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IMPLEMENTATION OF SOCIAL
CHOICE RULES WHEN THE
DESIGNER DOES NOT KNOW
ENDOWMENTS OR
PRODUCTION SETS*

- by Leonid Hurwicz, Eric Maskin,
and Andrew Postlewaite

1. Introduction

The aim of the present paper is to analyze the problem of assuring
the feasibility! of a mechanism (game form), implementing in Nash
equilibrium® a given social choice rule abbreviated as (SCR) when the
mechanism is constrained as to the way in which it is permitted to depend
on endowments or production sets. A social choice rule is a correspon-
dence specifying outcomes considered to be desirable in a given economy
(environment). A mechanism is defined by (a) an outcome function and
(b) a strategy domain prescribed for each player. Our outcome functions
are not permitted to depend at all on the initial endowments or produc-
tion possibility sets. As to strategy domains, the ith agent’s strategy
domain §' is only permitted to depend on that agent’s endowment (and/or
production possibility set), but not on the endowments or production
possibility sets of other agents. (For earlier results concerning endoment
manipulation, see Postlewaite (1979) and Sertel (1990).)

* Earlier versions of this paper have been circulated since 1979.
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368 THE ECONOMICS OF INFORMATIONAL DECENTRALIZATION

A possible (but not necessary) interpretation is that those formulating
the rules® of the game have no knowledge of the endowments; they may
have no way of preventing the players from either understating or even
destroying their own endowments, but they may formulate rules making
an overstatement of their own endowments impossible, for instance, by
requiring the players to “‘place the claimed endowments on the table.” In
that case, an agent’s strategy domain is limited by his/her (true) endow-
ment. As for the final allocations, these are determined by a formula
based only on the agents’ claims and hence are not directly dependent on
the true values of the endowments.* The situation is similar with respect
to production possibility claims. _

In a pure exchange economy, whether or not the designer knows the
individual endowments (as well as the traders’ admissible consumption
sets), suppose it is required that the outcome function be informationally
decentralized, in the sense defined in part I. It is then seen, from Proposi-
tion 1 in part I, that feasibility out of equilibrium makes it unavoidable
that each unit’s strategic domain would depend on its initial endowment.
It is furthermore to be noted that this result applies to all informationally
decentralized mechanisms, regardless of the equilibrium concept® used. A
stronger conclusion, at the expense of a stronger assumption is obtained
in Proposition 2 of part I. We obtain: (i) certain conditions on the nature
of game forms necessary for the implementability of SCRs; (ii) certain
conditions that must be satisfied by an SCR in order that it be imple-
mentable; (iii) sufficient conditions for the implementability of an SCR,
established by constructing an implementing game form. .

When a mechanism is said to be feasible, all values of the outcome
function, rather than only the equilibrium values, lie in the set of feasible
outcomes. We shall denote by A(e) the set of outcomes feasible in the
environment e. This defines a correspondence A(-) from the space of
environments (economies) into the space Z of outcomes (allocations).

Let us illustrate this in the situation of pure exchange private goods
economies without free disposal with n traders. (Part II of the paper is
devoted to this case.) Here, the ith trader’s characteristic ¢' is defined by
his/her consumption set C', initial endowment o', and preference relation
R, written & = (C', w;, R%).® The environment e is defined as the list of
characteristics, i.e., e = (e', ..., ). The space of feasible outcomes in
this economy consists of all net trade lists x = (xl, ..., x"), each x’ an
element of the commodity space R™, satisfying the following two con-
ditions: (a) Individual feasibility—every agent remains within his/her con-
sumption set, i.e., w; — x' € C’; (b) compatibility or balance—the sum of
all net trades is the null vector of the commodity space, written ' = 0.
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In earlier mechanism design literature, the balance condition was
observed, but not the individual feasibility. This contrasts with
the conventional Walrasian auctioneer scenario where the reverse is
the case. In the present paper, the emphasis is on mechanisms satisfying
both conditions.

Looking at the problem of constructing a feasible game form imple-
menting a given SCR over a class E of environments, we must distinguish
situations in which the designer knows the feasible set A(e) for each e in
E. i.e., the feasibility correspondence A(-), from those in which the
designer has no such information. Maskin’s algorithm’ (1977) for con-
structing a mechanism implementing a given SCR postulates a class E of
environments with a common set A of feasible outcomes known to the
designer.® In this paper we are interested in the situation where the
feasible set is not known to the designer. Since the balance condition does
not contain any unknown parameters, we are dealing in our illustrative
example with a situation where the designer does not know the traders’
initial endowments.

Part II is devoted to pure exchange economies without public goods.
Part III (Theorems 8 and Corollary 8.1) deals with public goods, Part IV
(Theorem 9) with production. In Part II, to gain insight into the problem,
we start with the case where the designer does know preferences, but not
the endowments. We then construct two types of endowment revelation
games (involving, respectively, the withholding and destruction of endow-
ments), each analogous to Maskin’s algorithm for unknown preferences.
The strategy space for each trader consists of n-tuples of claimed endow-
ments. Thus, the ith trader claims that the endowment vector s w;*=
(wl, ..., w?) where w! is j’s endowment according to i’s claim. It is
assumed that i knows his/her true endowment ;. An important restric-
tion imposed on the nature of the strategy space is that a trader cannot
exaggerate his/her own endowment; i.e., wi < w;. This means that the
individual strategy domains depend on the true endowments. In Part I of
the paper, it is shown that some such restriction is unavoidable.’

Two variants of an endowment game are considered: withholding
(section II.A), and destruction (section I1.B). When a trader is withhold-
ing a part of the endowment, he/she (falsely) claims some w; < w; (so that
w! # ;) as own endowment, but—in addition to the commodity bundle
allocated by the outcome function—he/she can also consume the dif-
ference w; — w'. By contrast, when a trader is destroying the part w; — w;
of the endowment, this part is not available for consumption. In section
I1.C, we consider a mixture of withholding and destruction. Implementa-
tion under withholding is called W-implementation, that under destruction
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370 THE ECONOMICS OF INFORMATIONAL DECENTRALIZATION |

as D-implementation. When preferences are assumed known to the des-
igner, they are dealt with respectively in Theorem 1 (section IL.A.1)
and Theorem 3 (section I1.B). Under withholding, we assume individual
rationality, under destruction, “non-confiscatoriness” of the social
choice function.

The more interesting case is, of course, when the designer knows
neither endowments nor preferences. Under withholding, this is referred
to as W-R-implementation and is dealt with in Theorem 2, section ILA2.
It is shown there, for the case of withholding, how to deal with this
situation. The proof involves combining the game form for the withholding
game, for known preferences constructed in section IL.A.1, with a Maskin
type game form, for situations where endowments but not preferences
are assumed known to the designer (see Maskin, 1977; Saijo, 1988;
Hurwicz, 1986).

In the appendix to Part II, we exhibit a more specialized mech-
anism for implementing what we call the constrained Walrasian cor-
respondence, which satisfies Maskin’s conditions of no veto-power and
monotonicity (Theorems 4, 5, and 6). It is shown (Theorems 5 and 6)
that this implementation can be accomplished using a finite-dimensional
strategy space, much smaller than the profile spaces used in our other
results. We also give an example showing that there are cases in which
the Walrasian correspondence (2) is not implementable, because it fails
to satisfy the Maskin (necessary) condition of monotonicity.*® In fact,
a slight extension of Theorem 1 in Hurwicz (1979) implies that the
constrained Walrasian correspondence is the smallest continuous social
choice correspondence, satisfying the conditions of Pareto optimality
and individual rationality, which can be Nash-implemented over a suf-
ficiently rich class of economies. Indeed, Theorem 4 states that, for
n > 2, any PO, IR, continuous and monotone correspondence contains
the constrained Walrasian correspondence.'!

In Part III, we consider economies with public goods, and in Part IV
those with production. Significant results, going beyond ours, in feasible
(weakly balanced) implementation, especially of the (constrained)
Walrasian correspondence, in economies with production and externalities,
are found in Nakamura (1989), and for' balanced (i.e., without free
disposal) implementation, in economies Wwith production in Hong
(1991, 1994).

As in the Groves—Ledyard (1977) treatment of public goods and in
Maskin’s 1977 algorithm, all our constructions assume that there are at
least three agents (n > 2). Subsequent to the circulation of earlier versions
of this paper, feasible game forms have been constructed for exchange
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FEASIBLE NASH IMPLEMENTATION 371

economies with two agents in economies with free disposal'* (see, in
particular, Nakamura, 1989, 1990).

The mechanisms used in our existence proofs are far from informa-
tionally efficient. In fact, Page (1989) and Hong and Page (1994) show
how the size of the message space can be substantially reduced. In the
next section of this introduction, we provide a few additional comments
concerning the contents of this paper. '

While Theorem 1 only deals with social choice functions, it is indicated
in the appendix to section II.A.1 how, for the endowment withholding
game with preferences known to the designer, the result can be extended
to the implementation.of social choice correspondences. Analogous
extensions from SCF’s to SCR’s (correspondences) seem to be possible
for our other cases, but are not dealt with in the paper. However, the
implementation results in the appendix at the end of part II deal with the
implementation of constrained Walrasian correspondences; that is, it is
not assumed that there is a unique constrained Walrasian allocation.

I. THE DEPENDENCE OF STRATEGY DOMAINS ON
INITIAL ENDOWMENTS

In what follows, we show that, when the outcome function is privacy
preserving with respect to endowments (but possibly *‘parametric” in the
sense of Hurwicz (1972, pp. 310-313), the strategy domain of each
person in a pure exchange economy must vary with that person’s initial
endowment. These results apply to noncooperative games in general and
not merely to Nash equilibria. Proposition 1 and the corollary are valid
whether or not the designer knows the initial endowments.

We consider a class E of pure exchange economies with the set of

goods L = {1,...,!}. The set of agents is denoted by N = {1,. n}.
The ith person s true initial endowment is &', but sometimes the cucle
above o is omitted. We write @ = (@', ™) and ' = (), ..., o))

for each i in N. Each person’s consumptlon set is contained in the
nonnegative orthant R’,.

Let E = E' x ... x E", with the generic element of E' denoted
by ¢ = (0, R), o' € Rig; here R’ denotes the ith agent’s (weak)
preference relation, assumed to be reflexive, transitive, and total.

Assumption 1: We assume that for every i in N, every r in L, and every
positive number &, there is €' € E', ¢ = (o', RY), such that 0 < wl < e.
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Restricting ourselves, for the sake of simplicity, to single-valued social
choice rules (performance correspondences), we denote a social choice
function (performance function) by f: E — R". The values of f specify
net trades. Feasibility requirements are: for all e € FEandallre L,

balance D, fi(e) =0 (1)
ieN
individual feasibility: fi(e) = —w, forall ieN. (2)

where fi denotes the net allocation of the rth good to the ith person, and
' the initial endowment of the ith person in the rth good.

To avoid tiviality, we assume that there is at least one person ieN,a
goodr e L, and an economy ¢ € E, such that, for a social choice rule f
implemgntable one,

fi(é) # 0. (3%)

From feasibility, it follows that there is at least one person j € N, a good
r € L, and an economy € € E, such that

fi(é) < 0. (3)
We shall write
fi(e) = —a, a>0. (3"

We now define a noncooperative game with the ith strategy domain

denoted by S;. Since the question is whether, or in what way, this domain
depends on the initial endowments, we write S; = S{e) = S{e', RY.
(That is, the S; may be “parametric,” but must not depend on the
characteristics of other agents.) This, of course, does not a priori preclude
the possibility that Si(+) is constant, i.e., that, for any two environments
é. &, we would have S,(¢") = Si(¢"). However, the following proposition
shows that, in fact, at least some persons’ domains do vary with their
own endowments.

Write S = S(e) = Si(e') x ... X S,(€").

We shall permit the outcome functions to be ‘‘parametric,” i.e., t0
depend on the initial endowments, but in a privacy-preserving way. That
is. the ith individual’s net allocation Z' is given by

Z = hi(s, ¢), seS(), i€N.

One could, of sourse, confine oneself to “nonparametric’ outcome
functions where z' = H(s). By permitting the dependence of A’ on o'
(perhaps even on ¢€'), however, we strengthen the result.
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We impdse on the outcome functions the following feasibility
restrictions for all r € L, alls € §, and all e € E:

balance > H.(s,€) =0 (1*)

ieN
individual feasibility: hi(s, ) = -, forall ieN. (2%)
We assume that the game form (h, S(-)) implements f on E. By defini-

tion, this implies that for every e in E, there exists s* in S(e), such that for
every i in N, and for every r in L, h(s™, e') = f.(e).

Proposition 1. Assume Assumption 1 holds, let e* € E and let f satisfying
(3*) be implementable on e*. Let further j, r, e* and a be those specified
in (3'), with e* = (@*', R*);en- Then there exists a strategy n-tuple s =
(s,)ieny and an economy e** = (w**, R**);cn, with wt* = ¥, while

r

w**k = ** for all k € N/{j}, such that s; € S;(e*) buts; ¢ S,(e**f).
Proof. Since (h, S(-)) implements f on E, there exists s in S(e*), s =
(S1, ... Sn), i € Sie™) for all i in N, and such that, for some j,

H(s, e¥) = fi(e*) = —a, a>0

and s; € S,-(e*f). By Assumption (1), there is an environment e** in E,
such that ,
0 < wi¥ <a,

while
w*** = o** forall ke N\{j}.

By showing that s; ¢ S;(e**'), we shall complete the proof. Suppose, to
the contrary, that s; does belong to Si{e**'). Since the characteristics of
others remain unchanged, it follows that s € S(e**). Using the individual
feasibility requirement (2*) and previously established relations we obtain

Hi(s, &) 2 —w** > —a = hi(s, ¢),
while
S enhE(s, ) = Tiu ks, €*%).
Adding, we find that
Sienhi(s, €¥*) > Tienhi(s, e*),

which contradicts the balance requirement in (1%). Q.E.D.
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Remark 1. Thus s; depends on €’. s; need not depend on w;, but if it does
not vary with w;, then it must vary with R;.

