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When environments are ‘rich’, single-valued social choice functions which are implementable in Nash 
strategies are implementable in dominant strategies. Moreover the Gibbard-Satterthwaite 
impossibility theorem of implementation in dominant strategies has been extended to differential 
economic environments. Therefore it is important to study implementation for non-rich 
environments. We characterize for quasi-linear utility functions mechanisms which are 
implementable in dominant strategies (providing a generalization of the Groves-Clarke mechanisms) 
and in Nash strategies. This second type of mechanisms differ from the first only by the types of 
transfers they allow. Properties of these mechanisms such as balancedness, individual rationality and 
robustness with respect to coalitions are then studied. 

1. Introduction 

A social choice rule is a correspondence that assigns to each profile of 
preferences that individuals might have a set of social alternatives or ‘welfare 
optima’. A game (or mechanism) is said to implement a social choice rule if, for all 
profiles, the equilibrium outcomes of the game coincide with the welfare optima. 
Of course, the nature of the equilibrium outcomes depends on the solution 
concept adopted. In this paper, we shall concentrate on implementation in Nash 
and dominant strategy equilibrium. 

The fundamental theorem on dominant strategy implementation is due to 
Gibbard (1973) and Satterthwaite (1975). It states that with unrestricted 
preferences, if the social choice rule is single-valued (i.e., there is a unique 
optimum for each profile of preferences) and has a range of at least three 
alternatives, then it is implementable in dominant strategies if and only if it is 
dictatorial. This negative result was extended to pure exchange economic 
environments by Dasgupta, Hammond and Maskin (1979) (later referred to as 

*We are grateful to P. Champsaur and H. Moulin for useful suggestions. 
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DHM) and to more general, differential environments by Satterthwaite and 
Sonnenschein (198 1). 

Because Nash equilibrium is a considerably weaker solution concept than that 
of dominant strategies, results have been more encouraging for Nash 
implementation. In particular, Groves and Ledyard (1977) showed that, in 
economies with public goods, games can be constructed whose Nash equilibria 
are Pareto optimal. Hurwicz (1979a) refined this result by insisting that the Nash 
equilibria be Lindahl equilibria. Maskin (1977) derived the general theorem that 
any social choice rule satisfying monotonicity and veto-proof conditions 
(described below) is Nash implementable. 

In contrast with these optimistic conclusions, Roberts (1979) demonstrated, in 
an important paper, that, with unrestricted preferences, any single-valued social 
choice correspondence that is Nash implementable is also implementable in 
dominant strategies. In such cases, nothing is gained by substituting the Nash 
equilibrium concept for dominant strategies. The result was extended by DHM 
to any domain of preferences sufficiently ‘rich’ (defined below). 

Although the assumption of single-valuedness is very strong, it has 
considerable appeal. Less satisfactory for many applications, however, is the 
hypothesis of a rich domain. In particular, the family of ‘quasi-linear’ preferences 
(defined below), used extensively in the public incentives literature, is not rich. In 
this paper, we explore the possibilities of Nash versus dominant strategy 
implementation for this family of preferences. In section 2, we define our 
terminology and review some of the existing literature. In the third section, we 
study Nash and dominant strategy implementation for an economy with convex, 
quasi-linear preferences over public and private goods. In this context, a social 
choice rule consists of a public decision function (a rule which assigns a level of 
public goods for each profile of preferences) and a vector of private transfer 
functions (rules which assign transfers of private goods to consumers for each 
profile). We find that although Nash and dominant strategies lead to the same 
class of implementable public decision functions, they imply rather different 
transfer functions. We characterize both Nash and dominant strategy 
implementable social choice rules. Finally, in sections 4, 5 and 6 we study 
collusion by coalitions and the possibility of implementing balanced and 
individually rational social choice rules. 

2. Preliminaries 

We consider an economy defined by a finite set of agents 1,. . ., n and a (non- 
empty) set X of social alternatives. Each agent i has a preference ordering Ri on X. 
Ri is assumed to belong to a family Bi of admissible preferences orderings. A 
social choice rule is a correspondence F which associates with each profile of 
preferences R = (R, , . . ., R,) (E nl= 1 S2Ti) a ( non-empty) subset A z X. One can 
interpret A as the ‘best’ alternatives or welfare optima given the preferences R. F 
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is called single-valued if F(R) is a singleton for every profile R. A mechanism is a 

product n;= i Si of agents’ strategy spaces and a function 

g: fi S,‘X, 
i=l 

which specifies an outcome for any n-tuple of strategies chosen by agents. 
A dominant strategy equilibrium of a mechanism g: nl= 1 Si+X for a preference 

profile R is an n-tuple of strategies (ST,. . ., sf) E ni Si which each agent i is willing 

to use regardless of the strategies chosen by others. That is, 

where 

and 

Vi, VsiESi, Vs-tE n Sj, g(sl,S~i) Ri g(Si,S_i), 
j#i 

S~i=(S1,...,Si~1,Si+l,...,Sn), 

(s*,s_i)=(sl )...) Si_l,S:,Si+l )...) s,). 

Suppose that for all i, Si=Wi. In this case, g is called a direct revelation 

mechanism because a strategy consists of announcing a preference ordering. If, 
for all (RI,..., R,) E n;= 1 Wi, (sl,. . ., s,) = (R, , . . ., R,) constitutes a dominant 
strategy equilibrium and, furthermore, g(s,, . . ., s,) E F(R,, . . ., R,), then g partially 

implements F truthfully in dominant strategies. If, moreover, 
V(R, , . . ., R,) en;= 1 .B?i Vu l f(R1 , . . ., R,) there exists g: nl= I Wi+X such that g 
(partially) implements F truthfully in dominant strategies and g(R,, . . ., R,) = a, 
then F is truthfully implementable in dominant strategies. 

It is straightforward to characterize those single-valued social choice rules that 
can be implemented truthfully in dominant strategies. We shall say that a social 

choice rule F satisfies independent person-by-person monotonicity (IPM) if 

Vx, y E X, V(R, , . . ., R,), Vi, VR: such that xP:y 

[xEF(R~ ,..., R,)+y$F(R;,R_J]. 

We then have: 

Theorem 1 [DHM (1979)]. F is truthfully implementable in dominant strategies 
if and only if V(R,, . . ., R,), Va E A, there exists a single-valued selection F* of F 
satisfying IPM and F*(R,, . , ., R,) = a. 

One difficulty with the concept of truthful implementation is that it does not 
preclude individuals having non-truthful dominant strategies corresponding to 
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outcomes outside the social choice set. We shall say that F is strictly truthfully 
implementable in dominant strategies if the mechanisms g in the definition of 
truthful implementation can be chosen to have no untruthful dominant 
strategies.’ 

