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I M P L I C A T I O N S  F O R  S O C I A L  C H O I C E  

ABSTRACT. A new investigation is launched into the problem of decision-making in the 
face of 'complete ignorance', and linked to the problem of social choice. In the first 
section the author introduces a set of properties which might characterize a criterion for 
decision-making under complete ignorance. Two of these properties are novel: 'indepen- 
dence of non-discriminating states', and 'weak pessimism'. The second section provides a 
new characterization of the so-called principle of insufficient reason. In the third part, 
lexicographic maximin and maximax criteria are characterized. Finally, the author's 
results are linked to the problem of social choice. 

Several authors, [2], [3], [7], and [9] have dealt with the problem of an indi- 

vidual who must choose from a set of alternatives when he cannot associate a 

probability distribution with the possible outcomes of each alternative. The 

problem has been called that of decision-making under complete ignorance; 

presumably 'complete ignorance' captures the notion that the axioms of sub- 

jective probability cannot be fulfilled. This paper is a further investigation in 

that tradition. In the first section we suggest a set of properties which might 

characterize a criterion for decision-making under ignorance. Most of these 

properties are familiar, but,  in particular, ' independence of non-discriminating 

states' and 'weak pessimism' are new in this context. The second section 

recapitulates some of the important decision criteria in the literature and sug- 

gests a new characterization of the so-called principle of insufficient reason. 

In the third part, we drop the assumption invariably made by previous authors 

that preferences for consequences satisfy the von Neumann-Morgenstern 

axioms, and characterize the so-called lexicographic maximin and maximax 

criteria. We also provide a new axiomatization of the ordinary maximin prin- 

ciple. Finally, we show that several of our results translate quite easily into 

the theory of social choice. 

THE P R O P E R T I E S  

Let C be a consequence or 'outcome'  space. C contains a subset C* of 'sure' 
or 'certain'  outcome as well as all finite lotteries 1 with outcomes in C*, We 
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assume that the decision-maker has a preference ordering ~ on C which 

satisfies the yon Neumann-Morganstern axioms for decision-making under 

uncertainty. Let ~ *  be the family of von Neumann-Morgenstern utility 

representations of ~ .  Define a decision d as a map d : ~ -~ C where ~ is an 

exhaustive list of possible states of nature. Obviously there are many ways in 

which nature can be described, and therefore many conceivable ~'s could 
apply to the same world. Following Arrow-Hurwicz [2] we shall define a 

decision problem P as a set of decisions which share a common domain ~2(P). 
The decision-maker solves a non-empty decision problem P by choosing a 
non-empty subset/~_c p. 16 is interpreted as the 'choice' or 'optimal' subset 

of P. Let g be the class of all non-empty decision problems P such that P 

and ~(P) are finite.2 A decision criterion f is a mapping f :  G ' ~  f f  such that 
VP E if,  f(p)c p, f(P)4:O and such that d(w)~d'(w) 3, for all w E ~2, implies 

that d ~f(P) if and only if d' E f(P). The following are conditions that have, 

at various times, been deemed reasonable properties for a decision criterion f 

to satisfy. 

PROPERTY (1). VP,, P2 E if ,  d E P, c_P 2 ~ [ d E f(P~) ~ d E f(P0l  

Property (1) is Sen's Property a of rationality [10]. 

PROPERTY (2). VP1, P2E D ~ [d, dlCf(P1) and Plc__P2] ~ [dEf(P2) o 

d'  ~ f(P9]. 
Property (2) is Sen's Property/3 and Milnor's 'row adjunction' [9]. 

Together (1) and (2) constitute the Arrow-Hurwicz Property A, and, as 

Herzberger [6] has shown, imply that, for every ~2, f induces an ordering 
~ on D~ = {d I domain of d = fZ} such that for any P with ~(P) = ~2, 

d* Ef(P)od* E P ana a ~ a  for all d E P. 

PROPERTY (3).VP1, P2 E if,, d E -Pl c--P2 ~[dEf(P1),d ~ f(P2) ~ f(P~)\PI --/:0]. 
Properties (1) and (3) together are quivalent to Luce's and Raiffa's Axiom 

7' and Chernoff's [3] Postulate 4. (1) and (3) combined are somewhat weaker 

than the combination of (1) and (2)~ 

PROPERTY(4). VPE g d ,  dl@P, if dEf(P)  and dl(w)~d(w) for all 

w E ~2(P), then d 1 ~ f(p). 
Property (4) is the weakest form of the domination principle. It is Arrow- 

Hurwicz Property D. 
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PROPERTY (5). VPC ~ V d l E P  VdEf (P) ,  if d(w)~'d~(w) for all 
w E ~2(P), then d 1 q~ f(P). 

Property (5) is another rather weak version of domination. It is Milnor's 
'Strong Domination' property. 

PROPERTY (6). V P E  . ~  Vd, d l E P  if VwEFZ(P), d (w)~d l (w)  and 
3Wo E ~2(P) such that d(wo)>-d l(wo), then d 1 q~f(P). 

Property (6) is the usual admissibility condition. It is obviously stronger 
than property (5). Combined with continuity (see below), it is also stronger 
than property (4). 

PROPERTY (7). VP1, /~ C ~ such that g2(P1) = gZ(P2) = ~ ,  if, for some 
u E f t * ,  there exist k E ~r Wo E g2, and bijection h :P1 -;P2 such that 

(u(cl(w))  + k ,  w = Wo, 

' V d  ~ e ~ , u ( h ( d ) ( w ) )  = ~ l u (d(w)) ,  w--/=Wo. 

then, d E f(Pl) if and only if h(d) E f(P2). 
J 

Property (7) is Milnor's column linearity condition. It amot/nts to demand- 
ing that if two decision problems are isomorphic except that in one, the 
utility derived from any decision if a certain state of nature Wo prevails is 
uniformly higher than the utility from the corresponding decision in the other 
problem when Wo arises, then if a given decision is optimal in the other. 