Corollary: 1.1: If for every person j € N, there exists a good r € L and an
economy € € E, such that

fi(e) # 0,
then, for every j € N, the domain correspondence S;(¢/) is non-constant;
more specifically, there exists s* = (s/);ey and an economy € = (&,

R)ien with &) # &) while & = @* for all k € N\{j}, such that 57 ¢
S (') but 57 ¢ S(&).

Proof: Follows immediately from the preceding proposifion.

Assume now that an agent’s strategy is independent of preferences but
may depend on his/her endowment, so that i’s strategy domain can be
written as S;(w'). We shall next show that, under Assumption 2 on the
social choice function (stated below), if, in environment e* agent i has a
greater endowment of a particular good than in environment e**, while
the other agents’ endowments of all goods are the same, then I’s strategy
domain S{w**) must contain elements not present in S{w**’).

To state (2), we first introduce a class of environments. We shall
denote by E/@ the class of all environments in E whose endowment
profile equals @, while preferences vary.

Hence, fi(E/@) is the set of net allocations in the rth good to the ith
agent produced by the performance function f, as environments trace out
the class E/@. The additional assumption is as follows:

Assumption 2:

Yie N,re L, @ =0,
inf fA(E/@) = —@..

Remark 2. It appears that, when the postulated class of environ-
ments is sufficiently rich, Assumption 2 is satisfied for social choice
functions which always yield allocations that are Pareto optimal and
individually rational.

Proposition 2. Assume Assumption 2 holds, and let e*, e** be two
environments such that, for some agent i and a good r, w*; > w**,, while
w* = w** for all j not equal to i. Then there exists a strategy is available

to [ in e* but not in e**.
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Proof. By *Assumption 2, there is a sequence {e**}, k = 1, 2,...of
environments'® such that each e** belongs to the class E/w*, so that for
each e** the endowment profile is w*, by individual feasibility fier*) =
—w*;, and, by Assumption 2, lim fi(e**) — —w*} as k tends to infinity.

Write ¢ = w*. — w**.. By hypothesis, ¢ > 0. Then there exists a
number ¢’, with 0 § ¢’ < ¢, such that, for a sufficiently large integer K,
we have

fue®) = —o*i + ¢

Write )i( = (1,...,i—- 1, i+ 1,...,n). Since h implements f, there
exists a strategy n-tuple s*% = <s*& §*K) > quch that (supressing
in our notation the possible dependence of 4’ on €') h(s*X) = fle*X),
and hence

hi(S*Ki’ S*K.)i() — _w*i + ¢
Hence,
S*Ki € S,(Cl)*l)

But, since ¢’ < c, it follows from the definition of ¢ that

—-w* + ¢ < —w**

r»

and hence f(s**) < -w!, which violates the individual feasibility
requirement for agent i in the environment e**. Since s*X, )i( was
available members of )i( in e*, and S{w**') = S(w*) for j in )i( (since,
by hypothesis, w** = ©* for j not equal to i), we conclude that

S*Ki ¢ S,'(Cl)**i).
Q.E.D.

-In what follows we, sketch the construction used in Theorem 1 (where
endowments may be withheld, but preference profiles are known).

II. PURE EXCHANGE IN PRIVATE GOODS

II.A. WITHHOLDING

II.LA.1. THE ENDOWMENT GAME (WITH o
ENDOWMENTS UNKNOWN BUT PREFERENCES KNOWN)

Notation and Assumptions

(i) VECTORS

Let m be a positive integer. Then
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R7= {x|x = (x!,...,x™), x" a real number for all 1 < r < mj.

Let x, y € R™. Then x Z ymeans x’ 2 y forall lSrsSmyx =y
means x 2 y, but x # y; and x > y means x” > )" forall l Sr s m.
R7 = {x ¢ R"x= 0}; R, = {x € R"|x > 0}; R\, = Ry \{0}, so
that x € Rh, means x =; 0 R, = Rig x ... X R!., (n times). For
a.be R [a,b] = {xe RPasxsb}, (a,b]={xe€ RUlasxsb
x #F aj.

(i) ENVIRONMENT

\%

b

N ={1,...,n} = the set of agents; n 2 3.

L ={1,...,1} = the set of goods.

&, = the true endowment of agent i; @; € R, for all i.

& = (A, ..., d,) = the endowment profile.

ﬁi is assumed to be the individually feasible consumption set for

every agent.

ko) . .
R, = the true preference relation of agent i on R, x R..

. . o} . o} :
13,-= the true strict preference of agent i (i.e., xP;y iff xR;y but not

[o}
yRx).
Q . .. I I . )
R; is reflexive, transitive, and convex on R, x R (i.e., preferences

are selfish); I%,- is assumedo strictly increasing in all goods for all
agents (i.e., x= y implies xP;y).

(ii) PERFORMANCE

Z={ze Rr|lz=(21,....22); 2 € R!. Vi e N; Z;enz; = 0} = the set
of balanced net trades'*. Given a configuration z = (zy, . .. ,Z,) of
net trades, agent i’s final (total) holdings are Q; + z;.

f = the performance function®® (social choice rule).
f: IRTO — Z.
Letv=(,...,v) e R Ve R.o, Vi€ N.

f="(,. ... ifz= (z4,.--, zo) = f(v), then z; = fi(v); so,
filllRl_fo-—I’ [Rl.

f(®) is interpreted as the optimal'® net trade configuration when the
true endowment profile is @; f(®) is agent i’s optimal net trade for
the profile @.

Y P VT




FEASIBLE NASH IMPLEMENTATION 377
It is assumed that v + fi(v) 2 0, for all i and all v € R'Z,.

(iv) STRATEGIES AND OUTCOME FUNCTIONS

For each i € N, let T, be an arbitrary nonempty set. It is assumed that
the strategy space S; of agent i is of the form

Si = (07 C?)i] X Ti’
where T; is independent of &.

We also define § = §; x ... X §,.
Generically, we write for the corresponding elements

s = (W 1),
s =(S1,...,5,,
and!’
s = (s; 8)i)>
where t, e T,0< W S &, 5, € S, sy € 1158, s € S.
j#i

If we interpret the component w} of 5; = (W, t,) as a profession of agent
I’s endowment, the inequality 0 < wi S &, means that the agent cannot
overstate his own endowment; on the other hand, the endowment
can be understated (in one or more commodity components), but
the claimed endowment w} (like the true endowment 3;) must be semi-
positive (i.e., different from the null vector and nonnegative in all
commodity components). ' |

h = the outcome function (game form).
h:S— Z.

=(hy,...,h,)51fz=(z,..., z,) = h(s), then
h(s) = z;; s0, h;: S — R

h(s) = then net trade configuration resulting from the strategic
configuration s.

h/s) = agent i’s net trade resulting from the strategic configuration s.
Given s, agent i’s final (total) holdings are
C?),‘ + hi(S).

. [}
For net trades z, z{ € z, we shall sometimes write z{R;z] to mean (o; +
Z)R(d; + z}), etc.
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It will be assumed that, for all i, s (s,, i) s, (Wi, 1),
wh + h(s) 2

That is, the outcome function will never deprive the agent of goods in
excess of his claimed endowment.

Since w! € @;, a fortiori, the outcome function will never require the
agent to give up more of any good than there was in the true initial
endowment. Thus, individual feasibility is assured.

Furthermore, since h takes its values in Z, we have Z,.yhi(s) = 0 for
all s € S; hence, balance is also assured. Thus, feasibility is preserved at
all points of the strategy space, out of equlhbrlum as well as at equlhbrlum

On the other hand, since w! < @; is permitted, the agent is able to
withhold a part of the true endowment. Complete withholding is ruled
out by the requirement w} = 0.

We shall say that the outcome function & W- 1mplements20 (in Nash

equilibrium (NE)) the performance function f for Ij of true preference
profiles, if: for any true endowment profile ¢, (1) an NE exists, and,
further, (2) for any NE configuration s* of strategies, @ + h(s*) = @ +
f(d); i.e., every Nash outcome is f-optimal. -

Deﬁmtzon 1. fis 1nd1v1dually rational (IR) if, for all i in N, and all @ «
o, (B + f,(co))R @;.

Proposition 3: If preference R are continuous and nondecreasing, and if
f is W-implementable (in NE) for R then f is individually rationa]
(IR). (“W-implementable” stands for “w1thholdmg -implementable.”)

Proof Suppose f is implementable by h: § — R” but is not IR. Then
there exist @ € R, and i € N such that*' 0 PLf,(co) Since h implements f,
there exists an NE s* = (sf, ... , s¥) € S for (@, R) such that h,(s*) =
fi(&). Hence 0 Ph i{(5%).

Then, by the assumed continuity of R;, the semi-positivity of @', and
the nondecreasing preferences there exists a real number ¢ > 0 and an
i-feasible net trade b = (by,..., b)), where®* b < 0, |b]| = e,
and, furthermore,

bBhi(s*).

But, for any t; € T; and® s, = (—b, 1), we have h(s;, sjy) 2 b, since
wi + hy(s') 2 0 for all s’. Hence, h(s;, s),()R bPh «{s*), which contradicts

the supposition that s/ is an NE strategy.
Q.E.D.
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Definition 2.%* f is non-confiscatory (NC) if Vi € N, ¥ & e R,
&; + f(d) = 0.

Remark 3. It may be noted that, when &; = 0 and preferences are strictly
increasing, IR implies NC. Clearly, however, f may be NC and not IR.

Theorem I: (1) If fis IR, and if the assumptions (including strictly
increasing® preferences) preceding the above proposition are satisfied,
then f is W-implementable (in NE). (“W-implementable” stands for
“withholding-implementable.”")

(2) If preferences are continuous®® and strictly increasing, f is
W-implementable if and only if it is IR (individually rational).

Proof: The proof of (2) follows from (1) and the preceding pro-
position. To establish (1), we construct an outcome function 4, which
W-implements f.

For i € N, let the strategy space of the ith agent be
Si={wi..., W) e Rylwie R, 0S Wi S &, i,/ € N}
For s; € S,, we shall sometimes write
0= wi = (wdy w),
where

i (ol i+l i+ n
wil= (wh, ..., witl w R ) -

and
we = (we', ..., wh), with wieR,, forall ke N,reN.

We interpret w/ as agent i’s statement about j’s endowment. For all i, J
€ N, it is assumed that w/ = 0; i.e., each agents’s statement attributes to
everybody, including himself, positive holdings of some commodity. In
the spirit of informational decentralization (privacy-preserving property
of the mechanism), it is assumed that an agent has no useable information
about the other agents’ endowments. Therefore, for j # 1, there is no
upper bound on w/. By contrast, an agent is assumed to know his own
endowment. While he may conceal or destroy a part of it, he is not
permitted to exaggerate it; hence, the requirement that Wi < &, for all i €
N. (We might, for instance, imagine that the rules of the game require
that the agent “put on the table” the reported amount w".)

Notice that this S, has the structure of the strategy space S; = (0, &,] X
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T,, introduced in the previous section. In s; = (w, w)(), the component
w)C corresponds to t; in s; = (W, t,).

We will define the outcome function A(w, . .., w,), with w; ¢ R, for
each i € N, by the following rules:

(a) (The case of unanimity)

If, for some v € Ry, s = (51,...,5,) € 8,5, =v foralli e N, then
h(s) = f(v)."
To state rules (b) and (c), we use the following notation .
Lets = (s;,...,5,) €S, s55=w;=(w,..., wi), w e Rio, k,jeN.
We define
M(s) = {i e Nlwi = w}, Vj # i, j € N};
w(s) = 2 wi
1eN
Bls) = 2 2w = wil,
jeNkeN
j#Fi k#Fi

(When there is no danger of confusion, we suppress the argument s
and write, respectively M, w, f;.)
The second rule is then as follows:

(b) If M(s) = O, but there is no v such that s; = v for all i € N, then
Zienfi (s) > 0, and we set

hi(s) = [ 2'35;() )} w(s) — wi, i e N.

jeN
The third rule is:
(c) If M(s) # &, we set

1 .
(s) — w; for ie M(s)
M) "
hi(s) = —w for i¢ M(s).

We shall now prove three claims which together imply that this outcome
function & does W-implement (in NE) the performance function f.

These claims are: (1) the unanimous announcement of the true endow-
ment profile by all agents is a Nash equilibrium; (2) the unanimous
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announcement of a false ¢gndowment profile is not a Nash equilibrium;
and (3) in the absence of unanimity, there is no Nash equilibrium.

Claim 1: The unanimous announcement of the true endowment profile
by all agents is an NE. That is,

if si=®, VieN,

then s =(s;,...,s,) isaNE for .

Proof of Claim I: For such a unanimous announcement s of the true
endowment profile &, by rule (a),

h(s) = A(&). |
Suppose s is not an NE. Then there is an agent j and some §;, such that
(+++) hi(Sjs 50 F RS} $)0)

where (s;, 5)) = s. Necessarily, §; # @&, and also, for §; = (W, Wy,), by
the non-exaggeration rule,

~ 7 )

Writing §' = (S}, $y;) = (5}, 5)), so that §, = s, for all r # j, it follows?” that
J & M(@S).

Let k be any agent other than j; i.e., k # j. Since®® n = 3, there exists a
third agent m, with m # j and m # k.
Now §, =5, = & for all r # j. Hence,

~

Sm =@ and § = Q.
Since §, = (dy, ..., d,) = (Wl, ..., wh), Vr#j, we have
Wi = wh,
and hence,
k ¢ M(3).

