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1. INTRODUCTION 

There is a voluminous theoretical literature on sealed high-bid auctions (auctions in which 
bids are sealed and the high bidder pays his bid). See for example, Vickrey (1961), Myer- 
son (1981), Riley and Samuelson (1981), Milgrom and Weber (1982), Matthews (1983), 
Maskin and Riley (1984), Holt (1980), Cox, Smith and Walker (1988). A critical property 
on which this literature relies is the existence of equilibrium in which buyers' bidding 
strategies are monotonic in their types. This enables the analyst to perform comparative 
statics as the distribution of types changes, and to compare the welfare properties of the 
high-bid auction with those of other auction institutions. 

One case in which the existence of monotonic equilibrium is readily established is 
that in which buyers' types are distributed smoothly, independently and symmetrically. In 
this case, there exists a symmetric equilibrium one in which all bidders share the same 
bidding behaviour as a function of their valuations and this bid function is the solution 
to a first-order differential equation. 

However, many applications require consideration of asymmetric distributions (see 
Maskin and Riley (2000)), common values (see Milgrom and Weber (1982)), or discrete 
distributions. For these cases the issue of equilibrium existence is not as straightforward. 
Indeed, even in apparently simple cases, monotonic equilibrium may fail to exist (see 
Examples 1-3). Therefore we attempt here to provide sufficient conditions that are general 
enough to cover most applications that the literature has considered. 

In Section 2 we introduce the model. In Section 3, we first show that, under mild 
assumptions on preferences, equilibrium bidding must be monotonic, if types are distrib- 
uted independently. With affiliation we introduce the stronger assumption of log super 
modularity and, in Section 4, consider the case of discrete types. In general there may be 
no equilibrium under the standard tie-breaking rule (in which the winner is selected at 
random). However, we are able to establish existence of a monotonic equilibrium of a 
sealed high-bid auction in which the tying high bidders compete for the item in a second- 
round Vickrey auction. In Section 5 we extend our existence theorem (under the modified 
tie-breaking rule) to the case of continuously distributed types. Finally we establish exist- 
ence of equilibrium under the standard tie-breaking rule by showing that buyers' strategies 

439 



440 REVIEW OF ECONOMIC STUDIES 

remain best responses when the tie-breaking rule is changed. We offer some concluding 
remarks in Section 6. 

2. THE MODEL 

Throughout the paper we shall make the following assumptions about auctions and par- 
ticipants. A single item is to be sold. All potential buyers who choose to participate submit 
nonnegative sealed bids simultaneously. The item is awarded to the buyer who makes the 
highest bid, and he pays this bid.1 If there is more than one highest bidder, the winner is 
selected from them according to a specified tie-breaking rule. In particular, in the standard 
high-bid auction, the winner is chosen randomly, where each of the highest bidders has 
an equal chance of winning. 

There are n potential buyers indexed by i. Buyer i has utility ui(b, si, s_l) if he wins 
with a bid of b and is of type si= Si while the other buyers are of types 
S-i = (Si, ... s XS- 1, si 1, ... s.n). We shall consider two cases: (i) Si is a finite set (the finite 
type-space case) and (ii) Si is a compact interval [&i, si] (the continuous type-space case).2 

The joint distribution of types is given by the function f: S1 x... x S, -->R. We inter- 
pretf(si, .. ., s,) as the (joint) probability of (si, . . . , s) in case (i). We suppose that, for 
all i and all si= Si, there exists s1ie S-i such that f (si, s:L') > 0. This ensures that for all si 
and s-i the conditional probability gi(s I si) is well-defined 

gi(s-iI Si) = f(si, S.) 

In case (ii), f (si, . . I s,) is the joint density of (s, ... , sn) In this case we suppose that f 
is twice differentiable and fS i,if(si,s_l)ds_i>0 for all sie Si so that the conditional 
density 

g(s-is) = f(si, S-) 

I f(si, s:L')ds:Li 
JsiE s- 

is well-defined. 
Without loss of generality, we normalize payoff functions so that the utility of buyer 

i is zero if his bid is unsuccessful. Let ui(b, si, s4i) be decreasing in b and twice continuously 
differentiable for i = 1, ... ,n. We shall assume that buyers are not willing to bid 
unbounded amounts, that is, for all i and s_i, if bi(si) is the biggest bid such that 
maxs ui u(bi(si), si, s_,)O0, then bi(si) < oo. 

In the simplest case, buyer i's type si can be identified with buyer i's reservation price 

ui(b, si, s4i) = si - b. 

Alternatively, si might represent information that buyer i has obtained about the objective 
monetary value of the item. 

The bidding behaviour of buyer i of type si can be described by the random variable 
bi(si), where each realization is either a nonnegative number or the null bid corresponding 

1. If no buyer submits a bid, the item is not sold. 
2. Although we do not demonstrate it here, our methods generalize to the case in which types are multi- 

dimensional. See also the corollary to Proposition 3, which does not require one-dimensionality. 
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to the choice not to participate. The bidfunction b1() is a best response3 to b-() if, for 
all si and all bic real bi(si) (the set of realizations of bi(si)), bi maximizes buyer i's expected 
payoff, given that the other buyers are using bid functions b-() and their types are drawn 
according to the conditional distribution gi(s I si). 

