competition is enhanced. A decrease in 
the reaction lag T also fosters competition because it means that the period 
of time before the other firm reacts becomes decreasingly significant relative 
to the future. As T tends to 0, 6 tends to 1, and the steady-state output 
diverges increasingly from the Cournot output. This result implies that the 
relative timing of firms’ moves matters crucially, even in the limit when firms 
react very quickly. To see this, contrast our results with those of the 
simultaneous move game, where the (unique) MPE involves static Cournot 
outputs in every period. We conclude that the distinction between simulta- 
neous and alternating moves remains important even when T is very small. 

4. Finite and infinite horizons 

We have been unable to show that the equilibrium of Proposition 1 is the 
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unique MPE of the infinite horizon game (it is, of course, unique within the 
linear class). It nonetheless possesses another attractive property, viz., it is the 
limit of the (unique) perfect equilibrium of the truncated finite horizon game 
when the horizon tends to infinity. 

The finite horizon game is obtained from our infinite horizon model by 
truncating payoffs. In some time period, the game terminates, and all 
subsequent profits are zero. One computes the equilibrium of the finite 
horizon game by backward induction. In the last period, the firm about to 
move, say firm 1, plays according to its static reaction function. A period 
earlier, firm 2 moves knowing that the first firm will respond on its static 

reaction function, etc. (see below for a more detailed description of the 
induction). These considerations define reaction functions that depend on the 
period of play and the length of the horizon (they actually depend only on 
the difference between these two numbers). For a given finite horizon, perfect 
equilibrium is readily shown to be unique. Therefore, the equilibrium 
reaction functions depend only on the payoff-relevant state (any game of 
complete information admits an MPE. Hence, if perfect equilibrium is 
unique, it is necessarily Markov); a firm’s action at time t depends only on 

its competitor’s output at t- 1. 
To compute the finite horizon reaction functions analytically appears 

intractable. We can demonstrate, however, that for any fixed time period, a 
firm’s finite horizon perfect equilibrium reaction function for that period 
converges to the (infinite horizon) MPE reaction function as the horizon 

tends to infinity. 

Proposition 2. Fix a date t. In the model with horizon v( > t), a firm’s perfect 

equilibrium reaction function at date t converges uniformly to the infinite MPE 
reaction function given by (19)421) as V+CO. 

Proof: Consider a horizon of length v. It will prove convenient in our 
argument to index periods counting backwards from the end. Thus. the last 
period is indexed 0, and the first period is u- 1. Suppose, for example, that 
firm 2 moves at time 0. As we already noticed, the best that it can do at time 
0 is to play according to its static reaction function: R’(q) = R”(q) (where q 
denotes firm l’s output at time 1, and R” is the static reaction function). 
Consider the decision problem of lirm 1 at time 1. Its reaction R’(q) is given 

by 
R’(q) =argmax {fll(<, q) + 6I7’(& R’(Q))}. 

4 
(24) 

Similarly, firm 2’s optimal strategy R2(q) at time 2 satisfies 

R’(q)=argmax {n2(q,~)+6172(R1(~),~)+S2n2(R1(~), R’(R’(<)))}. 
4 

(25) 
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Thus, the reaction function R2 is determined by the succeeding two reaction 
functions, R’ and R”. More generally, the reaction function R’ of a lirm 
moving at time z is determined by R’-’ and Rre2. Specifically, let 

H’(~,q)=q”(d-q--_)+6tj(d-ij-R’~‘(~)+62H’-Z(R’-2(~)), R’-‘(i)), 

where H’(ij, q) s $(d- q - 4). By definition, R*(q) = arg maxg H’(@, q). Thus, 
from the envelope theorem, 

[d-24-q]+6 d-24-RT-‘(+4~(cj)] 
[ 

+d2 -Rzp2(R”(q3)~(4)]=0, 

Thus, R’ is determined by R’~ 1 and Rfd2. 

