Evolution and Cooperation in Noisy Repeated Games
Drew Fundenberg; Eric Maskin

The American Economic Review, Vol. 80, No. 2, Papers and Proceedings of the Hundred and
Second Annual Meeting of the American Economic Association. (May, 1990), pp. 274-279.

Stable URL:
http://links.jstor.org/sici ?sici=0002-8282%28199005%2980%3A 2%3C274%3A EA CINR%3E2.0.CO%3B2-M

The American Economic Review is currently published by American Economic Association.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal s/aea.html .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Feb 7 13:51:41 2007


http://links.jstor.org/sici?sici=0002-8282%28199005%2980%3A2%3C274%3AEACINR%3E2.0.CO%3B2-M
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/aea.html

Evolution and Cooperation in Noisy Repeated Games

By DRew FUDENBERG AND ERIC MASKIN*

The theory of repeated games has been an
important tool for understanding how coop-
eration might arise in a population of self-
interested agents. If the prisoner’s dilemma,
as depicted by the following matrix,

C D
C 2,2 -13
D 3,-1 0,0

is played only once, the unique equilibrium
is for both players to play D, resulting in the
inefficient payoffs (0,0). If, instead, the game
is repeated infinitely often and the players
are not too impatient, there are “cooper-
ative” equilibria in which both players al-
ways play C for fear that failure to do so
would cause the opponent to “punish” them
with D in the future.

Although repeated play permits coopera-
tion as an equilibrium, it does not preclude
less cooperative outcomes. Indeed, it is also
an equilibrium for both players to use the
strategy “always play D.” More generally,
the Folk Theorems establish that any feasi-
ble individually rational payoffs can arise in
an equilibrium if the players are sufficiently
patient. (See Robert Aumann and Lloyd
Shapley, 1976; Ariel Rubinstein, 1979; and
our 1986 article.) In our version of the pris-
oner’s dilemma, a payoff vector is individu-
ally rational if each player’s payoff is posi-
tive.

However, not all these equilibria are
equally plausible. Specifically, there is a
widespread intuition that often the most
likely equilibria are those whose payoffs are
efficient, and efficiency is typically assumed
in economic applications of repeated games.
In fact, selecting the efficient equilibria is an
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approach sometimes taken for games in gen-
eral (see John Harsanyi and Reinhard Sel-
ten, 1988). But the intuition for efficiency
seems particularly strong for the case of
repeated games.

Herein we provide support for this intu-
ition. For a class of repeated games that
includes the prisoner’s dilemma, we show
that efficiency is implied by evolutionary sta-
bility if there is a small probability that the
players make ““mistakes,” so that their real-
ized actions are sometimes different from
those they intended.

The evolutionary process we have in mind
is one in which pairs of strategies from a
population are matched at random to play
the repeated game, and a strategy has equal
chances of being assigned the role of players
1 and 2. If a strategy performs well on
average against the population (i.e., its aver-
age payoff is comparatively high), the frac-
tion of the population corresponding to that
strategy grows; by contrast, the proportion
for a low-payoff strategy declines. In biologi-
cal settings, such a process results from the
relative advantage that a successful strategy
has in reproducing itself. In economic or
sociological applications, evolution may de-
rive from learning: if players try out strate-
gies on an experimental basis and one works
well against the population, more and more
players are likely to adopt it (as word gets
around), whereas a poor strategy will proba-
bly be abandoned.

A strategy is evolutionarily stable (ES) if it
can ultimately dominate. That is, following
John Maynard Smith (1982), it cannot be
“invaded” by any mutant strategy. An ES
strategy must be a “best response” to itself,
because a mutant playing a better response
would have a higher average payoff. More-
over, for strategy s to be ES, there cannot be
a mutant s’ that does better than s does
against a population consisting of a high
proportion of s’s and a small proportion of
s"s.
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Robert Axelrod and William Hamilton
(1981) showed that the strategy “always D”
is not ES in the repeated prisoner’s dilemma
with time-average (undiscounted) payoffs. In
particular, always D can be invaded by the
strategy “tit-for-tat” (that plays C in the
first period, and then always plays the same
action as its opponent played the previous
period). Tit-for-tat can invade because it does
as well against always D as always D does
against itself (a time-average of 0), and tit-
for-tat obtains a payoff of 2 when paired
against itself.