An equilibrium is a vector (b1 ( b),.. ., bn()) such that, for all i, bi() is a best response 
to b_() 

3. MONOTONICITY 

We are particularly interested in monotonic equilibria, i.e. equilibria (b& ()... bn()) in 
which, for all i and si, s'e Si, if s' > si, be'c real bi(s;'), and bie real bi(si) then bi'?bi. Hence 
we shall often invoke some widely-used assumptions on preferences and distributions to 
ensure monotonicity. We shall call preferences monotonic if 

-(b, si, s-i) > 0 for all i, b, si and s-i. (1) 
asi 

As the work of Milgrom and Shannon (1994) shows, some form of supermodularity (or 
"log supermodularity;" see below) is also needed to guarantee that equilibrium bid func- 
tions are increasing in types. Call preferences weakly supermodular if 

_ (b, s, *_ )0- for all i, si and s-i.4 (2) 
ab asi 

Note that if preferences take the commonly-used form 

ui(b, si, s_1) = Uj(oi(si, s_l) - b), (3) 

where Ui( ) is an increasing von Neumann-Morgenstern utility function, then (1) and (2) 
are equivalent to the requirements api/ Isi > 0 and Ui"_ 0 (the latter being the assumption 
that the buyer is risk neutral or risk averse). 

Because the high-bid auction is a discontinuous game, buyers do. not always have 
best responses. For example, consider buyer i with utility function ui = 2 - b in the stan- 
dard auction. Suppose that the other buyers bid 1 with probability one. If buyer i also 
bids 1, then he wins with probability strictly less than one. Thus he is better off bidding 
slightly more than 1. However, there is no optimal choice because he would like to bid as 
close to 1 as possible while still remaining above 1. Nevertheless, if types are distributed 
independently, monotonicity and weak supermodularity together ensure that, when a best 
response bi() does exist, it is monotonic in the sense that if si < s', bi real bi(si) (where 
real bi(si) denotes the set of possible realizations of bi(si)), and b'e real bi(s'), then bi- 
b, provided that buyer i's expected payoff from bi and b' are positive when his types are 
si and s' respectively.5 

3. For many tie-breaking rules (including the random rule used in the standard auction), buyer i's best 
response to other buyers' behaviour can be captured completely by his bid function. For some rules, however, 
high bidders are called upon to take further action if a tie occurs, in which case the bid function by itself is not 
a full description of behaviour (see Section 4). 

4. We make the qualification "weakly" because, unlike in the conventional definition, we place no restric- 
tiQn on the other cross-partial derivatives. 

5. We require the proviso that bi gives a positive payoff when buyer i's type is si because otherwise any bi 
that wins with zero probability is as good a response as bi, since both give a zero payoff. The same is true of bi 
and si. 
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Proposition 1: (Monotonicity and Independence). Suppose that, for i { 1,... ,n, 
buyer i's type is distributed independently of other types, i.e. the conditional distribution 
gi(siI s1) does not depend on si. Assume that buyer i's preferences are monotonic and weakly 
supermodular. Then if b1() is a best response to b&(), it is monotonic. 

Proof. See the Appendix. I I 

Proposition 1 no longer holds if we drop the independence hypothesis. To see this, 
consider the following example. 

Example 1: (Nonmonotonic Bidding). There are two risk neutral buyers i = 1, 2 
with utility functions ui(b, si) si - b. The parameter si, which is buyer i's valuation, takes 
on the values 0, 3, or 6. If si 3, buyer i knows that the other buyer's valuation is also 3. 
If si = 6, he knows for sure that the other buyer's valuation is 0; whereas if si is 0, he 
knows that the other buyer's valuation is 6. In the standard high-bid auction, it is easy to 
see that it is an equilibrium strategy for a buyer to bid 0 if his valuation is 6, bid 3 if his 
valuation is 3, and to refrain from bidding if his valuation is 0. Moreover, equilibrium is 
unique, and so bidding is necessarily nonmonotonic. 

To rule out such examples, let us assume that buyers' types are affiliated (see Milgrom 
and Weber (1982)). In the continuous type-space case, this amounts to assuming that 

a2log f (S1,. . . , Sn) ?-O for all i and j and all j] i. (4) 
asiasj 

Assume also that preferences are "log supermodular" 

I logui(b, si, sj)0- for all i,j, (5) 

and exhibit private values 

-ui(b, si, s-j) = 0 for all i, j with i?j. (6) 
asj 

If preferences take the form (3), then (5) and (6) become 

((U,)2- UU') i 0 

and 

_ = 0, for i?j, 
asj 

and so sufficient conditions for (5) and (6) to be satisfied are that preferences are mono- 
tonic and exhibit either risk aversion or risk neutrality. 

What are the precise hypotheses under which one can extend Proposition 1 to the 
case of affiliated types remains an open question. In Propositions 2 and 3 below, however, 
we show that as long as values are private and preferences are log supermodular, affili- 
ation implies the existence of a monotonic equilibrium, when ties are broken 
appropriately. 
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4. EQUILIBRIUM IN THE FINITE TYPE-SPACE CASE 

The discontinuities that occur in the case of ties may prevent the existence of equilibrium 
in the standard version of the high-bid auction. To see this, consider the following 
example: 

Example 2 (Non-existence in the standard high-bid auction). 

I= 1, with probability = 05:1 
12, with probability = 0 5, 

S2= 1, 

ui (si, b) = si -b, i = 1, 2. 

Given any equilibrium strategy by buyer 2, buyer 1 wins for sure with a bid of 1 + e for 
all E > 0 (if not, then, in equilibrium, buyer 2 would have to make a bid more than 1 and 
win with positive probability, which would be irrational). Thus the maximum point in the 
support of the distribution of winning bids is b* = 1. Suppose that the minimum point in 
the support, b*, is strictly less than 1. Then each buyer has a strictly positive payoff 
regardless of his reservation price since the latter is at least 1 and any bid between b* and 
1 wins with positive probability. But then any equilibrium bid must win with probability 
bounded away from zero, and for this to be the case, both buyers must bid b* with 
positive probability. Then, regardless of the tie-breaking rule, at least one buyer is better 
off bidding a little bit more and breaking the tie. We conclude therefore that b* = 1. But 
this cannot correspond to an equilibrium either, since buyer 1 then wins with probability 
only 4 if his reservation price is 2, and so he is strictly better off bidding a little bit more 
than 1. 

