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If A is a set of social alternatives, a social choice rule (SCR) assigns a subset of 4 to each
potential profile of individuals’ preferences over 4, where the subset is interpreted as the set of
“welfare optima”. A game form (or “mechanism”) implements the social choice rule if, for any
potential profile of preferences, (i) any welfare optimum can arise as a Nash equilibrium of the
game form (implying, in particular, that a Nash equilibrium exists) and, (ii) a// Nash equilibria
are welfare optimal. The main result of this paper establishes that any SCR that satisfies two
properties—monotonicity and no veto power—can be implemented by a game form if there are
three or more individuals. The proof is constructive.

I. INTRODUCTION

After society has decided on a social choice rule—a recipe for choosing the optimal social
alternative (or alternatives) on the basis of individuals’ preferences over the set of all social
alternatives—the social planner still faces the problem of how to implement that rule. In
particular, the planner may not know individuals’ preferences. He might attempt to elicit
them, but this may not be an easy task, even abstracting from communication costs. If
individuals know the rule by which the planner selects alternatives on the basis of reported
preferences, they may have an incentive to report falsely.

One can think of the individuals as playing a game form. They are endowed with
strategy spaces coinciding with their sets of possible announcements. The strategies that
players choose determine an outcome. Ideally, one might hope to devise game forms which
ensure that individuals will always want to announce their true preferences and that the
right outcome (i.e. the one prescribed by the social choice rule) relative to those prefer-
ences is selected. In the case where preferences can be anything—that is, when the planner
can place no a priori restrictions on the nature of individuals’ preferences—Gibbard (1973)
and Satterthwaite (1975) dash this hope by demonstrating that only dictatorial game
forms have the property that players always wish to announce the truth regardless of the
strategies of others. In other words, only a game form in which there exists a player who
always gets his favourite alternative is strategy-proof.

In view of this negative result, one may be willing to sacrifice the strong incentive-
compatibility of strategy-proofness. One may require, for example, only that players be
in Nash equilibrium. This weaker stipulation has in fact been pursued by Groves and
Ledyard (1977), Hurwicz (1979), and Schmeidler (1980), who construct game forms for
the allocation of economic resources—with no restriction on preferences other than the
usual convexity, continuity, and monotonicity assumptions—such that Nash equilibria
exist and are Pareto optimal. Moreover the game forms constructed are nondictatorial.
Indeed, in the Hurwicz and Schmeidler papers the Nash equilibria are not only Pareto
optimal, but coincide with the set of Walrasian or Lindahl equilibria.
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In this paper I examine the general question of implementation of social choice rules
by game forms when Nash equilibrium is the solution concept. The main result asserts
that a social choice rule on an arbitrary domain of preferences can be implemented by a
game form if it satisfies two arguably reasonable properties: monotonicity and no veto
power.

As 1T have presented it, implementation theory may appear to be purely a topic in
applied welfare economies: Given the desired SCR, how can we go about implementing
it? But there is a positive aspect to the theory as well. Certain well-known mechanisms—
e.g. the English auction in the context of selling goods or rank-order voting in the context
of electing candidates—are used frequently in practice, and we may wonder what proper-
ties the outcomes they give rise to satisfy as individuals’ preferences vary. This is a ques-
tion that the theory can also answer.

I proceed as follows. In the second section I introduce most of the notation and
definitions. In the third, I present an “impossibility” result for the case of two players. In
the fourth, I discuss the properties of monotonicity and no veto power. I demonstrate
that monotonicity is an essential requirement of a social choice rule for implementability.
I suggest also that no veto power, though not a necessary condition, is really quite weak
and, in fact, is vacuously satisfied in many contexts.

Then in Section V, I present the main result of the paper: a constructive demon-
stration that monotonicity and no veto power suffice for an SCR of more than two indi-
viduals to be implementable in Nash equilibrium. I also show, by example, that the result
does not remain true if we drop the no veto power hypothesis.

Finally, in Section VI, I show that we can retain implementability with an even
weaker no veto power condition if we impose an individual rationality requirement on
the SCR.

II. DEFINITIONS AND NOTATION

Let A be a non-empty, possibly infinite set of social alternatives and let .9, be the class
of all orderings of the elements of A (%, is sometimes called the unrestricted domain of
preferences). If .44, ..., .9, are sub-classes of .%74, where n is a positive integer, then f is
an n-person social choice rule (SCR) on # = .97, x---x %, if fis a correspondence

[ #—> A

One interprets an SCR as selecting a set of “welfare optimal” alternatives f(R) for
each profile of preferences R = (R, ..., R,)e #, where R;(€ .%#;) is individual i’s prefer-
ence ordering of A, and .%; is his domain of possible preference orderings. If ae f(R), we
say that a is f~optimal for profile R.

