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OPTIMAL AUCTIONS WITH RISK AVERSE BUYERS 

BY ERIC MASKIN AND JOHN RILEYI 

We characterize a seller's optimal scheme for the sale of an indivisible good to one of 
n risk averse buyers. We also compare certain commonly used schemes, such as the high 
bid and second bid auctions, under the hypothesis of risk aversion. 

THIS PAPER STUDIES AUCTIONS designed to maximize the expected revenue of a 
seller facing risk averse bidders with unknown preferences.2 Although we concen- 
trate on auctions where a seller sells a single indivisible item, the principles that 
emerge apply to a much wider class of "principal-agent" problems, as we argue 
in Maskin and Riley [12]. 

The properties of auctions that are optimal for the seller when buyers are risk 
neutral and their preferences independently distributed have been intensely 
studied (see, for example, Myerson [21]; Maskin and Riley [10]; Harris and 
Raviv [4,5]; and Riley and Samuelson [22]). One conclusion that emerges from 
this work is that, for many distributions of preferences (the exceptions are 
discussed in Remark 8.1), the standard "high bid" and "English" auctions, 
modified to allow for a seller's reserve price, are equivalent (i.e., they generate 
the same expected revenue for the seller) and optimal. These classical auctions, 
however, are not equivalent from the seller's viewpoint when buyers are risk 
averse (see Theorem 4 below). Moreover, neither is optimal. This is for two 
essentially conflicting reasons: the desirability of insuring these buyers against 
risk, and the desirability of exploiting their risk-bearing in order to screen them. 

The classical auctions ordinarily confront buyers with risk-i.e., the marginal 
utility of income if a buyer wins is typically not the same as that if he loses. 
Clearly, the seller can extract a payment for removing this risk while keeping the 
buyer at the same utility. Thus, holding utilities fixed, introducing insurance will 
enhance the seller's revenue. The qualification "holding utilities fixed," however, 
is crucial since the insurance will usually induce buyers to alter their bidding 
strategies. Indeed, as we shall see below, the introduction of perfect insurance 
may so alter buyers' behavior that the seller is better off offering no insurance at 
all. 

Thus, the seller will generally find it optimal not to offer perfect insurance 
(see, however, the discussion following Theorem 1 1). The degree of risk-bearing 
he imposes on buyers is determined by screening considerations. To see the role 
of risk in screening, imagine that each buyer either has a high reservation price 

' We owe a great deal to Steven Matthews, whose highly detailed comments on the whole manuscript 
corrected several errors and led to major improvements. Very useful discussions with John Moore 
and the comments of the referees are also gratefully acknowledged. This research was supported by 
the National Science Foundation, The J. S. Guggenheim Foundation, and the U.K. Social Sciences 
Research Council. 

2 Matthews [15] studies much the same problem when buyers' preferences belong to our Case 1 
and satisfy constant absolute risk aversion. Moore [19] establishes many of our results without 
invoking the density condition (45) but under somewhat stronger conditions on preferences. 
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(eager buyer) or a low reservation price (reluctant buyer) for the item being 
auctioned. The seller's problem in designing an auction is how to prevent the 
eager buyers from bidding too low. Suppose that the seller can devise an auction 
so that buyers who bid low face risk, but that eager buyers who bid low face 
greater risk than the reluctant ones. Then the seller will derive less .revenue from 
the reluctant buyers than if he offered them complete insurance, but this will be 
more than made up for by inducing the eager buyers to bid higher than they 
otherwise would. In the language of the incentives literature, relaxation of the 
incentive constraint overcompensates for the loss due to risk-bearing. (The incen- 
tive constraint is simply the guarantee that an eager buyer should derive at least 
the expected payoff from bidding high rather than low. For a more comprehensive 
discussion of the use of risk for screening, see Maskin [9].) 

This two-class example suggests that whereas it is desirable to confront low 
bidders with risk (to induce the eager buyers to bid high), nothing is gained from 
a high bidder's bearing much risk. Indeed, these principles are quite general (see 
Theorems 11 and 12 below). It also suggests that, although buyers bear risk in 
the high bid and English auctions, the nature of this risk is not optimal, since 
the eager buyers bear the most risk. 