In view of the problem illustrated by Example 2,6 let us consider an alternative to 
the random tie-breaking rule of the standard auction. Specifically, let us imagine that, if 
a tie occurs for the high bid, a Vickrey auction is conducted among the high bidders. That 
is, in addition to making a sealed bid bi, each buyer i must also submit a nonnegative 
sealed "tie-breaker" bid ci. If several buyers tie with a high-bid of b, the winner is the 
buyer i for whom ci is highest among those bidding b, and he pays b + maxj,i {cijbj = b}. 
(If there is a tie for highest tie-breaker bid the winner is determined by randomizing 
among those making this bid with equal probability.) 

Notice that this rule restores equilibrium to Example 2. In such an equilibrium all 
types bid bi = 1. A buyer with valuation 1 sets ci = 0 in the tie-breaking Vickrey auction 
whereas a buyer with valuation 2 takes ci > 0. (His weakly dominant strategy is to take ci = 
1, but any positive ci will do as well.) Thus a valuation-2 buyer always beats a valuation-I 
buyer (although he pays only 1). 

In fact, except for one additional problem, the device of breaking ties using a Vickrey 
auction works quite generally to ensure existence of equilibrium. The additional problem 
turns on the issue of how a buyer's utility depends on other buyers' types. In Proposition 
1 of the previous section, we needed to make no assumptions at all about auil/sj for j?i. 
However, the following example shows that some restriction is required for existence. 

6. In an earlier version of this paper, we established that the nonexistence problem exemplified by Example 
2 is avoided if either (i) each buyer's minimum possible reservation price is zero, or (ii) the seller sets a reserve 
price no less than each buyer's minimum reservation price. 
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Example 3 (Nonexistence with the Vickrey auction tie-breaking rule). There are 
two buyers with independently distributed types. Suppose that, for i = 1, 2, si assumes the 
values 0 and 1 with probabilities 2 and 3, respectively. Let 

ui(b, si, sj) = 3 + si - 2sj - b, where j?i. 

In the Appendix, we show that there exists no equilibrium for the high-bid auction in this 
example, even when ties are broken using a Vickrey auction. 

In view of the pathology illustrated by Example 3, we will assume henceforth that a 
buyer's utility is nondecreasing in other buyers' types. For later convenience, we will break 
this into two alternative cases: either that of private values (i.e. (6) holds) or else that of 
common values 

au. 
' > 0 for all i and j? i. (7) 

as. 

Proposition 2 (Existence with finitely many types and the Vickrey tie-breaking 
rule). Suppose that there arefinitely many types. Assume that preferences are monotonic. 
If either (i) preferences are weakly supermodular, (7) holds, and types are independently 
distributed, or (ii) preferences are log supermodular, (6) holds and types are affiliated, then 
there exists a monotonic equilibrium of the high-bid auction when ties are broken using a 
Vickrey auction. 

To establish Proposition 2, we will follow the method of Dasgupta-Maskin (1986). 
Let us think of the high-bid auction as an n-player game in which each buyer i submits a 
bid function b&() (i.e. a random bid bi(si) for each type sie Si), after which a vector of 
types (si, .. ., s,) is realized, and the winner is then determined according to the bids of 
the realized types. 

For now, let us consider the following modification of the high-bid auction. Instead 
of breaking ties using the Vickrey auction, suppose that in case of ties, the winner is the 
high bidder whose expected payoff conditional on winning (given his realized type and 
the other buyers' bid functions) is highest. (If there is more than one buyer with the 
highest conditional expected payoff, the winner is determined by randomizing among 
them with equal probabilities.) That is, if the bid functions are (bi( ), b&&)) and buyer i's 
and j's realized types are si and sj, and these two types are the high bidders with a bid of 
b, then buyer i beats buyer j if 

Vi(b, bi( ), b_&f), si) > Vj(b, bj( ), b-j( ), sj), (8) 

where the left- and right-hand sides of (8) are buyer i's and j's conditional expected 
payoffs.7 If buyer i of type si has a higher conditional expected payoff from bidding b 
than any other buyer j of type sj who (according to bj( )) bids b, then 

Xs-. ui(b, si, s)gi (s,Isi) Pr {b *-(si *)?b} 
Vi(b, bi(), i-(),si) = bE Pr {b(s{)b} } (9) 

7. Note that Vi depends on b&(), not just on b, because whether bidder i wins turns on whether Vi is big- 
ger than Vj, and the latter depends upon bi(). 
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where Pr {bLi(si) b b} is the probability that all other buyers' bids are less than or equal 
to b, given that their types are s-i and they bid according to b-i(s_i) (because, by assump- 
tion, buyer i of type si has the highest conditional expected payoff from bidding b, he 
wins the modified auction with a bid of b provided that all other buyers' bids are less than 
or equal to b). Similarly, if buyer i of type si has a lower conditional expected payoff from 
b than any other buyer of type sj who bids b, then his expected payoff Vi(b, bi(), bif), si) 
is given again by formula (9) except that Pr {bi(si) b b} is replaced by Pr {bi(si) < b} 
(reflecting the fact that, given the tie-breaking rules, buyer i wins the auction only if all 
other buyers bid strictly less than b). For a type si corresponding to an intermediate 
expected payoff, Vi(b, bi(), b&(), si) is defined by a corresponding probabilistic 
expression intermediate between Pr {b-i(s i) _ b} and Pr {b-i(s_i) < b}. 

Of course, this modification of the high-bid auction cannot actually be implemented 
in practice because the tie-breaking rule depends on expected payoffs, which are private 
information. Nevertheless, as we now show, an equilibrium of this modified auction corre- 
sponds to an equilibrium of the auction with the Vickrey tie-breaker. 

Lemma 1. Suppose that there are finitely many types. Assume that preferences satisfy 
either (6) or (7). Then if there exists a monotonic equilibrium of the modified auction, there 
exists a monotonic equilibrium of the auction with the Vickrey tie-breaker. 

