
The RAND Corporation

Monopoly with Incomplete Information
Author(s): Eric Maskin and John Riley
Source: The RAND Journal of Economics, Vol. 15, No. 2 (Summer, 1984), pp. 171-196
Published by: Blackwell Publishing on behalf of The RAND Corporation
Stable URL: http://www.jstor.org/stable/2555674
Accessed: 18/05/2009 10:57

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The RAND Corporation and Blackwell Publishing are collaborating with JSTOR to digitize, preserve and
extend access to The RAND Journal of Economics.

http://www.jstor.org

http://www.jstor.org/stable/2555674?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=black


Rand Journal of Economics 

Vol. 15, No. 2, Summer 1984 

Monopoly with incomplete information 

Eric Maskin* 

and 

John Riley** 

Recent theoretical research on principal-agent relationships has emphasized incentive prob- 
lems that arise when the parties involved are constrained by either asymmetric information 
or their inability to monitor each other's actions. Here we concentrate on theformer constraint 
and consider the case of a single principal (the monopolist). The main contribution is to 
show that, under a separability assumption, strong conclusions can be drawn about the 
nature of optimal incentive schemes. Although the primary focus is on optimal quantity 
discounts in a monopolized market, the results also shed light on related topics, such as 
optimal income taxation and commodity bundling. 

1. Introduction 

a In the last few years much theoretical work has considered incentive schemes (or 
"principal-agent" relationships) where the parties involved are constrained either by asym- 
metric information or by their inability to monitor each other's actions. In this article we 
concentrate on the former constraint, known in the literature as "adverse selection," rather 
than on the latter, often called "moral hazard." 

We show that a variety of issues can be viewed formally as members of a single family 
of principal-agent problems. In this article we consider in detail: (i) price discrimination 
via quantity discounts (Goldman, Leland, and Sibley, 1980; Oi, 1971; Roberts, 1979; 
Spence, 1977)1 and (ii) monopoly pricing of products of differing quality (Mussa and Rosen, 
1978). In a companion piece, Maskin and Riley (1983a), we study (iii) the choice of an 
auction for selling a fixed number of identical items. (See Harris and Raviv (1981), Maskin 
and Riley (1980, 1984), Milgrom and Weber (1982), Myerson (1981), and Riley and 
Samuelson (1981), as well as the seminal paper by Vickrey (1961).) 

For each of these problems, the central issue is how to construct a sorting mechanism 
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'There is also a much earlier literature which recognizes the potential gains to differential unit pricing for 
different sized purchases. Pigou (1930), for example, discusses "block pricing." He does not, however, consider 
its role as a screening mechanism in the absence of complete information. Instead he views it as an approximation 
to perfect ("first-degree") price discrimination. 
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to extract the greatest possible private gain. Our main contribution is to show that, under 
a separability assumption, we can draw strong conclusions about the nature of optimal 
incentive schemes. Our results also shed new light on a wide range of closely related topics. 
These include the theory of optimal income taxation (Mirrlees, 1971), the monopoly pricing 
of insurance (Stiglitz, 1977), the monopoly provision of excludable public goods (Brito 
and Oakland, 1980), multiproduct monopoly pricing (Mirman and Sibley, 1980), the reg- 
ulation of a producer with unknown costs (Baron and Myerson, 1982), and monopoly 
pricing of a product line (Oren, Smith, and Wilson, 1984). 

In the following section, we begin with a heuristic discussion of the issues involved 
for the simplest application: nonlinear pricing. Then, in Section 3 we examine the self- 
selection constraints that the monopolist faces and show that the choice of an optimal 
selling procedure reduces to a tractable variational problem. In Section 4 we present the 
fundamental characterization theorem for the optimal selling strategy of the monopolist. 
Using this result, we are able to show that, in a broad class of cases, the optimal selling 
strategy involves pricing larger quantities at successively lower unit prices; that is, using 
quantity discounts. We also provide a strong result on the effect of a change in the distribution 
of preferences on the profit-maximizing quantity discount scheme. 

Finally, in Section 5, we extend the Mussa and Rosen (1978) analysis of the pricing 
of quality to preferences that are defined over both quality and quantity. In this case a 
seller's optimal strategy is to sell multiple units in bundles. Higher quality units are sold 
in packages of a different size from those of lower quality units. For a simple parameterization 
of preferences, we provide a complete characterization of the optimal bundling strategy. 
We conclude in Section 6 with a discussion of further applications of the theory and with 
some comments on the central assumptions. 

2. Description of the problem 

* To introduce the general principles involved we focus on the simplest application 
the use of a nonlinear price schedule to discriminate among customers. A monopolist 
produces a single product at constant marginal cost, c. A buyer of type i has preferences 
represented by the utility function2 

Ui(q, -T) = fp(x; vi)dx - T, (1) 

where q is the number of units purchased from the monopolist and T is total spending on 
these units. That is, we take the standard consumer surplus approach and assume that 
differences in tastes are captured by the single parameter v. The seller does not observe v, 
but knows F(v), the distribution of buyers' preferences.3 Throughout we shall assume that 
higher levels of v are associated with a higher demand. We also assume that the demand 
price p(q; v) is decreasing in q and that there is some maximum quantity qe(v) for which 

2 Thus we exclude income effects. Notice that we do not rule out the possibility that differences in income 
across consumers may account for differences in demand; such effects can be embodied in the parameter vi. What 
we are assuming, in effect, is that the proportion of any single consumer's income spent on the good in question 
is so small that variations in p have a negligible effect on income. 

'Throughout this section, we shall interpret F(v) to be the underlying probability distribution from which 
the parameters of a population of buyers are drawn independently. Therefore, in considering expected seller profit, 
we are assuming risk neutrality on the part of the seller. Alternatively we could think of F(v) as the actual-i.e., 
the realized-distribution of the v's. The analysis would remain unchanged except that profit-maximization would 
replace expected-profit-maximization. Actually, there is a slight difficulty with the latter (traditional) interpretation 
of F(v). If all buyers but one revealed their v's through their purchasing behavior, the seller could infer the parameter 
value of the remaining buyer without observing it directly. This problem arises, however, only if the seller knows 
the actual distribution exactly, which seems improbable in practice. 
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demand price exceeds marginal cost. For each v, qe(v) is thus the efficient consump- 
tion level. 

To be precise we impose the following restrictions. 

Assumption 1. (i) For all feasible v the demand price function p(q; v) is nonincreasing in 
q and nonnegative, and there exists qe(v) > 0 such that p(q; v) is decreasing in q for 
q < qe(v) and p(q; v) > c if and only if q < qe(v). (ii) p(q; v) is twice continuously 
differentiable for q < qe(v). (iii) p(q; v) is strictly increasing in v whenever p(q; v) is positive. 

A selling procedure is then a schedule of pairs <qs, TS>SEs, which the seller offers to 
the buyers. If a buyer chooses s, he receives qci and pays a total of Ts. The profit or "return" 
to the seller is then 

k = ts- cqs. (2) 

Throughout we shall assume that any selling procedure includes the pair <0, O>, that is, 
the buyer always has the option of buying (and paying) nothing. 

