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The “perfect Folk Theorem” for discounted repeated games establishes that the 
sets of Nash and subgame-perfect equilibrium payoffs are equal in the limit as the 
discount factor 6 tends to one. We provide conditions under which the two sets 
coincide before the limit is reached. That is, we show how to compute 6 such that 
the Nash and perfect equilibrium payoffs of the &discounted game are identical for 
all S > S. Journal of Economic Literature Classification Number: 022. b 1990 

Academic Press, Inc. 

1. INTRODUCTION 

The “Folk Theorem” for infinitely repeated games with discounting 
asserts that any feasible, individually rational payoffs (payoffs that strictly 
pareto dominate the minmax point) can arise as Nash equilibria if the dis- 
count factor 6 is sufficiently near one. Our paper [3] established that under 
a “full-dimensionality” condition (requiring the interior of the feasible set 
to be nonempty) the same is true for perfect equilibria, so that in the limit 
as 6 tends to 1 the requirement of subgame perfection does not restrict the 

* We thank two referees and an associate editor for helpful comments. Research support 
from the U.K. Social Science Research Council, National Science Foundation Grants 
SES-8607229 and SES-8520952, and the Sloan Foundation is gratefully acknowledged. 

194 
0022-0531190 $3.00 
Copyright 0 1990 by Academic Press. Inc. 
All rights of reproduction in any lorm reserved. 



NASH AND PERFECT EQUILIBRIA 195 

set of equilibrium payoffs. These results leave open the question of whether 
the restriction to perfect equilibria constrains the set of equilibrium payoffs 
for fixed discount factors near 1. 

We show that perfectness is not a constraint under two simple condi- 
tions. Under these conditions, there is a discount factor fi less than 1 such 
that for all larger discount factors the Nash and perfect equilibrium payoffs 
are identical. (An earlier version of this paper, Fudenberg and Maskin [4], 
provided examples to show that the perfectness constraint does bind when 
our conditions are not satisfied.) 

The key to our proof is the construction of perfect equilibria, one for 
each player, that hold that player to exactly his reservation value. Since no 
strategies by the player’s opponents can prevent him from obtaining his 
reservation value, any path of play that can arise in a Nash equilibrium can 
be enforced by using the reservation-value perfect equilibria to “punish” all 
deviations from the support of the equilibrium distribution, so the Nash 
and perfect equilibrium payoffs coincide. (Note that we do not assert that 
all Nash equilibrium strategies are perfect.) This observation is closely 
related to one of Abreu [Z]. He shows that any pure-strategy perfect equi- 
librium path can be enforced with strategies that punish any deviation with 
the pure-strategy perfect equilibrium that minimizes the deviator’s payoff.’ 

The equivalence between the Nash and perfect equilibrium payoffs holds 
even though, for any fixed 6 < 1, there will typically be individually rational 
payoffs that cannot arise in equilibrium. In other words, the payoff sets 
coincide before attaining their limiting values. One purpose of the paper is 
to clarify the connection between the Nash and perfect equilibria of 
repeated games and thus provide additional insight into the structure of the 
perfect equilibria. The paper also makes a more practical contribution. Our 
proof explicitly constructs the reservation-value equilibria, which are quite 
simple in form, and also provides an easily computed expression for the 
value of 3. This may make the present result easier to apply than our 
theorem in [3], where the discount factor required for a given payoff to 
arise in a perfect equilibrium depended on the particular payoff in more 
complicated ways. 

Section 2 introduces our notation for the repeated game model. Section 3 
presents the main results. Through Section 3 we make free use of the 
possibility of public randomization. That is, we suppose that there exists 
some random variable (possibly devised by the players themselves) whose 
realizations are publicly observable. Players can thus use the random 
variable to (perfectly) coordinate their actions. In Section 4, however, we 
show that our results do not require public randomization. 

’ Abreu proves that these worst pure-strategy equilibria exist in games with a continuum of 
actions. 



196 FUDENBERG AND MASKIN 

2. NOTATION 

We consider a finite n-player game in normal form, 

g:A,x “. xA,+R”, 

where g(a,, . . . . a,) = (g,(ar, . . . . a,), . . . . g(a,, . . . . a,)) and gi(u,, . . . . a,) is 
player i’s payoff from the vector of actions (a,, . . . . a,). Player i’s mixed 
strategies, i.e., the probability distributions over A,, are denoted Ci. For 
notational convenience, we will write “g(a)” for the expected payoffs 
corresponding to the vector of mixed strategies 0 = (a,, . . . . CT,). 