PROPERTY (8). VP~, P2E ~r that f](P1) = fZ(P2) and IPI[ a_ Ie21, if for 
some u E f f * ,  there exists a bijection g:Pa 4p~ such that for some a>0,  
b E ~ ,  u(g(cO(w)) = au(d(w)) + b for all d EP1 and w E ~2, then d El(P1) e, 
g(d) E f(P2). 

Property (8) is Milnor's linearity condition. 

PROPERTY (9). ~'P~r b'dl, d2, d EP,  if 3u E ~'* such that uod = �89 4- 
�89 then dl, d2 Ef(P)  =~ d El(P).  

Property (9) is Milnor's convexity condition. 

PROPERTY (10). Consider a sequence {Pi} g g a n d  P E ~ .  Suppose that for 
all i, ~2(P 0 = g2(P) and IP~I--= IPI - n. Write P = {d~, . ' .  ,dn} ,P i = {d~, " ' . ,  
d~}. Then, if 3u E~ '*  such that WVwEg2(P) ifirn u(dj(w))---u(dj(w)), 
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d~(P i) E f (P i) for all/implies dj f(P). 
Property (10) is Milnors's continuity axion. 
Up to this point, all of the stated properties are arguably reasonable, but 

none embodies the idea of ignorance. Properties 11-13 are an attempt to cap- 
ture this notion. 

PROPTERTY (11). Suppose there exists a bijection h :~21 ~ ~2. For P with 

fZ(P) = ~2, define p1 with g2(P t) = ~21 as 

p1 = { d l l d  1 = d o h f o r d E P } .  

Then, d El(P)  if and only i fdoh Ef(P1).  
Property (11) is the Arrow-Hurwicz Property B and the Milnor Symmetry 

condition. It insists that the labelling of states and decisions be irrelevant for 
the decision criterion. 

Consider PI~ P2 E ~r Following Arrow-Hurwicz, P2 is said to be derived 
from P1 by deletion of repetitious states (/'1 ~ P2) if ~(P2)--- ~(Pt) and if there 
exists a bijection h :P1 -->/'2 such that V w  E ~2(P2) h(d)(w) = d(w) and such 
that V w E  fZ(PI)/fZ(P2), 3w ~ E fZ(P2) with d(w) = d(w ~) for all dEP1. 

PROPERTY (12). VP1, P2~ ~,, if P1 ~P2 via bijection h, then h(d) E f(P2) "~ 
d f(el). 

Property (12) is the Arrow-Hurwicz Property C and the Milnor 'Deletion 
of Repetitious States'. More than any other property, it captures the idea of 
complete ignorance, for, in effect, it asserts that dividing a state into several 
substates should have no effect on the chosen decision. The next condition is 
just a weakened version of Property (12). 

PROPERTY (13). VP1, P2 E ~ ,  if P1 ~/ '2 via bijection h and if for all dl, 
d2 @ P1 with dl --b d2 , V w , w 1 E fZ(P1) , not dl (w) ~ d 2 ( wl ) , then h( d) E f (P2 ) r 
d f((eO. 

PROPERTY (14). Consider Px, P2 C ~ with ~"~(P2)D..D_~~(P1) and a surjection 
g:PI~P2 such that V d E P l V w E F t ( P 1 ) g ( d ) ( w ) = d ( w ) .  Then, if for d, 
d~E~f(Px), g (d ) (w)~g(d ' ) (w)  for all wEa(P2)/gt(P1), g(d)Ef(P2)~" 
g(a') f(e2). 

This last property requires that adding additional states for which all 
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decisions are equivalent does not affect the choice of optimal decisions. In 
effect this requirement is the strong separability axiom of Debreu [5]. 
Although it has not previously appeared in discussions of decision-making 
under ignorance, entirely analogous properties have been used recently in the 
social choice literature under the names of 'elimination of indifferent individ- 
uals' [4] and 'unanimity' [10]. 

II. THE DECISION CRITERIA 

We may now state the results for the case where preferences obey the yon 
Neumann-Morgenstern axioms. 

THEOREM 1. (Arrow-Hurwicz): A decision criterion f satisfies properties 
(1), (2), (4), (11), (12) if and only if for each u E ~'* there exists a weak 
ordering~* in the space of real ordered pairs (M, m) with m < M  such that 

(a) MI >~M2 and ml >~ m2 implies that (MI, ml)~u (M2, m2), 

(b) vP 

f(P) = {d EPl(max u(d(w)), min u(d(w))~* (max u(d'(w)), 

min u(d'(w))) for all d'EP}. 

DEFINITION. A criterion f is the Hurwicz a-criterion for a E [0, 1 ] if 
VP E ~r Vu E 7Z, d* E f(P) if and only if a max w u(d*(w)) + 
(1 L--a) rain w u(d*(w)) >~ maxwu(d(w)) + (1 -- a) minw u(d(w)) for all d EP. 

THEOREM 2. A decision criterion fsatisfies properties (1), (2), (4), (5), (8), 
(11), (12) if and only if 3a ~ [0, 1] such that VP ~ ~,f(p)c_fa(p) where f a  
is the Hurwicz a-criterion. 