Combining (1) and (2), we can rewrite the utility of a buyer of type i as 

U(q, R; vi) = fp(x; vi)dx - cq - R N(q; vi) - R, (3) 

where N(q; vi) is the social surplus generated by the sale. Thus, we can think of the trades 
between the seller (the "principal") and buyers ("agents") as giving each buyer the entire 
surplus less a fee R. The selling procedure is then a schedule of pairs <qs, Rs>ses offered 
to each of the buyers. This latter formulation proves more convenient.4 

Before considering the choice of a selling procedure, we note that our formulation 
can be reinterpreted, without modification, as the choice of an optimal piece-rate schedule. 
Let C(q; vi) be the opportunity cost to a worker of type vi of producing q units for a 
potential employer with some monopsony power. Suppose that the employer (the principal) 
knows the distribution of vi but cannot observe vi directly. If m is the value of each unit 
of output to the employer and the worker is offered a payment Q for q units, the net gain 
to the worker is 

U(q, Q; vi) = Q - C(q; vi), (4) 

whereas the employer's return is 
R = mq-Q. (5) 

As before, we define N(q; v) to be the social surplus, that is, 

N= mq-C(q; vi). (6) 

Substituting (5) and (6) in (4), we find that the net gain to an agent (worker) of type i is 
given once again by (3).5 

4 Our formulation embraces a vast array of selling procedures that the notation perhaps conceals. We allow, 
for example, for selling procedures involving multiple rounds of moves by buyer and seller, as long as the only 
things that ultimately matter to the buyer and seller are the quantity sold and the payment. Two possibilities that 
our formulation does exclude are (i) allowing one buyer's quantity-payment pair to depend on the choices of other 
buyers and (ii) permitting q(s) and T(s) to be random functions of s. As we argue below, however, neither possibility 
is advantageous for the seller, given our assumptions (see, however, the minor qualification in footnote 3.) 

5 To make the problem exactly equivalent, we also introduce the constraint that the worker will participate 
only if his utility exceeds some reservation level ii. This description suggests that the relationship between an 
employer and worker begins only after the worker has observed his vi (an ex post relationship), but we can equally 
well suppose that the two parties sign a contingent contract before vi is realized. By making the payment and 
output contingent on vi, such a contract serves to share risk. If we assume that the employer is risk neutral and 
the worker infinitely risk averse and maintain the hypothesis that only the worker can observe the realization of 
vi, then this ex ante contract generates the same contingent payments and outputs as the ex post relationship. 
This results because, given the worker's extreme risk aversion, the constraint on his utility in the contract is simply 
that net gain should exceed some minimum, fi, which is the same as in the ex post relationship. Hence, the 
literature on labor contracts with asymmetric information (Hart, 1983) can also be fit into our framework. 
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Returning to the original interpretation, we begin with a diagrammatic derivation of 
the seller's optimal price schedule. A buyer's utility from any pair <q, R> is, from (3), just 
the social surplus N(q; vi) less the seller's profit R. Given our definition of qe(v) as the 
efficient level of consumption by a buyer with parameter vi, it follows that, for any R, 
U(q, R; vi) increases with q until it reaches a maximum at q = qe(vi). 

Thus, indifference curves must be as depicted in Figure 1. Note that at <q, R> the 
slope of the corresponding indifference curve is 

dR a aUIdU 

=d1 -=P(q;v)-c. dq dU=O aq 
a R 

Therefore, at any point <q, R> the indifference- curve for a buyer with a higher parameter 
value has a greater slope. Sorting is feasible precisely because different individuals have 
different marginal rates of substitution between the commodity and income. Our assumption 
that one individual's marginal rate of substitution is everywhere higher than another's is 
an important analytical simplification. 

For the simplest case of two buyer types we can illustrate the profit-maximizing selling 
strategy with the help of Figure 1. If the seller had complete information about buyer types, 
he could extract all buyer surplus by introducing the schedule I* = {<ql*, R* >, 
<qt, RI >}. But since we assume that he has no direct means of distinguishing buyer types, 
this selling procedure will not extract all surplus. Indeed, high demanders (v = V2 > VI) 
are strictly better off buying ql' units at a total cost of RI* + cq* 

From the figure it is easy to see, moreover, that the seller can do strictly better than 
I*. Consider the indifference curve for a high demander through <qi', RI'>. Any such 

FIGURE 1 

PRICE DISCRIMINATION WITH TWO TYPES OF BUYER 
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buyer cannot be dissuaded from choosing <qf , R? > if available, unless also offered an 
alternative on or below this curve. Thus, assuming he also offers <q1', RI*>, we find that 
the seller maximizes his return by offering the alternative pair <qt', R2>. Note that at the 
points chosen by each type, the associated indifference curves have zero slope. That is, the 
pairs <qI', R? > and <q2*, R2> are efficient. 

We next establish, however, that the monopolist can do better than I = {<qi*, RI*>; 

<q2*, R2>} by introducing inefficiency. Consider the alternative <qi**, RI'*>, depicted in 
Figure 1, which also extracts all the surplus from low demanders. Much as before, the 
monopolist maximizes his return from high demanders, given that he offers <(q?*, RI'*>, 
by also offering <q2*, RI*>. By presenting buyers with Io = {<ql**, Rl**>, (q2*, R2**>} 
rather than I, the monopolist gains relatively from high demanders (Rt** > R2) and loses 
from low demanders (RI'* < RI). But observe that at least for small moves to the left of 
qf , the slope of the indifference curve for type I buyers is approximately zero. Therefore, 
the fall in the return from type 1 buyers is approximately zero. To be precise, there is a 
first-order rise in the return from high demanders and only a second-order decline from 
low demanders. 

As the ratio of high to low demanders increases, the offer (qfc*, RI'*> moves further 
to the left until eventually <qu*, RI'*> = (0, 0>. Then, if the ratio of high to low demanders 
is sufficiently great, Io in effect becomes simply {(qt', R2* >}. Regardless of whether Io or 
{<qt, R' >} is optimal, however, only high demanders purchase the efficient quantity 
q= = qe(v2), and the low demanders' demand price for the last unit purchased exceeds 
marginal cost. 

A straightforward generalization of this argument establishes that, with more than two 
types of buyer, demand price will exceed marginal cost for all except the highest demanders. 
To summarize, we have: 

Proposition 1: Inefficiency of monopoly price discrimination.6 Under Assumption 1, if 
V = {vI, . . ., vnIvi < vi+ } is the set of possible parameter values, then the profit-maximizing 
selling procedure of the form (q5*, R(qs* )>sEs will result in purchases q(v1) by a type i buyer 
such that p(q(vi); vi) > c for all i, and the inequality is strict for i < n. 

This proposition is an instance of a very general principle that has emerged from the 
rapidly growing literature on incentive schemes (e.g., income taxation and piece-rate 
schemes); viz., the optimal incentive schedule typically involves distortions (that is, deviations 
from the first-best) at all but one point. 

The primary goal of this article is to show that by introducing only mild restrictions, 
we can provide a complete characterization of the expected profit-maximizing nonlinear 
price schedule for any smooth distribution of demand curves. In so doing we lay a broad 
foundation for future empirical investigations of monopolistic pricing practices. 

To preview the issues involved and the results to follow, consider a selling procedure 
(q(s), R(s)> = (q(s), R(q(s))>, where {q(s)}sEs consists of all nonnegative quantities, and 
the return function R(q) is continuously differentiable, as depicted in Figure 2a. Because 
indifference curves are steeper for larger v, the response q*(v) (that is, the purchase by a 
type v buyer) will be a strictly increasing function for all v above some minimum a' where 
purchases are zero. Thus, the buyer types who actually make purchases are completely 
"sorted out." 

Figure 2a is somewhat misleading, however, since it is not generally optimal for the 
seller to sort completely. One alternative possibility is illustrated in Figure 2b. Instead of 
being continuously differentiable, the return function, R*(q), has an upward kink at A. As 
depicted, any buyer with v > a 3 chooses q*(v) > qA. Those with v E [(a2, a3] all choose 

6 The graphical derivation of this proposition is easily formalized. 
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FIGURE 2a 

COMPLETE SORTING OF ALL BUYERS MAKING PURCHASES 
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q*(v) =qA. By using the function R*(q) rather than R(q), a seller obtains a lower return 
from those buyers for whom v E [a 2, a>3] . But the kinked schedule generates a greater 
return from high values of v. It is therefore intuitively plausible that if the proportion of 
the buyer population with intermediate values of v is sufficiently low relative to the pro- 
portions with high or low v's, seller profit is increased by the introduction of such a kink. 
As we shall see, kinked nonlinear pricing schemes are optimal under weaker conditions 
as well. 