In the repeated version of g, each player i maximizes the normalized dis- 
counted sum rci of his per-period payoffs, with common discount factor 6: 

x’r(l-6) : Plg,(o(t)). 
1= I 

Here a(t) is the vector of mixed strategies chosen in period t. 
Player i’s strategy in period r can depend on the past actions of all 

players, that is on the sequence {u(r)},,,, but not on the past choices of 
randomizing probabilities a(r). Each periods play can also depend on the 
realization of a publicly observed random variable such as sunspots. 
Although we feel that allowing public randomization is as reasonable as 
prohibiting it, our results do not require it. Section 5 explains how, for 6 
close to 1, the effect of sunspots can be duplicated by deterministic cycles 
of play. 

To give a formal definition of the strategy spaces, let w(t) be a sequence 
of independent random variables with the uniform distribution on [0, 11. 
The history at time r is h’ = (h’- ‘, a(r - l), o(r)), and a strategy for player 
i is a sequence {s:}, where $: H’ -+ Ci and H’ is the space of time r 
histories. 

For each player j, choose minmax strategies rn’ = (m{, . . . . m:), where 

m/iEargminmax gj(mj, mpj) and g,(mj)=max g,(u,, mij). (0) 
“-, “I, flJ 

Let 
II,* = g,(m’). 

(Here “m -j” is a mixed strategy selection for players other than j, and 
gj(uj, rn< j) = gj(mi, . . . . m,l- 1, uj, m,j+, , . . . . m!).) 

We call v,? player j’s reservation value. Since one feasible strategy for 
player j is to play in each period a static best response to that period’s play 
of his opponents, player j’s average payoff must be at least v,? in any equi- 
librium of g, whether or not g is repeated. Note that any Nash equilibrium 
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path of the repeated game can be enforced by the threat that any deviation 
by j will be punished by the other players’ minmaxing j (i.e., playing mLj) 
for the remainder of the game. 

Henceforth we shall normalize the payoffs of the game g so that 
(UT, ..., u,*) = (0, . . . . 0). Call (0, . . . . 0) the minmax point, and take 0; = 
max, g,(a). Let 

u= {(II,, . ..) u,) 1 there exists (a,, . . . . a,) E A, x . . . x A, 

with g(a,, . . . . a,) = (u,, . . . . u,)}, 

I’= convex hull of U. 

and 

v* = ((01, . ..) ~,)~V~u~>Oforalli}. 

The set I/ consists of feasible payoffs, and V* consists of feasible payoffs 
that strictly Pareto dominate the minmax point. That is, V* is the set of 
feasible, strictly individually rational payoffs. 

3. NASH AND PERFECT EQUILIBRIUM 

Any feasible vector of payoffs (ui, . . . . v,) that gives each player i at least 
(1 - S)Uj is attainable in a Nash equilibrium, since Nash strategies 
can specify that any deviator from the actions sustaining (u,, . . . . u,) will 
be minmaxed forever. In a subgame-perfect equilibrium, however, the 
punishments must themselves be consistent with equilibrium play, so that 
the punishers must be given an incentive to carry out the prescribed 
punishments. One way to try to arrange this is to specify that players who 
fail to minmax an opponent will be minmaxed in turn. However, such 
strategies may fail to be perfect, because minmaxing an opponent may be 
more costly than being minmaxed oneself. Still, even in this case, one may 
be able, as in Abreu [ 1 ] and our paper [3], to induce players to minmax 
by providing “rewards” for doing so. 

In fact, the present paper demonstrates that under certain conditions 
these rewards can de devised in such a way that the punished player is held 
to exactly her minmax level. When this is possible, the sets of Nash and 
perfect equilibrium payoffs coincide, as the following lemma asserts. 