Proof. Let (b1 ) bn()) be a monotonic equilibrium of the modified auction. 
We shall construct a monotonic equilibrium of the auction with Vickrey tie-breaker. The 
non-tie-breaking equilibrium behaviour of buyers will be the same in the latter equilib- 
rium. We have only to describe their tie-breaker bids. In particular, consider buyer i 
of type si and be real bi(si). If there is positive probability of a tie for the high bid at b 
and if 

5-i ui(b, si, s l)gi (s Isi) Pr*b_E(s*) ?b} > 0, (10) 

then buyer i submits a Vickrey bid ci > 0 (the precise value does not matter as long as it 
is strictly positive) together with b. Otherwise, he takes ci = 0. 

To verify that this behaviour constitutes an equilibrium for the auction with Vickrey 
tie-breaker, suppose first that for all be real bi(si), the probability that b ties for the high 
bid is zero. Then as long as buyer i does not deviate from bi(si), the tie-breaking rules do 
not matter and his expected payoff is the same for the Vickrey tie-break auction as for 
the modified auction. Consider, therefore, whether it would strictly pay him to deviate to 
some bid b'. If so then 

i- Ui u(b', Si, s_l)gi (s, I si) Pr b-i (s_l) -_: b' } > 0.(1) 

Indeed, if (11) failed to hold then, from (6) or (7) and because other buyers' bid functions 
are monotonic, buyer i's payoff from b', conditional on winning, would be nonpositive, 
a contradiction of the assumption that it pays to deviate to b'. Now, buyer i's conditional 
payoff from b' can be no more than the left-hand side of (11). But in the modified auction, 
buyer i can obtain a payoff arbitrarily close to the left-hand side of (11) by submitting 
the bid bi = b' + e. Hence if deviation paid in the Vickrey tie-break auction, it would also 
pay in the modified auction, a contradiction of equilibrium. 

Next, suppose that, for some be real bi(si), b ties for the high bid with positive prob- 
ability. Assume first that, in the modified auction, buyer i wins the tie-breaker at b with 
probability one. Then b must satisfy (10). (If instead the left-hand side of (10) were zero, 
then, since the other buyers bidding b must get at least a zero conditional payoff, buyer i 
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could not win with probability one.) We wish to argue that b still wins the tie-breaker 
with probability one in the Vickrey tie-break auction, so that buyer i's expected payoff 
from b is the same in both auctions. From our above discussion, buyer i submits ci> 0 
together with b. Thus he indeed wins the Vickrey tie-break with probability one unless 
some other buyer j also submits cj > 0. But according to our discussion, that could happen 
only if buyerj-tied at b with positive probability and satisfied (10). Yet this would contra- 
dict the assumption that buyerj loses the tie-break with probability one in the modified 
auction; he would have been strictly better off submitting a bid slightly greater than b in 
the modified auction. Hence buyer j cannot bid cj > 0. Finally, assume that in the modified 
auction, buyer i wins the tie-breaker at b with probability less than 1. Then b cannot 
satisfy (10); the left-hand side of (10) must be zero (if it were positive, buyer i would be 
strictly better off in the modified auction bidding slightly more than b). But buyer i's 
conditional payoff from b must also be zero. Hence, since he loses the tie-breaker with 
strictly positive probability, (6) must obtain, and, from our above discussion, buyer i's 
expected payoff from b is also zero in the Vickrey tie-break auction. I I 

Proof of Proposition 2. In view of Lemma 1, it suffices to prove that a monotonic 
equilibrium exists for the modified auction. For each i and sie Si let P3i(si) = [0, b1(si)]. 
(Recall that &6(si) is the biggest bid for which buyer i's payoff could possibly be nonnega- 
tive when his type is si.) For each m = 1, 2, . . . let f37(si) be the finite subset {0, bi(si)/2m, 
2b6(sj)/2m,.. ., b1(sj)}. For each m, consider the "finite approximation" auction in which 
type si of player i is confined to making bids in the set Om (si). 

If hypothesis (i) of Proposition 2 holds, then, from Proposition 1, each buyer i's best 
response to monotonic bid functions b-&) is monotonic. Hence, from Nash's theorem, 
there exists, for each m, a monotonic equilibrium for the m-th approximation auction. If 
hypothesis (ii) holds, then treat each player-type as a distinct player and alter the m-th 
approximation auction so that if a type strictly outbids a higher type of the same player, 
then his utility is reduced by an amount P> 0. From Nash's theorem, there exists an 
equilibrium of this altered auction where, for all i, each type si of player i is restricted to 
bid in f3m(si). Moreover, for P sufficiently big, the equilibrium must be monotonic with 
high probability (i.e. the probability that a low type outbids a high type must be low). 
Now send the penalty P to infinity, and we get a sequence of equilibria converging to a 
monotonic configuration E* of strategies. We claim that E* constitutes an equilibrium of 
the m-th approximation auction (i.e. the auction without any penalty). To see this, suppose 
to the contrary that (*) type s', of player i bids b with positive probability in the limiting 
configuration but that (**) in the absence of P he is strictly better off bidding b'. (Without 
loss of generality, we can assume that b' is type s"s best bid.) Then (*) and (**) hold for 
an equilibrium E far enough out in the sequence of equilibria of altered auctions converg- 
ing to E*. Now, with a penalty, b is an optimal bid for s' in E and so, if b' < b, s' continues 
to prefer b to b' (at least weakly) in E once the penalty is eliminated (the probability that 
b is bigger than the bid of some other type of player i is clearly at least as great as the 
probability that b' is bigger). Hence b' > b. Now, the fact that type s' is at least as well off 
bidding b as b' in equilibrium E when the penalty is imposed implies that there exists 
some s" > sI and b" < b' such that, in E, type s" bids b" with positive probability (without 
loss of generality we can assume that s" is the highest such type). Moreover, the fact that 
type s' is at least as well off bidding b' as b" when the penalty is not applied implies 

ui(b',s) Xb *(s-iubig(sJs)?u.(b" sI) ) (12) 
8. The left- and right-hand sides of (12) may not be quite right because of the possibility of ties. But this 

does not affect the validity of our argument. 
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Now if type s' bids b' and the other types bid according to E, then the probability he 
outbids a higher type is zero, since s'i' is the highest type who bids less than b' in E. Hence, 
since in E type s2" is at least as well off bidding b" as b', we have 

u1(b", s') Xb_i(s i)b' g(s-ii s')-ui(b, Si Xb_j(s_j)?bg(s-b sl9)- (13) 