Although it seems impossible to derive R’ analytically, one can character- 
ize it by induction. In particular, Appendix 2 demonstrates that R’ is linear 
and has a slope between -4 and 0. Let L be the set of linear functions with 
slope between -3 and 0 and intercept between 0 and d. Consider the 
mapping m defined on L x L by 

(X, Z) = m(R, S), (26) 

where 

Z(q) =arg max {f12(% 4”) + dn2(R(4, 4 + s2f12(R(<), S(R(Z(q))))} 
Q 

and 

X(q) = arg max {fl’& 4) + 8n1(4 Z(G)) + d2n1(R(Z(X(q))), Z(g)). 
B 

Note that in the definition of Z and X, we take the reaction two periods 
hence as given. Then, from the envelope theorem, the maximizations on the 
right-hand sides of these definitions are equivalent to those of the full 
intertemporal objective function. Note also that 

(R 2k+l,R2k)=m(R2k-‘,R2k~2)~ 
(27) 

We consider the following metric on the space L x L. Take 

where R(q) = aR - bRq and I?(q) = 6, - i&q, s(q) = U, - b,q, s(q) = ii, - b”,q. 
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Appendix 2 shows that, for d sufficiently small, m is a contraction mapping 
on L x L with this metric. Thus, there exists K < 1 such that if (X, Z) = m(R, S) 

and (8,Z)=m(B,!?)), then Il(X,Z)-(8,2)11rKII(R,S)-(I?,~))II. 
The contraction mapping property has a useful consequence [see, eg., 

Smart (1974, theorem 1.1.2)], namely, the sequence {(R2k+1,R2k)}km_0 con- 
verges uniformly to a fixed point (R,,R,) of m: 

(Rl, R2) =m(Rl, R2) (28) 

[(R,,R,) is, moreover, the unique fixed point of m in Lx L]. Given that 
(R,,R,) is a fixed point, 

R,(q) = ax max {n’(% 4) + 6fl’(& R2(3) + ~2~‘(Rl(Rl(d), R2(4))l 
4 

and 

R,(q) = argmax {f12(qy 4) + 6~2(Rl(3, 4 + 62172(Rl(q”), R,(R,(q)))}. 
4 

Thus, (R,,R,) is a Markov perfect equilibrium of the infinite horizon game. 
Because the infinite horizon linear MPE given by (19)<21) belongs to L x L, 

it must therefore coincide with (R,,R,). 
The preceding argument applies when d is sufficiently small. But if Rf; is 

the k-period equilibrium reaction function for given d and R:(q) = ai- biq, 

then Rj(q) = (a/d),: - biq. Thus the same conclusion obtains for all d. Q.E.D. 

5. Adjustment costs 

We have formalized inertia in decision making by assuming a two period 
commitment to output decisions. Inertia arises because technology decisions 
take time, contracts with suppliers cannot readily be changed, and so forth. 
A shortcoming of our two-period commitment structure is that it fails to 
make the implicit cost of changing output sensitive to the current output 
level (although it does make this cost time-contingent). One would expect 
that often small adjustments are cheaper than large ones. In this section, we 
introduce output-related adjustment costs to our model. We show that our 
techniques for studying differentiable MPE’s can be extended to this more 
elaborate construct (which has a two-dimensional state space). 

We assume that, if firm i moves at time t, it incurs a cost (beyond the 
variable cost already embodied in ZI’) depending on its current choice, qi,t, 
and previous output, qi,t_2. Let Ai(qi,t, qi,t_2) represent this adjustment cost, 

which we assume is differentiable. Because qi,t- 2 influences firm i’s current 
profit at time t, the payoff-relevant state is (qj,,_l,qi,t_2). Thus, a Markov 
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strategy at time t takes the form 

4i,t=Ri(qj,,~1,qi.t-2). (29) 