One way to ensure strictly truthful implementation is to hypothesize convex 
preferences and sufficient variability of the social choice rule. The following result 
is adapted from Laffont and Maskin (1981). 

Theorem 2. Let X be a subset of Euclidean space andfor all i let Wi be a domain of 
preference orderings over X. Suppose that, for each i and Ri E 9i1!~, R, is convex and 
differentiable. Assume too that the set A(R,,x)= (YEZ X ( yR,x} has non-empty 
interior and that tfy E int A(R,, x), then yP,x (i.e., indifference curves are not ‘thick’). 
Suppose that F is a single-valued choice rule such that V(R,, . . ., I?,), Vi, 

(i) VR;#Ri, ~~E{F(R~,R_~)IR_~E~~~~B~}, 

such that the tangents to A(Ri, x) and A(Rj, x) at x do not coincide. 

(ii) {F(Ri,R_i)IRi~B’i} h as a unique tangent hyperplane at each point. 

Then, if F is truthfully implementable in dominant strategies only truthful 
strategies are dominant, i.e., F is strictly truthfully implementable. 

Remark 1. The same result holds for non-single-valued social choice rules if we 
stipulate that (i) and (ii) hold for each single-valued selection that satisfies IPM. 

Remark 2. Note that condition (i) is automatically satisfied if 

Vi, VRi, F(Ri,R_JlR_ieJJC%j =X, 
j+i 1 

Proof Suppose that F satisfies the hypotheses of the theorem. Suppose that for 
some i, Ri, and RI # Ri, RI is a dominant strategy for agent i with preferences Ri in 
the game form that truthfully implements F. From (i) there exist R_i and x such 
that x = F(Ri, R-i) and such that the tangents to A(R,, x) and A(Rj, x) at x do not 
coincide. From (ii) there exists a unique hyperplane L that is tangent to 

at x. If L is not tangent to A(R:,x) at x, then because A(R:,x) is convex (RI is 
convex) the interior of A(Ri,x) intersects B. But this means that alternatives 

‘Actually, this is a bit stronger than necessary because it is not essential to rule out untruthful 
dominant strategies as long as they lead to the same outcome as the truthful one. However, the 
definition will do for our purposes. 
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preferred to x (under Ri) are attainable by varying Ri, contradicting Rj’s 
dominance. Therefore Lis tangent to A(Ri, x) at X. Similarly, Lmust be tangent to 
A(Ri, X) at x, a contradiction of the hypothesized non-coincidence of tangents. 
Thus, Ri cannot be a dominant strategy after all. Q.E.D. 

A Nash equilibrium for profile (R,, . . ., R,) of a mechanism g is an n-tuple of 
strategies (ST,. . ., s,*) E ni St such that 

vi, VSi E Si, g(Sr, St J Ri g(Si, S*i). 

Let NE,(R) be the Nash equilibria for profile R of mechanism g. Then g 
(partially) implements F in Nash strategies if, for all R, g(NE,(R))cF(R) and 
NE,(R) is non-empty. F is implementable in Nash strategies if VR, Va E F(R), there 
exists a g that (partially) implements F such that a E NE,(R). 

To state the general theorem on Nash implementability, we need to define two 
additional properties of social choice rules. A social choice rule F is monotonic if 
VR, R’EL!& if XEF(R) and if Vi, VyeX, [xR,y-+xR:y] then XE F(R’). F satisfies no 
veto power if [Vx E X, Vi, if 3R such that Vj # i, Vy E X, xR.~~, then x E F(R)]. 

Monotonicity says that if an alternative x is welfare optimal for some profile of 
preferences and if those preferences are then altered so that x does not fall in 
relation to any other alternative in anyone’s preference ordering, then x remains 
welfare optimal. No veto power requires that any alternative that is top-ranked 
(i.e., weakly preferred to all other alternatives) by all individuals but one be 
welfare optimal. 

Monotonicity is a stringent condition. No veto power, however, is 
automatically satisfied in economic environments with non-satiation and private 
goods, since no two agents will agree that any given alternative (i.e., allocation) is 
top-ranked (each would like all of any private good to himself). 

The theorem characterizing Nash implementability is: 

Theorem 3 [Maskin (1977)]. If F is implementable in Nash strategies, it is 
monotonic. Zfn 2 3 and F satisfies no veto power, the converse holds, and, moreover, 
there exists a mechanism g, such that 

NE,(R) = F(R) for all R. 

In general, Nash implementability does not imply dominant strategy 
implementability, nor does the converse hold. Nonetheless, in one important 
special case - when preference domains are sufficiently rich and social choice 
rules are single-valued - the former implication does hold. To express richness 
formally, suppose that R and R’ belong to the domain Wi. Let D,,,(R, R’) be the set 
of orderings R” that are a-b monotone with respect to (R,R’); i.e., such that 
Vc E X, aRc+aR”c and bR’c+bR”c. W = fly= 1 Wi is rich or monotonically closed if 
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Vi, VR, R’EB~, Vu, b EX, such that aRb-+aR’b and aPb-+aP’b, ai A D&R, R’) 
#a. It should be clear that, for example, the unrestricted domain is rich and 
that trivially, so is any domain consisting of a single preference profile. It can 
also be shown [see DHM (1979)] that the domain consisting of all convex, 
monotonic, and continuous preferences for private good is rich as well. 

We can now state: 

Theorem 4 [DHM (1979)]. Zf the domain of preferences fly= 1 pi is rich and the 
social choice rule F is single-valued and implementable in Nash strategies, it is 
truthfully implementable in dominant strategies. 

Theorem 4 leads us inevitably to the conclusion that if Nash strategies are 
going to get us any further than do dominant strategies, we had better turn to 
domains that are not rich - at least, if we maintain the hypothesis of single- 
valuedness. It is worthwhile considering two important classes of non-rich 
domains. 

Example 1. CobbDouglas preferences for two commodities. 

In fig. 1, two sets of indifference curves are drawn. The R, indifference curves 
correspond to the utility function X;Xi-‘, whereas the R, indifference curves 



J.-J. Laffont and E. Maskin, Nash and dominant strategy implementation 23 

represent XfXi-s. If the domain of Cobb-Douglas preferences is monotonically 

closed, it must contain ordering R” such that, for all c, aR,c+aR”c and 
bRBc+bR”c. But the former implication implies that R,= R” and the latter, 
R,= R”, a contradiction. Thus, the Cobb-Douglas domain is not rich. 

From Hurwicz (1972) we known that there is no dominant strategy mechanism 
that truthfully implements the competitive equilibrium correspondence of a 
Cob&Douglas exchange economy. On the other hand, this correspondence is 

monotonic and, vacuously, satisfies no veto power, so is implementable in Nash 
strategies (Theorem 3). Thus the non-richness of the domain does allow us to 

avoid the negativism of Theorem 3. 

Example 2. Quasi-linear preferences for two commodities. 

