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It is an obvious proposition that the more instruments a principal uses,
the better the incentive scheme he can design for a group of agents — at
least if he can commit himself to the scheme he announces. Each instrument
used, however, typically requires monitoring some aspect of agents' behavior,
and monitoring is often costly. As a step towards a theory of optimal
monitoring, one may ask, therefore, which subsets of instruments are the most
effective by themselves, assuming that it is prohibitively expensive to
monitor everything. We attempt to answer that question in this paper for a

simple two good model.

We consider a population of agents with identical preferences for two
goods. Agents differ according to their productive capabilities. One good
can be consumed directly or used as an input in the production of the other.
We suppose that the principal's objective is to raise a prescribed level of
revenue at a minimum social cost. Equivalently, he seeks to maximize revenue
subject to the constraint that agents' welfare is held at a prescribed level.
Clearly, the principal can do better (or, at least, no worse) to make the
payment scheme depend on both input and output rather than just one. But
which of the two would be selected, if the principal had to choose between
monitoring input and outpﬁt, may not be obvious.

We shall show below that, allowing for general nonlinear incentive
schemes, monitoring output is superior under plausible assumptions on prefer-
ences and technology. Nonetheless, there remain cases in which input
monitoring dominates. We provide conditions that characterize when each of
the instruments is better.

In Section 1 we set up the model and, in Section 2, discuss the case
where both input and output can be monitored. In Section 3 we take up the

cases in which only one of the two instruments is monitored. Finally, in



Section 4, we compare the performance of the two instruments.

1. The Model

Label the two goods "1" and "2". An agent of type 6, where 6 ¢
[0,1], can produce y2 units of good 2 with an input of c(yz,a) units of
good 1. The cost function ¢ 1s twice continuously differentiable, increas-
ing and convex in y, and decreasing in 6 1if y2 > 0. The value of the
parameter 6 1is private information. It is known to the individual agent but
to no one else. Let F(6) be the cumulative distribution function of 6. We
assume that F 1is differentiable. All agents share the utility function
u(xl,xz), where u 18 concave and twice differentiable and x; 1s the
agent's consumption good 1 net of endowment,

One interpretation of the model is that of a tax authority trying to
raise revenue subject to a welfare constraint. Good 1, which cannot be
traded, is leisure, whereas good 2 is a consumption good. The agents are con-
sumers. The cost function is c(yz,e) = yz/e, that is, 6 1s the marginal
product of a consumer of type 6.

Let T(6) be the tax revenue, in units of the consumer good, raised from

type 6. The tax authority then seeks to maximize total tax revenue
D) JT(8) dF(8),

subject to a welfare constraint. Below we consider two social welfare

constraints in particular: (a) the "utilitarian” criterion
(2) ju(xl(e),xz(e)) dF(8) > u,
and (b) the maximin (or "Rawlsian") criterion,

(3) mtn u(xl(e),xz(e)) > u.



The case in which only output is monitored is precisely that considered by
Mirrlees {1971].
A second interpretation of the model is that of a monopsonist who hires

workers with different input costs, c(yz,e), of producing y, units of

output (cf., Maskin and Riley [1984]). Each agent seeks to maximize consumer

surplus
u(xl,xz) =x - c(xz,e).

Reinterpreting T(6), now measured in units of commodity 1, as the profit
extracted from type 6, the monopsonist seeks to maximize (1) subject to the
constraint that no agent can be coerced into working. With u now inter-
preted as the reservation utility level, the participation constraint is
simply condition (3).

Yet another interpretation of the model is that of a regulatory authority
intervening to reduce inefficiency in a monopolized industry (cf., Baron and
Myerson [1982]). Let B(xz) be the benefit from the production of x5 wunits
at a cost of c(xz,e), and let R(8) be the revenue that a type 6 monopol-
ist receives from society -- all measured in units of good 1. Then society
maximizes [(B-R) dF(9), whereas the monopolist maximizes R-c. If we take

T =B - R the monopolist maximizes
B-T- ¢,

which corresponds to a utility function,
u(x;,x3) = B(xy) + x.

The utilitarian constraint, (2), then corresponds to an ex ante expected
profit guarantee, whereas the maximin constraint ensures the monopolist of

making a certain minimum amount.



Rather than maintain the more abstract principal-agent terminology we
henceforth speak of the problem as an issue in optimal taxation. Of course,
our conclusions hold as well for the other two interpreatations, since, as we
have just argued, they can be viewed as special cases of our model.

Since it will prove more convenient at some points in our argument, we

next note that the cost function
z = c(xz,e)
can be inverted and expressed as a "production” function

c_l(z,e)

"

X2 - Q(Z 99)

By assumption c¢ 18 convex in x, and hence q 1s concave in z.

In the following sections we also make use of three further restrictions.

Assumption 1l: Good 1 is nowhere inferior .

Asgsumption 2: Under lump sum taxation an individual with a higher 6

supplies a larger input.

Assumption 3: Under lump sum taxation an individual with a higher 6

produces a larger output,
The mathematical implications of these three asumptions are summarized in the

following Lemmas.