In Theorems 8 and 9 below we show that designing an optimal auction can 
often be reduced to solving a standard contfol problem. We then use this fact to 
derive a number of general properties of optimal auctions, such as the principles 
above. First, as long as a buyer's marginal utility of income decreases with his 
eagerness to buy, then the probability of winning the auction (getting the item) 
and the amount paid if the auction is won increase with a buyer's eagerness 
(Theorem 10). As for the nature of risk bearing, there are, in principle, two ways 
in which a seller can confront a buyer with risk: (i) the buyer's marginal utility 
of income can be made to differ depending on whether he wins or loses, and (ii) 
contingent on winning or losing, his payment can be a random variable. We shall 
see that under the hypothesis just mentioned and given that aversion to income 
risk either decreases or does not increase too fast with eagerness (which, for 
many utility functions, simply means that absolute risk aversion does not increase 
too fast with income), method (ii) is not desirable (Theorem 9). However, method 
(i) is. Indeed we shoW (Theorem 11) that it is desirable for the marginal utility 
of income in the losing state to exceed that in the winning state for all buyers 
except the most eager. For the utility functions we consider, this means that those 
buyers are better off winning than losing (Corollary to Theorem 11). This result 
suggests that sufficiently reluctant buyers might even be made to pay a penalty 
if they lose (Theorem 13), although when risk aversion is nonincreasing they will 
pay more if they win than if they lose (Theorem 14). Moreover, sufficiently low 
bids will be refused by the seller (Theorem 16). On the other hand, very eager 
buyers will receive a subsidy if they lose (Theorem 13), and the most eager will 
be perfectly insured (Theorem 12). Notwithstanding this insurance, more eager 
buyers pay more on average (Theorem 15). 

In Section 1 we begin by presenting a general model of auctions when buyers 
are risk averse. In Section 2 we consider the standard high bid and English 
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auctions. We establish existence and uniqueness of symmetric equilibrium in 
these auctions (Theorems 2 and 3) and show quite generally (Theorem 4) that 
when buyers are risk averse, the high bid auction generates greater expected 
revenue for the seller than the English auction.3 We argue, moreover, that the 
seller's preference for the high bid auction is intensified if he is risk averse 
(Theorem 5). We also consider the "perfect insurance auction," in which buyer's 
marginal utilities of income are the same whether they win or lose. We show 
(Theorem 6) that, for an important class of cases, the English and perfect insurance 
auctions generate the same expected revenue for the seller. In Section 3 we take 
up optimal auctions and show that the seller's optimization reduces to a straight- 
forward control problem (Theorems 8 and 9). In Section 4, we discuss the 
properties of optimal auctions mentioned above and also one-buyer auctions 
(Theorem 17). Finally, Section 5 comprises a few concluding remarks. An 
Appendix contains the proof of the technically complex Theorem 7. 

1. THE MODEL 

We consider the problem of a seller who wishes to maximize his expected 
revenue from the sale of a single item. This formulation assumes that the seller 
is risk neutral toward revenue. We discuss the reasons for this assumption in 
Section 5. The formulation also implicitly supposes that the seller himself attaches 
no value to the item. But the analysis would require only slight modification to 
accommodate a positive seller's value. The seller chooses a selling procedure, or 
auction, which is a game among the potential buyers, n in number (n - 1). Each 
buyer i has a strategy space Si. On the basis of the n-tuple of strategies (sl, . .. , Sn), 
the auction assigns buyer i a probability of winning Hi(sl, ... , Sn) and requires 
him to make payment 3i(S1, ... , Sn) if he wins and payment a!i(Si, .. . , Sn) if he 
loses, where the tildas reflect the possibility that ,i and cai are random functions. 
Feasibility requires that 

n 

(1) E Hi(Si, , Sn)S 1- 
i=l 

for all (sI, . . ., Sn). To prevent the seller from extracting unlimited payments, we 
must allow each buyer the option of not participating in the auction. Formally, 
this option can be expressed by including in each strategy space a null strategy, 
which ensures the buyer a zero probability of winning and a zero payment 
independently of what other buyers do. 