Consider utility functions of the form 

4X,)+X,. 

(Assume that 0 is concave and has a local maximum.) 

Notice that the indifference curves for such a function can be derived from one 

another by vertical translations. Consider the sets of indifference curves, 
corresponding to two different u’s In fig. 2, the solid indifference curves 

correspond to utility function o,(X,)+X, (preference ordering R,) whereas the 
dotted curves correspond to u,(X,) +X, (preference ordering R2). 

If the class of quasi-linear preferences is rich (monotonically closed), then there 
must exist a third quasi-linear preference ordering R, such that 

Vc, aR1c+aR3c, 

Vc, bR,c+bR,c. 

Because the R, indifference curve through b must lie on or above the R, 
indifference curve through b, the vertical distance between the R, indifference 
curves through a and b at point a must be less than or equal to d,, the vertical 
distance between the R, indifference curves. But because the R, indifference curve 
through a must lie on or above the R, indifference curve through a, the vertical 
distance between the R, indifference curves at point b must be at least d,, the 
vertical distance between the R, indifference curves. Since d, >d,, the vertical 
distance between the R, indifference curves cannot remain constant, 
contradicting quasi-linearity. Therefore, the class of quasi-linear preferences 
cannot be rich after all, and Theorem 3 is again not applicable. Indeed, we shall 
now see that with quasi-linear preferences the Nash and dominant strategy 
implementable social choice rules differ. 
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Xl 

Fig. 2 

3. Implementation and quasi-linear preferences 

Consider an economy of n agents and two goods, one public’ and one private. 
Suppose that the public good level can vary between 0 and 1. Let I/ be the class of 
all strictly concave differentiable functions on the interval [O, l] taking their 
maximum in (0,l). An agent with public good valuation VE V has preferences 
given by the utility function v(K) + y, where K is the public good level and y his 
consumption of private good. Let L be the class of all linear functions. We are 
interested in studying the implementation of single-valued social choice rules 
when preferences are drawn from K However, to facilitate our analysis, we shall 
work with the class I/* = Vu L. 

Consider a social choice rule F from (V*)” into [0, l] x R”. For 

(v 1,. . ., v,) E(P’*)“, an element of F(v,, . . ., v,) is a vector (K, t,, . . ., t,), where K 
denotes the public good level and ti the transfer to agent i. We shall asume that F 
is single-valued when restricted to V”. 

‘The restriction to a single public good is not essential (see the generalization after the proofs of 
Theorems 5 and 6). 
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Let F,(u,, . . ., II,) = {K I3(t,, . . ., t,) with (K, t,, . . ., t,) E F(u,, . . ., u,)}. We shall 
also assume that F, is upper hemicontinuous (where the metric on V* is the sup 
norm on [0, l]), weakly efficient [if K EF~(v~, . . ., 0,) and v1 = ... =v,, then 
v,(K) 2 I@) for all i and I?], neutral [if K E F,(o,, . . ., vJ, where K E (0,l) and 
(K + c) E (0,l) for constant c, then (K + c) E F,(tY,, . . ., G,,), where, for all i, v”,(K) 
= Ui(K -c)], and conoex-valued. 

The principal results of this paper are the following: 

Theorem 5. If (a) F, is upper hemicontinuous, weakly efficient, convex-valued 
and neutral, (b) if F is single-valued when restricted to V”, and (c) if F is 
implementable in Nash strategies, then: 

(i) there exists a continuous and semi-strictly increasing3 function hfrom R” into 
R such that h(0,. . ., 0) = 0, and 

(ii) there exist functions t: from [0, l] x R” into R, i= 1,. . ., n, such that for all 

(0 1,. . ., %J E V”, 

(*I J’h,..., 0,) = {W, t, , . . .> t,) I&;(K), . . .> WG = 0 

and ti = tT(K, v;(K), . . ., t&(K)), i = 1,. . ., n}. 

Furthermore, the converse holds4 

Theorem 6. Suppose that F satisfies (a) and (b) of Theorem 5 and that F is 
truthfully implementable in dominant strategies, then: 

(iii) there exists a function h as in Theorem 5, and 

(iv) there exist functions Hi from V”-l into R, i= 1,. . ., n, such that for all 

(v I,...,qI)EV”, 

(**) F(v l,..., v,,)= W, tl, . . . . #+W%.., d(K))=O, 

for any i=l,..., n, ti= -6Shi(a’-i(t))dt+Hi(v_i) ,5 
0 

where hi: R”-’ +R satisfies 

(***I 
h(hi(U_i),~_i)=O ~fui such that h(ai,~_J=O, 

hi(a _ i) = 0, otherwise. 

Furthermore, the converse holds,4 and tf in addition h is strictly increasing, F is 
strictly truthfully implementable in dominant strategies. 

3By ‘semi-strictly increasing’, we mean that if x &I, then h(x) > h(l). 
4The converse is established only for the domain V”. 
5ui=(u1 ,...,Ui-l,V;+l,.~.,u,). 
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Note that the class of implementable public decision correspondences (that is, 
the class of first components of implementable F’s) is the same regardless of 
whether the solution concept is Nash or dominance. Furthermore, the public 
decisions are defined by functions of the derivatives of public good valuations. 

If, in particular, h = X1= 1 liti:, then the public decision K maximizes XI= 1 iiui. 
However, because h depends only on the derivatives of the uis, a public decision 
which maximizes, say, Clilogvi, is not implementable. 

Nash and dominant strategies differ in so far as the kinds of transfers they can 
implement. Nash implementation requires the transfers to be functions of the 
public decision and the derivatives of the public valuations. Dominant strategy 
implementation, on the other hand, makes an agent’s transfer the sum of the two 

terms: a term depending on the derivatives of the public valuations and the public 
decision, and a term depending on the public valuation functions of other agents. 

For a given public decision correspondence, neither class of transfers is contained 
in the other, although the intersection of the two is non-empty. 

Under dominant strategy implementation, the transfers obtained in Theorem 5 

correspond to the so-called Clarke-Groves mechanisms [see Green and Laffont 
(1979)] when h is linear, 

ti = 7 1 ijvi(t) dt + Hi(v - i( )) 

0 j#i 

=,zi Ajv_ffK) + Hi(" - it. 1). 

Another example in the case of two agents is 

h(v;, v;) = (v;)” + I&. 

If then 

u,(K) = - 8,(K - 8J2, v2W) = f93K 

we obtain 

H,= -(-20,(K--2))3, 

or 

K = t12 + (03/20,)“3. 

The proofs of Theorems 5 and 6 will be aided by a trio of lemmas: 

Lemma 1. Suppose that F, satisfies (a) and (b) qf Theorem 5. Then, for all 

(v 1,...,v,),&,..., i&) E(V*)” such that vi= 17; (primes denote derivatives) for all i, 

Fh > . . ., u,) = F(v”, 6 ) >...> n, 
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if F is implementable in Nash strategies, and 

Fob, . . ., 4 = F,@, , . . ., Q, 

if F is truthfully implementable in dominant strategies. 