Dividing (13) by (12), we obtain 

Ui(b", s) Ib (s 
btg(sil") Ui(b ',s )X 

(s.)'b'g(s-iIsli)1 

Ui (b I S-i) 1_j(5_j) ~_- b" g(S-i I Si) Ui (b , S-i) 1_j(,_j ) _---: b' g(S-i I Si) 

But log supermodularity implies that 

ui(b", Isi" Ui(btx Si" 

ui(b", si) ui(b' sI') 

and affiliation implies that 

b" g(s-i I s'C)ds-i *)-' b' g(s-i I s")ds_i 

_(s b" g(S_ij s)ds X(s-j) 'b' g(S _i)dS_' 

which together contradict (14). We conclude that E* constitutes a monotonic equilibrium 
of the m-th approximation auction after all. 

Let (bj' (), .. ., bm( )) be a monotonic equilibrium for the m-th approximation auc- 
tion. We can assume that the sequence (bm (.),... , bn ()) weakly converges to some vector 
(b* (.),.. ., bn* ( )). It remains to show that this latter vector constitutes an equilibrium of 
the modified high-bid auction. 

We first argue that, for all i, sie Si, 

Ui(b,bi*( ) b i s), s)= lim sup Ui(b7 (si),b7 ),bt(i) ), (15) 
"I -> 00 

for all bef1i(si), where 

Ui(b, b&f), b-&f), Si) 

=Prob {b wins the modified auction bi( ),bi ), sI} Vi(b,b1(), b( ), si). 

Suppose, to the contrary, that for some i and si, there exists be f i(si) for which 

Ui(b,bi( ), b*( ),si)> limsup Ui(b'(si), bi( )bmi) si). (16) 

Now if, for all k?i, Pr {bk*() = b} = 0 then since discontinuities occur only when there 
are ties, Uj(b,b*( ),b2j( ),sj) is continuous in (b1(),bif)) at (b?*( ),b21()), and so, 
by the definition of weak convergence, Uj(b b7 (),kb! (),sj) converges to 
Ui(b, b*( ), b2i(), si). But since (b(.),... , b'( )) is an equilibrium for the m-th approxi- 
mation auction, we have, for all bme, 1 (si), 

Uj(6 , bMimf), Si ), Si_Ui(biM(si), biM( ), bmi )X si). 

Moreover, we can find a sequence bm 6T such that, for all k, Pr {bk* (Sk) = bm} -0. Hence, 
taking limits, we obtain 

Ui(b, bi* ( ), b *i&), Si) 'lim sup Ui(bim (si) bim ( ), bmi )si), 

a contradiction of (16). Hence there exists k?i such that 

Pr{b!*( )=b}>O. (17) 
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Now the right-hand side of (16) is non-negative, and so the left-hand side is strictly 
positive. In particular, this means that b <bi(si) and so there exists b?> b such that, for 
all b E(b,b), 

U (b, bi*(), b*i_(), si) > lim sup U_(b (s)), b.() bZ() se) (18) 

But the above argument implies that, for each such b, there exists k?i such that (17) holds 
when b is replaced by b. Since there are uncountably many b in the interval (b, bo), we 
conclude that, for some k, bk* () has uncountably many atoms, an impossibility. 

We conclude that (15) holds after all. Hence, in particular, 

Ui(bi*(si), b*( ),b2' s), s)_ lim sup Ui(bY2(si), b b2) )si), (19) 

for all i and si. 
Now because, in the modified high-bid auction the winner is always the buyer with 

the highest conditional payoff among those with the highest bid, the sum of payoffs across 
buyers is upper semicontinuous 

1 E U1(bi(si), bi(-) b*i(-) si)hi(si) 
' lim sup X = 1 X~,sE Ui(b7in (si), Pin, b`(), si)hi(si), (20) 

where hi(si) = J,_, f(si, s_). 
From (20), we conclude that (19) holds with equality, and so, from (15), 

U (b, b?* b 1f)Si)_iU(bi*(si), b?* b 1f)si), for all b. (21) 

Thus (b* (.),...,b*( )) is indeed an equilibrium. 

The hypotheses that the parameter space is one-dimensional and that preferences are 
supermodular (or log supermodular) and that types are affiliated in Proposition 2 and 
Lemma 1 are invoked simply to ensure monotonic bidding. If we are willing to dispense 
with monotonicity, we can drop these hypotheses while still establishing existence in the 
case of private values. 

Corollary (Existence without monotonicity). Suppose that there are finitely many 
types. Assume that preferences exhibit private values. Then there exists an equilibrium of 
the high-bid auction when ties are broken using a Vickrey auction. 

5. EQUILIBRIUM EXISTENCE WITH A CONTINUOUS TYPE-SPACE 

In this section we extend Proposition 2 to the case of a continuous type-space. That is, 
we establish existence under the modified (Vickrey) tie-breaking rule. We then establish 
existence under the standard tie-breaking rule by showing that the bidding strategies 
remain best responses when the Vickrey tie-breaker rule is switched. As a preliminary, we 
begin by establishing two general properties of monotonic equilibrium bid distributions 
in high-bid auctions.9 The proofs are in the Appendix. 