Although evolutionary stability rules out
always D, the uncooperative outcome can be
approximated arbitrarily closely by an ES
strategy profile. For example, consider the
strategy “Play C in periods 0, n,2n,..., and
D in all other periods, so long as past play
has always conformed to this pattern; if past
play has not always conformed, then play
D forever afterwards.” Call this strategy
“mostly D.” For large n, mostly D is nearly
as uncooperative as always D. Yet it is ES,
because if an invader deviates from the pat-
tern, it is punished forever and so obtains a
time-average payoff of at most 0. In contrast,
mostly D obtains 2/n against itself. If the
proportion of mutants is sufficiently small,
even a mutant that attains an average of 2
when paired against itself cannot overcome
this punishment. Thus evolutionary stability
by itself has almost no restrictive power in
the repeated prisoner’s dilemma.

The first step in our argument is the obser-
vation that mostly D performs quite badly
(payoff 0) against itself if one of the players
deviates from the prescribed pattern by
“mistake.” This suggests that, if mistakes are
possible, evolution may tend to weed out
strategies that impose drastic penalties for
deviations. We then exploit the idea that, if
punishments are not too drastic, it is rela-
tively easy for inefficient strategies to be
invaded by efficient ones, since the penalty
for trying to initiate efficient play against an
inefficient opponent is not large.

To formalize the notion of a small proba-
bility of mistake, we suppose that each
player’s expected payoff conditional on there
never being a mistake is lexicographically
more important than his expected payoff
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conditional on one mistake, which in turn is
more important than his payoff conditional
on two mistakes, and so on. In this paper,
we consider only the class of symmetric
two-player games, which includes the pris-
oner’s dilemma and also the well-known
“battle of the sexes.” We also assume that
players use strategies of only finite complex-
ity: those that can be implemented by a
finite computer with a finite memory. We
show that if, as in the prisoner’s dilemma,
there is a unique payoff pair that maximizes
the sum of players’ payoffs, then any ES
(pure) strategy must be efficient. If there are
multiple pairs that maximize the sum of the
payoffs, then ES does not imply efficiency
but still imposes restrictions on the set of
equilibrium payoffs.

I. Symmetric Repeated Games with Noise

We consider a symmetric two-player game.
Hence, both players choose actions from a
common (finite) set 4, and we can express a
player’s payoff as u(a,b), where a is his
own action and b that of his opponent. For
future reference let v = min, max ,u(a, b) be
a player’s minmax payoff and let I = Convex
Hull{(v,, v,)|there exists (a, b) with u(a, b)
=, and u(b, a) = v,} be the set of feasible
payoffs.

We are interested in the infinitely repeated
game where the above one-shot game is
played in each period 1 =0,1,.... We sup-
pose that a player’s realized action 4 is
sometimes different from the action a he
intended (so that the realized action is a
noisy signal of the one intended), and that
payoffs in each period depend only on real-
ized actions. (Alternatively, we could assume
that intended and realized actions never dif-
fer, but that a player’s action might be mis-
perceived by his opponent. In this case, pay-
offs would depend on both actions and the
noise creating the misperception.) Further-
more, a player observes just his oppo-
nent’s realized action, not the intended one.
Thus a player’s public history at time ¢, de-
noted h(z), is the sequence [(d(0), b(0),...,
(4(t —1), b(t —1))], where the d’s and b’s
are his own and his opponent’s realized ac-
tions, respectively. (Set the history 4(0) at
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date 0 equal to the null set.) History s(¢) has
length, denoted by /(h(2)), equal to ¢. Let H
be the space of all histories. Note that each
sequence of play generates two histories, one
for each player. For each & € H, let w(h) be
the corresponding history for the other
player, that is, 7(h) is obtained by permut-
ing d(7) and b(7) for each . We use this
formulation so that, when players use sym-
metric strategies, we can denote them both
by the same map s: H — 4. For example,
for either player the strategy tit-for-tat in the
repeated prisoner’s dilemma can be ex-
pressed as follows: for all # € H, s(h) =C if
I(h) =0; and s(h)=b(I(h)—-1) if I(h) > 0.
We will restrict attention to pure strategies
that depend only on the public history.