A third possibility is depicted in Figure 2c. Instead of the continuously differentiable 
R(q), the seller constructs R**(q) so that a buyer of type a!2 is indifferent between the 
points A and A'. The resulting R **(q) lies below R(q), and hence relative to R(q), the seller 
has a lower return if v is sufficiently high. But he now gains from buyers with parameter 

FIGURE 2b 
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FIGURE 2c 

DISCONTINUOUS PRICE FUNCTION 
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value a 3 somewhat greater than a2, since such buyers select points like B' rather than B. 
This suggests that if the fraction of buyers with a parameter value near a3 is sufficiently 
high, discontinuities will be optimal. Of course, the argument is incomplete, since it ignores 
the shape of the optimal return function below point A. Indeed we shall see that, given 
our other assumptions, discontinuities in the return function are optimal if and only if the 
density function for v has an upward discontinuity. 

3. Self-selection constraints 

* Rather than proceeding directly to the general model with an arbitrary continuous 
cumulative distribution function F(v), we first examine the "self-selection" constraints for 
the discrete case. These constraints require that each consumer type be as happy with the 
<q, R> pair assigned to him as with that of any other type. The crucial step is to show that 
the optimization problem faced by the seller-choice of a schedule <(s, R(qs)>sEs, subject 
to self-selection constraints-reduces to a tractable variational problem. This is done by 
first showing that for each type, only one of the constraints is actually binding; viz., the 
"local downward" constraint. 

Consider Figure 1 once again, but now suppose that there are n different types with 
vi < vi+I, i = 1, ... ., n. First we note that, because the indifference curves of an individual 
with a higher v are everywhere steeper, the following syllogism must hold: 

For all q2 > ql and <ql, R > <q2, R2>, (7) 

<ql, RI > <q2 R2> <qi, RI > <q2 R2>, for v > vi. 
Vi 

We next define <q(vi), R(vi)>viEv to be the schedule of pairs optimal for each buyer 
type, given some schedule of offers by the seller. Suppose that the pair <qc**, RI**> depicted 
in Figure 1 is optimal for type 1. Then all other offers <qs, Rs> must lie on or above the 
indifference curve for type 1 through <q**, Rl**>. Given Assumption 1, we know that the 
indifference curve for type 2 through this same point is steeper at any level of q. Then 
either q(v2) = q(vi) or a buyer of type 2 chooses a pair <qs, Rs> on or below this steeper 
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indifference curve. But we have already argued that all the alternatives must lie above the 
flatter indifference curve for type 1. Then either q(v2) = q(v1) or (q(v2), R(v2)> must lie 
in the shaded region, that is, 

q(v2)> q(v1). 

Since exactly the same logic applies for any two neighboring types, we can conclude 
that the response function 

q(v) is a nondecreasing function. (8) 

A further important implication of Assumption 1 is that, for each type, the "local 
downward" constraint is strictly binding. That is, there is no type vi such that 

<q(vj), R(vi)> >- <q(vi-l), R(vi-,)>. (9) 

To confirm this, suppose (9) holds for some i. Since (q(v1_1), R(vi-1)> is optimal for type 
vi-1, we also have 

<q(vsi-), R(v-, )> >- <q(Vk), R(Vk)>, k=1, . .., i-1. 
Vi-l 

Then appealing to (7) and (8) 

<q(vi-l), R(vil)> >- <q(Vk), R(Vk)>, k = 1, . . . , i - 1. (10) 

Now consider the alternative scheme 

qk = q(vk) 

A R(yk) k < i 

R(Vk) + 6, k > i. 

For sufficiently small 6, (9) continues to hold. Then (10) holds also. That is, type vi will 
not switch to a lower level of q. An almost identical argument establishes that no type v>, 
j > i, will do so either. Finally we note that, since indifference curves are vertically parallel, 
rankings over (q(vj), R(vj)>)>i are identical to the rankings over <q(vj), R(vj)> for all types 
V., j> i. 

Thus, the new scheme results in the same choices of q by each type and a strictly 
greater return to the monopolist. But this is impossible since, by assumption, (q(vi), 
R(vi)>i= ..,n is the monopolist's optimal scheme. Therefore, (9) is false, and the local down- 
ward constraint is binding; that is, 

<q(vi), R(vi)> - <q(vi-1), R(vi1 )>, i = 2, ... , n. (11) 

This argument implies that a buyer with the lowest v obtains no surplus, that is, 

<q(vl), R(vl)> - <0, 0>. (12) 

Figure 3 depicts a possible optimal selling procedure with three different types. All 
the pairs <q(vi), R(vi)> lie along the dashed curve, where each segment corresponds to an 
indifference curve for a different demander. From this figure, it should be clear that the 
indifference curve for each type vi through <q(vi), R(vi)> never lies above the dashed curve. 
Thus, if conditions (8) and (1 1) are satisfied, <q(vi), R(vi)> is indeed the global optimum 
for type vi. That is, we assert that besides being necessary properties of a monopolist's 
optimum, (8) and (1 1) are also conditions sufficient for all self-selection constraints to be 
satisfied. 

From this analysis of the finite case we can now move easily to the limit with the 
buyer's demands continuously distributed. In what follows we shall make use of the next 
assumption. 
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FIGURE 3 

COMPLETE SORTING WITH THREE DIFFERENT BUYER TYPES 
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Assumption 2. The cumulative distribution function for v, F(v), is a strictly increasing, 
continuously differentiable function on the interval (0, i3] with F(0) = 1 - F(i') = 0. 

With (q(v1), R(v1)> optimal for a buyer with parameter vi, we can write maximized 
utility as 

U*(v1) N(q(v1); v1) - R(v1). (13) 
From (1 1) 

U*(v+,)N(q(vi+1); vi+1) - R(vi+1) = N(q(v1); vi+1) - R(v1). 
Therefore, 

U*v+)- U*(v1) =N(q(v1); vi+1) - N(q(v1); v1) 

= '' W? qv1); x)dx. (14) 

From (12), we know that the utility of the lowest demanders must equal the utility of not 
participating, that is, 

U*(O) = O,(15) 

Combining (14) and (15), we obtain 

U*(V1) = 2: f (q(vj); x)dx, where v0 = 0. 

Substituting this expression in ( 13), we can write the expected seller revenue from a buyer 
of type vi in terms of q ( .): 

R(v1) = N(q(v1); v1) - i~fV+ 
aN 

(q(vj); x)dx. 
j=O VjaV 

7Oren, Smith, and Wilson (1984) consider a case in which there is an additional fixed cost, k, of supplying 
each customer. Then (15) becomes U*(O) = k. Their analysis is easily generalized by using our methods. 
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Taking the limiting case of a continuous distribution of types, we have 

R(v) = N(q(v); v) - f - (q(x); x)dx. (16) 

From the monopolist's viewpoint, v and, hence, R(v) are random variables. He, there- 
fore, chooses q(v) to maximize the expectation of R(v) subject to the constraint (8) that 
q(v) is nondecreasing. The expectation of R(v) is 

J (N(q(v); v) - - d (q(x); x)dx]dF(v), 

or, after integration by parts, 

J [N(q(v); v) - (q(v); v)/p(v)]dF(v), 

where p(v) F'(v)/(l - F(v)) is the hazard rate of F. Summarizing, we can state the 
following proposition. 

Proposition 2: Expected profit from second-degree price discrimination. If Assumptions 1 
and 2 are satisfied, the expected profit obtainable from a selling procedure <q(v), R(v)>, 
where q(v) is nondecreasing, can be expressed as 

rV 
f I(q(v); v)dF(v), 

where 
ON 

I(q; v) = N(q; v) - (q; v)/p(v), (17) 
rq ~ ~ ~ a 

N(q, v) f p(x, v)dx - cq is the net social benefit, 

and 

p(v) F'(v)/(l -F(v)). 