Lemma 1: Assumption 1 holds if and only if

1
(4) UZUIZ - UIUZZ » 0.

Proof: Good 1 is nowhere inferior if and only if

1Subscripts of u, q and c denote partial derivatives.
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Lemma 2: Assumption 2 holds if and only if

(v u,y,=u,u,,)
(5) apy + 4y 22 5
)

Proof: Under lump sum taxation a type 6 individual chooses z* to solve

Max u(-sz(z ’e)—T)
F4

Since u 1s concave and q 1s a concave function of z the first order

condition

(6‘) %‘1 = 'ul("sz(z. 8)-T) + u2(_29Q(zse)_T) ql(z,e) =0

is both necessary and sufficient. Differentiating (6) by 6 we obtain

2 * 2
) dz 3
2 o a8 tagz v =0

Thus z* increases with 6 if and only if
2

5 3
2 =03z 0

From (6)

a2

365z © T Y129 t 999y t uyq; 5

But if (6) holds we can substitute for q; to obtain

2 u Unou
3 12 22%1
goir U " V2 L2 T 5T 9 Y T 4] Q.E.D.
2 |

By an almost identical argument we can also prove

Lemma 3: Assumption 3 holds if and only 1if



(7) uzull CICZ - u1u2c12 - ululzcch > 0.

2. Input and Output Both Monitored

When input and output can both be observed, the tax authority can deduce
the 6 of an agent producing x, units of good 2 using c(xz,e) units of
good 1. Therefore, if a 8-agent is confined to produce according to the cost
function c¢(.,8), the tax authority can raise the same level of revenue as
though it could observe each agent's 6 directly. That is, the first-best 1is
attainable. However, it is probably more plausible to assume that a 6-agent
can incur any costs not less than c¢(.,08). Equivalently, a 6-agent can

produce any point in the production set
{31539 | v, < aly;,0)}

In this case the net consumption schedule <x1(e),x2(6)> must satisfy

(8) 4 ux; () ,x,(8)) > 0.2

Tax revenue from an 6-agent, T(8), must satisfy an aggregate feasibility

constraint. When tax revenue is measured in good 2 units, this constraint

reads
(9) JT(®) dF(8) < [(q(-x,(8),8) - x,(6)) dF(e).
When tax revenue is collected in good 1 units, it becomes

(10) JT(8) dF(8) < [(-%,(8) - c(x,(6),0) dF(6).

2Here we assume that the input and output schedules are pilecewise
differentiable functions of 8. We shall maintain this assumption throughout.
We shall also often argue as though xl(e) and xz(e) were continuous. All

our conclusions can be established rigorously for finite distributions of
8's.,



It is easy to see that, when (1) is maximized subject to (3) and either (9) or

(10), the solution satisfies
d
Es-u(xl(e),xz(e)) = Q,

Thus constraint (8) holds automatically. We conclude that the first-best is
attainable when the welfare constraint is maximin. Moreover, for a utilitar-
ian welfare constraint, we have the following straightforward generalization

of a result due to Arrow [1971], Sadka [1976] and Dasgupta—Hammond [1980].

Proposition 1: If good 1 is everywhere not inferior and q12 » 0, then when
revenue (collected in either good 1 or good 2) is maximized subject to .a

utilitarian conétraint, all individuals have the same utility.

Proof: We must show that in the solution to the maximization of (1) subject

to (2), (8) and either (9) or (10), (8) is satisfied with equality everywhere.

Suppose that (8) holds strictly for some interval and that taxes are
measured in good 2 units. Then, differentiating the relevant Lagrangian with

respect to xz(e) and xl(e) and setting these derivatives equal to zero, we

obtain

(11) uy(x; (8),%,(8)) = a

and

(12) ul(xl(e),xz(e)) = aql(-xl(e),e),

where a 1s a constant. Differentiating (11) and (12) with respect to 6,

we have

' ! =
Uy Xp Fuy%; =0

and



' ' -
(u;%0q)) %] + u)x) = oy,

Solving for xi and xé, we obtain

\ t
X = k(8) uypqy,

and

| -
xy = k(8 uj,q,

where k(8) » 0 because u and q(.,8) are concave. Now,
d_ - ' '
(13) 15 u(xl(e),xz(e)) wx) + u,x)
= k(8)(ujuyy = uyu;,)9,,.

From our hypotheses, the right hand side of (13) is nonpositive, which
contradicts our assumption that (8) holds strictly. Hence, (8) is satisfied

with equality everywhere. Q.E.D.

Remark 1: We provide a formal derivation of this and a number of the follow-
ing results for the case in which the tax is paid in units of good 2, so that
the relevant constraint is (9). Completely analogous arguments apply to the

case where (10) pertains.3

Remark 2: In the monopoly aplication above, good 2 is neither inferior nor
normal (i.e., uju;; - ujuyy = 0). Hence (8) is satisfied with equality

regardless of the sign of qjq.

3Actually, the hypotheses can be weakened somewhat when the tax is
collected in good 1 units. In that case, our results follow if
12 z - ‘112
9

c < 0.