Prominent examples of SCRs include (i) the (weak) Pareto correspondence, which
selects all weak Pareto optima corresponding to given profile R:

fTO(R) = {a|for all be A there exists i such that aR;b};'

(i) the Condorcet correspondence, which, for each profile R of strict preferences,” selects
each alternative that a (weak) majority prefers to any other alternative:

FEON(R) = {alfor all be A #{i|aR;b}Z#{i|bR;a}};’

1. The notation “aR;b” means “aq is at least as high as b in the ordering R’ (i.e. a is weakly preferred
to b).

2. A preference ordering is strict if it ranks no two alternatives as indifferent.

3. The notation #{i|aR;b} denotes the number of individuals who prefer a to b (recall that we are dealing
with strict preferences).
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and, in a pure exchange economy of / goods, where an alternative a constitutes an alloca-
tion of goods across individuals (i.e. a=(ay,...,a,), where a;e R.), (iii) the Walrasian
correspondence, which, given individuals’ endowments (@, ..., ®,), chooses the set of
allocations that can arise in competitive equilibrium:

SY(R) = {a|Za;= Zw, and there exists a price vector pe R’ such that,
for all i, a;eR%, p- (a;— ®;)=0 and if
for some b,e R., b,P(R,)a’
then p - (b; — w,) > 0}.

An SCR differs from a social welfare function in the sense of Arrow (1951) (a mapping
F: #—.% 4) in that it does not rank non-optimal alternatives. Clearly, however, a social
welfare function F induces a natural social choice rule: the correspondence which selects
the alternatives top-ranked by F for each profile.

Given strategy spaces Sy, ..., S,, an n-person game form (‘“‘mechanism” and “out-
come function” are two synonyms) g on A4 is a mapping

g: S x xS, —>A.

If players 1 through n choose strategies s, through s,, respectively, then alternative g(s),
where s =(sy,...,s,), is the outcome. Moreover, if players use the vector of mixed stra-
tegies p = (U, . . ., 4,)° we denote the random outcome by g(p), for which the probability
of outcome g(sy,...,S,) 18 Uy (51) - - Wu(Sn).

We say that the game form g implements the social choice rule f in Nash equilibrium
if and only if

VR=(R,,...,R,)e # Vae f(R) there exists
§=(81,...,5,)€ [] S;such that g(s) = a and
j=1

g(s)Rig(si,s_)° for all ie {1,...,n} and all 5je S; 1)
and

VRe # if p is a mixed-strategy Nash equilibrium’ of g with respect to
R then g(s)e f(R) for all realizations s in the support of p. 2

Requirement (1) needs little explanation if one’s solution concept is Nash equilibrium.
It states simply that any welfare-optimal alternative (as defined by /) can arise as a (pure-
strategy) Nash equilibrium of the game form.® We could alternatively impose the weaker
requirement that, for all Re #, there exists some ac f(R) for which there is a Nash
equilibrium of g resulting in a. But this would not lead to significantly different results.
Indeed, if the game form g implements f using the alternative condition in place of (1),

4. xP(R;)y means that x is strictly preferred to y under R;.

5. A mixed strategy u, for player i assigns a probability 1,(s;) to each (pure) strategy s;.

6. The notation “g(s7,s_;)” denotes g(S1, ..., Si—i, Sty Sis1s-+-sSu)-

7. If p and p’ are nondegenerate mixed strategy vectors, then player i’s preference between g(p) and g(p’)
may not be fully specified by his ordinal ranking R;; we may have to know his risk preferences as well. However,
the analysis in this paper holds for any risk preferences consistent with R;.

8. Requirement (1) is essentially the stipulation that the game form be unbiased (see Hurwicz (1979b)).
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define the subcorrespondence f” as f’(R) = {ae f(R)|there exists an equilibrium of g
resulting in a}. Then g implements f” in the standard sense (i.e. using (1)).

Requirement (2), which is essentially the converse of (1), is also quite natural. Given
that, in general, there can be multiple Nash equilibria of g and that, in the absence of a
theory of how players select among these, one cannot predict which of these will ultimately
arise, requirement (2) is necessary to ensure f~optimality of the outcome.

IIIl. THE TWO PLAYER CASE

One might well argue that most social choice rules of interest satisfy the Pareto property.

Pareto property. The SCR f: .# —» A satisfies the Pareto property if, for all Re %,
SRSTR).

We shall see that the prospects for implementing two-person Pareto optimal SCRs
on an unrestricted domain of preferences are quite bleak. We need the following definition:

Dictator. An individual i is a dictator for an SCR
f: #—>>A if and only if
[VRe #Vae A, ae f(R) if and only if aR;b for all be A].

In other words, individual i is a dictator if, for any profile of preferences, the set of
welfare-optimal alternatives (with respect to f) consists of the top-ranked alternatives for
i (the alternatives that i prefers to any other). An SCR that has a dictator shall be called
dictatorial.

I now show that any Pareto-optimal two-person SCR that is implementable must be
dictatorial if it is defined on the unrestricted domain of preferences.

Theorem 1. Let f: % 4% % 4—>>A be a two-person SCR satisfying the Pareto prop-
erty. Then f can be implemented if and only if it is dictatorial >*°

Proof. First observe that if f is dictatorial, it is trivially implementable; if i is the
dictator, just take the game form in which player i announces an alternative and his
announcement is implemented.