To maximize expected revenue, the seller thus chooses q*(v) to solve 

max jJ I(q(v); v)dF(v)jq(v) is nondecreasing}J. (18) 
q(V) 

Assume that q*(*) is piecewise differentiable. (We shall see below that this assumption is 
justified.) Then, from (16), the return to the seller from a buyer of type v is 

R*(v) = N(q*(v); v) -I - (q*(x); x)dx Jo v 

aN ~~dq*(x) O (q*(x); x) dx. 
JOdq dx 

Let q(q) = min{vlq*(v) = q}. Because q*(v) is nondecreasing, we can write v = 4(q). We 
can, therefore, write 

8 In deriving the formula for expected profit in the case of only finitely many values of v, we invoked the 
assumption that <q(v), R(v)) is optimal for the monopolist. In particular, we used this assumption to show that 
the local downward incentive constraint is binding. One can show, however, (see the lemma following Proposition 
3) that formula (17) is valid even for nonoptimal selling schemes. 
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R*(O(q))= J - (Z; 4(z))dz 0 q 

= fp(z; 4(z))dz - cq. 

Hence we have the following proposition. 

Proposition 3: Optimal nonlinear pricing. Under Assumptions 1 and 2 expected monopoly 
profit is maximized by introducing the nonlinear total payment schedule 

T(q) = p(z; 4(z))dz, (19) 

where ?(z) is defined by +(z) = min{vlq*(v) = z} and q*(v) is the solution to (18). 

We have derived Propositions 1-3 somewhat informally to emphasize the ideas behind 
the proofs. In fact, we have left certain gaps in the analysis. First of all, our derivation of 
(16) by taking limits was rather loose. In Maskin and Riley (1983b) we provide a formal 
proof. In fact, we establish the following lemma. 

Lemma. For any q(v), a nondecreasing function on [0, v], there exists a unique return 
function, R( * ), given by (16), such that <q( * ), R( * )> satisfies all the self-selection constraints 
and (15). 

We should note that the uniqueness of R( * ) in this lemma depends crucially on the 
continuity of F( ). If F( ) is, by contrast, a discrete distribution, then corresponding to 
each q( ) there will be a continuum of R( * )'s such that the self-selection constraints and 
(15) are satisfied (although only one that is profit-maximizing). 

Another point we ignored is the possibility that the seller might offer a schedule 

<O, Rs>ses, where q- and Rk are random rather than deterministic functions. We consider 
this possibility in Maskin and Riley (1983a), wherein it is established that gains from 
randomization are ruled out if the following assumption is satisfied. 

Assumption 3: Nondecreasing price elasticity. Demand elasticity is nondecreasing in the 
demand price. That is, 

0 
-qd p < 0. (20) 

For a buyer of type v, utility is 

U(q, T; v) = p(x, v)dx - T. 

Hence, for such a buyer, 
092U 

O9 0 q2 _1 0 I-qOp\ 

dv dU qdvtp dqJ* (21) 
49 dqU / vp 

Assumption 3 implies, therefore, that absolute risk aversion is nonincreasing in v, if we 
interpret U as a von Neumann-Morgenstern utility function. 

We should note that we have a great deal of flexibility in our choice of a parameterization. 
In particular, if p(q; v) represents a family of inverse demand curves satisfying Assumptions 
1, 2, and 3, then p(q, w(v)) represents the same family and also satisfies these three assumptions 
if w( * ) is strictly increasing. For convenience, we shall choose, without loss of generality, 
a parameterization for which the increases in demand price are diminishing as v rises. 
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Assumption 4. p22(q; v) < 0. 

Since we shall appeal to Assumptions 1, 2, 3, and 4 in much of what follows, we 
observe that they are satisfied for large classes of preferences. For example, they are satisfied 
if 

p(q; v) = a(v)a(q) - fl(v)h(q), (22) 

where a(q) is positive and nonincreasing, h(q), a(v), and a(v)/1#(v) are all nonnegative 
and nondecreasing, a"(v) < 0, j"(v) > 0, a(v)a(O) - f3(v)h(O) > 0, and a(v)a'(0) 
- 3(v)h'(0) < 0. 

One special case of (22) is the family of linear demand curves. Without loss of generality, 
we can set a(v) = v, a(q) = 1, and h(q) = q so that 

p(q; v) = v - (v)q. 

A second important case is the family of constant elasticity demand functions 
p(q; v) = a(v)q-'1'7. As we shall see, the seller's optimization problem is especially straight- 
forward for this family. 

4. Characterization of the optimal selling procedure 

* We now turn to the solution of the seller's optimization problem, (18). First, we provide 
conditions under which there is complete sorting of all those buyers actually making pur- 
chases. 

Proposition 4: Complete sorting optimum. Suppose Assumptions 1, 2, 3, and 4 hold. Then 
the 4(v) that solves max I(q; v) is nondecreasing and, whenever q is positive, strictly increasing 
if either q 

1 - F(v) . 
J(v) v- F(() is increasing (23) 

or 
1 0 (p2(4(V); v)+ < 1 (24) 

P2(4(V); V) 0v. p(v) I 
Proof: We first establish that Assumptions 1, 2, and 3 together imply that I(q; v) is a strictly 
quasi-concave function of q. From (17) 

d = p(q; v) - p2(q; v)/p(v) - c. 
o~q 

Hence 
dI 
d9I > ? =l/P < P/P2. (25) 
o~q 

Also 
02I 

2 = Pi - P12/P. (26) 

If P12 is nonnegative, 02I/0q2 is negative since, by Assumption 1, PI < 0 for q > 0. If P12 
is negative, then by (25) 

d9I CO2I P12P p2 0 (-qpj) 

dq dq2 P2 qp2 dv p 

By Assumption 3 the final term is nonpositive. Thus I(q, v) is indeed strictly quasi-concave. 
Furthermore, 

02I 
- ( 12 0I (p2\ P2 (P + P22 (27) 

aqOV P-2 OCV k / _P p P2/ 
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Since d(v) maximizes I(q, v), either j(v) = 0 or d(v) satisfies the first-order condition 
01/0q = 0. Totally differentiating the latter equation, we obtain 

d4 _ 02I /02I 

dv Oqcvi 0q2 

We have just argued that the denominator is negative, hence the derivative exists. 
Also, if (24) holds, then, from (27), C2I/0qcv is positive. Alternatively, since 

J'(v) I ! ( + P P 
and by hypothesis P22 < 0, it follows from (27) that if (23) is satisfied, 02I/0qcv is again 
positive. 

Hence 4(v) is either zero or strictly increasing. Thus 4(v) solves the monopolist's 
optimization problem (18). Q.E.D. 

Although condition (24) has the advantage of being invariant to parameterization, the 
somewhat stronger condition (23) is easier to interpret. It requires that the hazard rate p(v) 
not decline too rapidly with v, a requirement that accords well with our heuristic discussion 
of complete sorting in Section 2. Certainly, this condition is satisfied for a large subclass 
of distribution functions. It is not difficult, however, to produce instances in which it is 
violated. For example, if, holding the support of v fixed, the variance of v is made sufficiently 
small, J(v) is nonmonotonic.9 We shall see below that whenever there exists a v such that 
J(v) is positive and decreasing, complete sorting is no longer optimal. 

Example 1: Vertically parallel demand: 

p(q; v) = v - h(q), h'() > O. 
For this simple case 

- (q; v) = J(v) - h(q) -c 0 q 
where 

1-F(v) 
J(v) = v - F') 

Then if J(v) is increasing, 

4(v) = h-'(max{O, J(v) - c}) is nondecreasing, and 

by Proposition 3 the optimal nonlinear price function is 

T(q) = f (J'(h(z) + c) - h(z)]dz. 

Example 2: Constant price elasticity of demand: 

p(q; v) = vq-'/, t > 1 

-(q; v) J(v)q'l7 - c. 