We shall suppose that a buyer's preferences can be parameterized by the scalar 
0 E [0, 1]. We will suppose that the 0's of different buyers are independently and 
identically distributed4 according to the c.d.f. F We assume that F'(0)>0 for 

3This last result has been established in special cases by various others, including Butters [1], Holt 
[8], Matthews [14], and Riley and Samuelson [22]. 

4The assumption of identical distributions is inessential; however, the independence assumption 
is crucial to the methods and results of this paper (see Section 5). 
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all 0 E [0, 1]. Let u(-t, 0) be the utility of a buyer of type 0 who wins the auction 
and pays the amount t. Let w(-t) be the utility of a buyer who loses and pays 
the amount t.S Thus, given strategies (sI,... , sn), the expected utility of buyer i 
with parameter 0 is 

E#i,15i[Hi(SI ** Sn)U(-Pi(SI , Sn), 0) 

+(1-Hi(SI, . . ., Sn))W(-ati(SI, * * * , SnM) 

where "E" denotes the expectation operator. 
We shall supppose that u(x, 0) and w(x) satisfy the following rather innocuous 

restrictions. 

AssuMPTION A: 
Al. u(x, 0) and w(x) are thrice continuously differentiable. 
A2. ul>0, w> 0. 
A3. w(0)=0. 
A4. ulI<0, wI< 0. 
A5. u2 > 0. 

Subscripts denote the argument with respect to which a partial derivative is taken. 
It is natural to assume that utility is increasing in income; hence A2. Assumption 

A3 is simply a convenient normalization of preferences. Because we are interested 
in risk averse buyers, we assume that both u and w are concave functions of 
income (A4). Finally, in A5, we parameterize preferences so that increasing 0 
implies greater utility (greater "eagerness" in the terminology of the introduction). 

For some of the results of this paper, we shall require the following more 
substantive assumptions. 

AssuMPTION B: 
Bi. u12<0. 
B2. u22< 0 
B3. ul(-tl, 0) < WI(-t2) implies u(-tl, 0)> w(-t2). 
B4. u122 0? 
B5. u112 -0? 

If we equate 0 with "wealth," then Bi simply requires that marginal utility of 
income decline with wealth, whereas B2 stipulates that the gains from increasing 
wealth should be diminishing. Assumption B3 requires that if a buyer is better 
off losing than winning an auction, his marginal utility of income must be higher 
in the winning state. Assumption B4 does not have such an obvious economic 

5 Our formulation in terms of u and w assumes that buyers' preferences over money are identical 
in the event they lose. This assumption is inessential for the results, but it somewhat simplifies the 
analysis. The formulation also implies that buyers' appraisals of the item are not influenced by what 
other buyers think. This simplification is also not crucial. For a treatment that allows for interdepen- 
dence of tastes, see the predecessor of this paper, Maskin and Riley [10]. 
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interpretation but is nonetheless satisfied by several important models, as we 
shall see below. 

It is commonly thought to be empirically true that people become less risk 
averse as their well-being increases. One formulation of this "law" asserts that 
absolute risk aversion declines (or at least does not increase) with income. That 
is, 

(2) a -uli(x, 0)) - IuI < 02 
Ax\ uJ(x, 0) J ul 

If we interpret 0 as a measure of well-being, then an alternative formalization is 

a /-u1 1 -U1U1 12 +U1 1U12 (3) <0 (3 ao ul u2 

Given Assumptions A and B2, (3) implies that u112>' 0. Thus Assumption B5 
simply requires that absolute aversion to risk not increase too fast with 0. 

This way of modelling preferences is sufficiently general to incorporate many 
cases of interest. The case most studied in the existing literature is where the 
only uncertainty facing a buyer is the outcome of the auction; i.e., where the 
quality of the item itself is known and has equivalent monetary value. Here it is 
natural to let 0 represent this monetary value. 

CASE 1-Certain Quality, Equivalent Monetary Value: 

u(-t, 0) = U(O - t), 

w(-t) = U(-t), 

where U is a concave increasing von Neumann-Morgenstern utility function. 