To prove the proposition in the other direction, suppose that g:S;xS,—A4
implements f. If A contains only one element, the result is trivial. Therefore assume that
A contains at least two elements. For each s¥e S, let T, (s%) = {ac 4|g(s;, s¥) #a, for all
s1€ S1}. DefineT,(s¥) for sfe S, analogously. Notice that T;(s¥) is the set of alternatives
that player i cannot induce, given that player j’s (j#1i) strategy is s¥.

Claim 1. For any s,€ S\ and s,€ Sz, T1(s2)NTa(s1) = ¢. That is, starting from any
pair of strategies (s1, 52), any alternative a can be reached by a unilateral deviation by some
player.

9. This result has also been obtained, in somewhat different form, by Hurwicz and Schmeidler (1978).
10. Theorem 1 remains true if we replace .52, with the somewhat smaller domain .%7% of strict orderings.
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Proof of Claim 1. Suppose for 5,€ S, and §,€ S, there exists ae T, (5)NT5(5)).
Take b = g(5, 5,). Then, b+ a by construction. Choose (R;, R,)e .9, X .% 4 such that, for
all ie {1,2} and all ce A\{a, b}, aP(R,)bP(R;)c. Observe that (5, 5,) constitutes a Nash
equilibrium for preferences (R;, R,), yet b is not Pareto optimal, a contradiction of f’s
Pareto optimality. Hence T,(5:)NT>(5) = ¢. ||

Claim 2. Forallac A, ifa ¢ USZE s, T1(s82), then there exists §,€ Sy such that, for all
s2€ 8y, g(81,82) = a. Similarly, if a ¢ US,ESI T>(s1), then there exists $,€ S, such that Vs, e
S1, g(s1,5>) = a. That is, if no strategy by player 2 prevents player 1 from inducing alterna-
tive a, then player 1 has a strategy that guarantees alternative a (and similarly for player
2).

Proof of Claim 2. 1t suffices to prove the statement about player 1’s strategy §.
Consider ae 4 such that ag \J,cs, T1(s2). Choose R, Rye .77, such that Vbe 4\{a},
aP(R,)b and bP(Rz)a Let (§,, §,) be a Nash equilibrium for (R, R,). Because a¢ Ty(5,),
there exists ;€ .S such that g( ,, $,) =a. For (§, §,) to be a Nash equilibrium, therefore,
we must have g(§i, §») = a. Suppose there exist be A\{a} and ,€ S, such that g(§;, »)=
b. Then from our choice of R, (51, §») cannot be a Nash equilibrium. We infer that, Vs, e
S,, g(81,,) = a, as desired. ||

Now, for any ae A, either a¢ USze s, T1(s2) or a¢ €45, To(s1), otherwise Claim 1 is
violated. Suppose there exist a,be 4, a#b, such that ag¢ Usze s, T1(s2) and
be Us]e s, Ix(s1). By Claim 2, there exist §;€ S; and §;€ S, such that Vs,e S5, g(51, 52) =
a and Vs, € S|, g(s;,5) =b. But then g(5,,5,) =a and g(5,,3,) = b, which is impossible.
Therefore, either Vae A4, a¢ Usze s, Ti(s2) or Vae A,a¢ Us,e s, T2(s1). The first statement
implies, by Claim 2, that 1 is a dictator for f, the second that player 2 is a dictator. ||

The negative conclusion of Theorem 1 depends on there being an unrestricted domain
of preferences. For restricted domains, results can be quite positive, e.g. in the case of
“economic preferences,” where preferences are required to be increasing, continuous, and
convex over allocations of a divisible good (see Dutta and Sen (1991) and Moore and
Repullo (1990) for a complete characterization of the implementation possibilities in the
n =2 case).

III(i). An example with more than two players

When r>2, the conclusion of Theorem 1 no longer holds. Indeed, for this case, it is
possible to implement Pareto optimal and nondictatorial SCRs defined on the unrestricted
domain of preferences. Consider the following example.

Example 1."' For any positive integers m and n, take A={a,,...,an}, Si=
{2,...,n}, and S,=---=§,=A4. Define g S;x---xS,—-4 so that V(si,...,s,)
€ ;: S &(S15 -+ -, 8.) =55, That is, player 1 chooses a player s, (other than himself),
and player s, chooses the outcome from A. I claim that this game form implements the
SCR f“M(R) = {a| there exists je {2,...,m} such that aRb for all be A} when players

have preferences in .%,. In other words, f KM chooses each alternative for which there
exists some individual other than 1 who top-ranks it.

11. This example is adapted from Hurwicz and Schmeidler (1978), who call the game form we have con-
structed the “king-maker” mechanism.
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To see that g implements %", we first note that, for any profile R=(R;,..., R,),
each ae f*™M(R) corresponds to some Nash equilibrium of g. In particular, if ae f*™(R)
there exists some je {2, ..., m} such that a is top-ranked by R;. Then the strategy profile
(j,a,...,a) is a Nash equilibrium for R, and g(j,q,...,a)=a, as required. Hence, it
remains only to show that all Nash equilibria of g are f~optimal. Suppose (W, ..., l,) is
a mixed-strategy equilibrium of g with respect to R. Consider je {2,...,n} to which g,
assigns positive probability. Then player j has a positive chance of being able to choose
the alternative he wants. Therefore for y; to be an equilibrium strategy, it must assign
positive probability only to player j’s top-ranked alternatives. But this means that only
an alternative that is top-ranked for some individual among 2, 3, . . ., » can be a realization
of g(iy, ..., H,), which is what we wanted to show.