Remark. It should be noted that this theorem does not require continuity 
(property (10)). If, however, continuity is also stipulated, we obtain Theorem 
3 (see below). 

Proof. If f satisfies the stipulated properties, we may apply Theorem 1 
and, for choice of u E X/*, define an ' * ordermg~u as above. Following Milnor's 
argument, let a~ be the supremum of all a~E R such that (1, 0 )~u (a ,  a'). 
By property (5), 0~<au~< 1. Clearly (1 ,0 )>-~(a ,a )  if a ' < a u ,  and 
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(a', a') ~ *  (1,0) if a'  > au. By property (8) and the fact that all represen- 

tations of ~ differ by positive linear transformations, au does not depend 
on u, and we may consequently delete its subscript. By property (8), 
(M,m) ~*'~(a'M+(1--a')m, a 'M+(1 - -a ' )m)  if O<--.a'<a, and (a'M+ 

t x  ~ "  I ~  r _]_ @ (1 -- a )m, a m (1 -- a')m) >'u (M, m) if a < a' ~< 1. Suppose that for some 

PE ~ 3 d *  El(P) and 3d ~P  such that aM* + (1 -- a)m* < aM ~ + (1 -- a)m ~ , 
where M* = maxw(u(d*(w)), m* = minwu(d*(w)), 3/10 = maxwu(d(w)), 
m ~ = minwu(d(w)). Choose sequence of real numbers {ei} and {8/} such that 

(a) ,tim. el=O, (b) Vi e l > 0  i f a < l  ande i=Oi fa  = 1,(c) i --,~olim 8 /=  0, and 

(d) Vi 8 i > 0 i f a  > 0 and 6i = 0 if a = 0. 
For sufficiently large i, ((a + e i~*  + (! -- a -- ei)m*, (a + ei)M* + (1 -- 

a - -  e ) m * )  >* (M*, m*) >-,, (M ~ m ) ~ ((a -- 8i)M ~ + (1 -- a + 8i)m ~ 
~U 

(a -,Si)M ~ + (1 - a + 6i)m~ By definition of >* (a + ei)M* + (1 -- a -- 
ei)m (a -- 8i)M ~ + (1 -- a + 8i)m ~ Therefore, o~* + (1 -- a)m* > ~ + 
(1 -- a)m ~ , a contradiction. The other direction of implication is trivial. 

Q.E.D. 

THEOREM 3 (Milnor). A criterion f satisfies properties (I), (2), (5), (8), 
(10), (11), (12) if and only if 3a E [0, 1 ] such that f is the Hurwicz a-criterion. 

DEFINITION. Criterion f is the maximin criterion if and only if, V P E ~  
Vu E f /*,  d* E f(P) if and only if minw u(d* (w)) >t minw u(d(w)) for all d E P. 

THEOREM 4 (Milnor). A criterion f satisfies properties (1), (2), (5), (9), 
(10), (11), (12) if and only if f is the maximin criterion. 

THEOREM 5. A criterion f satisfies properties (1), (2), (4), (5), (9), (11), 
(12) if and only if VP E g ,  f(P) C__f*(P) where f* is the maximin criterion. 

Proof. The proof is identical to Milnor's proof of Theorem 4, except for 

a minor alteration forced by lack of continuity. 

DEFINITION. f is the principle of insufficient reason (the Laplace criterion) 
if VP E.r z Vu @ g/ *, d* C f(P) if and only if Ew ~ aCP) u(d*(w)) >1 

Ew ~ aP u(d(w)) for all d E P. 
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THEOREM 6 (Chernoff). Criterion f satisfies properties (1), (3), (4), (6), 

(7), (9), (11) if and only if f is the principle of insufficient reason. 

THEOREM 7 (Milnor). Criterion f satisfies properties (1), (2), (5), (7), (11) 
if and only if f is the principle of insufficient reason. 

THEOREM 8. A criterion f satisfies properties (1), (2), (6), (10), (11), (14) 
if and only if f is the principle of insufficient reason. 

Proof. Choose ~2={wl . . . .  ,Wn} and uEg / * .  Let Da ={dl  domain 
of d = ~2}. (1) and (2) imply that there exists an ordering >-*_ a on D a such 
that VP E ~ with ~2(P) = ~2, d* E f (P)  "*, d* ~ z  d for all d E P. By definition 
of a decision criterion, if u(d(w)) = u(d'(~i)) for all w E ~2 and d, d' E D a  
then d _ ~ d ' .  Therefore, if we write f 2 = ( w l , . . .  ,Wn), ~ induces an 
ordering ~ a  of (u(C)) n such that x ~ a Y  if and only if dx ~ d y  for dx, 
dy E D a  such that x = ( u ( d x ( w l ) ) , . . .  ,u(dx(wn)) ,  y = ( u ( d y ( w l ) ) , . . . ,  

u(dy(wn))).  Since C contains all finite lotteries of outcomes in C*, u(C) is 
connected. Consider Axo = ~ E (l~.(c))nlxo ~ a x }  for some Xo C (u(C)) n. 