3. Input Monitoring or Output Monitoring

If the authority can observe only the input, Y1 = —X1, of good 1, it
must set a tax schedule T = T;(y;). Given schedule T = Tl(yl) let yl(e)
be the utility maximizing choice of a 6-agent, and take T(0) = Tl(yl(el))'

Then, for each 6, [:

(14) <y,(8),T(0)> > <y1(§),r(§)>.
0

Facing only an input tax, an agent of type 6 will always operate on his cost

function. Thus, for (14) to hold 8 = 6 must maximize

(15) U(8,0)

u(-y, (8),q(y, (8,8 - T(8))

when taxes are paid in good 2.

The first—-order condition of the maximization is

(16) 2 u3,0) = u, -y} (®)] + u,la, (7, (3),0)y; () - T(D)]
a6
=0at 6=6.

From (15) the rate at which utility varies under an input tax scheme is

%g u(e,0) = 2= U(3,0) |, +-%§ U, e | .
36 =0 6=0

From (16) the first term is zero. From (15) the second term is

uzqz(yl(e),e). Hence, since qz(yl(e),e) >0 1if yl(e) > 0, utility
increases with 6., However, from Section 2, utility is constant in 6 for an
optimal tax on both input and output with either a maximin constraint or,

under the hypotheses of Proposition 1, a utilitarian constraint. We there

have

Proposition 2: 1If the optimal input tax does not induce agents to choose Yy,

= 0 for all 6, then the authority cannot raise as high a level of revenue
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with an input tax alone as with both an input and output tax for a maximin
welfare constraint or, under the hypotheses of Proposition 1, for a utilitar-

ian welfare constraint,

Above we noted that any tax function Tl(yl) induces an optimal choice
function <y1(9),T(e)>. We then noted that such a choice function must
satisfy (14). As a prelude to the discussion in Section 4 we now ask what
restrictions on a pair of functions <yl(e),T(e)> are necessary and suffic-
ient for these functions to represent a choice function. That is, we seek

necessary and sufficient conditions for <y1(e),T(6)> to satisfy (14).

Lemma 4: If Assumption 2 holds then, for any function yl(e), yi(e) >0 1s
a necessary and sufficient condition for the existence of a tax in good 1 or
good 2 units, T(6), such that © = 6 maximizes either u(-yl(ﬁ),Q(Yl(a),e)
- T(8)) or u(-yl(é) - T(§),q(y1(§),6)) as appropriate.

Conversely if Assumption 2 fails and instead, with lump sum taxation an
agent with higher 6 supplies a lower input, the necessary and sufficient

condition is yi(e) < 0.
Proof: See Appendix.
Since it will be useful below, we note that if, for all 8, =06

solves

Max u(-u, (8),a(y,(8),0) - T(®),

e

we must have

- ] 1 - ' =

u,51(0) + u,q,y;(8) = u,T'(8) = 0.

Rearranging we obtain

' u; (-3, (0),a(y, (8),0) - T(8))
an S A R C A OR A ORI Q)R A
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We conclude this section by summarizing the parallel arguments which

apply when only output is observable. By analogy with Proposition 2 we have

Proposition 3: If the optimal output tax does not induce agents to choose 1y,

= 0 for all 06, then the authority cannot raise as high a level of revenue
with an output tax alone as with both an input and output tax for a maximin
welfare constraint or, under the hypotheses of Proposition 1, for a
utilitarian welfare constraint.

Similarly, by analogy with Lemma 4, we have

Lemma 5: If Assumption 3 holds then, for any function yz(e), yé(6)>> 0 is
a necessary and sufficient condition for the existence of a tax (in good 1 or
gobd 2 units), T(6), such that 6 = 0 maximizes either u(-c(yz(é)e),
y2(§) - T(8)) or u(-c(yz(é),e) - T(9), yz(ﬁ)) as appropriate.

Conversely, if Assumption 3 fails and instead, with lump sum taxation an
agent with a higher 6 supplies a lower output, the necessary and sufficient

condition is yé(e) < 0,

Finally, with only output observable, the analogue of (17) is

(18 T(8) = 1 - ¢, (5,(8).8) T 15 (88, 7,00 - D)

TOR

4. Input Versus Output Monitoring

So far we have examined input and output taxes separately. We now
compare their effectiveness. We begin with preferences and cost functions
satisfying Assumption 2, that is, the supply function with lump sum taxation
is increasing. Of course if input, zl(e), increases with 6 then output,
q(zl(e),e), also increases. Thus Assumption 2 implies Assumption 3.

We first observe that under Assumption 2, the input function induced by

any input tax schedule can be duplicated by an output tax.
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Proposition 4: Under Assumption 2, if yl(e) is the optimal input choice for

a B-agent when faced with an input tax schedule T; = Tl(yl)’ then there

exists an output tax schedule T2(y2) that induces the same input choices

yl(e).

Proof: Suppose that the hypotheses of the proposition are satisfied. Then
from Lemma 4, yi(e) > 0. Define yz(e) = q(yl(e),e). Then yé(e) »> 0, and
so, from Lemma 5 there exists an output tax schedule, T, = TZ(YZ)’ that

induces the output function yz(e) and, hence, the input function yl(e).