Whether or not we take satisfaction from the fact that f*™ is implementable, it is
only an example. Clearly, what is needed is a set of general criteria for whether any given
SCR is implementable. It is to this task to which I now turn.

IV. MONOTONICITY AND NO VETO POWER

The condition on SCRs that is central to their implementability is monotonicity.

Monotonicity.”> The SCR f: % —>A satisfies monotonicity provided that Vae A4,
VR, R'e # if ac f(R) and [Vie {1,...,n}Vbe A aR;b= aR;b], then ac f(R’).

In words, monotonicity requires that if alternative a is f~optimal with respect to some
profile of preferences and the profile is then altered so that, in each individual’s ordering,
a does not fall below any alternative that it was not below before, then a remains f-
optimal with respect to the new profile.

To see that monotonicity is “reasonable”, let us observe that it is satisfied by the
prominent SCRs mentioned in Section II. First consider the Pareto correspondence f*°.
If a is (weakly) Pareto optimal with respect to R then, for all b, there exists j; such that
aR; b. But if we replace R by R’ such that, for all i, aR;b= aR;b, we conclude that
aR }*b. Hence, b is (weakly) Pareto optimal with respect to R’, establishing the monotonic-
ity of F*°.

Next, let us examine the Condorcet correspondence f°N. If g is a majority winner
for a strict profile (a profile consisting of strict orderings) R, then, for any other alternative
b, the number of individuals preferring a to b is no less than the number preferring b to
a

#{i|aR:b} 2 #{i|bR.a}. 3)

But if R’ is a profile such that, for all i, aR;b = aR;b, then the left-hand side of (3) cannot
fall when we replace R by R’. Furthermore, if the right-hand side rises, then we must have
aR;b and bRja for some i, a contradiction of the relation between R and R’, given the
strictness of preferences. We conclude that (3) continues to hold when R’ replaces R, and
so a is still a majority winner.

12. Monotonicity is called “strong positive association” by Muller and Satterthwaite (1977), who show
that when f'is single-valued and the domain consists of all strict preferences .97 then monotonicity is necessary
and sufficient for implementation in dominant strategies. However, more generally, when f'is either nonsingle-
valued or the domain of preferences admits indifference or is more highly restricted than .%%, this characteriz-
ation result no longer obtains (see Dasgupta, Hammond, and Maskin (1979)).
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*a—meen R

FIGURE 1
The Walrasian correspondence

As for the Walrasian correspondence, refer to the Edgeworth Box in Figure 1. In this
two-consumer, two-good economy, allocation a is a competitive equilibrium allocation
with respect to the endowments @ and the preference profile R = (R;, R,). If we now alter
R so that any allocation that was worse than a for consumer i remains worse than a, we
obtain profile R’ = (R, R3), with respect to which a remains a competitive equilibrium.
Hence, /" is monotonic."

We should also point out that monotonicity is automatically satisfied by any SCR
whose domain of preferences is among certain classes of preferences often studied in the
literature. For example, this is true of classes of preferences satisfying the “‘single-crossing”
property (i.e. the “Spence/Mirrlees” condition). A set of preferences .%, satisfies this prop-
erty if no two indifference curves in the class intersect more than once. Notice that this
means (refer to Figure 2) that if R;, Rje .%; and a,be A are such that aR;b and aR;b,
then there exists another alternative b’e 4 such that aR;b" but b’P(R;)a. Hence, the
hypothesis of the monotonicity condition cannot be satisfied, and so the condition holds
vacuously.

A particularly interesting case in which single-crossing holds is that in which alterna-
tives are nondegenerate lotteries over a set of possible outcomes. If individuals’ preferences
over lotteries satisfy the von Neumann-Morgenstern axioms, then indifference curves in
probability space are straight, parallel lines, and so clearly indifference curves correspond-
ing to distinct preferences can intersect only once. This insight figures prominently in the
literature on ‘“‘virtual implementation” (see Abreu and Sen (1991) and Abreu and Matsu-
shita (1992)).

For an example of a well-known SCR that fails to satisfy monotonicity, consider the
Borda Court (i.e. rank-order voting) SCR f2€. For each individual, according to f2€,
points are assigned to each of the m alternatives available: m points are assigned to his
favourite alternative, m —1 to his next favourite, and so on. The alternative (or alterna-
tives) chosen by f®€ is the one for which the sum of points over individuals is highest.
Suppose that 4 = {a, b, c,d} (i.e. m=4) and n = 2. Consider the profile R = (R;, R,):

13. This argument relies on competitive allocations like a being interior allocations. For what can go
wrong if a competitive allocation occurs on the boundary, see Hurwicz, Maskin, and Postlewaite (1995).