Choose a convergent sequence {xi} c_ Axo such that V i , x  o ~ x i .  Take x~ = 
lira xi. Choose a sequence {Pi} c ~ a n d  P~ E g w i t h  ~2(Pi) = ffZ(Poo) = ~2 

i .._~ o o 

for alli, such thatP/= {di, do } e~ = {d~, do}, (u(di(w , ) ) . . . . .  u(di(w~ ) ) ) = xl, 
(u(do (wl))  . . . .  , u(do(w,)))  = Xo, (u(doo(w, )), . . . , u (d=(w,) ) )  = x=. Since 

Xo ~ 2 x i ,  d o E l ( e l )  for all i. By (10), do El(P| Therefore Xo ~ x = .  
So, Axo is closed. Similarly Bxo = {x E ( u ( C ) ) n I x ~ X o }  is closed for any 
Xo E (u(C)) n. By (14), one may easily show that the ordering induced by 
~ on R ,-m by fixing m components of the vectors in (u(C)) ~ is indepen- 
dent of the values at which they are fixed. Therefore, the hypotheses of 
Debreu's Theorem [5] are satisfied, and we conclude that there exist con- 
tinuous functions ga, g2 , �9 �9 �9 gn" u(C) ~ R such that Vd, d 1 E D~ 

(1) d ~ ~ d 1 if and only if ~ gi(u(d(wi)) >~ ~ g~(u,(d ~ (w)). 
i= 1 i= 1 

By (11) all the gi's a r e  equal to some continuous g: (u(C))~ IR. By (6), g 
is strictly increasing. By (8) we may use the argument of Maskin [8] to 
conclude that g(u) is a positive linear transformation of u. This establishes 
the theorem. 
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I I I .  D E C I S I O N - M A K I N G  W I T H O U T  T H E  V O N  
N E U M A N N - M O R G E N S T E R N  A X I O M S  

It is perhaps a bit odd to insist that individual preferences obey a set of 

probabilistic axioms in order to develop a theory which rejects the use of 

probabilities. In this section, we drop the assumption that ~ satisfies the 

yon Neumann-Morgenstern axioms and that C need contain all finite lotteries 

of sure outcomes. For convenience we shall assume that ~ is representable 

by a class g/of  real-valued utility functions on C. 4 Obviously, for u E if ,  any 

monotone increasing transformation of u is also in ~'. Properties (1)-(6),  

(11), (12), (13), (14) remain the same in this framework as before. Properties 
(7)-(10) can be modified by substituting ~ ' for  ~'*. Properties (7), (8), and 
(9), of course, now make no intuitive sense. However, (9) can be modified 

appropriately in the following obvious way. 

PROPERTY (9'). VPE,-~Vdl ,  d2, d EP, if, for each w E EZ(P), dl(w) 
d(w) ~" d2(w), or d2(w) ~ d(w) )> dl(w), or dl(w) ~ d2(w) ~ d(w), then 

dl, d2 E f(P) implies that d E f(P). 
Among the results of the previous section, Theorems 2, 3, and 6 - 8  will 

not hold in this new context because they depend on all representations of 
~being linear transformations of one another. Theorem 1 will carry over, 

but Theorems 4 and 5, as indeed several other theorems to follow, depend 
crucially on the number and distribution of indifference classes of ~'. When 
the yon Neumann-Morgenstern axioms are assumed, this is no problem 
because whenever there are at least two distinct indifference classes, there 

is a continuum of them. Without these axioms, however, we may run into 
trouble. Let us, for example, examine Milnor's proof of Theorem 4. For 

utility function u, he first observes that because of Theorem 1, a decision 
d: ~ -* C may, for the purposes of ranking the decisions in D, be identified 
with the pair (m, M), where m = min u(d(w)) and M = max u(d(w)). He 

then considers the matrix 

WI W2 W3 

uodl m �89 + M) �89 + M) 

u od2 m m M 

uod3 m M m 
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By using this matrix, he implicitly assumes that there exists a consequence 

x in C such that u ( x ) =  �89 + M), an assumption validated by the yon 

Neumann-Morgenstern axioms. In our present context, however, we must 

make the following supposition. 

DENSENESS ASSUMPTION. For all x, y E C, such that x ~-y,  3z E C for 

which x ~- z ~-y. 

THEOREM 9. If ~ satisfies the Denseness Assumption, then a criterion f 

satisfies properties (1), (2), (5), (9'), (10), (11), and (12) if and only if f is 

the maximin criterion. 
Proof. The proof is an adaption of Milnor's proof of Theorem 4. Choose 

u E g/. Suppose ~ satisfies the Denseness Assumption and f satisfies the 

hypothesized properties. For any ~2, let ~ be the ordering induced by f on 

D a . Consider d E Da  such that M > m where M = max u(d(w)) and m = 
min u(d(w)).  Take ko = inf{k [k C u(C), k > rn}. The following argument 

will demonstrate that we may assume that ko = m. Suppose instead that 

k0 > m .  If there exists Xo E C such that U(Xo)= ko, then, by the Denseness 
Assumption, 3yo E C such that ko >U(Vo)>m,  a contradiction of ko. 

Therefore, there does not exist Xo E C such that U(Xo) = ko. 

Take (u(x),  u(x) <~ m ,  
Uo(X) } 

lu(x)  -- ko + m, u(x) > m . 

Clearly Uo E ~'and inf {k I k E uo(C), k > m} = m. 

So we may replace u with Uo, thereby allowing us to take ko = m. Since 

ko =m ,  we may choose a sequence {kn}C_u(C) N ( m , M )  such that 

lira kn = m. Choose W = {Wl, w2, w3} c_ ~2s and decisions c~ ~ do, dn" 

~2 -+ C such that 

u(d(Wl)) = m, u(d(w2)) = m, u(d(w3)) = M, u(d(w)) = rn 

f o r w ~  W 

for w q~ W 

u(do(w)) = m for all w E ~,  

and for alln, u(dn(wa )) = m, u(dn(w2 )) = k , ,  u(dn(w3 )) = kn, u(d~(w)) = m 
for w q~ 14I. 
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By Property 11, a Y ~  ~ By convexity ((9')), for all n, d ~  ~ Strong 
domination ((5))and continuity ((10)) together imply that f satisfies property 
(4). Therefore, d ~ d ~ d. By convexity ((9')), dn ~ d for all n. Hence, 
by continuity ((10)), do ~ d ~ ~  do. f is clearly the maximum criterion. 