Case 1 is just an example of the more general case in which the item is of 
certain quality and contributes additively to the utility of money but may not 
have an equivalent monetary value:6 

CASE 2: 

u(-t, 0) = U(O + I(-t)), 

w(-t)= U= (-t)), 

where U and T are concave and increasing and U(0) = VI (O) = 0. 

Another possibility of interest is where the buyer is unsure of the (monetary) 
value of the object. Assume that the possible values are represented by the random 

6 Let z =O represent no purchase and z= 1 represent purchase of the object. Let x represent 
income. Then the CES utility function 

(oza +Xa)/P, o < a < , 

is a simple example of Case 2 preferences. 
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variable v with c.d.f. K(vI0), where for all 0 K(vI0)=O, K(i3j0)= 1, Ki(vI0)= 
Ki(t3I0) = 0. To capture the idea that higher values of 0 represent more favorable 
distributions over v, we assume that the distribution for a higher 0 exhibits first 
order stochastic dominance over that for a lower 0. That is, 

a 
K2(V|0)=5aoK(VI 0) ,< 0 D VE [V, DU], ao 

with strict inequality over a subset of non-zero measure. In this case preferences 
take the following form: 

CASE 3-Uncertain Quality: 

u(-t, 0) = U(v-t)KI(vl 0) dv, 

w(-t) = U(-t). 

As a final illustration, suppose that the item is of certain quality and has 
equivalent monetary value but also has an intensifying effect-so that higher 
values of 0 represent a greater ability to derive pleasure, crudely translated into 
a higher marginal utility of income. A simple example of such an effect is as 
follows. 

CASE 4-Intensification: 

u(-t, 0) = (0 + 1) U(0 - t), 

w(-t) = U(-t). 

We now derive conditions under which Assumptions A and B are satisfied in 
each of these four cases. The reader may wish to turn directly to Theorem 1 
which summarizes these conditions. 

Notice first that the five parts of Assumption A are satisfied by each case as 
long as U is concave, thrice differentiable, and normalized so that U(O) = 0. As 
for Assumption BI, in, Cases 1-3, u12 <0.7 The preferences of Cases 1 and 2 
satisfy B2 and, if U"'. 0, also B4. (From (2) it can be seen that U"'. 0, given 

7In Case 3 

U12(-t, 6) = U'(v-t)K12(vIO) dv 

=U'K2I 0f U"K2 dv. 

But K (pv I) = O for all 0 and K (D v|) = 1 for all 6. Therefore the first term is zero. Also K2 S O by 
assumption. Thus u12 < O. 
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nonincreasing absolute risk aversion.) The preferences of Case 3 satisfy B2 if 

J U(v-t)K122(v 0) dv O. 

Integrating by parts twice and defining 

rv 

T(vI0)= K22(XI0) dx, 

we have 

U(v-t)K122(vI0) dv= U"(v-t)T(vI0) dv-U'(v-t)T(v-I0). 

Therefore a sufficient condition for Case 3 to satisfy B2 is that T(vI0) be 
everywhere nonnegative. Note that for the special case K(v 0) = H(v - 0) we 
have T(v I0) = H'(v - 0) - 0. This suggests that the restriction T(vI0) > 0 is rela- 
tively mild. 

Cases 1 and 2 satisfy B3 automatically. To establish that Case 3 does also, if 
absolute risk aversion is nonincreasing in income, we make use of the following 
Lemma. 

LEMMA 1: Suppose utility u = +(x, z) is an increasing function of income x and 
that absolute risk aversion, - 1 /4 , is nonincreasing in z. Then 

E{4(Z, z)} = /(y, z) -> E{2(Z, z)} > 42(Y, Z). 

PROOF: Since X, > 0 we may also define the inverse function x = 01'(u, z) for 
fixed z. We shall first show that the function 

g(u, z) = 42(4V'(u, z), z) 

is a convex function of u. Since u = +(x, z) we have 

g( (x, z), z) = &2(X, z). 

Differentiating with respect to x and rearranging we have 

g1(0(x, z), z) = 021/1 =-log 191. 