We shall assume that players use strategies
of only finite complexity. A formal definition
of this concept is introduced by Ehud Kalai
and William Stanford (1988). Informally, as
we indicated in the introduction, a strategy
of finite complexity is a finite program that
can be run on a finite computer with bounded
memory. Most familiar strategies are of this
form, including all the repeated prisoner’s
dilemma strategies mentioned above.

A pair of finitely complex strategies ¢ =
(s,s) gives rise to a sequence of play
[(4(0), b(0)),(4(1), b(1)),...] (the @’s and b’s
correspond to the players using s and s/,
respectively) that eventually repeats itself
(i.e., forms a repetitive cycle). We suppose
that players do not discount, that is, they
maximize their time-average payoffs. A
player’s time-average payoff from ¢ (contin-
gent on there being no mistake) is

v(e) = lim (1/T) gou(ﬁ(t),l;(t)).

Let v(¢|h) be a player’s expected payoff
from ¢ conditional on history 4 occurring,
where [(h)=7. That is, if [(d(7),b(7)),
(d(7+1),b(7+1)),...] is the sequence of
action pairs induced by ¢ after history #,

T+

o(alh) = tim (1/T) T u(a(r), b(1)).

MAY 1990

To compute the expected payoff condi-
tional on one mistake requires a probability
distribution on when mistakes occur. For
our results, we can accommodate any distri-
bution with the properties that, conditional
on each mistake, each player has a positive
probability of making it and each period has
a positive probability of being the one in
which it occurs. For m=1,2,..., let v™(9)
be a player’s expected payoff conditional on
there having been m mistakes. By conven-
tion, v°(¢) = v(9).

We call v™( ) a player’s “mth-order” pay-
off from the strategy pair ¢. Our lexico-
graphic assumption implies that, for any two
pairs ¢ and 4, if m <m’ any difference be-
tween v™(s) and v™(4) outweighs a differ-
ence between v™(¢) and v™(3) in a player’s
performance. As we mentioned, this formal-
izes the idea that mistakes are improbable.

The strategies constructed in the papers
cited above on the Folk Theorem extend to
our “noisy” repeated game, so that for any
payoff vector (v,v) €V with v > v there is a
subgame-perfect equilibrium whose payoffs
contingent on no mistakes are (v, v). We will
see that considering ES strategies consider-
ably restricts the set of equilibrium payoffs.

II. Evolutionary Stability

As described informally in the introduc-
tion, a strategy s is ES if no other strategy s’
can invade a population consisting of a large
fraction of s’s and a small proportion of
s”s. We shall suppose that the proportion of
s”s, although small, is big relative to the
probability of a mistake. Hence, given the
lexicographic preferences we have assumed,
s’ can invade even if it performs worse to the
mth-order against s than s does itself, pro-
vided that s’ fares better to a lower order
against itself than s does against s’.

Formally, s is evolutionary stable provided
that, for all finitely complex strategies s’, if
there exists m* such that o™(s’,s) =
v™(s,s’) for all m <m*, then there exists
m** < m* such that

(*) v (s, 8) = 0™ (s, s)

and v™(s,s)=v"(s’,s) for all m<m**.
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Furthermore, if v™"(s’,s’) > v™(s,s’) then
(*) is strict.

This definition reduces to the standard
one (see Maynard Smith) if the probability
of mistakes is literally zero.! In that case,
only preferences to the Oth order matter, and
so s’ can invade only if either it performs
strictly better than s does against s, or it
performs equally well but fares strictly better
than s against s’.