Q.E.D. 

Our next series of results does not require the Denseness Assumption. 
The theorems do, however, necessitate the following weaker hypothesis. 

COUNTABILITY ASSUMPTION. Either ~ has only a single indifference 
class, or it has at least countably infinitely many. 

We shall need to add to our list two additional properties. The first is a 
strengthening of property (8). The second merely states that the decision- 
maker does not always choose as if the best possible outcome will occur. 

PROPERTY (15). For P,P'E f f  such that ~2(P)= g2(P') and IPI = IP'I, 
suppose there exists a~-preserving bijection 6 "y:P~P'. Then dCf(P) if 

and only if 7(d) Ef(P'). 

PROPERTY (16). (Weak Pessimism): There exist PE if,, d E f(P), d' E P\f(P) 
and u E ~/such that maxw ~ a (e) u(d(w)) < maxw ~ a ~) u(d'(w)). 

For any d with domain ~ and Wo E ~,  let Da(wo) = 
{w E ald(wo)~d(w)}. 

DEFINITION. A criterion f is the lexicographic maximin if and only if for 
any P E ~ ,  dEf(P)  implies that there do not exist d* EP, w0 Eg2 and 
permutation g: ~2 ~ ~ .  such that d*(wo) ~ d(g(wo)) and d*(w) ~ d(g(w)) 
for all w E Da*(wo ). 

The lexicographic maximax criterion is defined in the obvious analogous 
way. 

THEOREM 10. I f ~  satisfies the Countability Assumption, then a criterion f 
which satisfies properties (1), (2), (6), (11), (14), (15) must be either the 
lexicographic maximin or lexicographiC maximax. 
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THEOREM 11. If ~ satisfies the Countability Assumption, then a criterion 

f which satisfies properties (1), (2), (6), (11), (14), (15)and (16)must be 

the lexicographic maximin. 
Observe that neither Theorem 10 or 11 invokes property (13). The the- 

orems are proved by demonstrating that their statements can be translated 

into the language of social choice and by then applying a result due to 
d'Aspremont and Gevers [4]. We must first develop the necessary social 

choice terminology. Following Maskin [8], let N = {1 . . . . .  n} be a set of 
individuals who constitute society and. let X be a set of social alternatives. 

Let ~ be the set of all orderings of X and Wthe set of all bounded R .valued 
functions on X • N. For v E ~ v(x, i) is the utility that the ith individual 

derives from alternative x. A social welfare functional (SWFL) g is a mapping 
g: ;~'~ ~gP. The following are possible properties which a SWFL g may possess. 

INDEPENDENCE. Vvl, v2 E ~  VB c_X, if v l (x , . )=  v2(x,.) for all x EB,  
then g(vl ) and g(v2) coincide on B. 

STRONG PARETO PROPERTY. Vx, y E X Vv E ~ ,  if Vi ~ N, v(x, i) >1 
v(y, i) and 3/' E N  such that v(x,j) > v(y,j), then x P y  where P is the strong 

ordering corresponding to g(v). 

ANONYMITY. For any permutation a of N, if for vl, v2 C .~Vi E N, 

Vx ~ X vl (x, i) = v~ (x, a(i)), then g(va ) = g(v2). 

ELIMINATION OF INDIFFERENT INDIVIDUALS. VVl, v2 E Y, if 3M_C N 

such that Vi E M, vl ( ' ,  0 = v2 ( ",/) while V/~  NkM, Vx, y E X, vl (x,/') = 

vl (v, j) and v2 (x, f) = v~ (y, f), then g(vl ) = g(v2). 

COORDINALITY. Consider Vl, 7) 2 ~ -~ such that vl = •(v2) where 0 is 

a strictly monotone increasing function. Then a SWFLg satisfies coordinality 
if g(vl ) = g(v2). 

Above, we defined ~r as containing all bounded R-valued functions on 
X x N. Because coordinality is assumed, however, one can modify arguments 
due to d'Aspremont and Gevers to obtain 
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THEOREM 12. For N =  {1, 2 . . . .  ,n} and a set of social alternatives X 
containing at least three elements, let ~ be a set of bounded R -valued 
functions of X • N which is sufficiently large to induce all orderings of 
X • N .  7 Then a SWFL g: 7 / ~  ~ which satisfies independence, the strong 

Pareto property, anonymity, coordinallty, and elimination of indifferent 
individuals is either the lexicographic maximin or maximix principle. 

Proofs of Theorems 10 and 11. Suppose f satisfies the hypothesized proper- 
ties. Choose u E ~/. For a given nature space ~ = {wl . . . . .  wn}, let each 
state w~ E ~ be interpreted as an individual i. Take N = { 1 , 2 , . . . ,  n}. Choose 
a positive integer m, and select a decision problem Po E ~ s u c h  that Ieo l = m 
and ~(Po) = ~2. L e t ~  = {PE ~ 1  ~2(P) = ~2, IPI =m}. For e a c h P E ~ ,  
select a bijection hp :Po ~ P .  Write Po = {d l , . . . ,  dm }. Associate with each 
dj a social alternative x/. Take X~ = {x 1 . . . .  ,xm}. A decision problem 
P E ~ induces an interpersonal utility function vp :X~ x Ns~ ~ R where 