Then 

a2 a 
g11(f(x z), z)41 = log 4i = 

a9x 9z '9z 
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establishing convexity. Thus 

E{02(:, z)}= E{g(iU, z)}, from the definitions of u and g, 

? g(E{ui}, z), by Jensen's Inequality, 

= g( (y, z), z), by hypothesis, 

= 2(Y, Z), from the definition of g. Q.E.D. 

We now establish the contrapositive of B3 for Case 3 preferences; that is, 

(4) u (-ti, 0) -- w(-t2) >U u(- ti, 0) __W w(- t2) . 

ForCase 3 u(-ti, 0) = J U(v - t,) dK(v10). Then, since Uis anincreasing concave 
function, it is sufficient to show that (4) is true when the left-hand side is an 
equality. That is, 

(5) XU(v- t,) dK (vI|H)= U(- t2) V I U'(v-) dK (VI 0) ? U'(- t2). 

Define 4(v, -t) U(v - t). 
Then 4(v, -t) is increasing in v and 

at +) atf U' )art u' ) 

if absolute risk aversion is nonincreasing in income. Thus 4(v, -t) satisfies the 
assumptions of Lemma 1. Moreover 02(v, -t) = U'(v - t). Hence Lemma 1 
implies (5) so that B3 is indeed satisfied for Case 3. 

The preferences of Case 3 satisfy B4 if 

J U'(v- t)Ki22(vI0) dva 0. 

Integrating by parts twice we have 

U'(v - t)KI22(VIO) dv = .. U"(v - t) T(v I0) dv - U"(v - t) T(iU I0). 

Thus, assuming U"' - 0, T(v I0) everywhere nonnegative is again a sufficient 
condition. 

Turning to Assumption B5 it is readily verified that for Cases 1-3 a sufficient 
condition is U"' ; o.8 

In Case 4 rather more stringent conditions are required to satisfy Assumption 
B. For this case u12=(1+0)U"+U' while u22=(1+0)U"+2U'. Then, since 0 

8 In Case 3 

u112(-t, 6)= U..K2 dv> 0 

from the same kind of integration by parts as in footnote 7. 
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is nonnegative, B 1 and B2 are satisfied if the degree of absolute risk aversion, 
- U"/ U', exceeds 2. Condition B3 is satisfied automatically. 

Condition B4 is satisfied if uI22=( +0) U"' +2U'>" >0. But 

U"' +2U'= U Ul' ) U 

>u[U'-(U) 2if-U"/U'>2 

d /U" 

d(-t) U' 

Thus a sufficient condition for B4 is that absolute risk aversion everywhere exceeds 
2 and is nonincreasing with income. 

Finally u1 12 = (1 + 0) U"' + U" > U122. Therefore if B4 is satisfied so is Assumption 
B5. 

Summarizing we have: 

THEOREM 1: Assumptions A and B are satisfied by Cases 1 and 2 if U"' . 0; 
Case 3 if absolute risk aversion is nonincreasing, 

dx( U'(x))) ?0, and T(vIO) = I K22(XIO)dx:O; 

Case 4 if absolute risk aversion is nonincreasing and everywhere exceeds 2. 

To predict the outcome of an auction, we must specify a solution concept. We 
shall assume that the functional forms u(*, *) and w(*) and the distribution F 
are common knowledge among buyers and seller but that only buyer i knows 
the value of the parameter Oi. In this case, the Bayesian equilibrium of Harsanyi 
[7] is appropriate. For this solution concept, the "revelation principle"9 (see 
Dasgupta, Hammond, and Maskin [3]; Harris and Townsend [6]; and Myerson 
[20]) tells us that we can confine our attention, without loss of generality, to 
auctions where the strategy space coincides with the set of possible parameters, 
i.e., [0, 1], and where there exists an equilibrium in which each buyer plays his 
true parameter as his strategy. That is, 

(6a) max Eo ,r(xI0-i) = E0_,1T(jIO-j), 

(6b) 7r(xl&-i)= Hi(x, &-i)u(-13(x, 0-j), O0) 

+(I -Hi(x, 0_ ))w(-ad(x, 0-i)), and 

S cn c-a 01b c a l, X, d i e, On )a 

Such auctions can be called direct revelation lo auctions. 

'This term is due to Myerson [20]. For an informal discussion of the application of this principle 
to auction design see Riley and Samuelson [22]. 