Q.E.D.

We next show that, under the hypotheses of Proposition 4, the marginal
tax rate in an optimal input tax schedule is nonnegative when the welfare
constraint is maximin. We also establish that, under the optimal inut tax
schedule work incentives are blunted for (almost) all 6. These results are

crucial preliminaries for the comparison of input and output taxes.

* *
Proposition 5: Under Assumption 2, 1if <yl(e),T (8)> 1is the revenue~-

*
maximizing input tax for a maximin welfare constraint, then dT /de » 0 for

all 6. Moreover,

uy (-y7(6),q, (77(0),8) = T"(8)

>0 a.e.
u,(-73(8),q, ((8),0) = T (8))

(19) 4,(7,(8),0) -

that 1is, almost all agents choose a smaller input supply than under perfect

information about 6.

* * *x,
Proof: Suppose that T (8) = T(yl(e)) <T (el) for 0 ¢ (8 ,92), where

either T(az) = T(el) or 8, =1. Define <§1(.), T(.)> such that
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. <y (®,T°@>, 8 £ [0),0,]
* * ~
<71(8)),T"(8))>, B ¢ [8,,0,]

Let 68(8) be the optimal choice of a 6-agent faced with the schedule

<§1(§),T(§)>. For 0 £ [91,62], it is clear that &(6) = 6. For 6 ¢
[8,,8,1, u(-y)(8)),a(y}(8,),0) = T"(8))) > u(-y} (3),a(y](®,0) - T(8) for

8 < 6, since U(8,8) = u(-fl(ﬁ),q(§i(§),6) - T(8)) is pseudoconcave in 8.

1

(Here we assume that the tax is paid in units of good 2. The argument 1s

completely analogous for a tax paid in good 1 units.) Similarly, 5(62,9) >

U(8,8) for B > 62. Therefore, 6(6) 1is either 6, or 62 for all. 9 ¢

1
(6,,8,), and we conclude that T(3(8)) > ™(9) for all 6 ¢ (8,,8,), a

contradiction of the optimality of

*
<y:(e),T (8)>. Hence
To prove (19) we

which it is violated.

exists (91,92) such
(20)
for 8 ¢ (61,62).

(21)

or

(22) 6,

4, (71 (8),8) <

a,(77(8)),6)) =

*
T (8) 1is nondecreasing.

show that there can be no open interval (61,92) over
Suppose first that for a tax paid in good 2 units there

that

ul(-yI(e),q(YI(e),e) - T*(e))

* %* %* b4

From continuity, we may suhpose that either

u, (-y3(8)),a(y7(8,),8)) = T"(6;))

u, (~y5(8)),a(y7(6)),8)) - T"(8)))

= (,

* *
Because, T (8) 1is nondecreasing, (17) and (20) imply that yl(e) and

T*(O) are constant on [61,62]. Therefore, if (21) holds, then because
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(upuyp = ujuyrlqy - qlzug < 0, the sign of (20) is reversed for all 6 ¢

*
(61,62), a contradiction. Thus assume that (22) holds. Choose 8 ¢

*
(61,62). Consider varying y; and adjusting T so as to keep a 0 —agent's

utility constant. That is, define T(y) so that
* *x % X % * %
(23) u(~y,,q(y,,8 ) - (y,)) = u(-y,(8),q(y,(8),6) - T (8)).
1 1 1 1 1
Implicitly differentiating (23) with respect to y;, Wwe obtain
(24) e BTG

Notice the right hand side of (24) is negative at y; = y;(a*). Consider the
*k *%k
tax schedule <y1 (68),T (8)> such that
* * *
<y1(e),T (8)>, 6> 8
*k *%
<Y1 (8),T (8)> = { ’
~ -~ *
<y1,T>, 6 <8
-~ * * -~ -~
where ¥ = yl(e ) - € and T = ?(yl), for some small ¢ > O, Because the

marginal cost (in terms of a reduction in good 2 taxes) of inducing greater

labor supply

-dT u

dy u(-yl ,Q(Yl,e)’T) = E;. - ql
*
is, by Assumption 2, decreasing in 0, all those types with 6 < 6 will
-~ -~ * k. Kk, K
strictly prefer <y1,T(yl)> to <yl(e ),T (8 )>, while those types with
* * *

6> 6 will continue to choose <y1(6),T (8)>. That is, for all 6, a

A *ok *k %k *k
o-agent sets 6 = 9 when faced with <y1 (6),T (6)>. But <yl (9), T (o)

* * *

generates more revenue than <y1(6),T (8)> (since T > T(6 )), contradicting

the latter's optimality. This establishes that (20) cannot hold on any

interval. Assume, finally, that

NEHORTHONEE NGO

1
u, (=3, (8),4(y,(8),8) = T (8))