Vl~(X ~, i) = u(hp(dj)(wi)) for all i, / 

Vp(X i, i) is interpreted as the utility that individual i derives from alternative 
x/. For given ~ , ~ ,  eo, and set of bijections {hpIhp:Po ~P, P E ~ } ,  
the decision criterion f induces a SWFL ~ :~e-~ ~ ~ where ~ rn  
{ v p I P E ~ }  a n d ~  is the set of all orderings of X m, via the following 

relation 

Vvp E 7/'~ Vx k, x ~ E X~,  xkgr~ (vp)x z iff hv(dk ) ~ ~ hp (dz), 

where ~ ~ is the ordering induced by f on D~.  ( ~  exists since f satisfies 
properties (1) and (2)). Because f satisfies properties (1) and (2), g~ is 
clearly well-defined and satisfies independence. Since f satisfies property 
(6), g~ satisfies the Pareto property. Because f satisfies property (11), g'rd~ 
is obviously anonymous. From property (14)g'rd~ satisfies the elimination 
of indifferent individuals property. Property (15) clearly translates into 
coordinality. It should be observed that the setT"~ may not include all 
bounded R -valued functions on X~ x N~.  However, by the Countability 
Assumption ~ has more than nm indifference classes. Thus 7"~ will induce 
all possible orderings o f X ~  x N~.  Thus V~2, Vm, g~ satisfies all the hypoth- 
eses of Theorem 12 and must therefore be either the lexixographic maximin 
or maximax. Translating back into the language of decision-making under 
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ignorance, f must be either the lexicographic maximin or maximax. Thus 
Theorem 10 is established. To establish Theoxem 11, we note that property 
(16) translates into the statement that for some fi, r~, 

( 3v~Y2~ 3x, y E Xm such that 

(*) { ~ max i v(x, i) < max i v(y, i) but xg~  (v)y. 

Now ~ is, by the above arguments, either the lexicographic maximin 
or maximax. But by (*), it cannot be the lexicographic maximax. Therefore, 

is the lexicographic maximin. But since fmust  be either the lexicographic 
maximin or maximax, this in turn implies that f i s  actually the lexicographic 

maximin. Q.E.D. 

It is well known that when a domain of individual preferences is restricted, 
the set of social welfare functions which satisfy a given list of properties is 
enlarged. For example, restricting the domain of preferences often enables 
one to define social welfare functions satisfying all of Arrow's properties 
[1], although no such SWF exists for the unrestricted domain. As we have 
seen, positirig a minimum number of indifference classes of ~ is essential 
to show that the corresponding SWF has unrestricted domain. Therefore, 
limiting the number of indifference classes is equivalent to restricting the 
corresponding domain of preferences. One would expect, then, that the 
properties of Theorems 10 and 11 might not be sufficient to uniquely charac- 
terize the lexicographic maximin if a minimum number of indifference classes 
is lacking. This conjecture is validated by the following example. 

Suppose that ~ has only three indifference classes and that for x, y, z E C, 
z ~ ' y  >-x. Let f* be the criterion such that, for any ~,  d, d' E D a ,  d ~  ~d' ,  
ff and only if d ~ r a d  ', where ~ and ~ m  are the orderings induced on 
D by, respectively,f* and the lexicographic maximin, unless 3wl, w2, w3 E gZ 
and 3 some permutation o of ~2 such that d' (w l ) ~ x, d' (w2 ) ~ z, d' (w3 ) ~ z, 
d(a(wl  )) ~ y ,  d(o(w2 )) ~ y, d(cr(w3)) ~ y, and d'(w) ~ d(a(w))  for all w E g2\ 
{wl, w2, w3} in which case d' >- ~zd. To check that f* indeed induces a tran- 
sitive ordering of D a ,  consider gZ = {Wl, w2, w3} and d, d' ~ D a  such that 

W1 W2 W3 

d '  x g z 

d y y y 
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By hypothesis_, d' ~" ~d.  If there are any intransitivities in ~ ~,  it must be 
because 3d, dED~ such that d ~ d '  and d ~  but ~ d .  Now if 
d ~ d ' ,  either there exists a permutation of {1, 2, 3} such that d(wa(i)) 
d'(wl) for all i E {1, 2, 3}, or, for all i, d (wi )~y .  If d ~ ~ r ,  then either 
d(wi) ~ y for all i E {1,2, 3} or there exists i E {1, 2, 3}__such that g(wi) ~ x. 
It is straightforward to check that in all cases d ~- ~ d  as desired. Thus f* 
satisfies properties (1), (2), (6), (11), (14), (15), and (16), but is obviously 
not the lexicographic maximin. Clearly, additional properties must be hypoth- 
esized to obtain a result like Theorem 11 without stipulating the Countability 
Assumption. It turns out that actually only one additional property must 
be added to the list: property (13), the weakened form of (12). We shall 
assume from now on that ~- has at least 6 indifference classes. If this assump- 
tion is not reel  the proofs of Theorems 13-15 are even simpler. 

THEOREM 13. A criterion f which satisfies properties (1), (2), (6), (11), 
(13), (14), (15)is either the lexicographic maximin or lexicographic maximax. 