Proposition 3 (The distribution of winning bids is continuous and its support is 
connected). Suppose that buyer i's utility, ui(b, si, smi), i = 1, . . . , n, is increasing in s and 

9. The results are derived for any tie-breaking rule for which an equilibrium exists, not just that of 
Proposition 2. Moreover, they hold for both the cases of discrete and continuous types. 
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strictly increasing in his own type si. Given a monotonic equilibrium of the high-bid auction, 
the support of the distribution of winning bids is an interval [b*, b*]. Moreover the c.d.f. of 
winning bids is continuous on [b*, b*]. 

Proposition 4 (Payoffs at the lower endpoint). Suppose that buyer i's utility, 
ui(b, si, smi), i = 1, . . . , n, is increasing in s and strictly increasing in his own type si. Given a 
monotonic equilibrium, let b* be as in Proposition 3. Suppose types si and sj of buyers i and 
j bid b* with positive probability. Then if type si's expected payoff is strictly positive, type 
sj's expected payoff is zero. 

We now use Propositions 3 and 4 to extend Proposition 2 to the case of a continuous 
type-space. 

For each i, let Si = [s&, &i] and letf(s, .. . , s,) be the joint density of (si, . . . , s,,) as in 
Section 2. Now for each i and each k = 1,2,... choose S$CSi such that Sk = {Sis,S+ 

1/2k(s& - Si), Si), Si + 2/2k(si - i), .. . ., S}. For each k, we choose a probability distribution 
fk over Skx ... X Sk such that fk converges uniformly to f and such that if types are 
independent or affiliated under f, then they have the corresponding property under fk. 

Given the hypotheses of Proposition 3, we can choose, for each k, a monotonic 
equilibrium (b ( n),. . ., bt()) for the high-bid auction (with Vickrey tie-breaker auction) 
when types are restricted to SkX ... X Sk and the probability distribution over types is fk. 

We will define bid functions (b (),.. . , b*()) that are the limits of (bk(.),... . bk( )) as 
k-(oo. Let 

bi(si) = max supp bi(si). Write S Uk= 1 Ui= 1 Si = {s(1), s(2),.. 

Choose a subsequence {k`(1)}J'=1 of {1,2,...} such that, if s(1)e Si for some i, then 
bkn 1(1)(Sf1)) converges to some point bi(s(1)) as m ->oo. Choose a subsequence {k'"(2)}?= 1 

of {k'((1)} such that, for each i, if s(2) e Si then bkn(2)(s(2)) converges to bi(s(2)) as mn --00. 
Continuing in this way, we can specify bi1() for all points in Sr-)Si. Clearly, bif() is mono- 
tonic since each bk(-) is. For any sie(Sei, i) define 

bi(si), if si (S, 

lim bi(s), if sio S, 
sTsi 

where "limsTsi" denotes the limit with respect to an increasing sequence of points in S 
converging to si. (Note that, because b6i() is monotonic, the limit does not depend upon 
the choice of sequence.) 

Proposition 5 (Existence under the standard high-bid auction rules). Consider a con- 
tinuous type-space SI X ... x Sn and suppose that preferences and the distribution over types 
satisfy the hypotheses of Proposition 2. Then the vector (b1 (.),... , b*( ()) constitutes a 
monotonic and pure-strategy equilibrium of the standard high-bid auction. 

Proof. As in the proof of Proposition 2, consider the modified auction in which the 
winner is the high bidder whose payoff conditional on winning is highest. For each m, let 
K m = km(m), where km(m) is as in the paragraph preceding the statement of Proposition 5. 
For each i and sie Si choose a sequence {Si } such that sre EfSK and si" -si. Define 

Wi(Si)= lim sup Ui(bKm(SKm), bEKm(*) bKI?n(.), 1(m) 
m -* oxj 
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Choose si, sie Si with si <si and consider the corresponding sequences {ftm } and {fK } 
such that si -ksi and SiK *S'i. For m big enough, we have 

U (bKm (sKn), bKr( .) bKrm(.) sKm) 
_Ui( (pmSI ,), bm (~ ),gi()siKm)' Ui(K(^m bm( )Kmf Xr 

Hence Wi(si) is nondecreasing in si. We claim that Wi(si) is continuous. If not, then 
because Wi is nondecreasing, there exists si and E > 0 such that either 

lim We(s') + E < W1(Si), (22) 
SiT 

or 

Wi(s') < lim Wi (Si)-e . (23) 
sli 

Now because ui is continuous there exists 3 > 0 such that if Is?i - si1 < 3 then 

I Uj(b, b6&f), 6_& f), s'i) - Uj(b, 6&(), b_&(), SO) I < E, 

for all b, b6&), and b-&). Hence, given s'i < si and Is-i - siI < 3 if SiKm =S-i and siKm =si then 
for m big enough 

Ui(b is ), gi() _ zK)'U(K(K)bm 
? Ui(b6Km (SKm) iK.m) 

b ( .) SKm) 

and so 

wi (i Wi (Si) -? 

which contradicts (22). A similar contradiction can be found to (23). We conclude that 
W&() is indeed continuous. 