'? This term is borrowed from Dasgupta, Hammond, and Maskin [3]. 
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Because the buyers are ex ante identical, we may confine our attention to 
symmetric auctions, i.e., those where families of Hi, ,fi, and ci functions are 
permutation symmetric." Define 

(7) G(01)= { Hi(Oj-, &) H dF(Q0). 
joi 

Note that, from symmetry, G requires no subscript. Then (6) becomes 

(8) max E[G(x)u(-b(x), O) +(1 - G(x))w(-a(x))] 
x 

- E[G(0j)u(-b(0), O) +(1- G(0-))w(-a(0j))], 

where b and d reflect the randomness both from ,ei and ij and from 0-. They 
too need no subscripts. Because buyers have the option of not participating, 

E[G(0j)u(-b(0), O) +(1 - G(0))w(-5(0j))] - 0. 

Since u2> 0, we need stipulate the nonparticipation constraint only for Oi =0. 
Thus, 

(9) E[G(O)u(-b(O), 0) + (1 - G(O))w(-a(O))] - O. 

Notice that the only characteristics of an auction in which either the seller or 
the buyers are interested are the functions G, b, and d, as buyer i's payoff is 

E[G(0)u(-b(0), O ) + (1 - G(0j))w(-a(0j))]9 

and the seller's payoff is 

(10) nE { [G(O)b(O) +(1- G(0))d(0)] dF(O). 

For this reason, we shall often represent an auction by the triple (G, b, a). 

2. STANDARD AUCTIONS 

Before turning to the optimal choice of (G, b, d), we first consider the standard 
auctions, the high bid, and English auctions. In the high bid auction, sealed bids 
are simultaneously submitted by the buyers. The high bidder wins (a tie is broken 
by a coin flip) and pays his bid. Losers pay (and receive) nothing. In the English 
auction, bids are submitted successively and openly; each bid must be greater 

" A family of functions {Jf,...,fn,} where each function f has n arguments, is permutation 
symmetric if, for all i and j and all vectors x and y in the domains of f and fj, 

f (x) =f(y) 
if xi = yj, Xj = yi, and Vk # isj, Xk = Yk- 

To see that it suffices to consider permutation symmetric families of Hi's, a,'s and 8i's, consider 
the case of two buyers. Suppose an asymmetric auction A, were optimal. By symmetry, the auction 
A2 obtained from A, by reversing the roles of the buyers is also optimal. But then the symmetric 
auction A,2 obtained by flipping a coin to decide which of the two auctions, A, or A2, to play is 
also optimal. The argument generalizes to more than two buyers. 
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than the preceding one. The winner is the last buyer to bid (again, ties are broken 
by a randomizing device), and he pays his bid, while losers, again, pay nothing.'2 
As Vickrey [25] argued, 13 the English auction is equivalent, if the Oi's are indepen- 
dently distributed, to a sealed bid auction in which the higher bidder wins but 
pays only the second highest bid, i.e., to a "second bid" auction (here we assume 
the continuous price formulation of footnote 12). Because it is easier to work 
with, we shall study the second bid formulation. Our ability to do this, however, 
depends crucially on independence; the two auctions are not equivalent otherwise. 
Indeed, as Milgrom and Weber [17] show, buyers who are either risk neutral or 
exhibit constant absolute risk aversion bid higher, on average, in an English 
auction than in a second bid auction if, roughly speaking, the Oi's are positively 
correlated. 

We begin by showing that under some of the conditions discussed in Section 
1, equilibria in high and second bid auctions exist, are unique and have the 
property that bids are increasing as functions of Oi. Because they are sometimes 
optimal when buyers are risk neutral, we shall consider high and second bid 
auctions with seller reserve prices, i.e., minimum permissible bids. In the second 
bid auction with reserve price, b?, a winning buyer pays bo if no bid other than 
his own is greater than bo. Because the buyers are ex ante identical, it is natural 
to focus attention on symmetric equilibria. In Remarks 2.3 and 3.2, we discuss 
the possibility of asymmetric equilibria. 