It is easy to give other examples for which J(v) is not monotonic. For instance, if 

F(v) = v(7 - 9v + 4v2)/2 

so that iv = 1, it may be confirmed that J(1/2) = J(5/8) = J(3/4) > 0. 
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Then, once again, 4(v) is monotonic if J(v) is increasing. Substituting into (19), we 
obtain 

T(q)= J' I (CZ, /")z-"/77dz. 

Under the hypothesis of Proposition 4, it is in principle possible to compute the optimal 
nonlinear pricing scheme for any family of demand curves. One important qualitative issue 
is how a change in the underlying distribution affects the optimal price function. Suppose 
that there is a rightward shift in the distribution, so that the new distribution G(v) is strictly 
less than F(v) for all v < (0, v). Since higher values of v are associated with higher demanders, 
keeping the same pricing scheme will make the seller better off. Less obvious, however, is 
the effect on the optimal payment function T(q). 

One condition sufficient to ensure that G(v) < F(v) is that the hazard rate for F exceeds 
the hazard rate for G. We now show that this condition ensures that the optimal payment 
function TG(q) is strictly steeper for all q than the corresponding function for F. 

Proposition 5. If for all v E (0, v) the distribution G(v) has a lower hazard rate than F(v) 
and Assumptions 1, 2, and 3 are satisfied, then 

d - d 
TG(q) > TF(q). dq dq 

Proof: We consider only the case in which the optimal response function, &(v), is the solution 
to max I(q; v). That the proof generalizes follows directly from the Characterization Theorem 

q 

(Proposition 7). 
From the proof of Proposition 4, I(q; v) is strictly quasi-concave. Also, from (17), if 

PF > PG, then 
0IF 01G 

Oq Oq 

But if qG(v) > 0, (qG(v); v) = 0. Thus, qG(v) > 0 implies that qF(V) > qG(V), so that 

the two inverse functions satisfy kF(q) < kG(q). Since P2 > 0, the result then follows directly 
from (19), the definition of T(q). Q.E.D. 

Intuitively, by making the payment function steeper, the monopolist is able to extract 
more revenue from the highest demanders. Thus, as the number of high relative to low 
demanders rises, a steeper price function becomes more desirable. This intuition, however, 
is incomplete, since it suggests that any rightward shift in the distribution will raise the 
entire payment schedule. A counterexample, in which there are just three types, is illustrated 
in Figure 4. Suppose that, for the initial probability weights, the optimal selling procedure 
is to offer the three pairs, A1, A2, A3. Next suppose that the distribution is shifted to the 
right via a reduction in the probability weight for the lowest demanders and an increase 
in the weight on type 2, with intermediate demand. This raises the marginal benefit to 
increasing the payment by type 2. The new optimum is then A1, B2, B3 with a lower profit 
from the type 3 demanders. Since the highest demanders are allocated the same output, 
T(q(v3)) = R(q(v3)) + cq(v3) is also lower. 

One feature common to nonlinear pricing schemes in practice is the use of quantity 
discounts. We often see offers such as "one for a dollar, three for two dollars," and the 
more complicated multipart tariffs of utility companies almost invariably involve offers of 
lower unit prices for greater consumption. A reason why quantity premiums ("one for a 
dollar, two for three dollars") may not be used is that they may be difficult to enforce; a 
customer might be able to circumvent a premium by successively buying small quantities 
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FIGURE 4 

IMPACT OF A SHIFT TO A MORE FAVORABLE DISTRIBUTION 
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under different guises.'0 There are many commodities, however, (e.g., utilities) for which 
enforcement is possible. We, therefore, consider whether or not premiums are desirable in 
the absence of enforcement costs. For a broad class of cases, we shall see, they are not. 

The payment per unit purchased is, under the hypotheses of Proposition 3, 

T(q(v)) p(q(x); x)q'(x)dx 
q(v) JO q(v) 

This is decreasing in v, and hence in q, if and only if 

q(v)p(q(v); v) - f p(q(x); x)q'(x)dx = f [p(q(v); v) - p(q(x); x)]q'(x)dx < 0. (28) 

From Proposition 1, for all x < v 

p(q(x); x) > c = p(q(i), v). (29) 

Thus, quantity discounts are always optimal for buyers at the upper tail of the distribution. 
Invoking some further fairly mild restrictions, we can establish the considerably stronger 
result that quantity discounts are everywhere optimal. 

Proposition 6: Quantity discounts. Suppose that Assumptions 1, 2, and 3 hold. Then the 
optimal unit price T(q)/q is everywhere declining if 

'0 Of course, quantity discounts can in principle be circumvented as well. Consumers can band together to 
buy in bulk or an entrepreneur can do the bulk buying for them. But such evasive actions, unlike those for 
quantity premiums, require the coordination of more than one agent. 
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O1 (P2(q; v) > 0 (30) 
Ov kp1(q, v)p(v)J 

for q = q*(v), where q*(v) is the optimal response function. 

Proof. We consider only the case where the optimal response function q*(v) solves max 
I(q, v). That the proposition holds in general, however, follows directly from the Char- 
acterization Theorem (Proposition 7). 

From (28), quantity discounting is optimal for all q ifp*(q (v); v) is a decreasing function 
of v for all q*(v) > 0. From the proof of Proposition 4, q*(v) > 0 implies that 

C12I dAI 
- P2 + 

dq* = 0qcv = dO p. (31) 
dV 02I 

3 
P2) 

021~ ~ ~~~1 d~q2 Pi - 

Furthermore, the denominator d2 is negative. Differentiating p(q(v); v) and substituting 

from (31), we obtain 

do p(q*(v); v) =pi dq + P2 d= dq + 9 P2 42 

0v \.ppI 0q' 

which, given (30), is negative. Q.E.D. 

Sufficient conditions for condition (30) to be satisfied are that Assumption 3 hold 
(P22 < 0), that the hazard rate p(v) be nondecreasing, and that P12 < 0.11 

Finally, we turn to the general characterization of the optimal selling procedure when 
qI(v) is not monotonic. Proposition 7 reveals that the optimal response function q*(v) is 
continuous. There are subintervals over which q*(v) is constant, whereas on all other 
subintervals q*(v) = q(v). As depicted in Figure 2b, a transition from the former to the 
latter corresponds to an upward kink in the payment schedule, T(q) = cq + R(q). Given 
Assumptions 1, 2, and 3, Proposition 7 also shows that the intuitively plausible alternative 
depicted in Figure 2c is never optimal.'2 

In the proof of Proposition 7, which appears in the Appendix, we require the following 
two restrictions. 

Assumption 5. I(q; v) is strictly quasi-concave. 
Assumption 6. 

- (q; z)dF(z) > 0 (q; z)dF(z) < 0, v < y. 
0 q O q 

Both assumptions are fairly weak. For example, Assumption 6 holds if 

p(q; v) = 0(v)a(q) - h(q), 

and we have already seen that Assumption 3 is a sufficient condition for Assumption 5. 

"It is easy to see that P12 < 0 is not necessary to establish the desirability of quantity discounts globally. 

For example, if p(q; v) = 1 q and F(v) = v, then (30) is satisfied while P12 > 0- 

12 Proposition 7 continues to hold if F(v) is a strictly increasing continuous piecewise differentiable function. 
It then follows immediately that if the density rises discontinuously at some v', q*(v) will have an upward dis- 
continuity at v'. 
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Proposition 7: General characterization of the optimal response function. 

(A) Suppose Assumptions 1, 2, and 5 are satisfied. Assume that there exists an optimal 
response function, q*(v). Then there exists a set of subintervals 

{[Xi, Ai C: 1?, D~lXi-'> yijiI 

possibly empty, such that for all i 

(i) qx')= q(y), 
and 

(ii) J -(q-(y); z)dF(z) < 0, v < y, y X U (xi, y) 
0 Oq 

with equality if y = yi and v = x' (x > 0). Moreover, 

(iii) q*(v) JdIq(y') if v E [x', y'] for some i 
(iii) q *(V) =1 

lq(v) otherwise. 