Since k was an arbitrary agent other than j, it follows that no agent
other than j is in M(S), and we have seen above that j is not in M(5). So,

M(s) = @.
Thus, M(5) = @ but § is not unanimous, so rule (b) applies to 5.

Since s; = s; for all i # j, we have
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B(3S) = 2 2wk — will

k#j i#)

and so

hi(s) = 0-w(s) — wh= — W
Since fis IR,
his) = (@, ... B) = f(&)RD.
Because preferences are strictly increasing and wh =0,
0 F;(—w).

Therefore,
hi(s) P(— W),
and so
hi(s)P;h($),
which contradicts the above supposition that hj(§)13,~h,~(s). Hence s is
an NE.

Q.E.D.

Claim 2: The unanimous announcement of a false endowment profile is
not an NE. That is, if s = (v,..., V),V € R, with v#F co then s 1s not

an NE.

Proof of Claim 2: Since s is unaminous, rule (a) again applies, and so

h(s) = f(v).

Suppose s is a Nash equilibrium.
Since v is not the true endowment profile, and agents cannot overstate
their endowments, then there must be an agent i such that

wi < @;, YreN.

(We have v = (vl,.. v1), v¢ = wy, Yk, r € N. Since v # @, 1tmust
be that, for some i, V' # w, oWk #E D, Wi < @ But wy = V= wi,
Vr € N. Therefore, w’. < @;, Vr € N.)

Consider § = (§;, §);) such that

$)i( = e
§k =g  forall k#i

W
fl
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while

2,

i = CBZ'.
(That is, §¢ # s since s = w! < @&;.)
Then

M(3$) = {i},
and, by rule (c)

hi®) = w@) — Wi = 2w =2/

_ ki Jj#i
We shall show below that
+) BS) = hs).
Since preferences are strictly increasing, the inequality (+) implies
h(3) Pihi(s).

Therefore, when (+) holds, agent i has an incentive to deviate from s;,
and so s is not an NE. That is, Claim 2 follows.

To establish (+), we note that, since, fo our outcome function A(-),
hi(s') 2 —wl, Vj, and Zycnhi(s’) = 0, Vs’ € S,% we have™

h(s) € Xwl, Vs €S.

i
But s = (v, v,..., v), v = (v},..., v") implies v* = wf§ for all
k € N; hence
hs) S Dl
JFi
Suppose

(++) hi(s) = D/

j#i

We shall show that (++) cannot be true. Then, from the inequality in the
preceding line, it will follow that

his) < D/
jEi
But we have already shown above that hA(s) = X ,-;eiv". Hence, hi(s) <

h(s), which is the inequality (+) above. It remains to show that (++)
yields a contradiction.
Writing
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h](s) = X ] i i,
the balance requirement then yields

JEall JEal

But, x; = —V/, so that

—v +g jFEI

8,20

Xj

Hence, the balance equation can be written as

S(—vi+g) + 2 =0,

j#i jEi
and this implies g; = 0, Vj # i; hence,
x;=—v, ¥j#i
That is, if h{s) = X v/,

' j#Ei
then

(*) h(s) = —vi, Mj#i.

As noted in Remark 3, before Theorem 1, under our assumption, IR
(individual rationality) implies NC (non-confiscatority), so that

v+ fi(v) = 0.
But here
hs) = fi(v)-
Hence
v+ hys) =0

which contradicts (*).
Q.E.D.

Claim 3: In the absence of unanimity there is no NE. That is, if for some
i.jeN,s; #s) thens = (S, ..., S,) is not an NE.

Proof of Claim 3: Let s = (51,5 Sa) = Wi,o o s w,) with s; # 5
for some i, j € N. We consider three cases: (i) M(s) = N; (ii) M(s) # D,
M(s) # N (iii) M(s) = ©@.
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() ‘Suppose first that M(s) = N. Then consider § with
Se =5, forall k#1,

§{=s3 forall ge N.

(We shall sometimes write Sp = W, p € N.)
For any agent r # 1,

r ¢ M(s),

since §7 = §7. ‘
On the other hand, we shall show that

1 e M(s).

Notice that 1 € M(s), since N = M(s) by hypothesis. Hence, by definition
of M("),

st=sl Vr#1.

Thus, by the construction of §,

and so
1 € M(5);

therefore, rule (c) applies to §.

Since it was shown previously that nobody else belongs to M(5), we
have now established that ‘

M($) = {1}.
Rule (c) implies therefore

h($) = 1-w(d) — w1 = w(s) — wl = > wt.
k%1

But A(s) < Z,.,wk because M(s) = N, so that, under s, part of
Y1 Wi was allocated to persons other than 1. [That is, B(s) > 0,
Vk #1.]

Therefore,
h(8) = hy(s)
and consequently, because of strictly increasing preferences,
| () Brin(s).
Hence, in case (i), s is not an NE.
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(ii) Suppose now that M(s) # @, M(s) # N. Since M(s) # @, rule (c)
applies to s. Because M(s) # N, there is an agent j ¢ M(s) who, by rule
(c), gets

= —wl

Now consider § where, for all kK and all i # j,

~k _ ok

§i = 8,

J = ¢

S; = S},

and

~k _ ok

Sj = Sk.
For any r # j, we have

5§ =4,

and so, by definition of M(-),
reé M) forall r#j.

Furthermore, since (by construction) j ¢ M(s) and W, = w/ for all i #
we have j ¢ M(5).
Thus,
M@ = O,

and so either rule (a) or rule (b) applies to §. But rule (a) cannot be
applicable because unanimity in § is impossible: since n 2 3 and M(s) #

@, there is a person k € M(s), k # j, and a person i # j, [ # k such that,
we = wi;

hence s, # s;. But, w and w¥ are unchanged in §, and so §; # $;. Hence,
there is no unanimity in § and rule (a) does not apply to 5. Hence, rule (b)
applies to §.

For agents j, k, and i just referred to, we have

B = llwk - wh|l > 0.
Since w(s) = 0, it follows that '
hi($) = —wj = hys),
and so, by the assumption of strictly increasing preferences,
hi(5) B hi(s).

Hence, in case (ii), s is not an NE.
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(iii) Finally, suppose that M(s) = @ and s is not unanimous. Since, by
the hypothesis of Claim 3, not all announced profiles are the same, there
exist agents i and j, i # j, with

wi # wi,
We now distinguish two subcases, according to whether f(s) = 0 or

Bi(s) > 0.

Subcase (iii.1): fi(s) = 0.
Consider s defined by

Sk = Sk forall k#j

ﬁ/ = W] fOI' all r ¢]

We note that, since s is not unanimous and M(s) is empty, Rule (b)
applies to s, and hence
hi(s) = —wl.

But, a}so, s is not unanimous, because w; = wi, W = w! by construction,’!
and w; # w; by the above hypothesis.

Also, M(s) is empty because M(s) is empty, and the change from wi to
wj = 2w’ (while w/. = w’ for r # j) does not enlarge the set M. Hence
Rule (b) also applies to 5. Now, since §;, = s, for k # j, fi(s) = 0 impties
,Bj(s) = (. Therefore,

hi(s) = —W]
But,

~ 1 . .
" —_——wl = —wl
-wh = wiz —wl,

2

because, by assumptions on messages, w’ = 0. Hence, by the assumption
of strictly increasing preferences,

() B; hi(s).

So, 5 is better than s for agent j, and hence s is not a Nash equilibrium.

Subcase (i1i.2): Bi(s) > 0.
In this situation, consider §, such that
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. Sk =8¢ forall k#j
and

or

§; =s; forall r.

By construction, f,(S) = Bi(s) > 0 and Iy, Bi(5) < Zpx;Bi(s). Also,
M(s) = M(s) = 0, so Rule (b) applies to both § and s. Therefore, hi(s) =
hi(s). And so, again by the assumption of strictly increasing preferences, s
is not a Nash equilibrium.

Q.E.D.

[APPENDIX TO SECTION I1.A.1]
AN ENDOWMENT WITHHOLDING GAME FORM WHEN
THE SCR IS A CORRESPONDENCE
Player i has a strategy ‘“vector” of the form
§; = (W,‘, a;, mi),

where w; is an endowment profile, a; an element of the outcome space,
and m; an integer between 1 and n (inclusive). The SCR, denoted by F, is
a correspondence from the space of endowment profiles into the outcome
space. Define m = (my, ..., m,), and

R(m) = 1 + (Z4in M) modulo n.
Rule (a.1~). There exist an endowment profile v, outcomes a and a’, and
integers my, ..., m, in N, and an agent j,
such that

s; = (v,a, m) forall iin N\{j},
and

s;= (v, a’, m)).
Then
h(s) =a if aisin F(v),

while, for a not in F(v),
hi(s) = Zwy if = R(m),

and




A\

1S

FEASIBLE NASH IMPLEMENTATION 389
‘ hi(s) = —=w: if i#* R(m).
Remark. Note that a and @’ may but need not be equal.

Rule (a.2~). If there is a profile v, outcomes ay, ..., a,, and integers
my, ..., m, from N such that at least three of the a,’s are distinct and

s; = (v, a;, m;) foreachiinN,
then
h(s) = Swi it i=R(m),
and

h(s) = —wi if i # R(m).
Rule (b~). Same as rule (b) in the proof of Theorem L.

Rule (c~). Same as rule (c) in the proof of Theorem I.

II. PURE EXCHANGE IN PRIVATE GOODS (¢'t'd)
II.A. WITHHOLDING (c't'd)
I1.A.2. THE GAME WITH BOTH PREFERENCES
AND ENDOWMENTS UNKNOWN
TO THE DESIGNER

Notation and Assumptions

Here the performance correspondence (SCR) f associates elements of
R (net trades) with ordered pairs (w, R) consisting of endowment
and preference profiles. The set of these elements is denoted by f(w,
R). It is assumed that f(w, R) is nonempty for all (w, R) in its domain.

For the sake of simplicity, we shall assume in what follows that this
correspondence is single-valued, i.e., a function. Subsequently, we shall
indicate the modifications required to extend the results to the general
case of correspondences.

We shall consider two games. The main game, in which both the
endowments and preferences are unknown, and withholding (but not
destruction) is permitted, is called the W-R game. In such a game, for
any [ € N, a generic element of the ith strategy space S; is denoted by
s;, with
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) s; = (wi, di)-

w, € R, as before,”” w; = (wh, ..., wh), whe Ry d; € D; where D; is
an arbitrary set (the ith domain). The outcome function of this game is h:
S; X...xX§,— Rim.

We shall also consider an auxiliary game, designed for situations where
the endowment is given (though perhaps incorrectly) while preferences
are.unknown. Let the given endowment profile be v = WV, Ve
R.,, i € N. We denote by A(v) the set of feasible net allocations in a
pure exchange economy when v is the initial endowment profile and each
consumption set is the nonegative orthant; e, Av) = {(z",..., ") €
R 7 e R T, nz =0,2 2 -V, i€ N}

We denote by g¥ an outcome function, g": Dy X ... X D, — R for
an auxiliary game when the set of feasible allocations is A(v) and the
strategic domains are D;, i € N. The mapping associating the outcome
function g” with the profile v is called the auxiliary game form g.

The set of Nash equilibria of this game (a subset of Dy X ... X D,) for
the preference profile R is denoted by vg(R), and the corresponding set
of Nash allocations (a subset of R?) by Ng(R).

Definition 3. fis R-implementable through the auxiliary game form g if,

for every v € R, there exist domains D;, ..., D, and an auxiliary

outcome function g*: Dy X ... X D, — R” such that
N,(R) = f(v, R) forall (v, R).

(That is, every Nash allocation generated by the auxiliary game is
f-optimal for v and R, and every f-optimal allocation for v and R
is attainable as a Nash allocation of the auxiliary game.)

Definition 4. For each i € N, let the ith person’s strategy set be of
the form

S; = Sid;) < Rio x T;,

Where T, is an arbitrary set. A generic element of S; is denoted by s; =
(W), ). Write § = S(@) = $1 X ... X S,, and**

Awh, oWy ={(, ..., )€ R 2 e R, %zi =0,
! 1€

iz —w, Vi e N}.

An outcome function i: § — R™ is said to be @-feasible if
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h(s) € A(®y,...,d,) foral sesS,

where s = (Wi, £);cn-

Definition 5. A SCR (performance correspondence) f is W-R-imple-

mentable (in NE) if, for every & € R%, and for every i € N, there exist
strategic domains ’

S; =S8 (&) =« Ry x T,
where T; is an arbitrary set, and an @-feasible outcome function
h: [1S;— R?,
ieN
such that:
VR € R,
there is an NE s for & and R (i.e., s € on(D, R))

such that
h(s) € (&, R).

Remark 4. In our applications, Si(®;) = (0, &,) X T, and T, = R=D x
D; where D, is an arbitrary set.

Theorem 2.A: Let f be an IR social choice rule (performance function)
which is R-implementable (in NE) through an auxiliary form gv-—g.
Then f is W-R-implementable in NE (by a “combination” of g with the
endowment game of Sec. I1.A.1).

Proof:. We will construct an outcome function 4 as follows.

Let &, and the corresponding strategy spaces S{®,), i € N, be given.
By construction, s; = (w;, d)), w; = (Wi, ..., wh, ..., w}), and w! S &,.

Now we distinguish two types of situations according as to whether
there exists v € R%, such that v = w, for all i € N.

If such v does not exist, we follow rules (b) and (c) above and conclude
that s is not an NE (see Claim 3’ below).

On the other hand, suppose that v does exist. Then the outcome is
dictated by the outcome function g* generated through the mapping g for
this y. It then turns out (see Claims 1’ and 2’ below) that an NE obtains
only if v coincides with the true endowment profile @. But then, by the
assumption on g, it follows that Ny(3, R) = f(®, R).