We shall say that payoff vector (v,v") €V
is efficient if it maximizes the sum of play-
ers’ payoffs on the set V (ie, (v,v) €
argmax, ,{u+u'l(u,u’) €V}). A strategy
s is efficient if (v(s,s),v(s,s)) is efficient.
Note that the sum of payoffs is relevant
because, as we discussed, a strategy has an
equal chance of being assigned either player’s
role.

THEOREM 1: Let u = min{u|there exists u’
such that (u,u’) is efficient}. If a finitely
complex strategy s is ES, then v(s,s)=>u.
Thus if there is a unique efficient pair (u*, u*),
v(s,s)=u*.

PROOF:

Note first that, for any history &,
(v(s, s|h), v(s, s|m(h))) €V. Because s is
finitely complex, there is a history h* that
minimizes v(s, s|h). We claim that there
exists v’ such that (v(s, s|h*),v’) is efficient.
If not, then in particular (v(s, s|h*),
v(s,s|m(h*))) is inefficient. Choose a se-
quence of action pairs {(a*(t), b*(¢))}:2,
whose time-average payoffs are efficient.
Fix actions a # s(h) and b # s(7w(h),
(s(7(h)), a)) (where (7(h), (s(7(h)),a)) is
the history # (k) followed by the action pair
a(a, s(m(h))) = (s(w(h)),a). Let s’ be a
strategy that coincides with s expected after
histories #* and 7 (h*). After h*, define s’ so

1Actually it reduces to something slightly weaker
than the standard definition. According to the latter, s
is ES provided that, for all s’, v(s, s) > v(s’,s) and, if
this holds with equality, then v(s,s’) > v(s’,s’). When
mistakes have zero probability, we (like Axelrod and
Hamilton) deem s to be ES even when the last inequal-
ity is weak. However, given the noise in our model, this
discrepancy may well be an artifact of our no-discount-
ing assumption.
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that it plays a for two periods. If the oppo-
nent plays b in the second period after h*
(i.e., in period I/(h*)+1), s’ plays the se-
quence { a*(¢)} beginning in the third period
after h* (i.e., in period I/(h*)+2, it plays
a*(0), in period /(h*)+ 3 it plays a*(1), etc.).
If the opponent fails to play b in period
I(h*)+1, then s’ coincides with s beginning
in period /(h*)+2. After #w(h*), define s’ so
that it plays s(«(#*)) the first period (i.e., in
period /(w(h*))). If the opponent plays a in
that first period s’ plays b in the next period
(period /(7 (h*))+ 1), and subsequently plays
the sequence {b*(¢)} (i.e., it plays b*(0) in
period /(7 (h*))+2, b*(1) in period I(7(h*))
+ 3, etc.). If the opponent fails to play a in
period /(w(h*)), s’ coincides with s there-
after.

We will show that s’ can invade. We first
claim that

(1) v(s’,s|h*) =v(s,s|h*).

By our choice of A* and because s’ reverts to
s after A* if its opponent does not play
according to s’, v(s’, s|h*) = v(s, s|h*). Now
if this last inequality is strict, let s be the
strategy that coincides with s’ after A* and
otherwise coincides with s. Then v(s”, s|h*)
> v(s, s|h*), and so if m* is the number of
“mistakes” that must occur if (s,s) gives
rise to h*, v™"(s”, s) > v™"(s, 5). But by def-
inition of s”, v™(s”, s) = v™(s,s) and
v™(s"”, 5"y =v"(s,s"”) for all m <m*. Thus,
s” can invade, contradicting the evolutionary
stability of s. We conclude that (1) must
hold.

Because s’ plays like s after «(4*) unless
its opponent plays according to s’,

(2) o(s',slm(h*)) =v(s,s|m(h*))
and v(s,s|h*) =v(s,s’|h*).

Now, by choice of s', v(s’, s’'|h*)+
v(s’, s'|m(h*)) is efficient. Hence, from (1)
and because there exists no v’ such that
(v(s, s|h*), v") is efficient, v(s’, s'|h*) +
v(s’, s'|m(h*)) > v(s’, s|h*) + v(s, s'|7(h*)).
But from (1) and (2) this last inequality is



278 AEA PAPERS AND PROCEEDINGS

equivalent to
(3) o(s,s|h*) + o (s, s|m(h*))
> v(s,s'|h*) +o(s,s'|m(h*)).
Now (1), (2), and (3) imply that
(4) v™*(s’,s") > v™(s,s)

and o™ (s’ s) =v™(s,s).