(B) Given Assumptions 1, 2, and 5, a collection of subintervals satisfying (i) and (ii) exists. 
If, in addition, Assumption 6 holds, then q*(v) defined by (iii) is an optimal response 
function. 

Proof. See the Appendix. 

Notice that in part (A) of Proposition 7, the existence of an optimal response function 
is assumed, whereas in part (B), existence is asserted. To understand this result consider 
Figure 5, which illustrates a simple case where q(v) is decreasing over one subinterval. 
Since qI(v) solves max I(q; v) and since I(q; v) is, by assumption, strictly quasi-concave, we 
have q 

OI {>O, q < q(v) 
Oq <0, q > q(v). 

FIGURE 5 

SOLVING FOR THE EXPECTED PROFIT-MAXIMIZING RESPONSE FUNCTION 

q& 

q -?I I I I lI 

?0V1 xl V yl vl 
V 



188 / THE RAND JOURNAL OF ECONOMICS 

The seller seeks to solve 

r V 
max4j I(q; v)dF(v)jq(v) nondecreasing}. 

To derive the optimal response function, q*(v), we begin by defining v1 as depicted, 
so that 

= min{vj3v > v with 4(i)) < 4(v)}. 

We next establish that q*(v) = q(v) for v < v1. 
Since OI(q; v)/Oq is positive for q*(v) < q(v) and negative for q*(v) > q(v), it follows 

immediately that 

f I(q(v); v)dF(v) > JI(q*(v); v)dF(v). 

Thus, q*(v') > q(v1) cannot be optimal, at least if q* is continuous, since, without violating 
the constraint that q* be nondecreasing, and without altering q* for v > v1, we can set 
q* = q over [0, v1]. If q*(vl) < q(v1), define 

(V) {q(v), v < l 
max { q*(v), q(v)}, v > v . 

For v > v1 and q E (q*(vl), q(v1)), Hl/aq(q; v) > 0. Then 

f 1(q(v); v)dF(v)> f I(q *(v); v)dF(v), 

again contradicting the optimality of q*(v). 
Similarly we can define v2, as depicted, so that 

q(v2) = max{q(v)lv < v2}. 

Arguing almost exactly as above, q*(v) = q(v) over [v2, v]. 
The next step is to note that with q*(vi) = q(v1), i = 1, 2, there must be some vA in 

the interval over which 4(v) is decreasing where q*(v) and q(v) intersect. Define 
q = q(Vi). For v < v, q*(v) q4, since q*(v) is monotonically increasing. Then, since 
OI/Oq is positive for q < q(v), the integral is maximized by choosing 

q*(v) = min{4(v), 4}. 

An almost identical argument establishes that q*(v) = max{q(v), q^} for v > D. Thus, as 
depicted, q*(v) is constant over some subinterval [xl, y 1] and equal to q(v) otherwise, 
establishing (iii) in Proposition 7. 

Notice that q(x1) = q(y1) = q*(v) for all v E (xl, y1), establishing (i). To determine 
the location of x1 and y 1, consider the monopolist's total profit 

rX' ry'~~~(X1) rV 
f I(4(v); v)dF(v) + J I(q(x1); v)dF(v) + f I(q(v); v)dF(v), 

where y1 _ y O(x') satisfies 4(y l(x 1)) = q(x 1). Differentiating this expression with respect 
to xI, we obtain the further necessary condition 

- (q(x 1); v)dF(v) = 0. 

Given our assumptions, this uniquely defines the interval [xl, y 1. 

5. Monopoly pricing of product quality and optimal bundling 
* Our analysis of optimal pricing tactics in Sections 2-4 can be readily adapted to determine 
the optimal selling strategy of a monopolist selling products of differing quality levels. 
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Indeed, in the simplest case we need only reinterpret the basic model. We assume that 
each consumer wishes to purchase only one quality level. Furthermore, following Mussa 
and Rosen (1978), we begin by assuming that consumers either do not buy the good or 
purchase just one unit (in this case, of course, the one quality level assumption is satisfied 
automatically). 

Consider the Marshallian utility function 

ui(y, q, z; v) = y + zB(q; v), (32) 

where y is spending on other goods, q is the quality level of the single unit purchased, v 
represents the strength of preference for quality, and z is a dichotomous variable equal to 
unity with purchase and zero otherwise. If a consumer with income level I pays T for a 
unit of quality level q, we can rewrite his indirect utility as 

u(q, T, z; v) = z(B(q; v) - T) + I. (33) 

Assumption 1 then requires that the marginal utility of higher quality is, ceteris paribus, 
at least as high for consumers with higher levels of v. 

With little loss of generality, we can define units of quality in such a way that the 
marginal cost of a unit of quality level q is cq. 13 Then the monopolist's problem is identical 
to the problem considered in Sections 2-4, except that q is now to be interpreted as quality 
rather than quantity. 

The natural generalization of this problem is to incorporate the choice of both quality 
q and the number of units purchased, z. Then, instead of (33), we have the indirect utility 
function 

u(q, T, z; v) = B(q, z; v)-T + I, (34) 

where T is the total payment by the consumer for z units of quality level q. Adopting only 
slightly the derivations of Propositions 2 and 3, we can state the following proposition. 

Proposition 8: Optimal bundling. Let consumer surplus for an individual of type v, purchasing 
z units of quality level q at a cost of T, be 

B(q, z; v) -T 

where v is an independent draw from the distribution F( * ). Let the cost of producing each 
unit of quality level q be cp. Suppose, for simplicity, that unit cost is independent of 
quantity. If both OB/Oq and 0B/Oz are increasing functions of v, and if z*(v), q*(v) which 
solve 

max{B(q, z; v) - B3(q, z; v)/p(v) - cq} 
z,q 

are each either zero or strictly increasing in v, then the expected profit-maximizing selling 
strategy consists of the schedule (q*(x), z*(x), T*(x)>xE[oI], where 

T*(x) = B(q*(x), z*(x); x) - B3(q*(s), z*(s); s)ds. (35) 

3 Mussa and Rosen consider the special case in which preferences are given by 

u = z(vr - T) + I 

and C(r), the cost of producing a unit of quality level r, is an increasing convex function. Defining q C(r), we 
can rewrite preferences as 

u = z(vA(q) - T) + I, 

where A(q)- C'(q) is an increasing concave function. In the new quality units, marginal cost is constant and 
equal to unity. 
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As an immediate corollary, note that with q*(x) strictly increasing whenever q* is 
greater than zero, we can define the inverse function x = 0(q) and hence the number of 
units and total payments as functions of q, 

z**(q) = z*(4(q)), T**(q) = T*(O(q)) 

Then the optimal selling strategy can be reinterpreted as a schedule of offers of the form 
<q, z**(q), T**(q)>. That is, the monopolist announces that quality level q will be sold in 
bundles of z**(q) units for a total cost of T**(q). 

It is perhaps surprising that the monopolist does not gain by announcing a different 
quantity discount schedule for each quality level. But with only a single unobservable 
characteristic, v, the optimal schedule of bundles, <q*(v), z*(v)>, traces out a curve in 
quality-quantity space. Given the hypotheses of Proposition 8, quantity increases with 
quality along this curve. Thus, both the unit price and the number of units in the bundle 
can be expressed as a function of product quality. 

Space constraints preclude the derivation of conditions that ensure the monotonicity 
of q*(.) and z*(.) defined in Proposition 8 (that is, the counterpart of Proposition 4). 
Instead, we conclude with a simple example. 

Example 3: 
B(q, z; v) = 2vqz"12 - q3/3; F(v) = v. 

Applying Proposition 8, we solve for q*(x) and z*(x) and obtain 

q*(x) = {x - 1/ (36) 
Qx - ] )IC112 X > '/2 . 

Z41(x) = {q*(X)</c2 (37) 
q* ) () {?' X > '/2. 