Formally, the rule (a) of the endowment game (W-game) described in
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the previous section is replaced by the following Rule (a'): if for some v
such that, for all i € N,

S = (_V,, d;)
for some (d,, ..., d,) = d, then, for s = (515 - ., 8,), we set

h(s) = g*(d).

The rules governing cases where there is no unanimity as to endow-
ments are unchanged. The right hand sides of the definitions of M(s) and
w(s) remain the same as in the W-game, although now s, = (w;, d;) rather
than s; = w;. The two other rules ((b’) and (c’)) are the same as rules (b)
and (c) for the W-game, again with s; = (w;, d)).

Theorem 2.B.B:* Let n Z 3, let endowments be semi-positive (w; = 0),
and preferences continuous and strictly increasing. Then, a social choice
function f is W-R-implementable in NE if and only if it is monotone and
individually rational (IR).

Proof: (i) Sufficiency. For n 2 3 and monotone f, Theorem 5 in Maskin
(1977)° shows that there exists a function g which R-implements f in
NE.”” Hence, by Theorem 2.A above, the individually rational social
choice function f is W-R-implementable.

(i) Necessity. If fis R-implementable, it is monotone by Theorem 2 of
Maskin (1977). If f is W-implementable, it is IR by Proposition 3 in
Section II.A.1. : “

Claim 1': Correct unanimity with regard to endowments yields an NE.

Lets* = (sf,...,s%), and, for all i € n, s} = (&, d}), such that d* =
(df,..., d}) is an NE for g‘Z‘ given 1§, le., d* € vg@(é). Then s* is an
NE for h given (&, R); i.e., s* € (&, R).

Proof: Suppose s* is not an NE. By the assumption concerning d*, for

any agent /, it would not help to depart from d;* while retaining w; = &.
Consider therefore § = (§, . . ., §,), such that §; = s} for all j # i, while

§; = (W;, d;) with w, # Q. (Ji may or may not equal d.) Since, by the

outcome rules, W} € &;, it follows that M(5) = @ and so rule (b’) applies.
But

ﬂz(f) =0,
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since other agents remain unanimous with regard to endowments. Hence,
rule (b") prescribes

h($) = —Wwi.
By our assumptions on the auxiliary game form g and d*,
hG*) = (&, R).
Since f is assumed to be IR,
fAB, RIR.0,
hence
hi(S*)éi(),
and therefore
~WP;0,

which contradicts the requirement of semi-positivity for endowment
messages and strictly increasing preferences. Hence s* is an NE for
(@, R).

Claim 2': Incorrect unanimity concerning endowments does not yield
an NE.

Lets = (s;,..., 5., = (v, d) VieN,y= VL., v, Ve R,
v # @. Then s is not an NE for (&, R).

Proof: Suppose that s is an NE for (&, R).

By the outcome rules, v < @, and (since v # @ by hypothesis), v < &,
for some i by virtue of the non-exaggeration requirement.

Then, by reasoning exactly like that in the proof of Claim 2, we show
that Claim 2" will have been established if [with §; = (W;, d,), W; = (W,
wyi), Wi = &;, and §; = 5; ¥ j # ]

(+) hi(§) = hi(s),

and that if (+) fails then

0) h(s) = S/
j*i

and

(*) hi(s) = —v/ V j#i.

It will therefore suffice to show that the last two equalities yield
a contradiction.
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To get this contradiction, we shall first prove the following:

Auxiliary Proposition: If s is an NE for (@, I_°§), then s is also an NE for
(v, R).

Proof: (1) Consider agent i. We know that our rules never give to an
agent more than the others have “put on the table.” That is, for all s/,

hi(si, $y) S ZW] 2.
JFi JFi
But, by (0) above,
h,'(S) = ZV]
j=i
Hence .
hi(si, sy § hy(s) for alls;,

and so, by the monotonicity of preferences, s; is a Nash equilibrium
strategy for agent i.

(2) Now consider any agent j other than i. Suppose s; is not a Nash
equilibrium strategy for j in the economy (v, R)

Then there must exist a strategy s; for j with the characteristic (v/, R)
such that

(a) hj(S;, S)l() P]h](S)

Now, since by the rules of the game h(s*) Z —wj/ always, we have
in particular
(8) hi(sj, sy;) 2 —v/ = hi(s)

where the last equality follows from (*) above.
Since replacing 2 by = in () would contradict (a), if follows that 2 in
(B) can be replaced by =, and () becomes

hj(S;, S)j() = hj(S).
In view of the assumed strict monotonicity of preferences, the latter
inequality implies
h'(S;, S)j() Ph(S)

where j’s characteristics are (@, R R,), and so s is not an NE in the
economy (@, R) This contradiction of our initial hypothesis completes
the proof of the Auxiliary Proposition.
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We now return to the proof of Claim 2’ By Rule (a’), since s is
unanimous as to endowments, we have

h(s) = g*(d),
and
(7) hi(s) = g4(d) Vj € N.

Now, by the Auxiliary Proposition, d constitutes an NE in the game‘ g
for R, and, by hypothesis, 8" R-implements f. Therefore

g4d) = flv, R),
and so
(3) gH(d) = (v, B).
Using in turn (), (y), and (*), we obtain
i, R) = g{(d) = hi(s) = —v/, Vj#i;
hence,
fiv, B) = —v/, vj#i
But this contradicts the hypothesis that fis NC, i.e., that
fi(2, B) = —v, VjeN,

This contradiction implies that (+) holds, and hence that, by the strict
monotonicity of preferences,

hi(S)Phs).
So s is not an NE for (&, 1_3). This completes the proof of Claim 2.

Claim 3": If there is no unanimity as to endowments, then there is no NE.

Proof: We proceed as in the proof of Claim 3 except for (iii), which is
replaced by the following:

(i) Finally, suppose that s is not unanimous as to endowments and
M(s) = &. Since, by the hypothesis of Claim 3’, not all announcements in
s are the same, there exist agents i and j, i # j, with

Wi # wi,

We now distinguish two subcases according to whether f,(s) = 0 or Bi(s)
> 0.
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Subcase-(iii.1)": fi(s) = 0.
Consider § defined by

S = Sk forall k£ #j
!/ = Lyl
w/ 2wl
X, Ry .
wj = wj forall r #,

and the second component of §; arbitrary (e.g., 5] = d;).
We note that since s is not unanimous as to endowments and M(s) is
empty, rule (b)’ applies to s, and hence

hi(s) = —w/.

But, also, s is not unanimous as to endowments because W= wi,
by construction,® and w! # w; by hypothesis.

Also M(s) is empty because M(s) is empty, and the change from w’ to
wl’ w’ (while w/, = w/ for r # ]) does not enlarge the set M. Hence rule
(b)’ also applies to 5. Now, since 5, = s, for k # j, (s) = 0 implies Bi(s)
= 0. Therefore,

— i

=

But,

= =Ll > i
Wi W= W

because, by assumptions on messages, w/ = 0. Hence, by the assumption
of strictly increasing preferences,

So, § is better than s for agent j, and hence s is not a Nash equilibrium.
Q. E.D.

Subcase (iii.2)": Bi(s) > 0.
In this situation consider §, such that

5/( = Sk for all & ;é]
and
§i =5, forall r.°

By construction, /i,-(f) = Bi(s) > 0 and Zy»; Bu(5) < Zpx;Pfuls). Also,
M(S) = M(s) = @, so rule (b)’ applies to both § and s. Therefore,
hi(§) = hys). And so, again by the assumption of strictly increasing

preferences, s is not a Nash equilibrium.
Q.E.D.
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H.B. DESTRUCTION OF ENDOWMENTS

In this section, we consider an alternative game, in which the agents may
destroy a part of their endowment but are not able to withhold (conceal)
any of it. D-implementability is defined analogously to W-implementability,
with destruction replacing the withholding of endowments. We again
assume pure exchange, with semi-positive initial endowments (@; = 0)
and strictly increasing preferences.

It then turns out that the outcome function introduced in Sec. II.A.1
above, with the modification indicated under Claim 3 below,*® D-
implements any non-confiscatory (NC)* performance function when pre-
ferences are known to the designer.*! Similarly, when f is monotone as
well as NC, outcome functions of the type considered in Sec. IL.A.2
above implement f when neither endowments nor preferences are known
to the designer.

In what follows we state the result for the case of known preferences
and indicate the modifications in the proof for W-implementation needed
to make it valid for D-implementation. The theorem on D-implementa-
bility when both endowments and preferences are unknown is the same as
part (1) of the theorem on W-implementability, with NC replacing IR.

The notation for strategies remains the same as in Sec. II.A but the
interpretation differs. In particular, given s, agent i's final (total) holdings
Hi(s) equal wi + hy(s) where w} denotes i’s (true) endowment after
destruction. Similarly, for i # j, w/ denotes i’s estimate of j’s endowment
after destruction. It is still assumed that w¥ = 0 (i.e., wf € R) for all i,
k in N. Hence, an agent cannot destroy all of his endowment.

The result for the case of known preferences is given by the following:

Theorem 3: f is D-implementable (in NE) for 1_3 if it is non-
confiscatory (NC).

Proof. The proof is very much the same as that for W-implementability.
In particular, in the former proof we used the fact (see Remark 3 in
Section II.A.1 that IR implies NC, while here only NC is assumed. We
shall therefore only spell out those parts of the proof of D-implementa-
bility which differ significantly from the proof of W-implementability,
‘with page references to the former proof.*?

First, for the destruction game, we replace rule (b) by the follow-
ing rule (b*), consisting of two parts, (bT) and (b3).2

In order to state these rules we must define numbers £ (i = 1,. .., n)
as follows. Consider s = (sy,. .., s;) where s; = (L., =i, ...,
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w?), with w/—as before—denoting the value of f’s endowment claimed
by i (called i’s estimate of j’s endowment). Denote by t‘(s) the number of

distinct commodity space points among the elements wy, ..., w,, to be
called the number of estimates (in s) of i’s endowment, and define t(s) =
max{t'(s), ..., t"(s)}. We shall call «(s) the number of estimates in s.
The rule (b*) then reads as follows
If M(s) = @, and #(s) = 2, then (b1)
hi(s) = [B(S)/ZjenBi(9)] - w(s) — wi, i€ N. (#)
If M(s) = @, and #(s) > 2, then (b3)
hi(s) = [BF ()/ZjenB (5)] - w(s) — wi, i € N, (##)
where

BE(s) =1 + Bul(s), k € N.

The changes in the proof of the three claims, here labeled respectively
with double primes, are indicated below.

Claim 1”: Here we must replace the part of the W-proof using the
IR property of f by an argument using the NC property only. We there-
fore substitute for the last ten lines of the proof of Theorem 1*%¢ the
following paragraph:

Since fis NC, and preferences are strictly increasing,

@; + f(d)P,0.

But here
&; + his) = &; + f{D)
and
B+ G 50 = ¥ = % = 0.
Hence,

(@, + h(s)PAF + hi(5, 50)

which contradicts our supposition (+++) in the proof of claim 1 and in
the proof of Theorem 1.

Remark. This argument would not be \{alid for withholding where, under
§, the total final holdings equal &; — W/ rather than 0.
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Claim 2": Replace the sentence after (+) in the proof of Claim 2 in the
proof of Theorem 1 with:

Since preferences are strictly increasing and W) = w!, the inequality
(+) implies

(W + B Pw + h(s)).
Claim 3": In the absence of unanimity there is no NE.

Proof: We consider three cases:
()" M(s) = N; (ii)" M(s) # @, M(s) # N, (iii)" M(s) = @.
(1)" Suppose first that M(s) = N. Then consider § with
S =8, forall k#1,
S =s% forall qgeN.

(That is, agent one accepts everyone’s self-evaluation.)
Then

M@G) = {1).

(This is proved exactly as in Theorem 1, Claim 3(i).)
Since M(5) # O, rule (c) applies. Therefore,

M) = 1-w() = W= w(s) = w = Swi— wh
On the other hand, since M(s) = N, rule (c) also applies to s and yiel;is
hi(s) = %élwf — wi.
Since ilwf = 0 (by the rule w; = 0), and n > 1, it follows that

hi(5) = hy(s).
Hence, since w! = wi,
H\(S) = Hy(s),

and, by strictly increasing preferences, H,(§ )}%1H1(s). So s is not an NE in
case (1)".

i) M(s) % D, M(s) % N.

P e e e e
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Since M(s) # @ and there is no unanimity, rule (c) applies to s.
Because M(s) # N, there is an agent j ¢ M(s) who, by rule (c), gets
hi(s) = — wl.
(Since this is the case of destruction, H(s) = w{ + h(s) = wi— wl =)
Now suppose that agent j accepts everyone’s self-evaluation. Thus
S, =5, forall r#j
and
5 =52 forall gq.
Then (by the argument in Theorem 1)
M@i$) = Q2.

Hence rule (c) does not apply. But neither does rule (a) because § is not
unanimous. (This is seen as follows: since n = 3 and M(s) # @, there is a
person k € M(s), k # j, and a person i, with i # j, { # k, such that

wi = whd

hence s, # s;. But since k # j and i # J, we have §; = s, and §; = s, by
construction. Hence §, # §;, and so § is not unanimous. )
Since § is not unanimous and M(§) # &, rule (b*) applies to §.
For agents j, k, and i referred to above, we have
Y > K k
Bi(§) 2 | wi — wi| >0,
since wf = wk.

- From w(s) = w(s) = 0, it follows that h(s) = 5S). w(s) = 0. On the

ZB(S)
- other hand, 7(5) > 0 by construction for all g € N and all § € s, so that
i% w(§) = 0. Hence, whether rule (b}) or rule (b%) applies, we have

hi(§) = —wl = hy(s).
(The last equality was exhibited above.)

But W/ = w}, so H(S) = Hy(s), and, by strictly increasing preferences,
H(S)P;H(s). Therefore, s is not an NE.