(25) 1,(7,(8),0) =
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on the interval [61,92]. Then from (17) T*(e) is constant on that
*
interval. Moreover, by Assumption 2, since T*(e) is constant, yl(e) is
*
strictly increasing on [61,02]. Choose 08 ¢ (61,92) and T(e*) such that
*x x, k% * * * * *
(26) u(-y;(89),a(y;(87),8) - 2(01)) = ul-y;(8,),a(y;(8;),0") - T (8))).
* *x  * *% *k
Again by Assumption 2, T(8 ) > T (8 ). Define <y1 (8),T (6)> so that
* T*
<Y1(9). (8>, 6« 8
*k *k * * *
27) <y1 (8),T (8)> = <y1(61),T (el)>, 8, <exe

* ~ *
<yl(e).T(e)>, 8 < 0,

*
where T(6) satisfies (17) for yl(e) = yl(e). Because yI*(e) is
- *
nondecreasing, each agent chooses 6 = 8 when facing (27). Because T(6 ) >
* % *% *
T (8 ), we conclude that T**(e) > T*(e) for 0 > 9*, and T (8) =T (9)
* %k *k
for 6 < 6 . Thus <y1 (8),T (6)> generates strictly more revenue than

* *
<y1(6),T (8)>, contradicting the latter's optimality. Q.E.D.

Using Propositons 4 and 5 we can establish that, when Assumption 2 holds,

the optimal output tax is superior to the optimal input tax.

Proposition 6: Under Assumption 2, the optimal output tax generates more

revenue than the optimal input tax when the welfare constraint is maximin.
* *
Proof: Suppose that <y1(e),T1(9)> is the optimal input tax. From
* *
Proposition 4 there exists an output tax schedule <y2(e),T2(6)>, where
* ‘ *
(28) ¥,(8) = a(y,(6),0).

Suppose, for convenience, that taxes are paid in good 2 units. Then, from

a7, TI(e) satisfies .
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*
dTl(e)
de

u, (-71(8),a(3;(6),0) = T,(8)) dy)

]
u,(~y1(8),a(y;(8),0) - T,(8)) 4°

(29) - lq,(57(8),0) - (8).

*
From (18), Tz(e) satisfies

*

u (-c(75(8),8),75(8) - Th(8)) dy
Mk 2 ¢ (75(),0)] 50,

*
dT2 _
* * *
u,(-c(y,(6),8),7,(8) = T,(8))

(30) 5 f1-

where we choose the boundary condition
* *
T2(0) - Tl(O).

From (28), we can rewrite (30) as

* %* * * *
dT u, (~y,(8),q(y,(8),8) - T,(6)) dy
(31) T = 4,070, - 1— - : 1)
u2(-y1(e),q(y1(e),e) - T,(8))
. qz(yI(e),e)
)
ql(yl(e),e)

Because the bracketed expression in (31) is positive almost everywhere
(Proposition 5),
aTy AT,
2 1

> h T( T
5 > T wherever 2 0) 1 6).

* *
Therefore, T2(e) > Tl(e) for all 6 > 0. We conclude that the optimal

output tax generates greater revenue than the optimal input tax. Q.E.D.

It may be helpful to give a heuristic explanation of Proposition 6.

2 and eb, where g2 ¢ eb, with

Suppose that 6 assumes the values g
probability 1/2 each. Then the optimal input tax is the solution to the

program
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a b

max Tl + Tl

such that
b

(32) u(‘Y?’Q(Y?’eb) - Tl) » u(‘Yiyq(ya’ab) - T;)
(33) u(-v%,a(72,6% - ) > u(-y},a°,6% - )
and
(34) u(-yJ,a(s7,6% - 1) > u.

Given our assumptions on preferences and technology, incentive constraint
(32), not (33), is the binding one, and the solution satisfies
a a
ul(-y;,q(yl,ea) - Tl)

y a a
(35) ql(yl,e ) > P S R .
uz yl’q Y]_’ 1

Similarly, the optimal income tax solves

a b
max T2 + T2
such that
b by b_nmb o (o® aDy 3 _ pd
(36) u( C(ste ),YZ T2) » u( C(YZ,e ).Yz Tz)
and
(37) u(-c(y5,0%),55 - T3) > u.

The incentive constraints (32) and (36) represent the requirement that a eb—

agent should not find it advantageous to “"pretend” to be a Ba-agent. With an
input tax, a eb-agent who did so pretend would supply the same quantity, y;,
of input as a ea-agent. However, he would produce q(yi,eb) rather than

q(yi,ea) units of output. We denote

(38) q(y;.eb) - a(y7,6%)
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b,

as a 6 's "advantage over ea." Similarly,

(39) e(33,6%) - c(y3,6"

is eb's advantage over 6% 1n the case of an output tax, Now in view of

(35), a ea-agent supplies too little input and produces too little output
relative to efficiency. Thus 1f a eb-agent pretends to be ea-agent under an
output tax, he induces a further deviation from efficiency by supplying even
less input than a ea—agent. This further deviation from efficiency means that

b—agent's utility is relatively small. By

the contribution of (39) to a 6
contrast, a eb—agent who pretends to be a ea-agent under an input tax enhances
efficiency relative to a ea-agent and so (38) makes a correspondingly higher
contribution to utility than (39). Thus an output tax is more effective than
an input tax in deterring eb-agents from pretending to be ea-agents, since the
gain to be had through dissembling is smaller., An output tax therefore
enables the tax authority to extract more revenue from the eb-agents.