The definition and properties of a Markov perfect equilibrium are the 

same as before. To solve for such an equilibrium, one could use the valuation 
function approach of section 2. Instead, we will derive the difference- 
differential equations using marginal reasoning. Assume that firm 1 chooses 
ql,t at time t. A small increase above the optimal ql,* does not affect firm l’s 
present discounted payoff to the first order. Thus, we have 

[ 

a& 
+6 ~I:(41,*~42,t+l)~4+~l(4l.t~42,t+l)~~4 

h,, 1 

(30) 

where 

(31) 

(32) 

As before, terms corresponding to later periods in (30) vanish due to the 
envelope theorem. The difference-differential equation corresponding to firm 
2’s move can be written similarly. 

We now consider symmetric and quadratic profit functions and adjustment 
costs: 

ni = qi(d - qi - qj), (34) 

(35) 

The following proposition is proved in Appendix 3: 

Proposition 3. There exist parameter values (a, b, /?), depending on (6, d, ~1) such 
that the dynamic reaction functions Ri(qj,,_1,qi,t_2)=a-bqj,,_ 1 +pqi,l-z form 
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a Markov perfect equilibrium of the market with adjustment costs. Furthermore, 
for any discount factor, 6, the steady-state output q’=a/(l + b-/I) tends to 

the static Cournot output q” as the adjustment cost parameter, CI, becomes large. 

Thus, as modelled, adjustment costs tend to weaken competition (remem- 
ber that, for a =O, b=O and the steady-state output exceeds the Cournot 
level). Roughly speaking, this occurs because when a firm decreases its 
output (a ‘cooperative’ gesture), the other firm is less tempted to take 
advantage of this reduction by increasing its own output if adjustment costs 
are high. Of course, adjustment costs will also influence future decisions, but 
Proposition 3 shows that these effects do not interfere with the intuitive 
story. 

To see why high adjustment costs lead to a steady state near the Cournot 
outcome, suppose that the firms start at the Cournot allocation. When a firm 
increases its output above its Cournot level, the other firm curtails its own 
output. But the higher the adjustment costs, the smaller the decrease in 
output, and so the smaller the gain to the aggressive firm. As adjustment 
costs grow, therefore, the short-run loss associated with the increase in 

output becomes more and more important. 
Of course, the modelling of adjustment costs here, although an improve- 

ment over previous sections, remains crude. There are, no doubt, more subtle 
forms of inertia that do not fall conveniently into our time-and-output- 
contingent framework. 

6. Endogenous timing 

As we suggested in ihe introduction, the alternating moves feature of our 
model is a property that ought to be derived from more primitive assump- 
tions rather than simply imposed. Indeed, in our earlier work on quantity 
competition with large fixed costs [Maskin and Tirole (1982)] and price 
competition [Maskin and Tirole (1985)], we proposed two rather different 
ways of ‘endogenizing’ the relative timing of firms’ moves. In both cases, 
however (and in both the quantity and price settings) firms end up in 
equilibrium behaving exactly as in the fixed timing framework, i.e., 
alternating. 

In this section, we briefly review the two endogenous timing models. We 
observe, however, that, in contrast with our previous results, they provide 
conflicting answers when applied to the Cournot setting. Although one gives 
rise to an equilibrium formally identical to that explored above, the other 
predicts that, in the steady state, firms move simultaneously. This conflict 
suggests that a more detailed study of the micro-foundations of timing in 
firms’ decision-making is called for, an ambitious task that will have to be 
deferred to the future. 
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Probably the easiest way to obtain alternating moves endogenously is to 
posit a continuous time model where commitments are of random length. 
Suppose that, as before, when a firm chooses a quantity level, it remains 
committed to that level for some period of time, but now assume that the 
period is uncertain. The simplest such hypothesis is that the probability that 
a commitment will lapse during a (short) interval At is proportional to the 
interval’s length. That is, commitment terminations occur according to a 
Poisson process [for a more detailed presentation of this model, see Maskin 
and Tirole (1982)]. In this model, the mean length of time before some firm 
moves corresponds precisely to a single period in the fixed timing framework. 
Because, moreover, the probability that firms’ commitments will lapse 
simultaneously is zero, equilibrium retains the feature that firms move 
alternately. 