Proof. Consider a decision criterion f which satisfies the above axioms. 
LetpO_ o o yz(po) ~2o - {dl, d2} and = = {Wl, w2} for which d ~  d ~  
d o (w2)>" d o (w2). There are three possible cases 

(I) d 1 ~ f(P~ Ef(P ~ 

(II) dl Ef(P~ qif(P ~ 

(III) dl,d2 E f(P ~ 

By axioms (11) and (15), if (I)holds, then for any ~2 = {wl, w2 }, fi = {dl, d2 }, 
~2(fi)=~2 such that dl(wl)'m'd2(wx)>--d2(w2)",'-'dl(w2), we have 
dl ~ f(P) and d2 Ef.(P). Analogously for (II). Suppose that (III) obtains. 
Consider ~2' = {Wl, w2} and P' = (dl, d2, da} with ~2(P') = ~2'. Suppose 
that dl(Wl)>..-d3(wl)"w-da(w2)>--d2(wl)>" d2(w2)','~"dl(w2). 9 By 
properties (1) and (2), dx, d2, da Ef(P'). By d2 dominates dl. By property 
(6), therefore, dl q~ f(P'), a contradiction. Thus case (III) is impossible. 
We claim that if (I) holds, f is the lexicographic maximin, and if (II), the 
lexicographic maximax. We shall assume for the duration of the proof that 
(I) holds. The argument is entirely analogous for (II). Choose u E g/. Consider 
~2 = {wl . . . . .  w~} and Da = {dl domain d = ~2}. Let ~'Z * be the order on 
D~ induced by f. Choose d~, d2 ED. Let a~, o2 be a permutations of~2 for 
which 3m(~< n), such that 



DECISION-MAKING UNDER IGNORANCE 333 

V i > m  u(da(wo~(i)) = u(d2(wo2(i)), 
and 

Vi,]<~m u(dl(wo~(i)) 4= u(d2(wo20.)). 

If m = 0, dl ~ *d: by property (11). Since this case is trivial, we shall assume 
that m/> 1. By property (14), dl ~~ *d2 implies that dl ~ *ad21 where dl ,  
d~EIDa,  a l = { W t  . . . .  ,win}, d~(wi)=dk(w%(i) )  for all i E { 1 , . . . , m }  
and k C {1, 2} and ~ ~' is the ordering on Da,  induced by f. For k E {1, 2}, 
let Mk = m a x w ~ a ,  u(d~(w)) and mk ={n inw~a ,  u(d~(w)). Choose 
w, ~ E ~21 such that u(dl(~)) = M1 and u(d[(w)) = m2. 

{ dl(~) ,  i fu (d l (w))  ~ ml 
Define d~(w) = dl (w) , i fu(dl (w))  = m, . 

( d l ( w ) ,  if u(d~ (w)) --/= M2 
d~(w) 

d~ (w), if u(d~ (w)) = M2 �9 

By property 1 �9 1 ad2. (6), dl ~'~ ld2 implies that d~ ~ *  2 
Let H =  {(M1,M2), (M2, m2), (ml ,M2) ,  (ml, m2)}. We shall assume 

that the four elements of H are distinct (the other cases can be argued almost 
identically). 

Let ~23 = {Wl, w2, w3, w4} and define d~, d~ EDa~ 

where u(d~(wl)) = u(d3(w2)) = M1 , 

u(d~(wt))  = u(d~(w3)) = M 2 ,  

u(dal(W3)) = u(d31(w4)) = m , ,  

u(d~(w2)) = u(d~(w4)) = m2 .  

Let ~ ~ be the ordering on Da3 induced by f. By properties (6) and (13), 
d ~ ' *  ~ l d2 implies that d~ �9 3 ~3d2 .  Choose d] EDa~ such that u(d](Wl))= 
u(d~(w~_)) =M2,  u(d~(w3))= u(d~(w4)= m2. By property (11) d~ ~ 3d3.* 3 
Therefore d21 ~ * 2 ld2 implies that d] ~ *  3 3d3. Take ~24 = {wl, w2} and d~, 
d 4 e D a ,  with u(d~(wa))=Mk and u(d~(w2))=mk for kE{1,2}. Let 
~" ~ be the ordering of Da ,  induced by f. Then d~ ~-* ~ 3d3 implies that 
d 4 * 4d2. Collapsing the chain of implications, we obtain 

dl ~*d2 implies d4~ ~4d4 . 

By construction M~ -r M2 ,MI --/: m:, ml r M~, mx --/: rn~. 
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From (I) and property (6), d] ~ * a 4d2 implies that one of the following 
relations hold 

(1) M1 > m l  >M2 > m2  

(2) M1 > m l  >M2 =m2 

(3) M1 = m l  >3//2 > m 2  

(4) Ma = ml >M2 = m2 

(5) M1 >M2 > m l  > m2  

(6) M1 >M2 =m2 > m l  

(7) )142 >M1 > m l  > m2  

(8) )142 > m l  =mx > m2  �9 

Suppose that both d~ ~ * 4 , , 4d2 and (6) hold. Choose M2 and m2 E ~ and 
' = M2, and u(d3(w2)) = d~ E D a ,  suchthat m2 > M ;  > m2  > m l ,  u(d~(wx))  ' 4 

t 10 
m 2 .  

�9 4 * 4  By property (6), d~ ~ 4da. Therefore d~ ~ 4d3. But, by (I), d~ ~ 4d1,* 4. 
a contradiction. Therefore, if d~ �9 4 ~ 4 d 2 ,  (6) is impossible. Let ~ ~ be the 
ordering induced on Da  by the lexicographic maximin criterion. 

Observe that any of the cases (1)-(5), (7) and (8) are consistent with 
dl ~ ~d2. Therefore, dx ~*d2 implies that dl ~ ~d2. By repeating essentially 

*d the same argument, we can show that dl ~" *d2 implies that dl >- L 2. 
Therefore f i s  the lexicographic maximin. 

Q.E.D. 

The following result is an immediate corollary. 