LEMMA 1. For discount factor 6, suppose that, for each player i, there is 
a perfect equilibrium of the discounted repeated game in which player i’s 
payoff is exactly zero. Then the sets of Nash and perfect equilibrium payoffs 
(for 6) coincide. 
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Proof. Fix a Nash equilibrium s*, and construct a new strategy S that 
agrees with s* along the equilibrium path, but specifies that, if player i is 
the first to deviate from s*, play switches to the perfect equilibrium that 
holds player i’s payoff to zero. (If several players deviate simultaneously, 
the deviations are ignored.) Since zero is the worst punishment that player 
i could have faced in s*, he will not choose to deviate from the new 
strategy s^. By construction, s^ is a perfect equilibrium with the same payoffs 
as s*. Q.E.D. 

Remark. Note that the lemma does not conclude that all Nash equi- 
librium strategies are perfect. 

A trivial application of Lemma 1 is to a game, like the Prisoners’ 
Dilemma, in which there is a one-shot equilibrium that gives all players 
their minmax values. An only slightly more complex case is a game where 
each player prefers to minmax rather than to be minmaxed, i.e., a game in 
which g,(m’) > 0 for all i # j. In such a game we need not reward punishers 
to ensure their compliance but can simply threaten them with future 
punishment if they fail to punish an opponent. 

THEOREM 1. Suppose that for all i and j, i # j, rnj, as defined by (0), is 
a pure strategy, and that g,(m’) > 0. Let 4 satisfy Cj( 1 - 4) < min,, j g,(m’) 
for all j. Then for all 6 E (6, l), the sets of Nash and perfect equiiibrium 
payoffs of the repeated game exactly coincide. 

Proof: For each player i, define the ith “punishment equilibrium” as 
follows. Players play according to mi until some player j # i deviates. If this 
occurs, they switch to the punishment equilibrium for j. Player i has no 
incentive to deviate from the ith punishment equilibrium because in every 
period he is playing his one-shot best response. Player j# i may have a 
short-run gain to deviating, but doing so results in his being punished, so 
that the maximum payoff to deviation is fij(l - S),2 which is less than 
min, + i g,(m’) by assumption. So the hypotheses of Lemma 1 are satisfied. 

Q.E.D. 

Remark 1. If the minmax strategies are mixed instead of pure, the con- 
struction above is inadequate because player j may not be indifferent 
among all actions in the support of rnj. Example 1 of Section 4 shows that 
in this case Theorem 1 need not hold.3 

2 Recall that we are expressing players’ payoifs in the repeated game as discounted aoerage 
payoffs, and not as present values. 

3 However, in two-player games we can sharpen Theorem 1 by replacing its hypotheses with 
the condition that for all i and j, i # j, and all a, in the support of m;, g,(a,, mLj) is positive. 
Note that this condition reduces to that of Theorem 1 if all the rni are pure strategies. 
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Remark 2. The proof of Theorem 1 actually shows that all feasible 
payoff vectors that give each player j at least mini, j gj(mj) can be attained 
in equilibrium if 6 exceeds the 6 defined in the proof. 

Although the hypotheses of Theorem 1 are not pathological (i.e., they are 
satisfied by an open set of payoffs in nontrivial normal forms), they do not 
apply to many games of interest. We now look for conditions that apply 
even when minmaxing an opponent gives a player less than her reservation 
utility. 

In this case, to induce a player to punish an opponent we must give him 
a “reward” afterwards, as we explained earlier. To construct equilibria of 
this sort, it must be possible to reward one player without also rewarding 
the player he punishes. This requirement leads to the “full-dimensionality” 
requirement we introduced in our earlier paper: the dimensionality of V 
should equal the number of players. However, full dimensionality is not 
suflicient for the stronger results of this paper, as we show in [4]. We 
must strengthen it to require that the minmax point (0, . . . . 0) is itself in the 
interior of V. Moreover, we need to assume that each player i has an action 
Bi such that g,(ci,, ml,) < 0, so that when minmaxed, a player has an action 
for which he gets a strictly negative payoff. (From our normalization, his 
maximum payoff when minmaxed is zero.) 

THEOREM 2. Assume that (i) the minmax point is in the interior of V, and 
that (ii) for each player i there exists a, such that g,(ci,, ml,) < 0. Then there 
exists 6 < 1 such that for all 6 E (6, 1 ), the sets of Nash and perfect equi- 
librium payoffs of the repeated game exact1.v coincide. 

COROLLARY. Under the conditions of Theorem 2, for 6 > ~3, any feasible 
payoff vector u with ui > Ui( 1 - 6) f or all i can be attained by a perfect 
equilibrium. 