(ii)” Finally, suppose there is no unanimity in s; hence the number of
estimates #(s) is at least 2, and M(s) = @. We distinguish two cases: case 1:
The number #(s) of estimates is 2; case 2: the number of estimates is at
least three.
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Consider first case 1 where the number of estimates is two, i.e., #(s) =
2. In this case, we distinguish two subcases, 1a, where all Bi(s) > 0, k €
N, and 1b, where not all f(s) are positive (i.e., some are zero).

Subcase 1a: Here t(s) = 2, and Bi(s) > 0 for all k in N. Since there is no
unanimity, there are agents i and j such that, in s, w/ # wi. Let i change
his strategy from s; to §;, so that, in §;, w! = w!, while other components of
$; are the same as in s;. Then Bi(S) = Bi(s) > 0, where the equality follows
from the definition of f,(.) and the inequality holds by the hypothesis
of case A. Also, f(s) = Bi(s). But, since our theorem assumes n > 2,

there is at least one agent r other than i or j, and for all such agents

B.(s) < B.(s). Clearly, #(5) = «(s) = 2, so rule (b}) applies. It follows
from the above properties of the f's that h(§) > h(s), and hence s is
not an NE.

Subcase 1b: Here, still, (s) = 2, but there exists some agent i such that
Bi(s) = 0. Here the argument depends on whether i has a strategy §; such
that #(§) > 2, with § non-unanimous and leaving the set M(5) empty.

Consider first the sub-subcase 1b’ where such a strategy § is availailable
to agent . The situation with § qualifies then under rule (b3). Now since
pis) = 0, it follows from (#) that H,(s) = 0. On the other hand, since
B () > 0 by construction, it follows from (##) that Hy(5) = 0. Again, s is
not an NE.

But suppose (sub-subcase 1b, that i has no strategy §; qualifying
under rule (b3). This can only happen if, under s, all agents other than i
(“‘the crowd”) are announcing identifical profiles but different from that
announced by i (the only “dissident’).*8

Here again there are two possibilities:

(i) The dissident and the crowd agree about i’s endowment; i.e., w! =
wi for all j # i. Then i can adopt the strategy §; with i = wi and W} = w/
for all j # i. With others retaining their strategies from s, this will result in
a unanimous §, so that hAy(S§) = f(§). Since f is, by assumption in the
Theorem, NC (non-confis-atory), it follows that w + h,(§) = 0. On the
other hand, since ¢(s) = 2, so that (b{) applies,.and fi(s) = 0, formula
(#) yields wi + h(s) = w! + (—w!) = 0. Hence § yields to agent i a bigger
outcome, i.e., W + hi{s) = 0 = w! + hy(s), so—by the assumed mono-
tonicity of preferences—s is not an NE.

(if) The dissident and the crowd disagree about i’s endowment; i.e.,
wi # wi for all j # i. For any j in the crowd, f,(s) > 0, j # i. Then any
member of the crowd r (with r # i) can change from s, to §, such that
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w' = w!, while other components of s; remain unchanged. This does

not change the number of disagreements, so #(§) = 2, continues to hold,
§ is not unanimous, and M(S) is still empty. Hence formula (#) in (b})
applies. Now f,($) = fi(s) = 0 and ,(5) = B.(s) > 0.%° But for any agent k
other than i or r (i.e., any member of the crowd other than r) fi(s) <
Bi(s). Thus for agent r, in the expression for 4,(5) in (#) the numerator is
positive and the same as in 4,(s) while the denominator is smaller; also,
w(s) = w(s). Hence h,(§) > h,(s) and so s is not an NE.

We now proceed to case 2, with t(s) > 2, i.e., where the number of
estimates in s is three or more. Hence formula (##) in rule (b3) defines
the outcomes under s.

Since 1(s) = max{'(s), . .. ,t"(s)} > 2, there exist three agents i, j, and
k such that among the three estimates wi, wj, and wj no two are equal.
Let now agent j change the endowment estimate profile from s; to §; so
that wf = wf for all p # I, and Ww; such that w; is closer (in norm) to
w! than w! was, while still w; # w;, and w; # w'. Hence formula (##) in
rule (b%) applies to § as well as to s. (All components of § = (§y, .
$,), except §;, are the same as those of s.)

Note that, since the components of § other than §; are unchanged, we
have B/(5) = Bi(s). Also, §i(§) = Bi(s). However, for r other thaniorj,itis
the case that 8,(5) < fB,(s). The same relations hold respectively for the
B*’s. Hence in the quotient of formula (##) for h(s), the numerator is
the same as for h,(s) and positive, while the denominator is smaller. It
follows that h/($) > hj(s), and therefore s is not an NE. This completes
the proof of Theorem 3.

M

Remark 6. If rule (b*) had not been substituted for rule (b), Claim 3"
section (iii)", would no longer be true (when M(s) = ©). This is shown oy
the following counterexample:

S wi wi owi 1 5 4
n=31=1;s= (sz) = (w% w3 w%) = (2 3 4).
53 wi wi wi 1 3 4

Assume that &, = 1, &, = 3, &3 = 4. (So wi = &, fori = 1,2, 3.)

This s is not unanimous, and M(s) = @. If the mechanism were generally
rules (a), (b), and (c), then rule (b) would apply here to s. Contrary to
Claim 3", this s is a Nash equilibrium.

[\1 81 8]

Proof: (1) No § can be unanimous (because if one player changes, the
other two still disagree). So rule (a) will not apply to .
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(2) For every §, we have M(§) = @. This is so because, by hypo-
thesis, every agent is already telling the truth about himself (i.e., he is
destroying nothing), so he cannot raise his w}; therefore M(s) = & implies
M(s) = @. So rule (¢) will not apply to §.

(3) Hence rule (b) applies to any § (as well as to s).

(4) We have B,(s) = /)’z(s) = 0 and ﬂ3(s) > 0. By rule (b), agent 3 gets
everything (i.e., Hs(s) = wi + w3 + w3), while the other two agents get
nothing (i.e., H,(s) = Hx(s) = 0). Certainly, therefore, agent 3 cannot do
any better under any change of his strategy §.

As for agent 2, H,(5) = 0 for any change of his strategy 5>, because $,

does not enter f,(+), so that fy(sy, §, s3) = 0 for all 5. Hence, agent 2
cannot do any better under any change of his strategy 5.

Agent 1 is in exactly the same situation as agent 2.

So, no agent can do any better by unilateral strategy change, and
hence s is a Nash equilibrium.

It .is of some interest to see why and how the situation differs in
the withholding game, in contrast to the destruction game being
considered here.

In the withholding game, comments (1), (2), and (3) of the above
proof remain valid. It also remains true that 8,(s) = #,(s) = 0 and B5(s) >
0. It is still true that agent 3 cannot improve his situation, but either
of the other two agents can. Thus, in the W- -game, let agent 2 choose
W3 = zwz (Recall that w3 = &,.) Then5O HYG) =&y — W3 =&, — 7(02 =
33, = 0, which is better than H¥(s) = 0. On the other hand, HY(3) =

~ D ~
w3 — w% = 0, which is no improvement.

Remark 7. If rule (b) must be modified (as seen in Remark 1), it is
natural to ask why it cannot be replaced by rule (b3), rather than
the more complex rule (b*), which distinguishes between disagreement
situations depending on whether there are more than two distinct strategy
profiles. The answer is that rule (b3) would be inappropriate in the proof
of Claim 1", while rule (b}) does work.

Remark 8. We may note that we need not distinguish the cases f;(s) = 0
from f;(s) > 0 when rule (b3) applies, since in both cases ff(s) > 0,
and the derived conclusion is due to changes in the denominator of
B; (s) /X B} (s), while the positive numerator remains constant. On the
other hand, as in Theorems 1 and 2, we must distinguish these two cases
when rule (by), which is identical with rule (b), does apply.
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Appendix to section I1.B

The following is a sketch of the proof of (iii)” using the rules suggested by
Hong (see footnote (43) above).

(ii1)” Finally, suppose that not all announcements in s are the same and
[1] M(s) = O [i.e., the set M(s) is empty].

We must show that s is not a Nash equilibrium.
Since there is no unanimity, there exist agents i and j, such that

(2] wi # wi,

where wj denotes j’s statement about i’s endowment. We distinguish two
subcases, with [1] and [2] assumed to hold in both:

A#. There are in s precisely two distinct endowment profiles
v’ and v".
B#. There are in s at least three distinct endowment profiles in s.

Subcase A#. Any player & in the subset of N containing more than
one member’' can so change its announced profile as to produce three
distinct endowment profiles. Let then §, = v, v # v/, v # V", and

mk =1+ mk + (Zr;ékmr)mod n-

Then in § there are three distinct endowment profiles: v, v’, and V"
Hence, Hong rule (H-b2) applies and k gets “all”’, which is better for &
than what it would have obtained in s under rule (H-b1), since in s, some

players other than k& would also have received something under rule
(H-b1). So s is not an NE.

Subcase B#. Since there are three distinct profiles in s, Hong rule
(H-b2) applies. Let i = 1 + Zm)moan. (Such i exists, because the RHS is
an integer in {1,..., n} — and is unique.) Consider a player j # i, and
let §; be such that w; = w;, while m; is such that

j= 1+ (Z,;e]'m,-) mod n.

That is, j does not change its endowment profile (hence, rule (H-b2) still
applies) but changes its integer to become a winner. Since j was not a
winner under s, its situation is improved. Hence s is not an NE.

This completes the proof of (iii)”.
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‘1II.C. WITHHOLDING AND DESTRUCTION

When both withholding and destruction are permitted, the former

always dominates the latter. Hence, this case reduces to that treated in
section I1.A.

Example: The following example shows that non-confiscatoriness is not a
necessary condition for D-implementability. It is assumed that endow-
ments are unknown but preferences known. There are three persons. The
performance and outcome functions are as follows:

Performance function:
IOV, Wy, ﬁ’z) = Z?=1ﬁ’i
fr = f3(‘3’1, W, w3) =0
Si={(wh,wi,w) |0=swis®) i=123.
Outcome function:
H: 8§, X §, X §3 — final holdings
a) Ifw) £ whj=2,3, then

1 1
oot e [l
AR - ey R LCISS PV puwy Y L

po = [ L=l
- 3

”W%_W%” ] 2
H, = = .
3[M%wﬂ+lw

b) If w3 = w?orws=w;

H,=W: l=1,2,3
Note that H is balanced.

Claim I: (w}, ws, wi)isan NE = wi* = wi* j =2, 3. This follows from
the fact that H, is maximized for given w3, w3 when w} = wi*j=12,3.

Claim 2: (wf, w3, w}) is an NE = w/* =}, j = 2, 3. By Claim 1, at an
NE we must have wi = w/ j = 2,3. But this yields H, = H; = 0 by rule
(a). If wi* < W;j =2o0r3, then W} = wi* i #j, W)= W, yields H; = %, =
0, contradicting w being part of an NE.
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Claim 3: w; = (W, Wy, W3) for all i is an NE. We are in rule (a) and
person 1 clearly can do no better with any other strategy. If person 2 or
person 3 changes his/her strategy, only decreasing his/her own stated
endowment is possible. But this will result in rule (a) still being applicable,
and this implies he/she continues to get 0.

Proposition 4: f is implemented by H.

Proof: This follows from the three claims.

APPENDIX TO SECTION II
. ON THE IMPLEMENTATION OF WALRASIAN
AND CONSTRAINED WALRASIAN CORRESPONDENCES

1. The following example shows directly that, in certain pure exchange
economies, the Walrasian correspondence cannot be implemented (in
NE) without violating the feasibility requirements. The same example
demonstrates that, in such economies, the Walrasian correspondence
lacks monotonicity (in Maskin’s sense); Maskin’s theorem (1977) then
implies the non-implementability. It should be noted that the conclusion
about non-implementability holds whether the initial endowments are or
are not known to the designer. '

The example is given graphically in Figures 1.1, 2.2, and 3.3, pre-
senting, respectively, the preferences, endowments, and budget lines of
agents 1, 2, and 3 in a two-good economy. o

We consider two environments & = (R!, R?, R®) and & = (R!, R?, R?),
which differ only with respect to the preferences of agent 1. That is, R/ =
R’ forj =2, 3.

It is seen that (p*, z*) is a Walrasian equilibrium for &, but not for é.
(However, (p*, z*) is a constrained Walrasian equilibrium for &, as well
as for ¢.) In fact, z* is not a Walrasian allocation for ¢ (for any price).

Suppose now that, for some outcome function 4, z* is a Nash allocation
given €. Then, for this h, z* is also a Nash allocation given é. For,
agents 2 and 3 have unchanged preferences, and any commodity bundle
- preferred by agent 1 to z*!, according to the new preferences R', was also
preferred according to R!, and hence must have been unavailable by the
rules of h. Hence, for every outcome function 4, either z* is not a Nash
allocation given é (when z* is Walrasian) or z* is a Nash allocation given
¢ (when z* is not Walrasian). Hence, no outcome function 4 can yield a
set of Nash allocations coinciding with that of the Walrasian alloca-
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Figure 1.1.

tions; i.e., the Walrasian correspondence W is not implementable in
Nash equilibria. N

The fact that z* is Walrasian for R!, but not for R!, shows that the
Walrasian correspondence W is not monotone in Maskin’s sense because,
for all i € {1, 2, 3}, Z*R'Z implies Z*'R'Z’ within the feasible set.

2. It is convenient at this point to introduce the concept of a
constrained Walrasian equilibrium.
We use the following notation:

N = {1,..., n} = the (finite) set of agents
L ={l,...,[} = the (finite) set of goods
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.2
Z,

3-_
24
14
— 7]
02 1 2 3 4 5 6
Figure 1.2.