30 REVIEW OF ECONOMIC STUDIES

FIGURE 2

Single-crossing preferences

RI R2
a c
d b
b a
c d

Note that in this profile, alternative a garners the most points (6), and so is chosen by
fB€. Next consider the profile R’ = (R{, R}):

R R}
a b
b c
d a
c d

Notice that in going from R; to R, a does not fall vis-d-vis any other alternative. Thus,
monotonicity would require that it still be chosen for profile R’. However, a no longer
attracts the most points; alternative b does (7). Hence monotonicity is violated.

Whether one accepts monotonicity as natural or has qualms about its restrictiveness,
it is an inescapable requirement for implementability in Nash equilibrium, as the following
result shows.

Theorem 2. If f: #—>>A is an SCR that is implementable in Nash equilibrium, then
it is monotonic.

Proof. Suppose that f is implementable in Nash equilibrium by the game form
g:S1x--xS,—>A4. For some profile Re # consider ae f(R). Then there exists a Nash
equilibrium s of g with respect to R such that g(s) = a. Consider profile R’ e .# such that
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for all i and all be 4 aR:b=aRb. @)

If there exist i and s; such that g(s7, s_;))P(R7)g(s) = a, then from (4), g(si,s_)P(R))a, a
contradiction of the assumption that s is a Nash equilibrium with respect to R. Hence s
is also a Nash equilibrium with respect to R’. From requirement (2) of the definition of
implementability, therefore, we conclude that ae f(R’). Thus fis monotonic. ||

I will show below (Theorem 3) that not only is monotonicity a necessary condition
for implementability, as just demonstrated, but almost a sufficient condition as well.
Nevertheless monotonicity by itself does not suffice to ensure implementability (see
Example 2 below). One weak condition that we can add to monotonicity to do the trick
is no veto power:

No Veto Power (NVP). An SCR f: . # —» A4 satisfies NVP if] for all Re # and all
ae A, whenever there exists ie {1,...,n} such that, for all j#7 and all be 4, aR;b, then

ac f(R).

NVP says that if an alternative is at the top of #n — 1 individuals’ preference orderings,
then the last individual cannot prevent the alternative from being f~optimal (i.e. he cannot
“veto” it).

NVP is satisfied by virtually all “standard” SCRs (including the Pareto and Con-
dorcet correspondences). It is also often automatically satisfied by any SCR when prefer-
ences are restricted. Consider, for example, a pure exchange economy with at least three
consumers, in which an alternative corresponds to an allocation of goods. If there exists
at least one good that is transferable and desirable, that gives rise to no externalities, and
that is available in a positive quantity, then it is impossible to find an alternative that all
but one consumer rank at the top of their preference orderings. This is because, for an
individual to prefer a given allocation to all others, the allocation must assign him all of
the good in question; if any other individuals got some of this good, he would be better
off receiving their portions. Clearly, no other individual could also rank this allocation
first, since it cannot be the case the two consumers each receive all of the good in question.
Therefore the NVP property is satisfied vacuously.

V. SUFFICIENT CONDITIONS FOR IMPLEMENTATION

I now present the main result of the paper.

Theorem 3. If n23 and f: #—A is a n-person SCR satisfying monotonicity and
NVP, then it is implementable in Nash equilibrium.

Proof. The proof is by construction. I first show that we can construct a game form
all of whose pure-strategy equilibria satisfy (1) and (2)."* In the appendix I show that the
construction can be extended to handle mixed strategies. For each player i, define the
strategy space

Si= BXAXN,

14. This elegant proof is due essentially to Repullo (1987).
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where ./~ consists of the nonnegative integers. In other words, player i chooses as a

strategy a triple consisting of a preference profile R’ in .# (not necessarily the true one),

an alternative a' from A, and a number m’ in _#~ (the numbers serve only to break ties).
For all i, all R;e %, and all ae A define

L(a, R,) = {b|aR,b}.

L(a, R;) is the lower contour set of R; at alternative a: the set of alternatives that are no
better than a according to R;.
I will construct an implementing game form g that implements f in three steps:

(i) If, for some R, a, and m,
s=---=5,=(R,a,m) and ae f(R), take g(sy,...,8,) =a. ®)

In words, if players are unanimous in their strategy, and their proposed alternative a is f-
optimal given their proposed profile R, the outcome is a.
(i) If, for all j#1i, s;,= (R, a,m), s;= (R', a', m") #(R, a, m), and ae f(R) take

d, ifdeL(a, R)

g(S1,. : "Sn):{a, if aifL(a’ R;).

That is, suppose that all players but one play the same strategy and, given their proposed
profile, their proposed alternative a is f~optimal. Then, the odd-man-out, gets his proposed
alternative, provided that it is in the lower contour set at a of the ordering that the other
players propose for him; otherwise, the outcome is a.