Following the same argument that established (15), we have 

Ui(bi, (W), b*.( ),si).Wi(si), (24) 

for all i and sie Si, and bi. For the upper semicontinuity of the sum of payoffs in the 
modified auction, we obtain 

J,n= I Ijbj (s b*(), b*if -), sj)hi(sj)dSj:_: Ing= , Wj(sj)hj(sj)dSj, (25) 

where hi(si) = ff (si, s_j)ds_i. Hence from (24) and (25) we have 

Ui(bi(si), bi(), b*( ), s) = 
J'V1(s1) 

for almost all sie Si. (26) 

Now if there exists s' such that 

Uj(0i (si'), b0 () b*.( ), s'i) < wi(Si'D, (27) 

then because Ui is monotonic and Wi is continuous, (27) continues to hold when s' is 
replaced by si, for all si in a left-neighbourhood of s', a contradiction of (26). We conclude 
that (26) holds for all sie Si. Hence from (24), 

Ui(bi, b0 () b*.( ), si) _- Uj(0i (si), 0i ( ), b*.( ), si), 

for all bi and si, and so (b0 (), b*.( )) constitutes a monotonic and pure-strategy equili- 
brium for the modified auction. 
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It remains only to show that this constitutes an equilibrium for the standard high- 
bid auction. Consider buyer i of type si. If the bid b* (si) = b does not tie for highest bid 
with positive probability, then it remains an equilibrium bid when the standard tie-break- 
ing rule is used. Assume therefore that b ties for highest bid with positive probability. 
Then, for some j]i, there exists a nondegenerate interval of types (s*, s**) such that, for 
all sj in this interval, b* (sj) = b. From Proposition 3, b = b*, the minimum point in the 
support of winning bids. Now, 

Vj(b*, bj* ( ), b*j ( ), sj* ):- ' . 

Hence 

Vj(b*, b* ( ), b*4( ), sj).> 0, for all sj > s* . (28) 

Proposition 4 implies that 

Vi(b*, b* ( ), b*i ), si) = ?. (29) 

Formulas (28) and (29) together imply that in the modified auction, buyer j always wins 
in a tie between i and j at b*. But in view of (29), if the tie-breaker rules are changed so 
that the winner is determined by flipping a coin, buyer i has no incentive to change his 
bid. || 

6. CONCLUDING REMARKS 

In this paper we have established conditions under which there exists a monotonic equili- 
brium in a sealed high-bid auction. For the case in which types are symmetrically distrib- 
uted, there are well-known conditions under which there exists a symmetric equilibrium 
(see, however, Example 3). Our primary contribution, has been to extend the analysis to 
the case when types are asymmetrically distributed. 

Using methods developed in Dasgupta and Maskin (1986), we are able to establish 
existence if values are private and types are affiliated. If values are not private we again 
establish existence, this time under the assumption that types are independent. 

As with almost all other auction theory, our results assume that each buyer's private 
information can be parametrized with a single parameter'0 (see, however, the Corollary 
to Proposition 3). Nevertheless, our methods can be generalized to include multi-dimen- 
sional type spaces. 

Work by Simon and Zame (1999) establishes existence via a rather different route. 
For the continuous case with independent private values they show directly that in a class 
of games with the discontinuities in payoffs that appear in auctions, there is some tie- 
breaking rule for which an equilibrium exists. They then characterize the equilibrium 
(following the approach taken here) to show that changing the tie-breaking rule to the 
standard rule has no effect on bidders' best replies. By contrast, Athey (1997) uses a single- 
crossing property to establish existence of a pure-strategy equilibrium when buyers are 
restricted to bids in a finite set. Finally, Lebrun (1999), Bajari (1997) and Lizzeri and 
Persico (1997) establish directly that a solution to a suitable set of differential equations 
exists. 

Our existence results, with heterogeneous buyers provide a foundation for our com- 
panion paper (Maskin and Riley (2000)) which compares expected revenue in the sealed 

10. There are a few exceptions. For an analysis of a two-signal bidding model, see for example, Cox, 
Smith and Walker (1988). 
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high-bid auction with that in the open auction when buyers' types are asymmetrically 
distributed. 

APPENDIX 

Proposition 1 (Monotonicity and Independence). Suppose that, for iE { 1,...,n}, buyer i's type is distrib- 
uted independently of other types, i.e. the conditional distribution gi(s iIsi) does not depend on si. Assume that buyer 
i's preferences are monotonic and weakly supermodular. Then if bi(-) is a best response to b_(), it is monotonic. 

Proof If bi() is a best response to b( ), then, for any si, any biE real bi(si), and anybi<bi, 

fT _uiu(bi, si, s-_)gi_(s-)dS_i u(bi, Si, s,s)gi(s l)ds_i. (Al) 
b_(s-) i bf i i(s-i) ':5 bi 

To complete the proof, it suffices to show that 

' 
U(bj, si, s_,)gi(s_i)ds_; > ' (b;, si, s ,)gi(s_i)dS_i, (A2) 

b_E(s_i) ' bi Dsi Li(s_ D ' si 

since if it holds and s'> si, then any b'E real bi(s') must satisfy b'> bi. Now, the left-hand side of (A2) can be 
rewritten as 

- si 
D ui (bi, si, s_l)gi(s_i)dS_i + 

D ul. (bi, si, s_i)gi(s_i)dS_i. (A3) 
biC_fsf)b Si i(S_i0 = Dsi 

Because bi is a best response, bi must win with strictly smaller probability than bi (otherwise, it would pay buyer 
i to lower his bid to bi). Hence (1) implies that the first term in (A3) is strictly positive. But (2) implies that the 
second term in (A3) is at least as bigh as the right-hand side of (A2). 1 

Example 3 (Nonexistence with the Vickrey auction tie-breaking rule). There are two buyers with indepen- 
dently distributed types. Suppose that, for i= 1, 2,si assumes the values 0 and 1 with probabilities 2 and 
respectively. Let 

ui(b, si, sj) = 3 +si -2sj-b, where j#i. 

To verify that there is no equilibrium, we shall confine attention here to potential symmetric equilibria, but the 
same can be shown for the asymmetric case. Therefore, let b6() be an equilibrium bid function (we omit the 
subscript from the bid function since we are concentrating on symmetric equilibrium). 