Remark. Hypothesis (ii) of the theorem is satisfied by generic payoffs in 
normal forms with three or more actions per player. The interiority condi- 
tion (i) is, however, not generic: the minmax point can be outside V for an 
open set of payoffs. The condition is important because it ensures that in 
the construction of equilibria to reward a punisher, the ratio of his payoff 
to that of the deviator can be made as large as we like. 

Proof of Theorem 2. We begin in part (A) with the case in which all the 
minmax strategies rn: are pure, or, equivalently, each player’s choice of a 
mixed strategy is observable. Part (B) explains how to use the methods of 
our paper [3] to extend the construction to the case where the minmax 
strategies are mixed. 
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(A) Assume that each rnj is a pure strategy. For each player i, 
choose an action cii such that g,(ri,, mLi) E -xi<O. For j#i, let 
y: E - g,(ci,, m’-i). The equilibrium strategies will have 2n “states,” where n 
is the number of players. States 1 through n are the “punishment states,” 
one for each player; states n + 1 to 2n are “reward states.” In the punish- 
ment state i, the strategies are: Play (ii, m’-i) today. If there are no devia- 
tions, switch to state n + i tomorrow with probability p,(6) (to be deter- 
mined), and remain in state i with complementary probability 1 - p,(6). If 
player j deviates, then switch to state j tomorrow. In reward state n + i, 
players play actions to yield payoffs vi= (~1, . . . . u;), which are to be deter- 
mined. If player j deviates in a reward state, switch to punishment state j. 

Choose vi in V* such that, for i#j, ,~~a,;.- vi.yl,> 0 (this is possible 
because OE int V). Now set p,(6) = (1 - 6)xJ&$ and choose $> xi/ 
(oj + xi), such that for 6 > 8, p,(6) < 1. This choice of p,(d) sets player i’s 
payoff starting in state i equal to zero if she plays as specified. If player j 
does not deviate, his payoff starting in state i, which we denote w;., solves 
the functional equation 

so that 

w;=(1-s)(-yj)+6pi(6)u~+6(1-pi(6))w~, (1) 

WJ = (X$$ - y;uj,/(u: + Xi). (2) 

By construction, the numerator in (2) is positive. The interiority condition 
has allowed us to choose the payoffs in the reward states so as to compen- 
sate the punishing player j without raising i’s own payoff above zero. 
Choose 8 < 1 large enough so that, for all i and j, vi > Ej( 1 - 8), and so that 
for i # j, wf > fij( 1 - 8). Set & = max(& S). 

We claim that for all 6 E (4, l), the specified strategies are a perfect equi- 
librium. First consider punishment state i. In this state, player i receives 
payoff zero by not deviating. If player i deviates once and then conforms, 
she receives at most zero today (since she is being minmaxed) and she has 
a normalized payoff of zero from tomorrow on. Thus player i cannot gain 
by a single deviation, and the usual dynamic programming argument 
implies that she cannot gain by multiple deviations. Player j’s payoff in 
state i is wj (which exceeds Vj( 1 - 6)). A deviation could yield as much as 
0, today, but will shift the state to state j, wherej’s payoff is zero, so player 
j cannot prolit from deviating in state i. Finally, in reward state n + i, each 
player k obtains payoff u6 exceeding Uk( 1 - 6), and so the threat of 
switching to punishment state k prevents deviations. The-theorem now 
follows from Lemma 1. 

(B) The strategies in part (A) punish player j if, in state i, he fails to 
use his minmax strategy rni. The players can detect all deviations from rni 
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only if it is a pure strategy, or if the players’ choices of mixed strategies are 
observable. (Otherwise, player j would not be detected if he deviated to a 
different mixed strategy with the same support). However, following our 
[3] paper, we can readily modify the construction of (A) to allow for 
mixed minmax strategies. The idea is to specify that player j’s payoff in 
reward state n + i depend on the last action he took in punishment state n 
in such a way that player i is exactly indifferent among all the actions in 
the support of rnj. 