P! = the [-dimensional price simplex
w; = i’s (true) initial endowment (w; € Ry, i.e., w; = 0)
w = Za),-
ieN )
R; = i’s (true) weak preference relation
i’s (true) strict preference relation.

o
I

Definition 6. An allocation (X;);cn, Xi € R,., and a price p constitute a
(pure exchange) constrained Walrasian equilibrium if

i) VieN, p-X;=p- w;

i) Vie N, %Ruxforall xS > w;, such that
jeN

prxSp @
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Figure 1.3.
i) D% =
ieN

where %; € R’ denotes the total holdings (not the net trade) of the
ith agent.

We shall denote the constrained Walrasian correspondence by W..
Note that the Walrasian correspondence W is contained in W, (i.e., W ¢

W.). In the absence of Edgeworth Box boundary Walrasian allocations,
W, =W.

3. A slight extension of Hurwicz’s (1977) result implies that the
constrained Walrasian correspondence is the smallest continuous social
choice (= performance) correspondence satisfying the conditions of
Pareto optimality and individual rationality that can be Nash-implemented
over a sufficiently rich class of economies.
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On tHe other hand, Maskin’s (1977) result implies that, for three or
more agents, any monotone performance correspondence can be Nash-
1mplemented in pure exchange economies with strictly increasing
preferences,’? provided the feasible set is known.

Together these two results imply
Theorem 4: if a social choice correspondence f (defined over a suf-
ficiently rich class of economies with n 2 3) is continuous, PO, IR, and

monotone, then it contains the constrained Walrasian correspondence,
ie., fo W..

4. Our results.in section 2 imply

Theorem 5: the constrained Walrasian correspondence W, can be W-
R-implemented (in NE).>3

However, the outcome function in the proof of implementability uses a
huge, in fact, infinite, dimensional strategic domain (message space). It is
therefore of interest to see that

Theorem 6: W, can also be W-R implemented by a finite- dzmenszonal
strategic domain, similar to that used by Schmeidler (1976).

It is sufficient here to demonstrate the R-implementability (when the
initial endowments are known), since the outcome function in section II
uses a finite-dimensional space for the revelation of endowments.

The strategic domain for agent i € N is given by

={(p, ) e Ry x Riip-x=p-w}

x; denotes the total holdings (not net trade) of the ith agent.
The outcome function H, for total holdings, is defined as follows:

1. If there exist i, j, kK € N, such that p;, D) Dk are distinct, then>*

” Xt ” :’
H, = [—— w, VteN.
LS en Xl

2. If there exist only two distinct announced prices p’ and p”, and at
least two agents announce each p’ and p”, then

Hi=a),-, VIGN,

e., there are no trades.
3. [Ifthereis a p, such that p; = p for all i € N (unanimity as to price),

3.1) and D x;# w, then H;,= w;,VieN;
ieN
3.2) and in = X, then Hi = Xjy V i € N.

ieN
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4. If there is a p and an agent m € N, such that p,, # p but p; = p for
all j # m, then

H, == Xm
4.1) ptm it 20, <o
. P %m
H; =;l"'_—1(a)-Hm) for j#£m
42) H,=w; forall ieN, i ‘;"""’xmﬁw.
e

Theorem 7: Let all initial endowments be semi-positive (®; = 0) and
known to the designer. Then the set of Nash equilibrium allocations
(NA) for H coincides with the set of constrained Walrasian equilibrium
allocations (CWA).

Proof: 1. CWA < NA.
Let [p, (7)en] € CWA.

Consider the strategies (s,),ey Where s, = (p, y,) Vt. By the definition
of H, if any agent ¢ unilaterally changes his strategy, he will receive a
bundle y for which p-y = p-w, and y § w. By definition of a con-
strained Walrasian equilibrium, no such bundle is preferred to y,. Hence,
()—)Z)IEN € NA.

2. NA c CWA

Let (S)ien, S: = (pr, x;), be Nash equilibrium strategies yielding the
allocation (¥,),cn. Then we claim that there must exist a p with p, = p, for
all . Suppose, per absurdum, that there exist i, j with p; # p;; since the
number of agents is at least three, there exists an agent k # i, J. This
agent can choose p; # p;, p; and x' such that p’ -x" = p’ - w; and x|
arbitrarily large. Then by rule 1, he/she can receive arbitrarily close to the
entire endowment of this economy. Since, by the game rules, a Nash
allocation would not have given agent k the whole endowment w, the
strategy (p, x') is more advantageous to k, and so s is not an NE.
Given the common announced price p, the bundle y, is as good for
agent t as any y in the set {y|ly S w, p- w, = p - y} for every agent t. For if
there were an agent ' and a bundle y such thaty S w, p-y = p -y,

/
P Wik

and yp,y,, agent t' could change his strategy to < , )y where

p # p. [Here p, represents the strict preference relations of agent ¢'].
Then H, would be calculated by rule 4.1 to be
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(5~ 0)(pl(p - lp-NyD}y (P~ welp: iyl =y

Since agent t'. strictly prefers y to yi, this would contradict the fact that
(s)en is @ Nash equilibrium. Thus, for any ¢, we have y.R;y, Vy € w such
that p-y € p- o, Also, Py =D O Clearly Z,cn¥: = @ and, hence,
(5. (F)een] € CWA.

O.E.D.

Note that the outcome function H is always individually feasible.
Postlewaite and Wettstein (1983) have shown that the outcome function
above can be modified so as to implement the constrained Walrasian
equilibria with a continuous outcome function.

[II. ECONOMIES WITH PUBLIC GOODS

Consider economies where private goods can be used as inputs to produce
public goods.

III.A. To simplify exposition, start with the case where there is only
one private good X and one public good Y and it takes one unit of X to
produce one unit of Y. (In what follows, we shall always be assuming that
the designer knows the production function for the public good. Hence
the normalization used is legitimate.) As a further simplification we shall
also assume zero initial endowments of Y and positive endowments of X
for all agents. ' ‘ .

The problem of implementability is posed as in the preceding sections.
We begin, as in Section II, by considering the case of known preference
profiles while the initial endowments are unknown and may be withheld
(but not destroyed).

It turns out that, even with the assumptions made in Section II
(semipositive endowments, strictly increasing preferences, and IR per-
formance functions) we must impose a further restriction on the
performance function in order to obtain W-implementability.>

Letv € R%, bean X-endowment profile and write

f() = (FFQ), fi(@)ien

where f,X(K) is the net trade in X received by agent i given v, and fH(v)is
the net trade in Y received-by i given v.5% Then the additional assumption
we are adopting is that

(*¥) vi T ,X(X) > ( forall iandally>0.

ir

St
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To W-implement f we shall use here a modified form of the game
introduced in Section II.

First, we expand the strategy spaces used in the proof of Theorem 1,
by adding to each agent’s message a statement as to his/her desired level
of the public good Y, to be denoted by y,.>” So the generic form of i’s
strategy 1s

Si = (Wil, oW YD) = (W ),
where w/, is agent i’s statment about j’s X-endowment, and, as previously
§ = (S, ..., 8.
The outcome function & = (h¥, hY) is as follows:

(apg) (Unanimity with regard to endowments)

If there is a v € R such that
si=(v,y) VieN,
then
h(s) = f(v).

(bpg) (No unanimity with regard to endowments and>® M(s) = @)

For everyi € N,

X[\ — Bis) o
hz (S) [EjeNﬁj(S):i (S) W;
where
Bis) =2 2 Iwi—whl, ieN

jeNkeN

jEi ki
and

hY(s) = 0.

(cpB) M!Q * &;
(cpg) #M(s) > 1:

h¥(s) = {Ej—e—gf—%j(—;)-}w(s) —wh for ie M(s),

h¥(s) = —wi for i¢ M(s),
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and

hY(s) = 0.
(cpB) M(s) is a singleton, say M(s) = {i}:

1. A%(s) = —w! forall j+#i;
2. if D wf—y, 20, then

keN
hE(s) = 2wk — wi—y,
keN
and
h¥(s) = ys;
3. if D wk — y; <0, then
keN
hi(s) = X wk — wi
keN
and
h¥(s) = 0.

The condition X, ywk — y; 2 0 assures the non-negativity of the final
holdings™ for agent i, since when it is satisfied, we have

H¥(s) = &; + hX(s)

- /9 k i
=d; + X wi— wi—y
keN

- @, —wh) + (S k- ).

keN

Since &; ~ wi 2 0 by the rules of our game, Z; ywk — y; 2 0 implies
H(s) 2 0, i.e., individual feasibility for agent i.

We see that the outcome rules are essentially the same as in the
absence of public goods, except when M(s) is a singleton.

[I.B. Consider now the following broader class of economies, E.
There are r private goods X', ..., X" and / — r public goods Y"*!, ...,
Y, r=1,[—-r=1where the private goods serve as consumer goods and
possibly also as inputs for the production of the public goods. The generic
input-output vector is written (x, y), x € — R}, y € R, The production
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possibility set (assumed known to the designer) is denoted by A = (- R%,)
x RC7. It is assumed that 0 € A. For each agent i € N, the initial
X-endowment denoted by w;, is semi-positive (w, € R, i.e., w; = 0),
while there are no initial endowments of the public goods. Also every
agent’s preference relation R (defined on R%) is strictly i increasing in all
goods, private and public. Thus E = {ele = (wy,..., w,, Ry, ..
R,, A); w; = 0 for all i}.

For a given production possibility set A and all semi-positive
X-endowments, the set of conceivable outcomes is

ZA={(t1,..., hoy)itie RIVie Ny e R, <2fuy>€A}

ieN

"

where t e R’ is the net transfer vector of private goods to agent i (with
Lienti S 0 the input vector used in the production of public goods) and
y € IR’ " is the product public goods vector. Then the performance

functionis f: E — Z4. Let f(e) = (¢, ..., t,, y). We write
t=fEe), y=fle.
The generic strategic message of agent i is s; = (w;, ..., wf, x;, y;) with

wie Rig, (x;, yi) € (=R%) x R Rules (apg), (bps), (CPB) and rule 1
in (c33) defining 4 remain unchanged,® while rules 2 and 3 in (c}}) are
modified as follows:

(cpp2’) if D wf+x,20 and (x;, y,) € A, then
keN

hX(s) = 2 wk — wi + x,
keN

and
h¥(s) = ys;
(c35.3".) if either D wf + x; Z0o0r (x;, y;) ¢ A, then
keN
hE(s) = X wi — wi
keN

and
h¥(s) = 0.

This outcome function is used to prove the W-implementability Theorem
VII (i) below.

For this broader class E of economics, the assumption (*) above can be
replaced by the following:
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(**) For every economy e € E, and for every agent j € N,
d; + fX(e) = 0,

that is, everyone is left with some private goods.

Remark 9. Condition (**) would, in particular, be satisfied if f is
individually rational, and if, for all j, &; = 0, and :

(x55); (x, Y)B;(0, y)

for any x = 0 and any y, y' 2 0.
We shall see that (**) holds if (***); holds for all j.

Proof of the Remark: Suppose that &; + f¥(e) = 0. Since &; = 0, the
above condition on j’s preferences implies

(a%j, O)P]((C?)]’ 0) + f;(e))a
which violates the IR property of f.

Theorem 8: Let n 2 3, ge Ry, all preferences strictly increasing, and let
fbe R and satisfy assumption (**).®! Then, for the class E of economies
defined at the beginning of III B,

(i) fis W-implementable (when the preference profile is known to .
the designer but endowments are not);

and

(ii) f is W-R-implementable (when neither the preferences nor the
endowments are known to the designer and the endowments can
be withheld but not destroyed) if and only if f is monotone.

Proof: For (i) we use the strategy spaces and outcome function defined
before Remark 9, on pp. 70-71, and again follow the pattern of proof of
Theorem I (i) in Sect. II.A.1. It need only be noted that, in the proof of
Claim 2, assumption (**) on f, together with the rule (cp3), provide an
incentive for agent i to break away from the unanimous agreement on a
false endowment profile.

To prove (ii), we use a generic strategy space element g; = (w;, y;, d;)
and proceed as in the proof of Theorems II.A. and II.B above.

For the necessity part of (ii), f must be monotone by Maskin’s (1977)
Theorem 2.%

The proof that the monotonicity of f is sufficient in (ii) follows the
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pattern of II.B except for the treatment of the “no veto power” (NVP)
assumption. In II.LB we applied Maskin’s (1977) Theorem 5 on R-
implementability®> (which assumes that f satisfies NVP) by noting (in
footnote 37) that, under the assumptions of II.B (n 2 3, pure exchange
with private goods only, strictly increasing preferences) NVP holds
vacuously. In the present section we show that a variant of Maskin’s
Theorem 3, applicable in E, permits us to dispense with NVP.%

The variant used differs from Theorem 5 only in that it presupposes an
economy e € E as defined above and that it dispenses with NVP.

The proof of the new variant is the same as that of Theorem 5, except
that the outcome function g is modified for the case with at least two

different individual strategies. Property (5) of g in Maskin’s Theorem
4 becomes

(5") If, for (sf,...,s%) =s* €S, there exists i € N such that it is not
true that sf =...=s*; =s/; = ... = s}, then the range of
outcomes accessible to agent i consists of all outcomes z =
(t1, ..., t,, y) such that (6§tq, y)e Aand @, + ty > 0 (i.e.," d, +
ty € R,) for all ¢ € N.% (Such outcome functions do exist.)

Now, in the proof of Maskin’s Theorem 5, NVP was only used (through
Maskin’s Theorem 4) to ensure that any Nash equilibrium without
unanimity will be f-optimal. On the other hand, for economies in E
(with strictly increasing preferences), with an outcome function satisfying
the above condition (5'), a Nash equilibrium without unanimity cannot
exist. For suppose that, in the R-game, s* = (sf, ..., s}) is such an NE,
with s/ # sf. Then any agent i € N/{j, k} satisfies the hypothesis of (5').
(It could be that s} = s/ or s¥ = sf, and that there are only two different
individual strategies!)