For siE {0, 1}, let b* (si) be the minimum and b*(si) be the maximum points in the support of b(si). From 
monotonicity (Proposition 1), we have b*(O) _ b* (1). Suppose first that b* (0) '-3. Then b* (0) = 3 (otherwise a 
0-buyer would earn a negative expected payoff from bidding b* (0) if b* (0) were bid with positive probability in 
equilibrium, or from bidding just above b* (0) if b* (0) were bid with zero probability in equilibrium). Now if 
b*(1) = 3, there will be a tie at 3. A 0-buyer will bid zero in the tie-breaking phase. Hence, a 1-buyer will not 
bid zero with probability one (if both types of buyer 2 bid zero with probability 1, the type 1 of buyer 1 obtains 
a strictly positive payoff from making a positive bid). However, if, say, type 1 of buyer 2 sets c2 > E with positive 
probability then the type 1 of buyer 1 is better off setting cl-' e with probability 1 (since the additional instances 
in which he would win by taking cl > e would all give him a negative payoff). Hence there can be no symmetric 
equilibrium in this case. If b*(l) > 3, then the bid b*(l) by type 1 of buyer 2 beats type 1 of buyer 1 with positive 
probability. But in this event, buyer 2's payoff (3 + 1 - 2 - b*(l)) is negative, a contradiction. We conclude that 
b* (0) < 3. 

Now, if b* (0) is bid with probability 0, then the equilibrium payoff for a 0-buyer is 0, which implies that 
3 - 2p(b) - b 0 for b near b* (0). Here p(b) is the probability that, conditional on the buyer winning with a bid 
of b, the other buyer's type is 1. Hence p(b) >0 for b near b* (0), which means that a 1-buyer makes bids 
arbitrarily close to b* (0) in equilibrium. Hence, from monotonicity, b* (0) is bid with probability 1, a 
contradiction. 

11. For simplicity, we employ integrals in (Al) even though, in the discrete case, they are actually sums. 
The expression gi(s-i) is shorthand for gi(s ilsi) which does not depend on si. The left- and right-hand sides of 
(Al) may not be quite right because of the possibility of a tie at bi or bi with positive probability. However, 
these possible discrepancies do not affect the rest of the argument. 
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Therefore b*(0) is bid with positive probability by a 0-buyer. Suppose first that a 1-buyer also bids b*(0) 
with positive probability. Then there is a tie at b* (0) with positive probability. Now, in the tie-breaking Vickrey 
auction, it cannot be the case that both types bid zero with probability one: if both types of buyer 2 bid zero 
with probability 1, then type 1 of buyer 1 gets a positive expected payoff from making a positive bid. Hence, 
with positive probability, 1-buyers bid more than zero in the tie-breaker. Let e be the maximum bid that a 1- 
buyer will make. Then a 1-buyer making this bid must obtain a non-negative payoff from beating another 1- 
buyer who makes this bid. But then he would have been better off making a sealed bid of bi = b* (0) + 2E in the 
first place (thereby avoiding the tie-breaker altogether), a contradiction. We conclude that a 1-buyer cannot bid 
b* (0) with positive probability after all. Hence a 0-buyer has a positive expected payoff from bidding b* (0), 
which means that he will not bid 0 with probability 1 in a tie-breaker. But then, as we just argued for a 1-buyer, 
he is better off making a sealed bid of slightly more than b* (0) in the first place, a contradiction. We conclude 
that no equilibrium is possible. 

Proposition 3 (The distribution of winning bids is continuous and its support is connected). Suppose that 
each buyer's payoff, ui(b, si, s4i), i = 1, . . ., n, is monotonic in types and strictly increasing in his own type. Given a 
monotonic equilibrium of the high-bid auction, the support of the distribution of winning bids is an interval [b*, b*]. 
Moreover the c.d.f. of winning bids is continuous on [b*, b*3. 

Proof. Let b* be the minimum point in the support of the distribution of winning bids. Then any buyer 
whose equilibrium bid b exceeds b* must have a strictly positive expected payoff since his probability of winning 
is strictly positive on (b*, b) (if he had a zero expected payoff, he could do strictly better, from (6) or (7), by 
reducing his bid slightly). 

We first show that the c.d.f. of winning bids is continuous at all b > b*. Suppose not. Then, for some 
b > b*, there exists a buyer i who bids b with strictly positive probability. We have just argued that his equilibrium 
payoff must be strictly positive. (There cannot be more than one such buyer since, under any tie-breaking rule, 
at least one buyer would be strictly better off breaking the tie by bidding slightly more than b.) Consider b'E 
(b*, b). There exist S and y > 0 sufficiently small such that if buyer j#i has surplus less than y from bidding b, 
then he is better off bidding b' than any bid in the interval [b - cS, b]. Because b is bid with strictly positive 
probability by buyer i, there exists S' < S such that, if buyer j#i has surplus at least y from bidding b, then he 
is better off bidding slightly more than b than making any bid in the interval [b - cS', b). It follows that no buyer 
other than i bids in [b - cS', b) with positive probability. But then buyer i is strictly better off bidding b - cS' rather 
than the proposed equilibrium bid of b. 

To show that the support of the distribution of winning bids is an interval, consider the interval (b', b") 
where b' and b" are in the support. Suppose contrary to the claim that no buyer bids with positive probability 
in this interval. Then, because the c.d.f. of winning bids is continuous, the probability of winning with a bid of 
b" is the same as that with a bid of b'. If follows that any buyer bidding sufficiently close to b" is strictly better 
off bidding b'. I I 

Proposition 4 (Payoffs at the lower endpoint). Suppose that each buyer's payoff, ui(b, si, s_i), i = 1, . . ., n 
is monotonic in types and strictly increasing in his own type. Given a monotonic equilibrium, let b* be as in Prop- 
osition 3. Suppose types si and sj of buyers i andj bid b* with positive probability. Then if type si's expected payoff 
is strictly positive, type sj's expected payoff is zero. 

Proof. Suppose the claim is false. Regardless of the tie-breaking rule it must be the case that if si and sj 
tie, one of them wins with a probability no greater than 0 5. This buyer can thus raise his probability of winning 
discontinuously by bidding slightly more than b*. If, moreover, his expected payoff is positive from bidding b*, 
then (6) or (10) imply that he is strictly better off doing so. II 
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