This rough argument applies as well to a utilitarian welfare constraint,

which we turn to next. As an intermediate step, we first generalize and

strengthen a result due to Mirrlees [1971].

Proposition 7: Under Assumption 2, for a utilitarian welfare constraint, if

* *
<yl(6),T (8)> is the revenue-maximizing input tax paid in good 2 and good 1

*
is not inferior, then dT (68)/d6 » 0 for all 0. Furthermore

u, (-7 (8),4(y(8),0) = T"(6))

a.e.
u, (-7, (8),a(y; (6),8) = T (8))

(40) a,(7,(8),8) >

Moreover, if <y;(6),T*(6)> is the revenue-maximizing input tax paid in good

1 and good 2 is everywhere not inferior



19

* * *
u, (=y;(6) - T (8),q(y,(8),0)) e

*
(41) q,(v,(8),8) > * * *
u,(-y.(6) - T (8),q(y,(8),0))
2 71 1
Proof: Because the argument is easier to follow, we establish the proposition
for the case where 6 assumes only finitely many values 61 < eee < 8% We

consider only taxes paid in good 2. Consider the problem of maximizing

n
(41) g Tiel,
1=}

where f£1 corresponds to F'(9) in the continuous setting, subject to

n
(42) I u(-yi,q(yi,ei) - Ti) >u
1=1 1 1

i—l i) - Ti—l)

(43) u(-yi,q(yi,ei) - Ti) > u(-yi_l,q(y1 »0 , 1=2,.00,n

i i-1
(44) Yl ’ Yl [y i 2,ono,no

Given Assumption 2 it follows from Lemma 4 that the conditions (44) must
necessarily be satisfied by an input tax. The condition (43) are the adjacent

downward incentive constr#ints. Suppose (43) holds with equality for all i,

that is

1-1 : D
(45) il v 1=,

Since, by (44), yi_l < yi, (45) implies that no type with a lower marginal

rate of substitution of good 1 for good 2 will strictly prefer yi—l over
yi. But, by Assumption 2,

dy, Y

. o q
d 1l
41 u(-yl,q(yl,e)-T) Y2
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is decreasing in 9.4 Therefore

i-1 i
(46) B3 J>i

Moreover, using essentially this same argument we also have

i-1 i
(47 Y1 5"1’ J <1

Combining (45)-(47) it follows that all incentive constraints will be
satisfied 1f (43) holds with equality for all {1 and (44) holds, in which
case the solution to the program (41)-(44) is the optimal input tax
schedule. To see that (43) indeed does hold with equality consider the

function h(y;) such that for all y;
(48) u(-y;,h(y,)) = u(-yi ™ qv1 7,61y - 17,
1 1 1 1
Implicitly differentiating (48) with respect to y;, we obtain

“1(—yl’h(y1))

(49) h'(y,) = - .
1 u2( yl’h(yl))

From (49),

(50 T u, -y, ,h(3))

dy1
= —uj5(=yy,h(y})) + uzy(=y1,h(y))h'(y;)
u

= ~ujp *uy ﬁ;

which is nonpositive from the noninferiority of good 1. From (44) and the
nonpositivity of (50),

(51) u, (v a1 7,60 - T 5wy (ypLhtr).

4Th:ls is discrete equivalent of the pseudo-concavity argument used in the
proof of Lemma 4.
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But u(-yi,h(y})) < u(-y{,q(y{,ei) - 1y, Hence (51) implies

(52) uz(-yi-l.q(yi_l.ei) -, uz(-yi.q(yi,ei) -,
Now if (43) held strictly in the solution to (41)-(44), so would (52). Thus

i i-1 i-1 <

we could increase Ti by AT and lower Ti-1 by -—AT , Wwhere AT

i

i f
f1-1

AT and continue to satisfy (42)., But this adjustment increases total

revenue, a contradiction of the assumed optimality of the tax schedule.
Therefore, (43) holds with equality after all. This also shows that the

Lagrange multiplier for (43) must be positive. Now if ™ < 137! for some

n

1=1 so that

j, define <§i,fi>

. <yi,Ti>, i+
~1 Al
<y1,T > = -1 g1 .
<y HT >, 1 =]

n

Now <§1,T1>1=1 satisfies all the downward adjacent incentive constraints.