Denote the outcome function of the R-game by g. By (5'),

By + gx(s*) >0 forall q e N,

and i has available a strategy s; such that g¥(s;, s%) > g*(s*), while g¥(s;,
s5i) = 87(s*). Say t,(s,, syi¢) 1s slightly bigger than f; for ¢ # i and ¢
slightly smaller, with Zt; = Z¢7. Then, by preferences strictly increasing in
X, gi(si, s5%) Pi g{s*), and hence s* is not an NE.

Using these facts, we establish that monotonicity of f is sufficient in
part (ii) of Theorem VII.

Let E’ be a subclass of ‘the (above defined) class E of environments
such that," in E’, the constrained Lindahl Correspondence satisfies
the condition (**) and is singleton-valued (i.e., is a function). Since
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this correspondence is IR and monotone, we obtain from Theorem 8
the following

Corollary 8.1. For n 2 3, the constrained Lindahl performance (social
choice) function is W- and W-R- implementable in Nash equilibria
over E'.

(It appears that, with suitable modifications of the game forms used in the
proofs, these results can also be shown to hold for correspondences. )

Example: This example shows that Condition (**), just before
Remark 9, cannot be dispensed with in Theorem 8 (i), i.e., for the
W-implementability of f. '

In this example, there are two goods, one public (y), one private (x).
It takes one unit of the private good to produce one unit of the public
good. It is assumed that preferences are known but endowments are
unknown and can be withheld. There are three persons with preferences
given by the following utility functions and initial endowments: U(x;, y)
=y = Us(xa, y), w1 = (1, 0) = w, = w3. Us(xs, y) is such that Us(1, 3) >
Us(x, 4 — x) for all x satisfying 0 <x <4, x # 1.

We show that the following performance function f cannot
be implemented:

f[(l? 0)’ (1? 0)’ (17 0)] = (—1’ _1’ -1 3)
(iie,if wi=wi=wi=1, then x; =x=x3 = 0,
and y = 3);

£, 0), (1,0), (2, 0] = (=1, =1, =25 4)
(e, if wf=wi=105=2 then x =x;=x3=0,
and y = 4).

"Claim: f cannot be implemented.

Proof: Suppose, per absurdum, that f can be implemented. Then for the
economy with endowments w; = (1, 0) i = 1, 2, 3, there exists s* = (s7,
s%, s¥) such that s* is an NE and h(s{, 53, s¥) = (-1, =1, —1, 3). Suppose
for the economy with endowments {(1, 0), (1, 0), (2, 0)} the same
strategies s} are also used. Clearly these are optimal for person 1 and
person 2 since if they had a better strategy, s* would not have been an
NE for the original economy. By hypothesis Us(1, 3) > Us(x, 4 — x) for
all x satisfying 0 < x < 4, x # 1. If hy(s}, 53, s3) = (=1, 3) the game
leaves a final holding for agent 3 of (1, 3). By hypothesis this gives higher
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utility than any feasible bungdle. Hence if 4 is feasible there cannot be any
§3 such that hs(sT, 53, §3) is preferred to A;(sf, 55, s3). Thus s* is an NE
for the second economy which gives rise to an allocation which does not
agree with f for this economy. Q. E. D.

Note: Concerning the implementability of the Lindahl correspondence:
In the following diagram there are indifference curves drawn for Mr 3
with the property that U(1, 3) > U(x, 4 — x) 0 < x < 4, x # 1.
Furthermore, they are drawn so that f yields a Lindahl equilibrium for
each of the two economies. To see this, note that the budget lines drawn
through x = 1 has slope =-—3 and is the budget set if 13 = 1/3. The
tangency is at y = 3. If t; = £, = 1/3 as well we see that Mr 1 and Mr 2
both demand y = 3 as well; thus f yields a Lindahl equilibrium for the
first economy. If w3 = (2, 0) and t; = 1/2, the line through x = 2 is Mr 3’s
budget line. The tangency here is aty = 4. If t;, = t, = 1/4 both Mr 1 and
Mr 3 desire y = 4 and f yields a Lindahl for the second economy as well.

It appears that the preferences can be such that the Lindahl equilibria
are unique. Thus we see that if we do not impose some conditions on
preferences (or on the production possibility set, such as a private
good not used for production) the Lindahl performance function cannot
be implemented.

IV. PRODUCTION

The design of mechanisms for situations where production sets are not

known to the designer is of interest because the problem of revealing true
productivity does arise in practice.

~ For the sake of simplicity, we shall only deal with the case where initial

endowments as well as preference profiles (but not the production pos-

sibility sets) are known to the designer. The extension to cases where

these assumptions do not hold would be treated by methods analogous to

those used in earlier sections.

Each participant is characterized by ¢ = (w;, Y;, R;) where w; is the
true endowment, R; the true preference relation and Y; the true produc-
tion possibility set, assumed closed. (Subsequently we shall omit the
circles over the w’s and R’s since only true values will be entering
the picture.)

The social choice function to be implemented f, assumed feasible,
associates an allocation z = (z4, . . ., z,), a point of the outcome space Z,
with a profile (Y, ..., Y,) of production possibility sets. For each i in
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Figure 2.

N, z; = (x;, y;) where x; is a net trade and y; the input-output vector for
agent i. (We are suppressing the dependence of f on endowments and
preferences because these are assumed known to the designer.)

The implementability of f will be proved by constructing an
implementing mechanism (S, k). The i-th agent’s strategy will be of \
the form '

§; = (q:" Y}» ) Y;’)

where Y/ is i’s “estimate” of j’s production possibility set and g; is a point
in the | dimensional non-negative orthant R!+ of the commodity space.
Agents are not permitted to ‘“‘exaggerate” their own production pos-
sibilities; i.e., Y < Y,

The implementing function A will have two components h*, h”, for net



FEASIBLE NASH IMPLEMENTATION . 421

trades and production, respectively. It is somewhat similar to that for the
destruction endowment game. There are, again, three rules, depending
on whether there is unanimity, etc.

Notation:

N = {1,..., n} = the set of agents (n = 3)

L = {1,...,1} = the set of commodities (=21

w; = ¢&; = the true initial endowment of agent i

W = LN,

)o’,- = the true bfoduction possibility set of agent i, 0 € §',~ ¢ R
_i}z(i}l’---> ?n)
f} = ZieN}O/i

R; = R, = the true preference relation of agent i, defined on
R, (= the consumption set)

fiY—z=(z,...,z,) = the performance function®
(= social choice rule)

z; = (x;, y;) € R X R where x; is the net trade (increment) for
agent i, y; is the production plan (input-output vector) for
agent i. (Outputs are the positive components of y,.) If

f(l’) = (xb yl; v ey X yn),

we write

and

for each i € N.

Theorem 9:

W

Assume: n 2 3;

w; =0 forall ieN;

0eY, ¢ R forall ie N

(_l? = (}3'1, Ceey }3',,) is called admissible if it satisfies the
above conditions.)

R; is strictly increasing in all components, and depends only on the
agent’s final allocation w; + x; (not on production plans), for all i € N.
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Assume (w;, R;) is known to the designer for all i € N. [(w;, R;) will be
suppressed as an argument of f.] '
Assume the performance function f is non-confiscatory (NC) and
feasible. That is, for all admissible Y,
w; + fX(Y)=0 forall ieN,
and, for all admissible i’,

SFY) S SUY).

ieN ieN
Then f is implementable in Nash equilibria.

Proof: The proof is carried out by constructing strategy domains and an
outcome function (game form) which implements a given f.
The strategy space for agent i is denoted S, and is defined as follows:

Si={(g, Y, ..., YD q; eRL;
0eYiSY;0eVYiS R forall j#i}.
We write §$ = §;X ... Xs,.

The n-tuple Y; = (Y}, ..., Y}) is called the i-th production profile. We
shall write w = ,ZNa)i and Y = .ZN Y.
e le

We define the set
FY)={ve Ri:vew+ 7Y}

(Clearly, F(Y) is non-empty because w € F(Y) since w = 0,and 0 € Y by
virtue of 0 € Y7}.)
For any s in S, we define the subset of agents

M(s) = {ie N| YiSYi, Yj#i}.

A metric d on closed subsets of the Euclidean space R, p 2 1, is
defined as follows.

Given two closed sets, A and B, we first introduce the real-valued
function g(-, B): R — R, defined by

g(a, B) = miny,p d(a, b)/[1 + d(a, 0) + d(b, 0)]

where d(x, y) is the Euclidean distance between x and y, and O is the
origin of RP. Note that 0 & g(a) < 1.

In turn, let /(A, B) = maXgin48(a, B). Again, 0= r(A, B) < 1. The
desired metric d(-, *) is then defined by

d(A, B) = max[r(A, B), r(B, A)].
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Note that 0 < d(A, B) < 1, d(A, A) = 0, d(A, B) d(B, A), and if
A # B then d(A, B) # 0.
The outcome function A: S — Z, written

h=(hy, ..., hy), hls) = (hi(s), hi(s)), ieN
e S— ROR:S— R
is defined by the three rules that follow. (h;*(s) and h}(s) are respectively

the net trade (increment) and the production plan for agent i given the
strategy n-tuple s.)

(apr) (Unanimity with respect to production profiles.)
If Y,=...=Y,, (ie.if Yi=Y forall i,jeN),
then h(s) = f(Yi,...,Y}) forall ie N.

That is, if agents agree on the production profiles, the net trades and
production plans are those prescribed by the performance function.

(bpr) (There is no unanimity with respect to production profiles, and the
set M(s) is empty.)

Two cases are distinguished, depending on whether there are more than
two distinct estimates of any individual’s production set. We further
define, for any Kk € N and any s € S,

Bil(s) = 2, 2 d(Y}, Y)).

i*k j#k

The number of distinct estimates in s will be devoted by «(s).

(bpr.1) Let M(s) @ and let there be exactly two distinct profiles
among Y,,..., Y,. Le., t«(s) = 2. Then Z;c.nf(s) > 0. The outcome
function is then deﬁned for every i € N by

hi(s) = (ﬂi(s)/%ﬁj(s)) w—-w
and
_ h¥(s) = 0.

That is, in this case there is no production and the aggregate of endow-
ments is divided among the agents according to the accuracy of their
estimates of other agents’ production sets.
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(bpr-2) Let M(s) = @ and let there be ar least three distinct estimates
among Yy,...,Y,. Le., «(s) 2 3. :
Define, for each k € N and each s € S,

Bi(s) = 1 + Buls).

Clearly, Z;cnf7(s) > 0. Then, for this case, the outcome function is
defined by

hi(s) = (B(s) 2 B () 0 — o,

jeN
and
hi(s) =0
for each i € N and each s € §.

(cpr) Let M(s) # @. Then the outcome function is defined by the
following relations:

(cprel) if > qi ¢ F(Y),

ieM(s)
then
{hf(s) =0
h(s) =0 Vie N
(cpr:2) if q: € F(Y),
ie M(s)
then
hi(s) = q; — w; for e M(s),
hi(s) = —w; for ¢ M(s),
and

R(s) = y¢ ieN
where y7 is the i-th component of y9, and y7 is the element of the set Y7,
to be defined below, selected out of Y7 by a well-defined selections rule.
The set Y7 is given by
Y= {Of ) Zai=w+ 2yl yleY foral ieN).
ieN ieN

We shall now show that the above outcome function implements the

given f. This is accomplished by proving the following:
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Proposition 5: (s*);.n is a Nash equilibrium if and only if Y} = Y for all
[,j €N.

That is, an n-tuple of strategies is a Nash equilibrium if and only if
every agent’s production profile is truthful. In such a case there is, of
course, unanimity as to production profiles.

The proof of the Proposition is contained in the following three claims.
Claim 1p: The truthful unanimous n-tuple s* = (_Y, Ce i’), _lf/ = (Yl, RN
Y,) is a Nash equilibrium.

Proof: Suppose not. Then there must be an agent i and a strategy §; =
(4, Y;) which yields agent i higher satisfaction. But Y! cannot strictly
contain Y?* for all j # i, since Y}* = Y, for all J € N. Furthermore, i (who
is being truthful) cannot overstate his own production set. So i ¢ M(5).
In fact, because the others remain unanimous, M(s) = . Thus any
change from s results in the application of rule (bpg.1) with i(s) = 0
hence, in s, agent i receives nothing: Hi () = 0.

On the other hand, since s* is unanimous, rule (apr) applies and
Hi(s*) = w; + f"(Y) Since f is assumed NC, it follows that Hi(s*) = 0
hence Hj(s*) = H7(5). Since preferences are stnctly increasing, s* is
strictly preferred to §. This contradiction shows that s* is an NE.

Claim 2p A non- truthful unanimous n-tuple s = (51,..., 8,), §1 = $
=, =YY # Y is not a Nash equilibrium.

Proof To see this note that there exists an agent i who is ‘“‘underreporting,”

, Yi* g Y Suppose that this agent i switches to §; = (Z, Y% with Yi =
Y Then M(s) {i}, ie., * 2 Y. Suppose that this agent switches to
S; = (4, YY), with Y = Y, while others retain their strategies without
change. Then M(§) = {i}, and, provided that §; € F(Y} + ;. Y/*), by rule
(cpr-2), hi(S) = gi —

Suppose now that

q; = Z (A7 (s) + w)].

jeN
Clearly, this is feasible since

S[hHs) + o] € Y < Vi + DY

JeN JFi
Also, since fis NC and in the case of (false) unanimity, A*(s) = f*(¥*),
we have :

JEMLS) .
§i=s; forall j+#1
“and

$1=(41, Y), suchthat =Y viked,
and




427

FEASIBLE NASH IMPLEMENTATION

g, = kZN[wk + hi(s)]. Then M(5) = {1} |
and HKi() = G — w1 = hi(s) + X [Ri(s) + wy] = Ai(s).

j#*1

Hence again, by strict monotonicity of preferences, s is not an NE.