(iii) If neither (i) nor (ii) applies, then

g1, ., 8) =a™, (6)

where i* = max {i|m'= max,m’}. In other words, when neither (i) nor (ii) applies, the
outcome is the alternative proposed by the player with the highest index among those
whose proposed number is maximal.

It remains to show that this game form implements f. I first claim that, for all Re . #
and all ae 4, if ae f(R), then, for any me _#", the strategy profile (si, ..., s,) satisfying
(5) constitutes a Nash equilibrium with respect to R. To see this, note from (i) that the
outcome from this strategy profile is a. Moreover, from (ii), any player i who deviates
unilaterally from (sy,...,s,) gets an alternative in L(a, R;), which, by definition of the
lower contour set, is no better for him than a. Thus I have established requirement (1)—
that there is a Nash equilibrium of g corresponding to each f~optimal alternative—in the
definition of implementability.

To establish (2)—that every Nash equilibrium of g is f~optimal—consider first a Nash

equilibrium (sy,...,s,) in which (5) holds and ae f(R), but where the true preference
profile is R’. From (i), the equilibrium outcome is a. Moreover, because (si, ..., s,) is an
equilibrium with respect to R’, (ii) implies that

for all i and all be L(a, R)), aRib. @)

(To understand why (7) holds, note that if instead we had bP(R;)a for some i and be
L(a, R)), it would pay player i to deviate from s; and induce b, which (ii) implies he could
do. But this would contradict the assumption that (s;,...,s,) is an equilibrium.) But (7)
can be rewritten as

for all i and all be A4, aR;b=> aR’b. ®)
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Hence because f satisfies monotonicity, (8) and the fact that ae f(R) imply that ae f(R’),
i.e. the equilibrium outcome is f~optimal.
Next let us consider a Nash equilibrium (sy, ..., s,) for R’ in which, for all j#1i,

sj = (Ra a, m)a

where ae f(R), but s;# (R, a, m), i.e. the strategy profile is such that (ii) applies. Let the
outcome from this profile be a’. From (iii), each player j#i could deviate from s; and
induce any alternative ae 4 he wishes by choosing m’ high enough (i.e. higher than
max.;m"). Hence, the fact that (sy, . .., s,) is a Nash equilibrium for R’ implies that, for
all j#1,

a'R;b for all be A. )

We conclude that NVP together with (9) ensures that a’e f(R"), i.e. the equilibrium out-
come is again f-optimal.

The same argument as in the preceding paragraph applies if (sq,...,s,) is a Nash
equilibrium for which (iii) applies. ||

Remark 1. The game form constructed in the proof of Theorem 3 may be considered
rather complicated. However, much of the complexity derives from its generality—the
fact that it is supposed to work for a vast array of possible SCRs. For a specific SCR, by
contrast, it is often possible to find an implementation that is quite simple (e.g. the mech-
anism in Example 1).

Remark 2. Even if the set of alternatives A is finite, the game form constructed in
the proof of Theorem 3 has an unbounded strategy space, since ./~ is unbounded. Jackson
(1992) points out, however, that, for some solution concepts, the set of SCRs
implementable by unbounded game forms is strictly larger than the limit of those
implementable by bounded game forms as the bound goes to infinity. It remains an open
question whether this is so for Nash equilibrium.

We have argued that no veto power is a weak condition. It is nevertheless restrictive,
and so it is of some interest understanding its role in Theorem 3.° As we will see below
(Theorem 4) NVP is not necessary for implementability. However, as the following
example establishes, monotonicity by itself does not suffice.

Example 2. Suppose that n=3 and 4 ={a, b, c}. For all i, let %#,=.%% (i.e. the
domain consists of all strict orderings). Define /* such that, for all Re .#,

for each xe {a, b}, xe f*(R) if and only if x is Pareto-optimal
and top-ranked for individual 1
ce f*(R) if and only if ¢ is Pareto optimal and not
bottom-ranked for individual 1.

It is easy to verify that f* is monotonic. However, it does not satisfy NVP because if
individual 1 bottom-ranks alternative c, it fails to be f*-optimal even if individuals 2 and
3 top-rank c.

15. For conditions that are necessary and sufficient for implementability, see Moore and Repullo (1990).
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Consider the following three profiles R*, R¥*, R***:
R* =(b,c,allc, a,bllc, a, b))
R** =(la,b,cl,]c, b, al,lc,a, b])
R*** = (b, a, c], [a, b, c], [a, b, c]),

where “[x, y, z]”” denotes the ordering in which x is preferred to y, and y is preferred to z.
Then

SHR*) = {b, c}, f*(R**) = {a}, [*(R***) = {b}.

If f* were implementable, there would exist a game form g and a Nash equilibrium
s* =(s¥,s5%,s5%) with respect to R* such that g(s*) = c. Because bP(R¥)c there does not
exist s7e S) such that g(s?, s¥,s5) =b.

If there existed sie S; such that g(s1,s%,s¥) =a, then (s7, s¥, s¥) would be a Nash
equilibrium for R***, a contradiction since a¢ f(R***). Hence, s] cannot exist. We con-
clude that (s¥,s¥,s¥) is a Nash equilibrium for R** which contradicts the fact that
ce f(R**). Hence, f* is not implementable.