Our choice of s’ implies, moreover, that
(5) v™(s',s") =v™(s,s") =v™(s',5)
=v"(s,s) for m <m*.

But from (4) and (5) we infer that s’ can
invade, contradicting the evolutionary stabil-
ity of s.

We conclude that there must exist v’ such
that (v(s, s|h*), V') is efficient after all. The
theorem follows from the definition of A*.

Because (2,2) is the unique efficient payoff
pair in the prisoner’s dilemma, Theorem 1
implies that any finitely complex ES strategy
must give rise to the cooperative outcome in
the repeated game. The qualification “finitely
complex” is, however, important. For exam-
ple, consider the following infinitely complex
strategy s%: “alternate between D and C; if
either player deviates from this pattern,
switch to one in which C is played only
every third period; if either player deviates
from this pattern, switch to one in which C
is played only every fourth period, etc.”
Strategy s° is ES because, regardless of the
history, any attempt to deviate from (s, s°)
is always punished by having one’s payoff
reduced by a positive amount. (For a finitely
complex strategy, by contrast there must al-
ways be a history after which further devia-
tions no longer reduce one’s payoff.) But
(s%,5°) results in the inefficient payoffs (1,1).
Indeed, evolutionary stability does not re-
strict the Folk Theorem payoffs at all if
infinitely complex strategies are possible.

Even for finitely complex strategies, Theo-
rem 1 does not necessarily imply efficiency,

MAY 1990

TABLE 1 —MODIFIED BATTLE OF THE SEXES

a b c d
a 0,0 4,1 0,0 0,0
b 1,4 0,0 0,0 0,0
c 0,0 0,0 0,0 0,0
d 0,0 0,0 0,0 2,2

as we noted earlier. Consider the modified
version of the battle of the sexes shown in
Table 1. Theorem 1 rules out only payoffs
less than 1 in the repeated game (which,
however, is still considerably more restrictive
than the Folk Theorem, which permits pay-
offs as low as zero). Indeed, as the following
converse of Theorem 1 establishes, any feasi-
ble payoff greater than 1 can arise from ES
strategies.

THEOREM 2: Let u be defined as in Theo-
rem 1. If (v,v) €V and v > max{v,u}, then
there exists a finitely complex ES strategy s
such that v(s,s) =uv, provided there exists a
finitely complex strategy with these payoffs.

Rather than prove this theorem in full gener-
ality, we shall simply exhibit ES strategies
for the prisoner’s dilemma and modified bat-
tle of the sexes. In the former, consider the
following modification of tit-for-tat: “play C
the first period and thereafter play C in a
given period if and only if either both play-
ers played C or both played D the previous
period.” Observe that continuation payoffs
are always efficient: a mistake triggers a sin-
gle period of “punishment” and then a re-
turn to cooperation. Note that tit-for-tat it-
self is not ES, because a mistake will trigger
the (inefficient) infinite cycle (C, D) (D, C),
(C, D) and so on. In the modified battle of
the sexes, consider the strategy “Play d the
first period and subsequently play d as long
as in every past period either both players
played d or neither did. If a single player
deviates from d, then henceforth that player
plays b and his opponent plays a.” Even
though this strategy is not efficient, it is ES,
since any attempt to promote greater effi-
ciency will be punished forever; the punish-
ments are stable because the strategies at
that point form an efficient equilibrium all of
whose continuation equilibria are efficient.
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II1. Extensions

In this paper we have assumed no dis-
counting, infinitesimal noise, pure strategies,
symmetry across players, and equilibrium
configurations where only a single strategy is
played. The intuitive reasons behind our re-
sults, however, seem quite general, and so in
a forthcoming paper we expect to relax all
these assumptions. Our work builds on an
extensive literature, but, for lack of space,
we must also postpone discussion of previ-
ous work to the sequel.
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