Furthermore

g tiel 5 popled

Therefore, <yi,Ti>2=1

yi is nondecreasing in 1 after all.

is not optimal, a contradiction. We conclude that

To see that (40) holds for all i, suppose to the contrary that there

exists j for which

j h PN X

u, (y7,9(y3,8") - T9)

(53) ql(yi,ej) (L1 lj .
uz(_Yi’Q(ylyej) - Tj)

Let j be the smallest such superscript. Consider T(yl) as defined by (23)
*
with 6 replaced by ej. By hypothesis, (24), and (53) we can find

;1 < y{, and T > Tj such that

(54) u(-5,,4G,,6) - D = uydae],6h) -
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and

ul(-;l :Q(;l ’ ej) = If)

(55) q1(§l,ej) = o - j .

u,(-y,,4(y;,67) = T)
If we replace (yi,Tj) by (§I,T) in the incentive scheme, we generate more
revenue, leave the utilitarian welfare constraint unaffected, and satisfy all
the incentive constraints. To complete the contradiction, the only remaining

point to check is that y > yi—l. But (54) implies that

w(5,,4G,,6H) - D = u-yi a3 eh - 3y,

and so if yi_l >y, (55) implies that

ul(‘}'i—l 9Q(y

u2(-yi—l,q(y{-l,ej) - 1y’

3-1 o3y _ -l
1 ,67) = T4 7)

q, 37,8 <

which, because the noninterventionist input function is increasing,

contradicts the fact that

ul(-yi-l,q(y

uz(-yi_l,q(yi-l.ej-l) -y

-1 gt - 1072,

g, 3™

We conclude that

14 Ay ol
ul( Yl,CI(Yl,e ) T )

uz(-yi,q(yi.ei) - Ti)

(56) ql(yi,ei) >

for all i, as required.
It remains only to show that the inequality (56) is strict for 1 <1 <
n. Consider the Lagrangian for the program (41)-(44). The first order

condition with respect to yi is
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(atg,) (-ul(-y{.q(yi.ei) -+ ql(yi,ei)uz(-yi.q(yi,ei) - )

i i ,1+1 i i .1 i i 4+1, _ 1
(57) 'Bi+1('u1(‘)'1,Q(Y1,9 . ) -T ) + ql(yl)e )uz(-ylaq(yl’e ) T ))

+y 0,

1~ Y4 T
where a, Bi’ and Y; are the Lagrange multipliers for (42), (43), and
(44), respectively, and all multipliers are nonnegative., Now a > O because
if u 1in (42) were lowered, the authority could raise more revenue by
increasing Tl. We demonstrated above that Bi > 0 for all 1. Suppose that

for some j with 1 < j < n

ul(-yi,q(y{.ej) -1
uz(‘Yi,Q(Yisej) - Tj).

(58) q,3,0%) =

Let 3 be the greatest such index. In this case (57) reduces to

(59) (-ul(-yi,q(yi,9j+l) -1dy 4+ ql(yi,ej+1)u2(-y{,q(y{,ej+l) - 1dy)

_Bj+1

+ v 0.

37 m T
The first term on the left hand side of (59) is negative because the
noninterventionist inputrfunction is increaging. Therefore, Yj must be
positive. This implies that yi = yj_l. Thus, since (43) holds with equality

for all i, 3 = 1371, But then from (58) and the fact that the input

function is increasing, we conclude that

o (1 ad el ™ - P17

u2(-yi—l,q(yi_l,aj-1) -y’

ql(yi-l,ej_l) <

a contraction of (56). Therefore (40) must hold strictly for all ei with

l < i < n. Q.E.D.
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Modifying the proof of Proposition 6 only slightly and making use of

Proposition 7, we now establish

Proposition 8: If Assumption 2 holds and either good 1 (for a tax paid in

good 2) or good 2 (for a tax paid in good 1) is noninferior, the optimal
output tax generates more revenue than the optimal input tax for a utilitarian

welfare constraint.

Proof: We argue for the case of taxes paid in good 2. Let <y;(9),TI(B)> be
the optimal input tax. Under our hypotheses there exists an output tax
<y;(e),T;(e)> where y;(e) = q(y;(e),e) for all 6. From (31) and because
(40) holds strictly for (almost) all 6 ¢ (0,1),

* *
de(e) dTl(e)

* *
(60) Tz(e) = Tl(e) at 6 dimplies 45 > T

* *
It follows that 1f T intersects T it does so from below. Define

2 1
1 * * *
v () = u(-yl(e),ql(yl(e),e) - Tl(e))
and

v2(6) = ul-c(y5(8),0),75(8) - T,(8)).

, * * *

From (60) it follows that if Tl intersects T2 at 6 then
1 2 *
(61) v (8) > v©(8) if and only if 8 > 6.

2 * * * 1 *
Define vz(e) = uz(-c(yz(e),e).yz(e) TZ(B)) and Vz(e) = UZ( Yl(e).
* *
q(yl(e),e) - Tl(e)). Then, from the concavity of u, it follows that for all

]

(62) vleo) - v2(8) < vA(e)(Ty(e) - Ty (o)),

*
with strict inequality for 6 # 6 . Because good 1 is noninferior and qp-
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> 0, v;(e) and vg(e) are nonincreasing., Hence
(63) vg(e) < v%(e*) if and only if 6 > 6*.
Then, combining (61)-(63), we have
1 2 2 k% *
v (8) - v (6) < VZ(O )(Tz(e) - Tl(e))
*
for all 6 # 6 . Hence

1 1 2 2, * 1 * *
ItV orarce) - |t vE(orar(e) < vi(e™) S (T,(6) - T, (8))dF(0).
2 2 1
0 0 0
Therefore, if the boundary value T;(O) is chosen to equate jl vl(e)dF(e)
0 N
and jl vz(e)dF(e) -~ the levels of social welfare under the input and output
0
* *
taxes respectively —— we conclude that <y2(e),T2(e)> generates higher

* *
revenue than <y1(e),T1(9)>. Q.E.D.