VI. INDIVIDUAL RATIONALITY

We will say that an SCR f: # —>A4 is individually rational (IR) with respect to some
alternative a’e A4 if for all Re %, all ae f(R), and all i, aR;a’. That is, if a is f-optimal, it
must be weakly preferred by all individuals to a°. In general, an SCR satisfying IR does
not satisfy NVP because if, for some profile preference, everyone but individual i top-
ranks alternative a, then NVP would require that a be f~optimal with respect to that
profile. But f would then violate IR if i strictly preferred a° to a.

Nevertheless, many SCRs satisfying IR are implementable. One example is the “Indi-
vidual Rationality”’ correspondence: for all Re %

F™(R) = {ae A|aR;a" for all i}.
This SCR is implemented by the game form g'™® such that S;= A4 for all i and

IR a, ifs =---=s,=afor someaec 4
g (S, 8)=1

a), otherwise.
The example of /™ suggests that if we relax NVP so that it applies only to individu-
ally rational alternatives, we might obtain a general result.

Weak no veto power (WNVP). An SCR f: #—» A satisfies WNVP with respect to
a° if, for all Re .# and all ae 4, whenever there exists i such that for all j#i aR;b for all
b and aR;a’, then ac f(R).

Theorem 4. If n23 and f: #—»A is an SCR satisfying monotonicity, WNVP, and
IR with respect to a°, then it is implementable in Nash equilibrium.

Proof. The proof of Theorem 4 uses exactly the same construction as that of
Theorem 3. The only thing to show is that Nash equilibria satisfying configurations (ii)
or (iii) in the proof of Theorem 3 are individually rational. This enables us to apply
WNVP and complete the proof.
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Thus, consider a configuration (ii) equilibrium (s, ..., s,) with respect to profile R".
That is, there exist 7,a,m, and R such that ae f(R) and, for all j#i, s;= (R, a,m). We
must show that g(s, ..., s,)Rra’ for all k. This is immediate for all j# i, since each of
those players can deviate from s; and induce his top-ranked alternative. Hence, the fact
that (sy,...,s,) constitutes an equilibrium means that g(s;,...,s,) itself must be top-
ranked and so g(si,...,s,)Rja’. As for player i, note that because f satisfies IR with
respect to a°, aR;a’, i.e. a’e L(R;, a). Hence, by construction of g, player i can induce a°
when the other players all use strategy (R, a, m). Thus because (s;,...,s,) is an equilib-
rium implies that g(s;, ..., s,)R}a’. The argument is virtually identical for configuration

(ii). ||

APPENDIX

Proof of Theorem 3 for mixed strategies

The argument that all Nash equilibria of the mechanism in Theorem 3 are f~optimal does not carry over to
mixed strategies.

To see the problem consider a mixed-strategy equilibrium (u,,...,H,) (for profile R") for which one
possible realization is s = (s, . . ., 5,) Where, for some j, Re #, and a€ f(R),

s;=(R,a,0) for all i#j,

but 5;# (R, a,0). In the proof of Theorem 3, I showed that the outcome corresponding to s must be f~optimal
since, by deviating from s;, each player i#j could induce his favourite alternative &’ (NVP then would imply f-
optimality of the outcome). But if there are other possible realizations of ji_;, then player i might suffer by trying
to induce a’. Suppose, for example, that s’_; is a realization in which, for some R’e .# and a’c f(R’)

si=(R’,d,0) forall k#i.
Assume, furthermore, that
a P(R})d . *)

Then, although individual i can induce &’ against s_;, formula (*) and the construction of Theorem 3 imply that
he cannot induce @’ against s"_;. Indeed, if he tries to do so, the outcome will be @', which may be a very bad
alternative for him.

I now show, however, that the game form from Theorem 3 can be modified to circumvent this difficulty.
For each player i, define the strategy space

Si= BxAx{a|o: B"x A" > Ay x A",

In other words, player i chooses as a strategy a quadruple consisting of a preference profile R'e .#, an alternative
de A, a function o'(-) mapping each possible vector of announced profiles and alternatives

(R',...,R",d",...,d") to an alternative a’(R',...,R",d',...,d")e 4, and an integer m'e 1"
As in the proof of Theorem 3, I will construct the implementing game form g in three steps:
@ Ifsy;=:--=s,=(R,a,a(-),m) and a(R,...,R,a,...,a)=ac f(R), take g(s1,...,S,)=a.

In other words, if players are unanimous in their strategy, and their proposed alternative a is prescribed by their
proposed function ¢(-) and f~optimal given their proposed profile R, the outcome is a.

(i) If, for all j#i, s;=(R,a,a(-),m) with a(R,...,R,a,...,a)=acf(R) but s;=(R’,d,a'(:),m)
#(R, a, o(-), m), take

g1, 5 80) =
{ai(R,...,Ri,...,R,a,..‘,a",...a), if «'(R,...,R',...,R,a,...,d",...,a)e L(a, R,),
a, otherwise.