Proof First, suppose that F is implementable in Nash strategies. Then, from 
Theorem 3, F is monotonic. Suppose that for (a1 , . ., on), (17~). . ., 15”) E (I/*)“, vi = iJ 
for all i. If a E F(u, , . . ., II,,), then, from monotonicity, a E F(v”, , . . ., 17~). (Since vi and Gi 
differ only by a constant.) 

Next, suppose that F is truthfully implementable in dominant strategies. 
Consider (vi,.. .,u,) and (u”i,. . ., 6”) as hypothesized and suppose that 

l&F,(v”,,... , I!$), Consider a sequence {ui} such that u;+ul and vi is ‘more 
concave’ than ui (and v”i) at I?. That is, 

(4 vIc*, t:, Ill(R) + FlZ u,(K*) + tT 

-u”l(R)+t;&;(K*)+t:, 

where the second inequality is strict if R #K*. 
Let F” be a single-valued selection of F satisfying IPM such that (R, F1,. . ., 6) 

= F(iT1,. . ., iQ. (By Theorem 1 such a selection exists.) For each s, let (K”, tt, . . ,, t:) 
= P(u; ) 6, , . . ., I?,,). From IPM, u”,(K”) + t; 2 u;(R) + Tl. Thus, if K”# i?, (a) implies 
that 

and 

u,(K’) + t; z=- u#)+ t;, 

V”,(KS)+ t”l > t&(R) + FI. 

But this last inequality violates IPM. Therefore, KS= I? for all s. By continuity, 

K E F&I,, v”,, . . ., 6”). 

Continuing iteratively, we conclude that I? E F,(u, , . . ., u,). Hence, 

F&1 , . . ., 6”) G F,(u,, . . ., II”). Similarly F,(q). . ., on) E F,(v”, , . . ., v”,) and thus 

F&i ,..., u,,)=F~(IJ ,..., GJ. Q.E.D. 

Lemma 2. Suppose that F satisfies (a) and (b) of Theorem 5 and is either 
implementable in Nash strategies or truthfully implementable in dominant 
strategies. Thenfor (w,, . . ., W,)E L”, ifF,(w,, . . ., w,,) intersects (0, l), F,(w,, . . ., w,) 
= [O, l] and there exists no (GI,. . ., G,)EE with tii> w: for all i, such that 

F&I ,. . ., 6,) intersects (0,l). 
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Proof: If for K ~(0,l) and (w,, . . ., w,) EC, K eFo(wl,. . ., w,), then by F’s 
neutrality, R E F,(w r,. . ., w,) for all K ~(0,l) [if K eFo(wl,. . ., w,), then from 
neutrality K + c E F,(W,, . . ., Wn) where Wi is Wi shifted to the right by c. Since W; 
= wj, we conclude from Lemma 1 that K + c E F,(w,, . . ., w,)]. In particular, 
$E F,(w,, . . ., w,). Let ($, t,, . . ., t,) E F(w,, . . ., w,). Suppose that, for (Cl,. . ., G,,) E C 
with fi1: > w;, F,(G,, . . ., i?,,) intersects (0,l). Then ~EF,(G,, . . ., 6”). For all i, 
choose vi E V such that vi($) = wi and u#) = 6;. Now, Vi is ‘more concave’ than wi at 
4 in the sense that 

VKe[O,l], V<,<, wi(+) + 6 2 wi(K) + ; 

(1) 

where the latter inequality is strict if K #i. 

Similarly, Vi is more concave than Bi at a, 

VK E [Oy 11, Vc, tip G,(i) + < 2 G;(K) + ti 

GUI + ti ~ Vi(K) + ti, (2) 

where, again, the second inequality is strict if K #$. 

If F is Nash implementable, then, from Theorem 3, F is monotonic. Hence, 
from (1) and (2) we conclude that since 3 E F,,(w, , . . ., wJ, 4 E F,(v, , . . ., u,) and since 
& F,(i&, . . ., fin), $E F&J, , . . ., u,). But F was assumed to be single-valued if its 
arguments lie in q a contradiction. Therefore, the lemma is established for a Nash 
implementable F. 

Suppose, then, that F is truthfully implementable in dominant strategies. Let F 
be a single-valued selection of F satisfying IPM and such that f = F”,(w, , . . ,, w,). 
By an argument analogous to that of Lemma 1, 4=&u,, . . ., u,). Hence 
~EF&..., u,). Similarly, $E F,(u,, . . ., u,). But F(u,, . . ., u,) is single-valued, 
since (ul,. . ., u,) E Y”, a contradiction. Q.E.D. 

Suppose that F satisfies the hypotheses of Lemma 2. Define h: R”+R such that 

such that 3(w,, . . ., w,)~_l!‘, with 

and (cr ,..., c,)=(w;+c ,..., w;+c). 
(3) 

For c sufficiently small, (cr -c,. . ., c, -c)>(O,. . ,, 0). For such c, if (w;, . . ., wk) = 
(Cl -c, . . .) c,-cc), then l~Fe(w~,..., w,) because F is weakly efficient and 
satisfies IPM or monotonicity. Similarly, for c sufficiently large, (w;, . . ., wb) 



J.-J. Laffint and E. Maskin, Nash and dominant strategy implementation 29 

=(c,-cc,..., c, -c) implies that 0 E Fo(wl,. . ., w,). By the convex-valuedness of 
F,, there exists c satisfying (3). Therefore h is well defined. By Lemma 2, h is 
semi-strictly increasing. Clearly, h is continuous because F, is upper 
hemicontinuous. If a >O, then h(a,. . ., a) >O, because F0 is weakly efficient. 
Similarly, if a < 0, h(a, . . ., a) < 0. Therefore, by continuity, 

h(O,...,O)=O. (4) 

Lemma 3. Suppose that F satis$es the hypotheses of Lemma 2. Then, if 

(u l,...,%)EV”, 

F,(u,, . . ., uJ= {Kjh(u;(K), . . ., u;(K))=O}. 

Proof By definition of r/: u:(O) > 0 and uj( 1) < 0 for any vi E I/: Therefore, because h 
is semi-strictly increasing and because of (4), h(u;(O), . . ., u:(O)) >O and 

h@;(l), . . ., n u’(l)) < 0. From continuity, the semi-strict monotonicity of h, and the 
strict concavity of the uI)s, we conclude that {K ( h(u;(K), . . ., u;(K)) =0} consists 
of a single element K*. By definition of h, there exists (w,, . . ., WJEC such that 
$E Fo(wl, . . ., w,) and (w;, . . ., w;) =(u;(K*), . . ., ub(K*)). From Lemma 2, 
K*EF~(w~,..., w,). For each i, ui is more concave than wi at K*. Therefore, by 
argument completely paralleling that of Lemma 1, we conclude that 
K* E F,,(u, , . . , u,). Because F, is single-valued, {K*} = F,(u, , . . ., u,). Q.E.D. 