Since both q*(x) and z*(x) satisfy the hypotheses of the proposition, we can substitute 
them into (35), the expression for T*(x), to obtain 

T*(x) = q*(x)3/3 + q*(x)2/cl/2. (38) 

Combining (36)-(38), we therefore obtain 

<q, z**(q), T**(q)> = <q, q2/c, q3/3 + q2/C"/2> 

the optimal bundling strategy. 

6. Concluding remarks 

* In this article we have suggested a method for solving the choice problem of a principal 
(seller) who selects the rules of a game that is then played noncooperatively by a set of 
agents (buyers). We should repeat the two assumptions that are crucial to the success of 
this method. 

First, buyers are assumed to exhibit no income effects and to be neutral toward income 
risk (although not necessarily neutral toward risk associated with the good being sold). 
With risk aversion, the analysis is much more complicated. For the relatively simple case 
where a single item is up for auction, several papers have compared specific auction rules 
such as the high bid and English auctions. See, for example, Holt (1980), Riley and Samuelson 
(1981), and Milgrom and Weber (1982). More recently, Matthews (1983) and Maskin and 
Riley (1984) have characterized the optimal auction, given risk aversion. 

Second, we suppose that the underlying family of demand curves can be described by 
the variation of a single parameter. This is an assumption common to virtually all work 
to date on adverse selection. Unfortunately, work by Laffont, Maskin, and Rochet (1982) 
suggests that extensions to even two-parameter families will not be easy. 
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One restrictive feature of the models of Sections 2-5 is that the seller simply offers 
buyers a price schedule; there is no negotiation between the parties. That is, the seller 
effectively has all the monopoly power. In many cases, however, we might expect points 
on the Pareto frontier other than the seller's favorite to emerge as the outcome of contracting. 

For example, consider the problem facing a manager (the "principal") who must 
engage an expert (the "agent") to perform some service. The principal's payoff is an increasing 
function of the quality, q, of the service provided and a decreasing function of the payment, 
Q, to the agent. In fact, suppose that the principal is neutral toward income risk, with 
payoff function 

R = B(q) -U 

Quality is an increasing function of the agent's effort, e, and a random exogenous parameter 
v: 

q = D(e; v). 

The principal observes neither v, the realization of v, nor the agent's effort. He does, 
however, know the distribution, F(.), of v. A contract, negotiated before the realization 
of v, specifies a payment by the principal to the agent contingent on the quality, q, that 
is observed by both parties. The agent can observe v and choose an effort level after making 
this observation. We suppose further that, after observing v, the agent has the option of 
terminating the contract.14 In that event, both the principal and agent obtain a zero payoff. 
Finally, we suppose that the agent is also neutral towards income risk, with payoff function 

U = - A(e). 

Because the principal can observe neither the random shock nor effort, it may appear 
as though this model, unlike those of the previous sections, exemplifies moral hazard as 
well as adverse selection (see the Introduction). But because we suppose that the agent 
chooses an effort level only after he observes v, the problem reduces, in effect, to one of 
pure adverse selection. This results because, assuming a monotonic production function, 
the principal could deduce the agent's effort if he knew the realization of D. Thus, only 
the asymmetric information about the value of D prevents an efficient allocation. Indeed, 
we can "eliminate" effort from the model by defining the net social benefit function 

N(q; v) = max{B(q) - A(e)lq < D(e, v)} 
e 

and reexpressing the agent's payoff function as 

U = N(q; v) - R. 

Thus, the problem has exactly the same structure as that of monopoly pricing. Assuming 
that there are no other individuals in the economy with the same skills as the expert, both 
parties have monopoly power. Thus, the outcome of efficient contracting will be some 
point on the Pareto frontier. 

Under the assumptions of Sections 2-4, it is possible to say quite a bit about the shape 
of this frontier (for the details, consult Maskin and Riley (1983b)). For example, under 
Assumptions 1, 2, and 3, a movement along the Pareto frontier in favor of the agent lowers 
the return function R(q) for each value of q. Furthermore, such a movement reduces q for 
each value of v, unless q equals zero. Under this same set of assumptions, we can also 
conclude that the Pareto frontier is concave, i.e., bowed outwards. 

14 If an agreement between the principal and agent prohibiting the agent from later terminating can be 
costlessly enforced, the incentive problem is readily solved. Since both parties are assumed to be neutral towards 
income risk, the principal simply offers to pay the total benefit B(q) less some fixed sum P. The agent thus receives 
the full marginal benefit of his action. 
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Appendix 

* Proposition 7 and its proof follow. 

Proposition 7: General characterization of the optimal response function. 

(A) Suppose Assumptions 1, 2, and 5 are satisfied. Then if there exists an optimal response function, q*(v), there 
exists a set of subintervals {[xi, y'] c [0, ]lx'-' > yi}ji, possibly empty, such that for all i 

(i) 4(xi) = 4(y) 

(ii) I -(4(y), z)dF(z) 6 0, v < y yE U (xi, y) 
J aq iel 

with equality if y = y' and v = xi (xi > 0). Moreover, 

4q(y') if v E [xi, y'] for some i 
(iii) q*(v) = 

4(v), otherwise. 

(B) Given Assumptions 1, 2, and 5, a collection of subsets satisfying (i) and (ii) exists. If, in addition, Assumption 
6 holds, then q*(v), defined by (iii), is an optimal response function. 

Proof of (A). Assume that Assumptions 1, 2, and 5 hold and suppose that q*(v) is an optimal response function. 
That is, q*(v) solves 

max{Ro= o I(q(v); v)dF(v)lq(v) nonnegative and nondecreasing}. (A1) 
q(v) 

We note first that for v such that 4(v) > 0, - (4(v); v) = 0. Therefore, for such v, Assumption 5 implies that 
8aq 

821 
dq2 (4(v); v) < 0. Hence, 

d4 821 /a 2I 

dv aqav aq2' 

and we conclude that 4(v) is differentiable. 
We next establish that, for any v, 

if q*(j) $ 0(O), there exists a nonempty interval [z1, z2] } 

(A2) 
such that v E [z1, z2] and q*(v) = q*(j) for all v E [zl, z2] 

Suppose that this is false and there exists v such that q*(D) $ &(O), but q* is strictly increasing at v both from the 
left and to the right. If 4*(D) < j(i), then, because j(v) is continuous, there exists v* < v such that 

q*(v) < q*(v) < 4(v) for all v E (v*, v). 

Define 
rq*(3), v EE (v*, 0) 
(q*(v), otherwise. 

Then from Assumption 5, f,, I(q(v); v)d(v) > f,, I(q*(v); v)dF(v), a contradiction of the optimality of q*. A 
similar contradiction results if q*(D) > &(0). Hence, (A2) holds. 

We next show that 
q*(v) is a continuous function. (A3) 

Let {(x', y')Iy'' > x'}ji be the set of "maximal" intervals on which q*(v) is constant. That is, 

iv < xi, q*(v) < q*(xi), and 3v > y', q*(v) > q*(yl). 

From (A2) and the continuity of q(v), q*(v) = q(v) for v 9 U [x', yA], and it remains to show that q*(v) is 
icF 

continuous at xi, if x > 0, and at y'. Suppose there is an upward discontinuity at y'. Since q(v) is continuous, 
there exists z < y' such that 

q(v) > lim q*(v), v E= [z, yi). 
vtyi 

Suppose that over [z, y'], q(v) takes on its minimum at 0. Then 

q*(v) = lim q*(v) <tq(v), v E= [z, y'). 
vtyi 
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Define 

q = q*(), 
v E (z, y'); 

q*(v), otherwise. 

Arguing exactly as before, one can show that expected seller revenue is greater under qt than q*, thereby 
contradicting the hypothesis that q* is an optimal response function. Then q*(v) is continuous at y'. Similarly, 
q*(v) is continuous at x' as well, if x' > 0. 