That is, suppose that all players but player i play the same strategy and their proposed alternative a is prescribed
by their proposed function o(-) and f~optimal, given their proposed profile R. Then, player i gets the alternative
prescribed by his proposed function a’(-) (given the vector of proposed profiles and alternatives
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(R,...,R',...,R,a,...,d,..., a)provided that it is in the lower contour set at a of the ordering that the other
players propose for him; otherwise, the outcome is a.

(iii) If neither (i) nor (ii) applies, then
g1, )= R',...,R",d',...,ad", (AD)

where i* = max {i|m’ = max,m’}. That is, the outcome is the alternative prescribed by the proposed function of
the player whose index is highest among those proposing the maximal number.

I must show that this game form implements f. Note first that, for all Re # and all ae€ 4, if ae f(R),
then, for any me /", the strategy profile (s, ...,s,) where

sl:~-~:sn:(R’a’a(~),m) and a(R,...,R,a,...,a)=a, (A2)

constitutes a Nash equilibrium with respect to R. To see this, note from (i) that the outcome from this strategy
profile is a. Moreover, from (ii), any player i who deviates unilaterally from (s,,...,s,) induces an alternative
in L(a, R;), which by definition of L(a, R;) is no better for player i (with preference ordering R;). Thus the profile
(A2) indeed constitutes a Nash equilibrium with respect to R, and so I have established that, for every f~optimal
alternative, there is a Nash equilibrium of g giving rise to that alternative.

It remains to show that if (ui,...,t,) is a Nash equilibrium for g with respect to profile R’, then the
outcome corresponding to each realization (s}, . .., s¥) in the support of (i, ..., i) is f~optimal. Suppose first
that (sf, ..., s¥) is a realization for which (A2) holds and ae€ f(R), but that the profile R differs from the true
profile R’. From (i), the equilibrium outcome is a. For any player i, consider b€ A such that aR;b. Now imagine
that player i plays s; = (R', &', &', m") such that

R, d,m")= (R, a,m), (A3)
and
b, ifR,...,R"d,...,a")=R,....Rq,...,a),

, ; A4
a(R',...,R",d,...,a"), otherwise. (A9

a"(fil,.‘.,R",dl,...,d”)z{
That is, s; is the same as s} = (R, a, o(-), m) except for the function a'(-), which, in turn, is the same as a(-)
except at the point (R, ..., R, a,...,a). Now because be L(a, R;), (ii), (A3), and (A4) together imply that
g(si,s%)=0b. (AS)
Moreover, because o(-) is the same as a(-) except at (R,...,R,a,...,aq),
g(si, 8.) = g(s¥, 8.0) (A6)

for any realization §_,= (R™, ™, 47(-), i) of p_; such that (R™,a)=(R, ..., R, a, . ..,a). Hence, if bP(R})a,
(AS5) and (A6) imply that player i is better off using s; rather than s} against ;. We conclude that

for all i and all b aRb= aR;b. (A7)

Hence, because f is monotonic (A7) and the fact that aef(R) imply that aef(R’). That is, the outcome
g(s¥, ..., s¥) is foptimal, as required.
Next let us consider a realization (s¥, . .., s¥) in the support of (y,, ..., i,) in which, for all j#i,

s}=(R,a,0(-),m),

where a(R,...,R,a,...,a)=ac f(R) but s¥ = (R',d’, &'(-), ") # (R, a, a(-), m). That is, the strategy profile is
such that (ii) applies. Let the outcome from this profile be a’. For any j#i, choose b’€ A such that

b/R5b  for all be A. (A8)

Then, consider s;= (R’, a’, a’(-),m’) such that
(R’,a’)=(R,a), (A9)
m?’>max {m',m}, (A10)

and

(Al1)
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That is, s; is the same as s} = (R, a, a(-), m) except for the integer m; (which we take to be bigger than the other
numbers in s%) and the function o’(-), which, in turn, is the same as o(-) except at the point
(R,...,R',...,R,a,...,d,...,a). From (A9)—(Al1),

g(s;,5%) = b’. (A12)
Moreover, for each §_;# s*; (A9)—(Al1) ensure that either
g(s;,8.,) =57, (A13)
or
8(s;,8-) = g(s¥, 8). (Al4)

Hence, from (A8) and (A12)-(A14), we conclude that player j does strictly better with s; than with s} against
L., a contradiction, unless player j does not strictly prefer b7 to a’, i.e. unless

a’R3b  for all be A. (A15)

Thus (A15) must hold for all j#i, and so, from NVP, a’e f(R’), as required.
The same argument as in the preceding paragraph applies if (sy, ..., s,) is a realization in the support of
(1, ..., M) to which (iii) applies. ||

Remark. The reason for having players report functions a'(-) rather than merely fixed alternatives is to
be able to accommodate mixed strategies. Which alternative is best for a player to propose will, in general,
depend on the profiles and alternatives that the other players propose. But if the others are playing mixed
strategies, then a player may not be able to forecast (except probabilitically) what these proposals will be.
Allowing him to propose a function enables him, in effect, to propose an alternative on a contingent basis.
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