From Lemma 3, we can already conclude that the public decision rules 
implementable in Nash strategies are the same as those implementable in 
dominant strategies. We are now ready for the proofs of Theorems 5 and 6. 

Proof of Theorem 5. First suppose that F is implementable in Nash strategies. 
Consider (K, t,,.. .,t,,)~ F(u, ,..,, u,) for some choice of (ur,.. .,u,)E I/“. From 
Lemma 3, there exist (ri,. . ., t”,) such that 

(K,t; ,..., &F(& v”) ,*.*, n, (5) 

for any (fir , . . ., fin,) E V” such that q(K) = u;(K) for all i. Choose (UT,. . ., z(f) E I/” such 
that for all i, UT is more concave than either Ui or o”i at K. Then, by previous 
argument, (K, tl, . . ., t,), (K, Fl,. . ., <) E F(u:, . . ., I$). But F(u:, . . ., II,*) is a singleton. 
Thus ti = 6 for all i. We conclude that ti depends only on K and (u;(K), . . ., u;(K)), 
and so we can write ti=tt(K, u;(K), . . .,ub(K)). 

These observations, together with Lemma 3, establish that Nash 
implementability implies the existence of functions h and tf satisfying (i), (ii), 
and (*). 

JMathE-B 
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Next, assume the existence of these functions. We will show that F defined by 
(*) is implementable. By Theorem 3 it suffices to show that F is monotonic.6 

Suppose that (K, t,, . . ., t.) E F(u,, . . ., II,) for some choice of (ul,. . ., u,) E V”. 
Consider (I&, . . ., i?,,) such that for all R, i and 6, 

Vi(K) + ti ~ Ui(l?) + ti~v”i(K) + ti ~ v”i(l?) + ti. 

As K E (0, l), (6) implies u:(K) = u”:(K). Thus by (*), (K, t, , . . ., t,) E F(G, , . . ., 15~). Thus 
F is monotonic. That F, is upper hemicontinuous follows from (*) and the 

continuity of h. That F, is weakly efficient follows from (*) and the assumption 

that h(0,. . ., 0) = 0. F, is clearly neutral. Finally, F is single-valued on I/” from the 
strict concavity of the vi’s and the semi-strict monotonicity of h. Q.E.D. 

Proof of Theorem 6. First suppose that F is truthfully implementable in 

dominant strategies. Assume that (K, t,, . , ., t,) E F(u,, , . ., u,) for some choice of 

(0 r,, . ., u,) E I/“. From Lemma 3, K satisfies h(u’, (K), . . ., u;(K)) = 0. Now, given the 

strategies of other agents, any two strategies of agent i that lead to the same public 
decision must result in the same transfer to him; otherwise, he would never 
choose the strategy leading to the lower transfer. Hence, if t** is i’s transfer as a 
function of (ur , . . ., u,J, tf* depends on ui only through K, and we may write 

ti”*=tT*(K,u~i). 

Take hi:R”-‘-+I? as in formula (***) of Th eorem 6. Because UY ,(K) is decreasing 

in K and h is semi-strictly increasing, there exist K 1 and K, with 0 5 K 1 5 K, 5 1 

such that hi(u’_i(K)) is non-decreasing if K E [K,, K,] and equal to zero otherwise 
(see the definition of hi). Thus hi is continuous almost everywhere, and so 
J$ h,(u’_ i(t)) dt is well defined. 

Write 

t:*(R,U~i)=-jhi(U’-i(t))dt+Hi(~,U_3. 
0 

(7) 

We must show that Hi is independent of K. Suppose that for any Gi, Fo(v”i, u _i) 
= {K}. Then we clearly can drop r? in Hi since I? can only be equal to K. Thus ’ 
suppose there exist Vi and R #K such that R E F,(I?,, u-~). Without loss of 
generality, assume R > K. Because h is continuous, for all R E [K, rf] there exists 
iYi such that I?E F,(~“,,u_~). From (7), we have for O<~<lf -K, 

~~(K)-~h~(u’_~(t))dt+H~(K,u_~) 
0 

K+E 

L ut(K + E) - S hi(U’_ i(t)) dt + Hi(K + E, 21 -J. 
0 

%I this framework it suffices to show that F is monotonic. 

(8) 
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Hence 

K+E 

Vi(K)- Ui(K + E) + S hi(U’-i(t)) dt ~ Hi(K + E, U- i)-Hi(K, U _ i). 
K 

Dividing by c and letting E tend to zero (E>O), we obtain 

- u:(K) + li_i h,(u’- i(K + E)) 2 li y_s;p (H,(K + E, u _ i) - H,(K, u i))/~. 

(9) 
Choose &E V such that 

C:(K) = lim hi(u’- i(K + 8)). 
E-0 

Then, because h is continuous K E F,(i&, u_ i). From (9), 

- i?:(K) + lim h,(u’_ i(K + E)) = 0 
E-0 

2 lim sup (H,(K + E, u i) - H,(K, u _ i))/~. 
E-0 

(10) 

For each c E (0, K - K), take 

u;(R)= vi(R)+ [hi(u’Li(K +E))-u;(K +&)]I? 

Notice that (u:)‘(K +~)=h~(u’-~(K +E)). Thus K +E E F,(z$, u-~). Hence 

K+E 

$(K+E)- j hi(u’Li(t))dt +H,(K +E, u-~) 
0 

1~~(K)-jhi(U~i(t))dt+Hi(K,U~i). 
0 

Rearranging, we obtain 

K+E 

-[u~(K+E)-_~(K)]+ ~ hi(u_i(t))dt ~Hi(K+E,U_i)-Hi(K,v_i). 

Dividing by E and letting E tend to zero, we have 

- u:(K) - lim hi(tL i(K + E) + u:(K) + lim hi(U’~ i(K + E)) = 0 
&+O E’O 

2 lim sup H,(K + E, u _ i). 
E-0 

(11) 
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Combining (10) and (1 l), we obtain 

lim SUP (Hi(K + E, V-t) - Ht(K, V _ i))/& = 0. 
&+O 

Similarly, 

Thus, 

lim inf (Hi(K + E, V _ t) - H,(K, V _ i))/& = 0. 
e-0 

Therefore Hi does not depend on K, as was to be shown. This observation 
together with Lemma 3 establishes that truthful dominant strategy 
implementation implies the existence of functions h, Hi and t:* satisfying (iii), (iv) 
and (**). 