Given (A2) and (A3), we can readily establish that the following conditions are also necessary: 

J. (q*(v); v)dF(v) < 0, v <tv (A4) 
daq 

and 

f d (q*(v); v)dF(v) = 0, i EE I, xi > 0. (A5) 
dq 

For any v E [0, v], define the nondecreasing function 

qe*(v); v <v 
q+(v, s) = (A6) 

q*(v) + S; v a 

for s a 0. Replacing q*(v) by q+(v, s), we can write expected seller revenue RA(s) as a function of s: 

v 
A0(s) = I(q+(v, s); v)dF(v). 

At s = 0, the right derivative of R0(s) is 

(0) = I (q*(v); v)dF(v). 

Since q*(v) is optimal, ? (0) must be nonpositive; hence, we obtain (A4). 
ds 

Because - (q*(v); v) = - (q(v); v) = 0 on [y', v], 
aq aq 

. - (q*(v); v)dF(v)= J, (q*(v); v)dF(v). (A7) 

Define the nondecreasing function 

j(v, s) = min{q*(v), q*(x') - s}, v < x 

' q*(v) - S v a x'. 

Because q*(v) is strictly increasing in a left neighborhood of x', there exists a function v(s) such that for small 
nonnegative s, 

s) q*(v), v < v(s) 
q~,S q*(x ')- s, v(s) '< v '< x 

and v(s) is differentiable, and tends to x' as s tends to zero. Replacing q*(v) by q(v, s), we obtain expected seller 
revenue 

Ro(s) = I(q(v, s); v)dF(v). 

At s = 0, the right derivative of R(s) is 

dR?(0)~ _ V al 
dR(O) J= dq( a(q*(v); v)dF(v). (A8) 
ds ,aq 

The optimality of q*(v) implies that d (0) must be nonpositive. Thus (A8) implies 
ds 

d 
f (q(v); v)dF(v) a 0. (A9) | aq 

Formula (A9), together with (A4) and (A7), establishes that (A5) must hold for i = 1. Virtually the same argument 
establishes that (A5) holds for i > 1 as well. 
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By assumption, q*(v) = 4(v) for v E U (xi, y9). By the continuity of q* and from (A2), q*(v) = q*( y') for 
i'E 

all v E [xi, y']. Hence, (i) and (iii) of the statement of the Proposition hold. Conditions (A4) and (A5) imply that 
(ii) holds. Q.E.D.(A) 

Proof of (B). An alternative way of deriving (A2)-(A5) is to formulate the seller's optimization as an exercise in 
optimal control, with the associated Lagrangian 

? = Jo [I(q(v); v)F'(v) + X(v)q'(v)]dv. 

If we take 

X(v) -- I(q(z); z)dF(z), (A10) 

then it is straightforward to show that, given subintervals satisfying (i) and (ii), (A2)-(A5), together with the 
requirements that q(v) be nonnegative and nondecreasing, are equivalent to the first-order conditions for a maximum 
corresponding to this Lagrangian. Hence, q*(v) defined by (iii) satisfies the first-order conditions. 

As for the second-order conditions, sufficient conditions for a critical point (one satisfying the first-order 
conditions) to be a local maximum are that 

821 
(q(v); v) < 0 if X(v) = 0, (All) 

f 2 (q(v); v)dF(v) < 0 if X(a) = X(a) = 0 and X(v) > 0 for all v E (a, ) (A 12) 

and 

fo -(q(z); z)dF(z) < 0 if X(fl) = 0 and X(v) > 0 for all v E (0, ). (A 13) 
o q 

Now given (A10), X(v) = 0 implies that 

f 
i 

-(q(z); z)dF(z) = 0. (A 14) 

,aq~~~~~~~~a 
If q(v) = &(v), then v E (xi, ye) for some i. Furthermore, Assumption 5 implies that d-(q(v); v) =# 0. Therefore, 

daq 
in view of (A 14), there exists v in a neighborhood of v such that 

d (q(z); z)dF(z) > 0, (A 15) 

a'q 
a contradiction of (A4). Hence X(v) = 0 implies that - (q(v); v) = 0. Thus, if Assumption 5 is satisfied, (Al 1) 

daq 
holds. 

If X(a) = X(fl) = 0 and X(v) > 0 for all v E (a, ), then (a, ) = (xi, y') for some i. Hence q(v) = 4(fl) for 

all v E (xi, y'), and fo (4(3); v)dFv) = 0. Therefore, Assumption 6 implies that (A 12) holds. Similarly, it also 
dv 

implies (Al 3). Hence, under Assumptions 1, 2, 5, and 6, any q(v) satisfying (A2)-(A5) is a global maximum. 
It remains to show that there exists a collection of subintervals satisfying (i) and (ii) (since, from the above 

argument, q*(v) defined by (iii) will then be an optimal response function). Let 

Y' = jv d (j(y); z)dF(z) j O. Vx < y~y > v} (A16) 

For 4(v) > 0, we have 

0 = - (4(v); v) = p(4(v); v) - c P- __ ) . daq pAv) 

By Assumption 1 and from the definition of p(v), the last term is negative for v < 1 and zero at v. Thus 
by Assumption 5, 

4(v) < qe(v), V <V 

= q e(v), v = v, 

where qe(V) is the efficient quantity level. Therefore, from Assumption 5,-(q(v); v) < 0 for all v < 1, and so, 
for all v sufficiently close to v, v E Y'. aq 
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Let y' = inf Y'. Then y' < v. If y' = 0, we are done; the sequence is of zero length. Therefore, assume 
that y' > 0. By continuity 

Ji (-(y'); z)dF(z) < 0 for all x '<y'. (A 17) 

We first argue that there exists E > 0 such that q is nondecreasing on [y' - E, y']. If not, then because q is 

piecewise differentiable, q must be decreasing in some interval [y' - E, y']. But then, from Assumption 5, 

f - (q(y'); z)dF(z) > 0, thereby contradicting (A17). 

By definition of y', there exists an increasing sequence {v_ } c [y' - E, y'] such that for each n there exists 
wn < Vn with 

fI (W(v); Z)dF(z)> 0. (A 18) 

Because q is nondecreasing on [y' - E, y'], wn < y' - E for all n. Let w = lim wn (if {wn } does not converge, let 

w be the limit of a subsequence that does). Then w < y' and in view of (A 17) and (Al 8), 

f - ((y'); z)dF(z) = 0. 

Thus, the set XI { (4(y'); z)dF(z) = 0, x < y'} is nonempty. Let x' = inf X'. Then 

fd (4(y'); z)dF(z) = 0. (A 19) 

If x' = 0, we are done. Therefore, assume that x' > 0. 

We claim that 4(x') = 4(y'). First, suppose that 4(x') < 4(y'). From Assumption 5, d (q; x') < 0 for all 
daq 

q > 4(x'). Thus, - (4(y'); x') < 0, and so, from (Al 9), for small E > 0, 
dq 

ai 
(4(y '); z)dF(z) > 0, 

|+f a' 

a contradiction of (A17). If, on the other hand, 4(x') > 4(y'), then from Assumption 5, - (4(y'); x') > 0, in 
aq 

which case J t -(4(y'); z)dF(z) > 0 for E > 0 sufficiently small, again a contradiction. Thus, 

(x')= =W). 
Let 

Y2={ VXI f? (4(y); z)d(z) < 0, Vx < y Vy EE [v, X']}. 

For all v < x', 
f 

- (4(x'), z)dF(z) =J d(4(y'); z)dF(z) < 0, from (Al7) and (A19) and from the fact that 

4(x') = 4(y'). Therefore, x' E y2. If x' = inf y2, then from the above argument, there exists x < x' such that 

f - (4(x'); z)dF(z) = 0. But then J - (j(y'); z)dF(z) = 0, thereby contradicting the fact that xX = inf X2. 

Thus, inf Y2 < Xl. If we take y2 = inf y2, we can continue, iteratively, to generate X2, y, The process 

terminates because q is piecewise differentiable. Q.E.D.(B) 
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