(i) Suppose now that M(s) is a singleton, say M(s) = {1}. There are
two cases, depending on whether g, is or is not in F(Y).

(1) Suppose that g; ¢ F(Y). Then

hi(s) = 0.
Consider § with
§1 = (ql, ?1), such that ?1 = Yl,

and

il

671 2 Wy

keN

Then M(s) = {1}, and
HG) = ¢ — o1 = 20, =0 = hi(s).

j*1

Hence by strict monotonicity of preferences, s is not an NE.
(2) Suppose that g, € F(Y). Since M(s) # @, rule (cpr.2) applies to s.

Because M(s) # N, there is an agent j ¢ M(s) who, by rule (cpr.2), gets
Therefore
Now suppose that agent j accepts everyone’s self-evaluation, while other

agents remain unchanged, i.e.,
Y =Y, forall r#j

and
Y¢=Yf forall keN.

Then (by the argument in Theorem 1),
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MG) = 2.

Hence rule (cpg) does not apply; nor does rule (apg), since § is not
unanimous, by the counterpart of the argument in Theorem 3, Claim 3’,
(iii)". Specifically, there exists a person k € M(s), k # j, and a person i, i
# j # k # i, such that

Y& # Yk,

hence Y% # Y* hence Y, # Y.
Now, since § is not unanimous as to production profiles and M(5) = &,
rule (bpr) applies to §.

Suppose the applicable part of rule (bpg) is (bpg.2). Then
hi(S) = w; + hi(S)
= @; + (ﬁ,*(f)/kzN,B;(f))w - w;
= (ﬂ,’-"(f)/kZNﬂi(f))w =0,

since @ = 0 by hypothesis and £;(5) > 0 for all g € N and all § € S. On
the other hand, let the applicable part of rule (bpg) be (bpr.1). We note
that, for agents j, k, and i referred to above,

Bi(3) = d(Y%, Y& >0
since Y% # Y*. Hence in this case
Hi(3) = w; + hi(5)
= w; + (ﬂj(f)/kZNﬁk(f ) — w;
= (B3 2 B8 w = 0,
keN
as before. So, in either case
Hi($) = 0.

On the other hand, as seen above, Hj(s) = 0. Hence H(5) = Hj(s).

By the assumption of strictly increasing preferences, HY(5)P;H(s),
and so s is not an NE.

(iii”) In this case there is no unanimity and M(s) = @. :

The proof in this section is essentially the same as in section (iii)"
for the case of destruction of endowments, with w; and w respec-



v

FEASIBLE NASH IMPLEMENTATION 429

tively replacing w; and w(s), and the metric for sets d(-, -) defined
above replacing the Euclidean norm of the difference of two
endowment profiles. Q.E.D.
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Notes

1. Earlier models of tatonnement and of proposed mechanisms designed to implement
social choice rules (e.g., Walras or Lindahl) were criticized for not guaranteeing the
feasibility at disequilibrium points. Some, like the Walrasian auctioneer, were not balanced
(1), others failed to assure individual feasibility. (See Wilson, 1976.)

2. From now on “implementation” is to be understood in the sense of Nash non-
cooperative equilibria. Let n be the number of players, Z the outcome space (the space of
allocations), S the joint strategy space, i.e., S = S' x ... x §*, where & is the strategy
domain of the ith player, and let h: § — Z be the outcome function. An SCR, denoted by
F, is a correspondence from the space E of environments into Z, specifying for each
environment (economy) e in £ a nonempty set in the outcome space Z. An environment
(economy) is defined as an n-tuple of characteristics ¢ = (C;, &', R’), where, for the ith
agent, C'is the admissible consumption set, wi the initial endowment, and Ri the (weak)
preference relation. L.e, e = (el, ..., en) and E is the class of a priori admissible environ-
ments. A possible interpretation is that the designer believes (correctly) that an environment
(economy) outside of E will not occur.

We say that a mechanism (S, h) Nash implements an SCR F over a class of environments
E if it is the case that, for every e in E, (1) the set of Nash equilibrium outcomes N ,(¢]
generated by the mechanism (S, /) is nonempty, and (2) this set Ng ,(e) is a subset of F(e).
(The term sometimes used in the literature for this concept is “weakly implements.””) The
mechanism (8, A) is said to fully implement F over E if, for every e in E, Ns ,(¢) = F(e). In
most of the present paper we actually deal with a singleton-valued correspondence F, i.e.,
one equivalent to a function. In that case the two concepts of implementation coincide and
we simply say that (S, h) implements the social choice function f, abbreviated SCF, the
function equivalent to the singleton-valued correspondence F. (A method for extending our
results to correspondences is illustrated in the Appendix to section I.A.1.)

3. Those formulating the rules are often collectively referred to as “the designer.”
Hence the title of this paper.

4. Of course, because of the non-exaggeration requirement, an agent’s claim as to
his/her own endowment provides partial information as to the true endowment, namely that
the true endowment is at least as high as that claimed.

5. For example, maximin, Nash, ¢tc.
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6. Preferences do not affect feasibility.

7. Maskin’s construction is an algorithm in the sense that it is a ‘recipe’ for constructing
implementing mechanisms for a class of SCR’s (by inserting the SCR F in an outcome
function schema), rather than a single mechanism. The same remark applies to our results
except for those in the Appendix to Part II where a specific mechanism is constructed.

8. On the other hand, the designer does not know which preference profile (from a
known family of profiles) will prevail.

9. When the goods are physical their existence (and ownership) might have to be shown.
Similarly, proof might be required for claimed rights or entitlements, or ever claimed skills.
See discussion in Hong and Page (1994).

10. The example given is for the case of n = 3, but can be constructed in an analogous
manner for any number of traders greater than one. The reason for using n = 3 is to show
its relevance for other results in which we assume that there are at least three traders.

11. Using a more direct proof than that in the present paper it can be shown that this
result also holds for n = 2.

12. L.e., where the balance condition is in the form of a weak mequahty rather than
equality (called “weak balance™).

13. The environment ¢’ have the endowment profile @ but may differ with respect to
preferences.

14. The amount received by i is a positive component z;.

15. To simplify exposition, we confine ourselves in this section to single-valued social
choice rules; subsequently, we shall extend our treatment to correspondances.

16. The term “optimal” is always used in the sense of the given performance function f.

17. We use, here and elsewhere, the somewhat imprecise notation which identifies
(Si 81,0 St Sivts -, S WIth (Sy, .., Simt, St Sivt - -5 S)e

18. T, S; = Sy X ... X Sy X §iuy X ... XS,

19. It would be possnble to relax our assumptlons by replacmg the requirement @, = 0
by &; = 0 and, at the same time weaken w} = 0 to: wi = 0 if &, = 0. But we cannot permit
an agent to claim w! = 0 when &, = 0. For let all agents claim zero endowments while in
fact iEZN . = 0. Then, since the possibility of withholding means that w} + hy(s) = 0 for all

i € N, the net Nash allocation would have to be 0 for everyone, and this might be non-optimal.
. If the assumptions were relaxed along the indicated lines, a minor modification would
have to be made in the outcome function.

20. Here W- is mnemonic for withholding, as distinct from strategies to be labeled D-, in
which an agent may not withhold but only destroy his endowment, and from those labeled
WD-, where the agent may do both.

21. Here 0 is a net trade (the /-dimensional null vector), strictly preferred by i to the net
trade f(®).

22. With | x|} denoting the norm of the vector x; any norm can be used.

23. That is, wi = —b.

24. When the requirement &; € R, is relaxed to &; € R, the above definition is
generahzed as follows: f is non-confiscatory (NC) if Vi € N, Va) e R, &, = 0 implies

w; + fl ((i)) =0 )

25. But not necessarily continuous.

26. Note that the continuity of preferences is only needed for the necessity part of
Theorm 1.2.

27. Because W) = wi =&, forall i#j.

28. By assumption, #N = n 2 3.

29. These properties of h(-) can be verified directly.




FEASIBLE NASH IMPLEMENTATION 431

30. Proof: (omitting reference to s’):

h 2 —wl implies . k=~ > wi.
JFEi YEald
But balance implies £,.,h; = — h;. Hence, the previous inequality can be written as —h; 2
—X,.,w/ which is equivalent to h; S T Wh

31. Since i # j.

2. Riy={xe R x20,x#0}.

33. The w! component can be interpreted as the i-th agent’s claim concerning his own
initial endowment.

34. That is. A(wi, ..., w}) would be the set of feasible net allocations if (wi, ..., wh)
were the true endowment profile.

35. Note that the continuity of preference is only needed for the necessity part of thig
theorem.

36. See also the theorem in Saijo (1988), p. 698, and theorem M"in Hurwicz (1986), p.
86: in the latter the assumptions of transitivity and completeness are dispensed with. The
latter paper follows Maskin’s original schema, with lemmas 1 (p. 88) and 2 (p. 90) cor-
responding to Maskin’s theorems 4 and 5, respectively.

37. This is so because, for n = 3, in a pure exchange economy with strictly increasing
preferences, the “no veto power” (NVP) requirement in Maskin’s Theorem 5 is necessarily
satisfied.

38. Since i # j.

39. It may be that this same modification would also work in Sec. ILA.L.

40. fis non-confiscatory (NC) if Vi € N, Y& € RY,, &, + fl@) = 0.

41. NC is however, not a necessary condition for D-implementability.

42. Note, bowever, that for purposes of this section z; R; z/ should be interpreted as
(wi + z)) R, (Wi + z0).

43. Because of errors present in an earlier version of the present paper and pointed out
in Hong (1990), we are using here a rule (b*) somewhat different from the rule (6*) in the
earlier version. Actually, the values of the outcoem function in (b*1) and (b*2), as given
respectively by formulae (#) and (##), are the same as before, but the class of situations
covered by (b*1) as against (b*2) is different here as compared with the earlier version.

‘In her (1990) note, Hong suggested the following alternative (rules (H-a, b, ¢): Let a
strategy message of agent i be of the form (wl, ..., w!, m) where m; is an integer from the
set {0, 1,..., n—1}. Rules (H-a) and (H-c) are respectively the same as our (both old and
new) rules () and (c), so that for these rules the integer does not affect the outcome. Rule
(H-b1) statgs that if there is no unanimity, M(s) = @ and there are two distinct endowment
formula (#), i.e., it is the same as in our earlier version. The innovation comes in rule
(H-b2): if there is no unanimity, M(s) = @, and there are at least three distinct profiles in s,
then hys) = w(s) — wiif i = r, but hi(s) = —wjif i # r, where

r= 1+ (zjeN mj)modulo n*

[The respective classes of situations covered by (H-bl) and (H-b2) are the same as the
* corresponding classes in our earlier version of (b?) and (b3)].] A sketch of the proof using

the Hong rules is provided in an appendix to this section.

44. 1.e., the formula of rule (b) for W-implementation applies.

45. The paragraph starting with the words “Since fis IR ..

46. Ending with “‘Hence s is an NE.”

47. In fact k € M(s) means that w§ = w¥ for all r in N/{k}.

48. For suppose that among agents other than i there are present at least two distinct
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profiles, say for agents j and k. If j and & disagree as to i’s endowment, so that Wi % wh,
then i can choose w; = 0, so that W' is simultaneously different from wi and w¥ and not
higher than w;. On the other hand if j and k agree about i’s endowment, then they must
disagree about the endowment of some agent r other than i (since, by hypothesis, they are
in disagreement). In that case agent i can choose w7/ that is different both from w/ and wy
(without removing any existing disagreements). In either case, the result is that ($) > 2,
contrary to the hypothesis of 1.B”.

49. B.(5) = P.(s) because B,(-) does not depend on r’s statements concerning the
others’ endowments.

50. The superscript refers to the game (W or D).

51. Such a subset exists since # = 3 and there are only two distinct profiles.

52. Under these assumptions the “no veto power” (NVP) condition would be satisfied.

53. It can also be D-R-implemented.

54. We omit the argument s € §,%<5 ip H(s).

55. See counterexample, preceding Corollary 8.1 below.

56. We suppose the preference profile (assumed known) is an argument of f,

57. In a more general model, with r private goods X', ..., X" (used as consumer goods
and/or inputs for producing Y), / — r public goods Y'*!, .. | ¥’, and a production set A :
R’ with 0 € A, we would replace y; by the vector (x;, y,) specifying both the desired level y,
of Y and an input vector x, = (x!, ..., x7) and a desired public goods output vector y, =
S/}

38. Here, as on p. 17. we defined M(s) = {i € N|w' = wi, ¥V, # 1,j € N}; W(s) = Zion whs
Bis) = TISVTEN | wl — wi ], i € N.

59. With &, and w¥ referring to the X-endowments.

60. Except that in (apg) we require Y e R7,.

61. Because here we are assuming f to be IR and @ € R7,, (**) is satisfied if prefeences
satisfy (+++); for each j.

62. In what follows, Theorems 4 and 5 are also from Maskin (1977).

63. R-implementability and R-game refer to the case where the feasible set (hence
endowments) is known to the designer but preferences are not.

64. This approach could also havé been used in IL.A.2.

65. Property (5) used in Theorem 4 would specify a broader range of outcomes, viz. The
whole feasible set; hence, the condition w; + t; > 0 would be weakened to w; + 1, = 0.

66. Given the (suppressed) endowments and preferences, here assumed known to the
designer.

67, The assumptions w; = 0 and 0 ¢ )C:'i, Vi € N, imply that the set R, n Zievow; + -

" Zien'Y)) is non-empty. In fact it contains that semi-positive point Z; n w;.
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