Turning to a somewhat different model, we revert to discrete time but now 
abandon the assumption that firm 1 can move only in odd-numbered periods 
and firm 2 only in the even-numbered ones. Instead we suppose that a firm 
can, in principle, move in any period but, once it does so, remains committed 
for two periods. Thus in any period where a firm is not already committed, it 
can choose a quantity level. Alternatively, it can refrain from moving at all, 
that is, it can produce nothing (in which case, it is free to move at any future 
date). 

The considerations affecting the payoff of a firm about to move are (i) 
whether the other lirm is currently committed to a quantity level, and (ii) if 
so, which quantity. Thus, Markov strategies (on which we continue to 
concentrate) now depend on a two-dimensional payoff-relevant state. 

Despite the freedom firms have in this model to vary their relative timing, 
one can show that, at least for discount factors near 1, any MPE has the 

properties that (i) starting from any point, a steady state is reached with 
probability one, and (ii) a steady state involves firms choosing Cournot 
quantities and moving simultaneously. 

We will omit the formal demonstration of this result, but the intuition is 
not hard to provide. We have seen that when firms move alternatingly, they 
have a tendency to produce higher quantities leading to lower profits than 
were they to move simultaneously. Thus, the firms have a joint incentive to 
be in a simultaneous rather than alternating ‘mode’. This, of course, is a 
cooperative, rather than individual, consideration. Just because firms would 
be better off moving simultaneously does not mean that an individual firm 
will make the first move to bring this about. It may well prefer that the other 
firm move first, and so, given the other firm’s reciprocal attitude, firms may 
get ‘stuck’ moving alternatingly. When there is little discounting, however, 
the ultimate gain from moving simultaneously swamps the individual cost of 
engineering the transition from the alternating mode. Thus simultaneity 
ultimately prevails. 
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Proof of Lemma 2 (d(Sb)/dS > 0, db/dS < 0, da/dS < 0). Totally 
(20), we obtain 

differentiating 

db(4S2b3 + 4Sb - 2( 1 + S)] + dS[2Sb4 + 2b2 - 2b] = 0. (A.1) 

Since b E (O,& (A.l) implies that db/dS < 0. From (A. l), 

d(bS) db dS dS 2S2b3+2Sb-26 
p=b+s=s 

bS 4S2b3+4Sb-2(1+S) 1 
dS 

- [ 

2S2b3 + 2Sb - 2 

S 1 4S2b3+4Sb-2(1+S) ’ (A.2) 

For b&(0,3) both the numerator and the denominator of (A.2) are negative. 
Thus, d(bS)/dS > 0. To show that da/d6 < 0, recall that 

.=Sd. (21) 

Letting ‘cc’ indicate ‘proportional to’, we obtain 

da 
dSK(3-Sb)$+(l +b) 

cc[b+b2]-(3+S) 
2b-2b2-2Sb4 

2(1+S)-4Sb-4S2b3 

cc[l +b][l +S-2Sb-2S2b3-(3+6)(1-b-Sb3)] 

cc(-2+3b-S2b3-Sb+3Sb3). (A.3) 

But this last expression is negative for be(0, i). Hence, da/dS < 0. Q.E.D. 

Appendix 2: m is a contraction mapping on L x L for d small 

Let (X,Z)=m(R,S) for (R,S)E L x L. By definition Z(q) is derived from R 
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and S according to 
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Z(q) = arg max { G[d - q - $1 + &j[d - 4 - R(a] 
4 

+ d’S(R(z(q))Cd - S(R(z(q)) -WI). 