Next assume the existence of h, Hi and tf*. We will show that F defined by (**) 
is implementable. One way to do this is to verify that F satisfies IPM and apply 
Theorem 1. A more direct way is to observe that the right and left derivatives of 

vi(l?)-jhi(~‘-i(t))dt+Hi(U_i), 
0 

(12) 

with respect to R, are 

v;(K) - lim hi(v’- i(I? + E)), s > 0, (13) 
E-0 

and 

vj(l?) - lim hi(v’- i(K - E)), E > 0. 

Now, for vi E r/; (13) and (14) are both decreasing in I?. Therefore, (12) is a strictly 
concave function of I?. Furthermore if K satisfies h(v:(K), . . ., v;(K)) = 0, then (13) is 
non-positive and (14) is non-negative. Thus K maximizes (12) and so truthfulness 
in a dominant strategy. 

Finally suppose that h is strictly increasing. We must verify that F is strictly 
truthfully implementable. First observe that because h is strictly increasing, there 
existsv_iEV”-’ such that K E Fo(vi, V-J if v:(K) is sufficiently close to zero [recall 
that h(0,. . ., 0) = 01. Hence if vi # q, we can choose K and v_~ such that 
u:(K) # q(K) and K E F,(q, v _ i), establishing condition (i) of Theorem 2. For given 
v-iE V-l, 

{ CFOtvi> v - A Fi(Vi, u i))\vi E v} 
(15) 

= (K, ti)\h(V:(K), V’_i(K))=O, ti= -~hi(vli(t))dt + H,(v_~), VIE V . 
0 
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But, because h is strictly increasing, the right-hand side of (15) defines a 
differentiable curve.’ Thus condition (ii) of Theorem 2 holds, and the theorem 
is proved. Q.E.D. 

Theorems 5 and 6 can easily be generalized to a public project space consisting 
of the m-dimensional unit cube [0, 11”. Define K L, I/* and the terms ‘weakly 
efficient’ and ‘neutral’ by analogy with the one-dimensional case. Theorem 5 reads 

exactly as before except that h is now defined on R”” and the ti’s are defined on 
[0, 11” x R”“. Similarly, Theorem 6 remains exactly the same except that the hi’s 
are defined on Rm(” l). 

Theorems 5 and 6 show that a Nash or dominant strategy implementable 
public decision rule corresponds to the set of roots of a continuous function that 
is semi-strictly increasing and satisfies h(0,. . ., 0) = 0. Thus for the case of two 
individuals it is easy to describe implementable public decision rules by the locus 
of roots of the corresponding h functions. Any implementable social choice 

rule must have an h whose locus of roots lies between those of hmin and h,,, 
which are depicted in figs. 3 and 4, 

The decision rule associated with hmin is the dictatorship of the ‘agent on the 
left’, i.e., the public decision coincides with the smaller of the two agents’ favorite 
choices. Similarly h,,, corresponds to the dictatorship of ‘the agent on the right’. 

For n>2, we can also implement dictatorships of all other ‘positions’ (e.g. 

dictatorship of the median agent - majority rule). 

For a positional dictatorship ft hi(v’_ i(t)) dt = 0 for any i, and therefore we can 
implement such dictatorships in dominant strategies with transfers that are 
independent of the public decision. In particular, we can take them to be 
identically zero, putting us in the [Moulin (1980)] framework of single-peaked 
preferences over a single good. 

Fig. 5 depicts the dictatorship of agent 1 and fig. 6 the dictatorship of agent 2; in 
both cases transfers are independent of the public decision, as st hi(L i(t)) dt z 0. 

The social choice rule corresponding to the h function in fig. 7 is a dictatorship 
by agent 2 as long as agent l’s marginal valuation at agent 2’s favorite choice lies 

between CI and /3. In this case transfers are independent of the public decision. For 
marginal valuations by agent 1 outside that range, the social choice rule chooses 
K to maximize u1 + u2 (the ‘utilitarian’ rule) and transfers of the Clarke-Groves 
form. 

‘We are implicitly assuming here that Hi is differentiable. This is justified because adding an 
arbitrary function of v-, to Hi does not affect incentives. 
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Fig. 3 

h max.:0 I > 
“; 

Fig. 4 
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Fig. 5 

35 

Fig. 6 
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\ 

\ 
\ 

\ 
\ 

\ 

In fig. 8 we represent a social choice rule that is a dictatorship by agent 2 if agent 
l’s marginal valuation is sufficiently close to zero and otherwise a dictatorship by 
agent 1. Fig. 9 depicts a social choice rule that is a dictatorship by agent 2 as long 
as vi is positive, i.e., as long as agent 2’s favorite public decision is smaller than that 
of agent 1, and the utilitarian rule otherwise. 

4. Coalitions 

Theorem 6 concerns implementation only in individually dominant strategies. 
That is, it ignores the possibility of collusion by coalitions. Returning to the 
abstract framework of section 2, we say that a direct revelation mechanism 



J.-J. Laffont and E. Maskin, Nash and dominant strategy implementation 

Fig. 8 

h.0 

h:o 

31 
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g:nl=, Bi+X (partially) implements a social choice rule F truthfully in 
coalitionally dominant strategies if for all (R,, . . ., R,) E nl= 1 &?i and all coalitions 
CC { 1,. . ., n}, g(R,, . ., R,) E F(R,, . . ., R,) and the joint strategy Rc= 

(RiI,. . .y Rim), where C= {iI,. .,i,}, is a coalitionally dominant strategy for 
coalition C with preferences Rc [that is, for all alternative R”, 
g(Rc, R_c)R,g(&, R-c) for all i in C where R-c is the vector of strategies of 
agents not in C]. F is truthfully implementable in coalitionally dominant 
strategies if V(R,, . ., R,)E~;= 1 BYi, VaE_f(R,, . . ., R,), there exists g such that g 
partially implements F truthfully in coalitionally dominant strategies and 

M i,. . ., R,)=a. Under the hypotheses of Theorem 6, however, truthful 
implementation in coalitionally dominant strategies is not attainable. 

Theorem 7. If F satisfies the hypotheses of Theorem 6 and is twice piecewise 
differentiable,’ then it is not truthfully implementable in coalitionally dominant 

strategies. 

Proof. Let us confine our attention to the subclass of valuations of the form 

oi(K, cli, Bi)=UiK -BiK’, a,>o, &>O. (16) 

Then for (K, t,, . . ., t,) E F(v,, . . ., u,), 

K = Kb,, Bt , . . ., a,, B,) = W> 8, 

ti=ti(CI1,P1,...,Cln,B,)_ ti(a9P), 

(17) 

and we can regard F as a function of (a,/?). Choose j and (oi,/?) such that F is 

twice differentiable at (oi,/?) and (8K/8aj)(&, f?)#O. Then, 

(18) 

If F is implementable coalitionally, it is implementable individually. Hence, 

T& Cs(K(a, PI, ii, Bi) + ti(OG 811 =o, 
(ai,Bi)=&.!Q 

and so 

&_ avi aK 

aai aK ami. 
(19) 

The coalition {i,j} with parameters (oi,, &) and (aj, fij) chooses ai to maximize 

ui(K(CG PL ii, Bi) + rj(K(K B), ij, Bj) + ri(m, B) + tJ(K 8). 