Propositions 6 and 8 compare input and output taxes for maximin and
utilitarian welfare constraints, respectively. In some circumstances,
however, both constraints arise naturally. For instance, recall the
monopsonist-workers example of Section 1. Suppose that a worker signs a
contract with the monopsonist before he learns his input costs, which are
therefore regarded as a random variable. Presumably the contract assures the
worker of some expected utility level. Such a constraint corresponds to the
utilitarian constraint. Imagine, however, that the worker cannot be bound to
monopsonist, so that in no state can his utility be set at less than the
reservation level u. This corresponds to a maximin constraint (see Foster
and Wan [1983] for a greater elaboration of this model). It is quite possible
for both constraints to‘bind simultaneously. In that case, the arguments of

Propositions 6 and 8 easily extend to give us the following.
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Proposition 9: Under the hypotheses of Proposition 8, the optimal output tax

generates more revenue than the optimal input tax for the case where both the

maximin and utilitarian constraints pertain,

By reversing our hypotheses, we can obtain results that are diametrically

opposied to Propositions 6 and 8.

Proposition 10: If Assumption 2 fails then the optimal input tax generates

more revenue than the optimal output tax when the welfare constraint is
maximin. If, furthermore, good 1 (good 2) is not normal, then the same result

holds for a utilitarian welfare constraint when the tax is paid in good 2

(good 1).
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Appendix

Lemma 4 If Assumption 2 holds then, for any function yl(e), yi(e) >0 1is a
necessary and sufficient condition for the existence of a tax in good 1 or
good 2 units, T(6), such that & = 6 maximizes either u(-Yl(a),q(yl(ﬁ),e)
- T(8)) or u(-yl(é) - T(§),q(y1(5),6)) as appropriate.

Conversely if Assumption 2 fails and instead, with lump sum taxation an
agent with higher 6 supplies a lower input, the necessary and sufficient

condition 1is yi(e) < 0.

Proof: Condition (16) is the first order condition for an agent's maximum.
Solving for T'(6) from (16), we obtain

(a=1) T(0) = 19, (,(9,8) = F T tEy,at, (0,9 = Wen Yi¢®-

Then define T(6) to be the solution to (a-1l), with T(0) = Tge

We first show that y'(6) » 0 1is a necessary condition for U(8,8) =
u(-y1(§),q(y1(§),e) - T(8)) to take in its maximum at 6 = 6. We then show
that if y'(6) > 0, U 1is a pseudo—concave function of 8 so that the first
order condition (16), yields the global maximum.

Making use of (a-1) we can rewrite 3: U(8,0) as
' 28
(a-2) 2 u(d,0) =
36

= u,(-y,(8),a(y,(8),8) - T(8))1a;(y,(8),0) = q;(y,(8),
u (7 (8,00, (3,9 - T u -y, (3),q(y,(3),0) - T(B)

+ y — —_— - ~ - ]yi(é)
u, (-y, (8),q9(y,(8),8) = T(8))  u,(-y,(8),a(y,(6),08) - T(8)

. . . u (8,8 u,(8,0) .
= u)(3,0) [q,(3,0) - q,(3,8) + ——— - =——] y}(B),
uz(e,e) uz(e,e)
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where ui(é,e) = ui(-yl(é),q(yl(a),e) - T(8)) and q1(5,0) z ql(yl(ﬁ),e)-

2
Consider the cross partial derivative — where at a point where (a-2)

LEL

vanishes. We have

2 u,(8,8)u, ,(8,0)q,(8,0)
- -~ -~ 2 ? 2
(a-3) 2 0(3,0) = uy(3,0)[q,,(3,0) - 12
2926 (u,(3,0))
u, (8,8)u,.(8,0)q,(8,8)
+ X 22 2 1 y;(8).

(u,(3,0))°

By Assumption 2 and Lemma 2 the bracketed expression is positive., Therefore

2
the sign of -—g—— U 1is the same as that of yi(ﬁ).
90390
Now, for 8 = 6 to maximize U(8,8), it is neessary that 3% should be
90

nonnegative for 8 1in a left neighborhood of 6 and nonpositive in a right

neighborhood of 6. But, for each 8, ég U(8,0) is zero at 6 = 8. Hence,
26
it is necessary that

2
(a-t4) 2 u@d,8 >0, at ¥ =e.
3030

But from the above argument, (a-4) implies that

32 ~

In turn, (a-5) implies that —_— U(9,6) is nonnegative at any critical point
3636

(any point where 3: U(8,8) vanishes). Therefore, (a-5) implies that

96
U(8,0) is a pseudoconcave function of 8. If (a-5) is satisfied, 6 = 6

maximizes U(®,8).
Similarly, if Assumption 2 fails, that is, with lump sum taxation a
higher 6 1implies a lower input supply, yi(e) < 0 1s a necessary and

sufficient condition. Q.E.D.