Because R and S belong to L, they can be written as 

(A.4) 

R(x) = uR - b,x with a&O, d) and b&O, *) 

(A.3 
S(x) = a,- b,x with a,s(O, d) and b&O,+). 

From (A.4) and (AS), 

Z(q) = 
d-q+6(d-~,)+6~b,(a,-a,b,) 

2+26(1-b,)-62b;bs ’ 
(‘4.6) 

The denominator of (A.6) exceeds 2. Thus, Z is linear and has a slope -b, 

between -f and 0. Moreover, 

0 < d( 1 + 6) - da, + 6*b,(as - a,b,) 5 d( 1 + 6), 

implying that the intercept of Z(q), a,, lies in (0,d). Thus Z belongs to L. 

Similarly, X, which is determined by Z and R, also belongs to L. Hence, m 
maps elements of L x L into elements of L x L. 

Now, choose (R, $) EL x L such that 

II(R-~,S-$,II<E, 

where E is small. Write 

I?(q) = a”, - b”,q and s(q) = a”, - f&q. 

Take (x,2) = M(a, 9) and let 

2(q) = ii, - b”q. 

By our choice of metric, 

IIz-~II =max {la,-a”,l, Ib,-6zl} 

(A.7) 
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a& I II - 26 - 2d2bRb, 

ab,= (2+26(1-b,)-62b;b,)2 “’ 

- d2b2 

(2+26(1-b,)fS2b:b,)2 “’ 

Hence, from (A.8) 

~bz-~,~~&. 

Ako from (A.lO), 

aa, I /I zg= 

-6-62b,b, <5 

2+2~!3(1-b,)-6~b;b, =” 

ti2b, 

2 + 26( 1 - b,J - cS2b;b, 
Sk 

aa, I I - 
ab, 

= [2d2as - 2d2a,b, + 2d3as - 2d3aRb, + 26d + 2h2db,bs 

+ 2b2d + 2d3db,bs - 2d2a, + 64bib,as - 2b3b,a,bs 

- 64bibiaR]/(2 + 26( 1 - bR) - 62bib,)2 

given that aR and a, belong to (O,d), and 

aa, I I - =[-262b,a,-263b,a,+63b~a,+62db~ 
abs 

+ d3bid + 64bia,]/(2 + 26( 1 - bR) - tS2bibJ2 

<L!! 
= 16’ 

Thus, for d sufficiently small, (A.8) implies that 

la, - LizI 53-E. (A.lO) 

(A.9) 
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We conclude, from (A.9) and (A.lO), that 

Applying the same argument for X, we deduce that m is a contraction 
mapping on L x L.8 

Appendix 3: Adjustment costs 

To solve for linear MPE reaction functions 

Ri(qj,t-1,4i.r~2)=a-bbqj,,-, +B4i,t-23 

we substitute 

qt,t=a--bqz,t-t +ht,t-2, 

q2,1+1=(a-ab)+(b2+P)q2,,-,-bpq,,,-2, and 

4 ,,,+2=(~--~+ub2+uB)+(-b3--~B)42,t-t+(b2B+132)ql,t-2 

into (30) to obtain 

d-2u-au+6(d-3u+ub)+b(6u+62(u-ub+ub2+u~))=0, (A.1 1) 

(A.12) 

-2P + 6( - 2P + bB) - ct(/? - 1) + b(@ + S2(b2p + p2)) = 0. (A.13) 

Eqs. (A.1 l)<A.13) determine the equilibrium values of a, b and fi. 
As the adjustment parameter CI goes to infinity, we obtain, from (A.11)) 

(A.13), the following limiting values of a, b, B and the steady-state output qe: 

uzd(l+@/c(, bz(l+6)/a, 

pz.-2(1+6)/a, q’zdd/3 =qs (the static Cournot quantity). 

‘Actually, we have shown only that m contracts points that are sufficiently close together. But 
the distance between any two points can be subdivided into such small intervals, and so m 
consequently contracts all pairs of points. 
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