*Henceforth we consider single-valued F’s restricted to V”. 
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Hence, 
au. aK auj aK at, atj 
jj+.+~.&T+~+~=“- I 1 L 

(20) 

Subtracting (19) from (20) we obtain 

1. atj = au. aft 

aai aK hi’ 

Interchanging i and j, we have 

L._ ati = au. aK 
auj f3K hj’ 

(21) 

From (18), (19) and (21), we deduce 

a% aK 
--_L_=(). 
i3K aui aaj 

(22) 

From (16), a2vi/aK = Therefore 

for (c(, fi) =(oi, fi. Q.E.D. 

5. Balance 

We know from Theorem 5 that for any Nash implementable public decision 
rule, balanced transfers (i.e., transfers which sum to zero) can be found that make 
the resulting social choice rule Nash implementable. For example, transfers can 
be taken to be identically zero. On the other hand, Green and Laffont (1979) have 
shown that no social rule that is implementable in dominant strategies and has a 
utilitarian public decision rule (i.e., chooses K to maximize xi vi) has transfers 

which balance. This non-existence result does not carry over to all non- 
utilitarian public decision rules. For instance, we observed already that any 

dictatorship or positional dictatorship without transfers is implementable. 
Such social choice rules are automatically balanced. As another example, 
consider the social choice rule 

n-l 

ti= 1 v,(K),i#n, t,=- 1 ti 
j2i.n i=l 
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Clearly, F* is balanced and implementable. Notice that balance is achieved by 
making agent n a dummy. That is, agent n cannot affect the public decision K and 
serves simply to absorb the surplus or deficit created by the other agents. F* 
treats agents highly asymmetrically and there are many other balanced and 
implementable social choice rules that entail such asymmetries. However, if one 
restricts attention to symmetric - i.e., anonymous - social choice rules, we find 
that only the positional dictatorships are balanced and implementable. 

We shall call a social choice rule anonymous if permutating the valuation 
functions in a profile (ul,. . ., II,) permutes transfers the same way and does not 
affect the public decision. 

Theorem 8. Suppose that F satisfies the hypotheses of Theorem 6 and is n times 
piecewise differentiable, balanced and anonymous: then, F is truthfully 
implementable in dominant strategies if and only if F is a positional dictatorship. 

Proof. For simplicity, we shall argue the case n = 2; the method of argument 
generalizes. We shall restrict attention to the class of valuation functions 

v,(K, ai, Bi, ei)= aiK -_iK2 + eiK3, ai,Bi>O. 

Thus we may consider F as a function (since it is single-valued) of (c(,B, (3) 

=(cll,Bl,el,a2,B2,ez). 
In view of Theorem 6, balance requires that 

dt 

(23) 

Differentiating (23) with respect to CQ and CQ, we obtain 

(h +M& aK ah, aK ah, 
1 2 +acI,.ao;+al,.ali; 

aK aK ah, a%, ah, a2v, =. 
+aa,.aa, aV;‘aKZ+av;‘dKZ [ 1 . 

Also from Theorem 6 we have 

(24) 

(25) 
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Differentiating (25) with respect to 01~ and CQ, we obtain 

( ah a2vl ah a%, aK ah 
~ -+-=o, 

av; aK2 +G aK2 aa, au: > 
and 

( ah a%, ah a%, a2K 

av; aK2 +%QZ > 

aK aK ah ab, ah a%, 

al,++dcl, Z&aiP +dv;aK3 ( ~ -1 
+ {terms of lower order derivatives of vi and K) =O. 

Choose (&,fl, 9, where F is differentiable and such that 

Substituting (26) and (27) in (24), we obtain 

ah a%, ah a%, 3 
-7+dv;aKZ au; azc )) 

n&-g+{terms not involving $$}=O. 
12 

(26) 

(27) 

(28) 

(29) 

Now, suppose (29) is evaluated at (a, fl,@. If 8, and e2 vary starting from (0,) 8,) 
we can adjust c1 and p to keep avJaK and a2vi/aK2 constant. Therefore, (29) 
cannot hold in a neighborhood of (I?, fl, 0) unless 

h,+h,=O at (E,fl,@. (30) 

But if(30) holds at each point (I%, fl,e) where F is differentiable and (28) holds, then 
in a neighborhood of (c(, 8, fl F must be a Clarke-Groves procedure, i.e., locally 
h(a,,a,)=a, +a,. From Corollary 4.1 in Laffont and Maskin (1980), Clarke- 
Groves procedures cannot be balanced. Thus we conclude that (28) cannot hold. 
Consequently the locus h=O must consist entirely of vertical and horizontal 
segments. 

Suppose without loss of generality, that there exists a>0 such that for all 
a E [0, Z], h(0, a) = 0; that is, there is a vertical segment of the locus h = 0 at (0,O). 
Suppose that 5 = max {u/ h(0, a) = O}. Choose (t?, fl,@ such that 

au, au, ( >I aK’ aK 
= (0,4, 

(e,B,e) 
(31) 
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and let If be the associated public decision level. Now, at R, for ~1~ >cC,, 

Therefore, for a2 slightly greater than a,, we must be on the horizontal segment, 

i.e., 

=(-b,ii) for some b>O. (32) 

From (32) and Theorem 6, 

= -(“&)+h2($))z+%_ 

where the derivatives are evaluated at (CI, 8, @. 

Now we have 

aK+ >o ac(, ’ 
"@)=O, h,(g)=Z 

Balance implies 

afz: 
-h -_ 

. aa2 

(33) 

(34) 

On the other hand, the same computation at the point (0,6--s) (obtained by 
varying the characteristics of agent 1) yields 

aH: 
- = 0, contradicting balance. (35) 
aa2 

Therefore, max (u) h(0, a) = 0} = + 00 and so h(0, a) = 0 for all a > 0. By symmetry, 

h(a, 0) = 0 for all a 20. Thus F is the ‘left’ dictatorship. Analogously, we would 
have obtained the right dictatorship had we assumed that h(O,a)=O for all 
a~[~?,01 for 5~0. Q.E.D. 
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6. Individual rationality 

A social choice rule is said to be individually rational if, for any profile of 
preferences, any outcome in the choice set yields each individual as much utility 
as from his initial position. In our framework, the natural assumption is to 

suppose that an individual with valuation v derives utility 0 from his initial 
position. Individual rationality is a desirable feature of a social rule because it 
ensures that no individual need be coerced into playing an implementing game 
form; all individuals will play voluntarily. 