To begin, let {a:(k)} be the pure strategies in the support of rnj, where 
the indexation is chosen so that 

yj(k)E -gj(cii, Uj(k), m’L,-,)< -gj(C;i? Ui(k+ I), WZij-,)E -Yj(k+ l), 

where rn’- jpr is the vector of minmax strategies against i by players other 
than j. Thus --y;(k) is player j’s expected payoff in punishment state i if 
she plays her kth-best strategy in the support of rnj. Next define 

C= max Igj(ai, O-i)- g,(UP, O-,)1. 
*,o,.ap.G 

This is the maximum variation a player’s choice of action can induce in his 
own payoff. Also, let E > 0 be such that all payoff vectors u with 0 < ui < 3s 
for all i are in the interior of V. (This is possible because 0 E int V.) 

As in part (A), our strategies will have n punishment states and n reward 
states, with a probability pi(d) of switching from state i to state n + i if 
player i played Bi and each j# i played an action in the support of mJ. 
However, when play switches to state n + i, player j’s payoff depends on 
the action that she took in the preceding period. Denote these payoffs by 
vj(kj), where kj is the index (as defined in the preceding paragraph) of the 
action last played by player j. Thus the vector of payoffs in state n + i is 

u’(k,, . . . . L 1, ki, , , . . . . k,) 

= (Qk,), . ..) II- 1 (ki- 11, uj, uj+,(ki+ I), ...y ui(k,)). 

This u’ is defined as follows: First choose uj and uj( 1) for each j to satisfy 

xju;(l)-uj~V;(l)>o, (3) 

vf < &X,/C, (4) 

and 

u;(l)<&. (5) 



202 FUDENBERG AND MASKIN 

These conditions can be satisfied because 0 E int V. As in part (A), let 
p;(@=(l-6)x,/&$ N ow for each j and k,, set 

o~(kj)=o~(l)+(l-6)[~j(kj)-y~(1)]/6~,(6). (6) 

With this specification of the reward payoffs, player j’s payoff in state i 
is the same for each strategy in the support of m;, and equals 
[.r,u~(l)- y;(l) ~j]/(uj+x~), which is positive from inequalrty (3). 

Now we must check that the specified payoffs for state n + i are all 
feasible, and that, for 6 near one, no player wishes to deviate. Substituting 
the definition of p(6) into (6), we have 

uj(k,) = u;( 1) + [y;(k,) - y;( l)](uj/xi). (7) 

Referring to the bounds (4) and (5), we see that uj(k,) < 3s for all j and k,, 
and thus the vector ui is feasible for all values of the kj’s. Finally, since 
player i’s payoff in state i is zero, and his payoff in state n + j is bounded 
away from zero for all j, no player will wish to deviate in the reward states 
n + j. In state i, player j# i obtains the same positive payoff from any 
strategy in the support of rnj, and she will be punished with zero for 
deviating from the support. Thus, for 6 close to 1, player j will be willing 
to play rnj. The argument that player i will not deviate in state i is exactly 
as in Case A. Q.E.D. 

Remark. Our working paper [4] provides a series of examples to 
explore the roles of the hypotheses of Theorems 1 and 2. One example 
shows that Theorem 1 need not hold when the minmax strategies are 
mixed. A second example establishes that the hypotheses of Theorems 1 
and 2 do not imply that all individually rational payoffs can be attained for 
some 6 strictly less than one. We also provide counterexamples to 
Theorem 2 when either hypothesis (i) or (ii) is dropped. These counter- 
examples, which are two-player games with two actions per player, suggest 
that it may be difficult to obtain Theorem 2 under weaker conditions. 

The interiority hypothesis of Theorem 2 implies that the set V has full 
dimension, i.e., that dim V= n. Let us briefly consider the connection 
between Nash and perfect equilibrium when V has lower dimension. When 
the number of players n exceeds two, our article [3] shows by example 
that the Nash and perfect equilibrium payoff sets need not coincide even in 
the limit as 6 tends to 1. Thus, for such examples, these sets do not coincide 
for 6 < 1. However, we obtain a result much like that of Theorem 2 for two 
player games when dim V= 1. In this case, the V is simply a line segment. 
It if has negative slope, the game is zero-sum. If it has positive slope, the 
payoffs can be normalized so that the two players’ payoffs are always 
equal, i.e., the game is one of pure coordination. 
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THEOREM 3. In a two-player game where dim V= 1, there exists 6 -C 1 
such that, for all 6 E (6, I), the sets of Nash and perfect equilibrium payoffs 
coincide. 