THEOREM 14. A criterion f which satisfies properties (1), (2), (6), (11), 
(13), (14), (15), (16) is the lexicographic maximin. 

Proof. By Theorem 9, f is either the lexicographic maximin or maximax. 
By (16), fcannot  be the latter. 

The final result of this part is a new characterization of the ordinary 
m aximin criterion. Its principal advantages over the axiomatizations in 
Theorems 4 and 9 are (i) it does not require a convexity axiom and (ii) it 
does not depend on a denseness assumption, nor, indeed, on any other 
assumption about the indifference classes of ~. 
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THEOREM 15. A criterion f which satisfies axioms (1), (2), (5), (10), (11), 
(12), (15), (16) is the maximin criterion. 

Proof. Choose u C s Properties (1), (2), (5) and (10) together imply 
that (4) holds. Thus, the hypotheses of Theorem 1 are satisfied, and there 
exists a weak ordering ~ * ~ u as in the statement of Theorem 1. Choose P E if', 
d, d' E P  as in property (16). Let m = minw u(d(w)), m' = min u(d'(w)),M = 
max u(d(w)), M = max u(d'(w)). Then M < M'. By property (4), m > m'. So, 

(9) m' < m < . M < M ' .  

Suppose there exists ~2 such that for some dl, d2 CDs~, dl ~*d2 but 
ml <m= where ml = min (da(w)) and m2 = min (d2(w)). By (5), we have 
ml <m2 ~<M2 ~<M1 where M1 =maxu(dl(w)), M2 =maxu(d2(w)). 
Choose d'l E D n  such that ml <m'l  <m2 ~<M= ~<Mx <M'I .  11 Then, by 

t :g g* 
(5), da ~"udl ~ ud2 �9 But, by (15) and (9), d2 ~ udl, a contradiction. There- 
fore, V~2 Vdl, d2 ED~,  rain U(dl (w)) > min u(d2(w)) implies that dl ~ *d2. 
By continuity (property 10), min u(dl (w)) >1 rain u(d2(w)) implies that 
dx ~*d2.  Therefore,f is the maxirnin criterion. 

Massachusetts Institute of  Technology 

SUMMARY OF THE PRINCIPAL PROPERTIES 

Property 
(1) / (2) j The ranking of decisions must be an ordering 

(4) Weak Dominance 
(5) Strict Dominance 
(6) Admissibility 
(7) Column Linearity 
(8) Linearity 

(9) } Convexity 
(9') 

(10) Continuity 
(11) Symmetry 
(12) Deletion of Repetitious States 
(13) Weakened Form of Deletion of Repetitious States 
(14) Independence of Non-discriminating States 
(15) Ordinality 
(16) Weak Pessimism 
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S U M M A R Y  OF R E S U L T S  

WITH T H E  V O N  N E U M A N N - M O R G E N S T E R N  A X I O M S  

Properties H M (Milnor) IR (Chernoff) IR (Milnor) IR (Maskin) ' 

(1) | | | | | 
(2) | @ X @ | 
(3) x x | x x 
(4) X X | X X 
(5) x x x | x 
(6) | x x 
(7) (~) | X 
(8) | x x x | 
(9) (~) | x X 

(lO) | | x x | 
(11) @ | | | @ 
(12) | | 
(13) x x 
(14) x x | 

(15) x 
(16) X* X X X X 

Key: H - Hurwicz criterion X - Criterion satisfies this property 
M - Maximin criterion | - Criterion axiomatized by this propert,. 

LM - Lexicographic maximin criterion * - satisfies this property only if ~ ~ 1. 
IR - Principle of Insufficient Reason 

W I T H O U T  T H E  V O N  N E W M A N N - M O R G E N S T E R N  A X I O M S  

Properties M (Modified Milnor) LM LM M (Maskin) 

(~) | | | | 
(2) @ | | | 
(3) x x x x 
(4) x x x x 

is) x x x | 
(6) | | 
(7) 
(8) x x x x 

(93 | x x x 

(lO) | | 
o]) @ | | | 
(12) | | 
(I 3) x x | x 

(]4) | | 
(IS) x @ | @ 
(16) x | @ | 
Denseness Assumption | 
Countability Assumption X | 
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N O T E S  

i A lottery is finite if it has only finitely many branches. 
2 Finiteness is a convenient but  unnecessary supposition. 
3 'x ~ y '  denotes 'x ~e y and y ~ x ' .  
4 This is convenient for notational purposes but substantively unnecessary. 
s We may assume that s2 contains at least three elements because if not, we can always 

add extra states via property (12). 
6 A mapping g:P ~ P '  is ~-preserving ~, V d l ,  d 2 ~ P V  w, w' ~ ~(P), dl (w) ~ d 2 (w') 

implies that g(d 1 )(w) ~ g(d 2 )(w') andd  1 (w) >- d~ (w') implies that g(dl )(w) ~- g(d 2 )(w'). 
7 The assumption that ~Pinduces all possible orderings of X • N is actually equivalent 

to Hammond's Unrestricted Domain Condition [12]. 
8 These exist by our assumption about ' the number of indifference classes of ~.  
9 See Note 8. 

lo M, 2 and m'~ will not exist if M1, M2, and m~ represent adjacent utility levels. How- 
ever, by our assumption that there are at least six indifference classes and by property 
(15), we may as well assume that there is a gap of at least two indifferences classes 
between M 2 and m I , so that M'~ and m' 2 will exist. 
11 d, 1 may not actually exist for reasons similar to those of Note 10. However, we may 
assume its existence, without loss of generality, by the same argument as above. 
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