Because valuation functions are bounded below, it is obvious that any SCR 
that provides sufficiently large transfers to all agents will be individually rational. 

However, it is natural to restrict attention to SCR’s the sum of whose transfers is 
always non-positive, that is, tofeasible SCR’s. As the following result shows, there 
is only one individually rational and feasible SCR (satisfying the hypotheses of 
Theorem 6) that is truthfully implementable in dominant strategies. 

Theorem 9. Suppose that F is feasible and individually rational and satisfies the 
hypotheses of Theorem 6. Then F is implementable in dominant strategies if and 
only if F is the left dictator. 

Proof: We shall argue the case of two agents, though our method extends to any 

number. If F satisfies the hypotheses of Theorem 6 and is truthfully 

implementable in dominant strategies, then 

t:*(u;(K), v;(K)) = - j h,@;(t)) dt + H,(v,). 
0 

(36) 

We shall first show that if F is feasible and individually rational, H,(v,)zO. 
Let b be the smallest non-negative number such that there exists a with 

h(a, v;(O) - b) = 0. Because h(O,O) = 0, b 5 v;(O). Choose K such that v;(K) = v;(O) 
-6. Ifb#O, let (~7) b e a sequence of valuation functions and {K”) an ascending 
sequence of public decisions such that (i) K” -tR, (ii) (v;)‘(P) = h,(v’,(K”)), and (iii) 

vl(K”)LO. Because u;(O) - b 2 0, v;(K”) 2 0, and consequently h,(v;(K”)) s 0. 
Then, by construction, 

lim v;(K”) - 7” h,(v;(t)) dt = 0. 
n+ 3ci 0 > 

If b =0 take a descending sequence {K”} going to K = 0. Thus, by individual 

rationality, H,(v,) 2 0. 

Now, suppose there exists an interval [a, a] such that for a E l&Z], h,(a) ~0. 
Choose v1 such that z&( l/2) = 0, and 

ti&u;(K)lg for KC l/4. 
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Choose u1 such that v;(1/2)=0. Agent 2’s transfer is 

- d h,M(O) dt + H2W (37) 

Agent l’s transfer is 

112 

- j W;(t)) dt + H&4. 

Since u;(t)20 for TV [0,1/2], h,(u;(t)) 5 0 in this interval and from above 
h,(&(t)) < 0 for K < l/4. 

Hence (38) is strictly positive since II, 10. 
Since u;(t) 2 0 for 0 5 t 5 l/2, h,(u;(t)) 5 0 in this interval and (37) is non-negative 

from H,(u,) 20. The sum of the transfers [(37) +(38)] is strictly positive, a 
violation of feasibility. 

Thus hI 20 everywhere and similarly h, 2 0 everywhere. 
Now for any ul, choose u2 such that for some K, u;(K) = u;(K) =O. Then, agent 

2’s transfer is 

Since u;(t) 2 0 for any t in [O, K], h,(r&(t)) 5 0. Combining with above, we obtain 
h,(u;(t) =0 for tin [0, K]. Therefore agent 2’s transfer is H,(u,). Similarly agent l’s 
transfer is H,(u,). From feasibility H,(u2)+H2(u,)~0. Thus, from the non- 
negativity of the Ifi’s we conclude that 

H, =H2=0. (39) 

Now suppose there exist K and (ul, u2) such that h@;(K), u;(K)) =0 and 
u;(K) < 0. Choose iY1 such that fl(K) = u;(K) and v",(K) < 0. Then, by Theorem 6, 
agent l’s payoff is 

v”,(K) -4 W;(O) dt + H&d. 
0 

(40) 

But H, =0 and h, 20. Therefore, (40) is negative, a contradiction of individual 
rationality. Thus for all K and (q, u2), h(v;(K),u;(K))=O only if u\(K)20 and 
u;(K)zO. Thus F is the left dictatorship. Q.E.D. 

For Nash implementation, the possibilities for individual rationality are 
broader: 
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Theorem 10. Among the social rules F satisfying the hypotheses of Theorem 5, the 
set of those that are individually rational, feasible and Nash implementable consists 
of those satisfying 

6) 

n-l 

& v:(K) + W;W, . . ., 4 - 10-9) 2 0, VK 

(ii) ti 1 -K*vi(K*) where K* E Fo(ul, . . ., v,), 

(iii) $I 4S”* 

ProoJ: Suppose that a social choice rule F satisfies the hypotheses of Theorem 5 
and is individually rational and feasible. From feasibility, (iii) must be satisfied. 
For given vr,. . ., v, and for K* E F,(u,, . . ., u,,), choose 17~ E V* with 

v”i(K*)=KV:(K*), VK. 

Because q(K*) = u;(K*), 

K* E F,(v”i, v-i). 

Thus from individual rationality, 

Hence 

ti(K*, I, v’-i(K*))~ -Key. 

establishing (ii). Summing (ii) over i, we obtain 

iil tt 2 -K* i$l ‘JXK*). 

Thus from (iii), 

i$l VW*) 2 0. 

Thus, if h corresponds to F, 

n-l 

& 4W*) + h,(u;(K*), . . ., v;_ ,(K*)) 2 0. 

Varying u,, we obtain (i). Thus (i), (ii), (iii) are necessary for individual 
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rationality and feasibility. Conversely, suppose that F satisfies the hypotheses of 
Theorem 5 and (i), (iii). From (iii), F is feasible. From concavity, 

vi(K) 2 Ku:(K). 

Hence (ii) implies 

Ui(K) + ti 2 Oy 

establishing individual rationality. Q.E.D. 

Remark. Observe that if h =x1= 1 vi (so that the public decision K* maximizes 

x1= 1 ui)2 

- i$‘l Ku;(K) = 0. 

Fig. 10 
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Thus if F is individually rational and feasible, 

ti = --K*u;(K*). 

This choice of public decision and vector of transfers corresponds to the 
Lindahl equilibrium of the economy. That is, F must be the Landahl 
correspondence which is Pareto optimal, yielding a result analogous to Hurwicz 

(1979b). 
The h( .) functions satisfying Theorem 10 can be represented in the case of two 

agents as shown in fig. 10. Any semi-strictly increasing h function whose 
zeros lie entirely in the shaded area corresponds to (in general many) feasible 
individually rational and Nash implementable social shoice rules. 

Concluding remark. We have worked in this paper with a continuous project 
space (0,l). However, much of the literature on incentives and public goods 
concerns a discrete project space - where an indivisible project is either 

undertaken or not - Despite their apparent dissimilarity, the two approaches 
are not very different in terms of the results they yield. Indeed, all our theorems 

have almost exact discrete analogues, as comparison with the results of Laffont 

and Maskin (1981, sec. 3) establishes. 
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