Proof: Let (m:, rni) be a pair of minmax strategies. (If there are multi- 
ple such pairs, choose one that maximizes player l’s payoff.) If 
g(m:, rni) = (0, 0), then (mf, rni) forms a Nash equilibrium of the one-shot 
game. In this case, as infinite repetition of a one-shot Nash equilibrium 
constitutes a perfect equilibrium of the repeated game, application of 
Lemma 1 establishes the theorem. Suppose, therefore, that gi(mT, rni) < 0 
for some i. But then g cannot be a constant sum game and so, since 
dim V < 2, we can normalize the players’ payoffs so that, for all (a,, a*), 
g,(a,, a*) = g,(a,, a:!). Take v = g,(mf , rni) ( = g,(mT, mi)). Because Q < 0, 
there must exist (af, a;) such that g(a:, a:) = (o*, v*), where u* >O 
(otherwise (m:, ml), where rn: is a best response to rni, is a minmax pair 
for which g(m:, rni) = (0, 0), contradicting the choice of (m:, m:)). We will 
show that, for 6 near 1, there exists a perfect equilibrium of the repeated 
game in which both players’ payoffs are zero. When rn: and rni are pure 
strategies this is easily done by choosing p(6) such that 

(l-S)~+6p(6)u*=O. (8) 

The equilibrium strategies consist of playing (m:, m:) in the first period 
and then either switching (permanently) to (a:, a;) with probability p(6) 
or else starting again with probability 1 - p(6). Deviations from this path 
are punished by restarting the equilibrium. Suppose that the support of rn: 
is (a,(l), . . . . a(R)} and that of rni is {a*(l), . . . . a,(S)}. Suppose that the 
probability of a,(k) is q,,(k). By definition, 

11 q,(i) q2(.d gl(al(i), aAA) =v, 
.i 1 

(9) 

and since the rnj are minmax strategies, 

C sIti) g2(al(i), a2(i)) G 0 for all .i (10) 

and 

C 92(j) gl(al(i), a,(j)) d 0 for all i. (11) 

Now, in Lemma 2 below, we will show that, for all i and j, there exists 
cij 2 0 such that 

C 41(Ng2(al(i), 4j)) + ciil = 0 (12) 

642/51/l-14 
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and 

c dN-g,(~,(i), a,(j)) + cijl = 0. (13) 

Take 

P&U = 
cii(l -6) 

&I* . 

Then, if players play (m:, mi) in the first period and switch (forever) to 
(a:, a;) with probability p,(6) if the outcome is (u,(i), u,(j)), their expec- 
ted payoffs are (0,O) (from (12) and (13)). Furthermore, (12) and (13) 
imply that the players are indifferent among actions in the supports of their 
minmax strategies. Q.E.D. 

Remark. An immediate corollary of Theorem 3 is that the Folk 
Theorem holds for two player games of less than full dimension even when 
mixed strategies are not observable. (This case was not treated in our 
paper C31.J 

LEMMA 2. Suppose that B= (b,) is an Rx S matrix and that p = 
(p(l), . . . . P(R)) and q= (q(l), . . . . q(S)) are probability vectors such that 

poB<O and Boq<O. (14) 

Then there exists an R x S matrix C = (c,) such that p 0 (B + C) = 
(B+ C)oq=O and c,>O for all i, j. 

Proof Consider a row bi. such that po b,. < 0. Now if, for all j, 
b.joq=O, then (14) implies that po B=O, a contradiction of the choice 
of bi.. Hence there exists j such that we can increase b, while (14) con- 
tinues to hold. Indeed, we can increase b, until either p 0 bi. = 0 or 
b j 0 q = 0. Continuing by increasing other elements of B in the same way, 
we eventually obtain p 0 B = 0 and Bo q = 0. Let C be the matrix of the 
increases that we make to B. Q.E.D. 

4. No PUBLIC RANDOMIZATION 

In the proof of Theorem 2, we contructed strategies in which play 
switches probabilistically from a “punishment” phase to a “reward” phase, 
with the switching probability chosen to make the punished player’s payoff 
equal to zero. This switch is coordinated by a public randomizing device. 
The reward phase also relies on public randomization when the vector v’ = 
(0;) . ..) ui) lies outside the set U of payoffs attainable with pure strategies. 
Although public randomizing devices help to simplify our arguments by 



NASH AND PERFECT EQUILIBRIA 205 

convexifying the set of payoffs, they are not essential to Theorem 2. Con- 
vexification can also be achieved with deterministic cycles over pure- 
strategy payoffs when the discount factor is close to one. 

Our paper [S] showed that public randomization is not needed for the 
proof of the perfect equilibrium Folk Theorem, even if players’ mixed 
strategies are not observable. Lemma 2 of that paper established that, for 
all E > 0, there exists 6 such that, for all vectors u E V* with vi > E for i, and 
for all 6 > 4, there is a sequence {a(t)} ,“= , , where a(t) is a vector of actions 
in period t, whose corresponding normalized payoffs are u (i.e., 
(1 - 6) I,“=, 6’- ‘g(a(t)) = u) and for which the continuation payoffs at any 
time z are within E of u (i.e., for all r, 11(1 -6) C;“=, P’g(a(t))- VII <E.) 
This result implies that, for 6 large enough so that Vi( 1 - 6) <E, we can 
sustain the vector I? as the payoffs of a perfect equilibrium, where the equi- 
librium path is a deterministic sequence of action vectors whose continua- 
tion payoffs are always within E of ui, and where deviators are punished by 
assigning them a subsequent payoff of zero. Hence, attaining II’, even when 
it does not belong to U, does not require public randomization. 

Nor do we need public randomization to devise punishments whose 
payoffs are exactly zero. We can replace the punishment phase of 
Theorem 2 with one of deterministic length. 

Proof of Theorem 2 without Public Randomization. (A) As in the 
earlier proof, we begin with the case of pure minmax strategies. Let yj, xi, 
and cii be as before. Because 0 E int V we can choose E > 0 and, for each i, 
a vector v’ with I$ > 2s and ujxi > yjuj + 2~ for all j # i. For 6 near enough 
1, we can choose function vj(6) such that 

lItI@) - ufll <&, (15) 

ujx, > yjuj(b) + & for all j # i, (16) 

and such that there exists an integer t(d) such that 

(1 - cv’)( -x;) + P’uj(6) = 0. (17) 
Let 

w( = (1 - slC”))( - yi) + hr(b)ui 
J J J. (18) 

Substituting using (16) and (17), we have 

kw;. > c/xi, (19) 

where k > 0 is the limit of 8’(‘) as 6 + 1.4 Take 6 close enough to one so 
that for all i and j, Ej( 1 - 6) < min{s, k&/xi}. 

4 See [S] for the proof that this limit is strictly positive 
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Now consider the following strategies: In state i, play (cii, m’,) for t(8) 
periods, and then switch to state n + i, where play follows a deterministic 
sequence whose payoffs are u’(6)= (v:(6), viei). For the play in state n+i 
we appeal to Lemma 2 of our paper [S], which guarantees that the con- 
tinuation payoffs in state n + i are at least E. If player i ever deviates from 
his strategy, switch to the beginning of state i. By construction, player i’s 
payoff is exactly zero at the beginning of state i, and increases thereafter, 
and since i is minmaxed in state i, he cannot gain by deviating. If player 
j# i deviates in state i, he can obtain at most V,( 1 - 6), and from not 
deviating obtains at least wj, which is larger. Finally, since payoffs at every 
date of each reward state are bounded below by E, and deviations result in 
a future payoff of zero, no player will wish to deviate in the reward states. 

(B) To deal with mixed minmax strategies, we must make player j’s 
payoff in n + i depend on how he played in state i, as in the earlier proof 
of Theorem 2. We will be a bit sketchier here than before because the 
argument is essentially the same. 

As before, let --y;(k) be player j’s expected payoff from his kth best 
action in the support of rn:, j# i. Let 

r=t(6) I 

R;= -(l-6) 1 mY:u) - JqQNl; 
7=0 

this is the amount that player j sacrifices in state i relative to always 
playing aj ( 1). Now take 

u;(6) = u; + R;.( 1 - 6)/6”? (20) 

With these payoffs in state n + i, each player j is indifferent among all the 
actions in the support of rnj. If vi and E are taken small enough, t(6) (as 
defined by (17)) will also be small, and so the right hand side of (20) will 
be feasible. Thus, the reward payoffs can be generated by deterministic 
sequences. Q.E.D. 
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