THEOREM 2: In a high bid auction with n ? 2 buyers suppose the seller announces 
a minimum price, b?, such that at least one buyer type is indifferent between buying 
and not buying at this price, that is, 

(11) u(-b0, 0)=O, for some 0OE[0, 1]. 

7Then ifpreferences satisfy Assumption A and c(uj/u)/a0 < 0, thosefor whom 0< 00 
will not submit an acceptable bid, and there exists a unique symmetric equilibrium 
bid function b(O), 0 ? 00. Moreover, b(0) is increasing and differentiable. 

PROOF: If an equilibrium with b(0) increasing exists, then, for each 0, the 
probability that a buyer with parameter 0 has of winning is G(0), where 

( 12) G( 0) = { -1 o < 00 

12 This description of the English auction is ill-specified because rational buyers may wish to raise 
their bids by infinitesimals. This problem can be avoided either by postulating a minimum quantity 
by which bids must be raised, or by adopting the following continuous price formulation. Suppose 
that the seller quotes a price that rises continuously over time. At any instant, a buyer can choose 
either to stay in or to drop out (forever). The winner is the last buyer to remain (again, ties are 
broken by a randomizing device), and he pays the price prevailing at the time the penultimate buyer 
drops out. Losers, as usual, pay nothing. 

13 Actually, Vickrey did not treat equivalence for the case where Bayesian equilibrium is the 
solution concept (he worked instead with dominant strategies). For such a treatment see Remark 3.2 
following Theorem 3. 
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Furthermore, if b(0) is an equilibrium bid function, then, for each 0 > 00, x = 0 
maximizes 

(13) E{u}= G(x)u(-b(x), 0). 

Assuming that b(0) is differentiable and differentiating, we have 

-E{u}- G'(x)u(-b(x), 0)- b'(x)G(x)ul(-b(x), 0) 
ax 

[u(- b(x), 0) G'(x) 1 
= G(x)ul(-b(x), 0) L(-b(x), 0) G(x )b'(x)J 

With a(u /u)/aO < 0 the first term in the bracketed expression is strictly increas- 
ing in 0. Thus 

a ruI-,G(x) u b(x) 0)u u(-b(x), x) G'(x) 
b'(x) as x'-H ax L u(b (x), x) G (x)b()Jasx0 

Therefore if b(0) is defined by the differential equation and boundary conditions 

lb'(0) G'(0)u(-b(0), 0) 
(14) b G(0)uj(-b(0), 0)' 

b (0) =b?, where u (- bo, 00) = O, 

we have 

-E{u(-b(x), 0)},O as x'0; x,0E[0,1]. 
ax 

So x = 0 yields the global maximum of E{u(-b(x), 0)}. This establishes existence. 
To prove uniqueness we first show that an equilibrium random bid function 

b(O) (in principle, an equilibrium could involve mixed strategies) must be increas- 
ing for 0 ? 00. More precisely, we show that if b( ) is a deterministic selection 
from b(* ) (i.e., b () is a number in the support of b(o) for all 0), then b must 
be increasing for 0 - 00. Suppose that b() is decreasing over some interval. Then 
there exist 0' and 02 with 0'<02 such that b'=b( 0')> b2 b02). Hence, 
0, > G2, where 0, is the probability that a buyer who bids b(Oi) wins; otherwise 
a buyer with parameter 02 would be better off bidding b(02). By definition of 
equilibrium 

(15) G2u(-b2, 02) 1 Gu(-b', 02) 

and 

(16) G2u(-b2, 0')< G,u(-b' 0 

Combining (15) and (16), we obtain 

u(-b2, 02) u(-b', 02) 

u(-b2, 0') u(-b 0 
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Therefore, 

u(-b 2, 02) u(-b', 02) Oslog (b')-log = 0 
o,u(-b 2, 0') lgu(-b1, 01) 

b2 62 2 

Jb JO log u dO db 

Cb2 02 a 
=-', J, -a(ul/u) d0 db. 

By assumption the integrand is negative. Then (18) holds if and only if b2 exceeds 
b'. Hence (17) holds if and only if b(02) 3 b(0') contradicting the hypothesis. 
Thus b() is nondecreasing. Now suppose that b(0) = b on the interval [0', 02]. 
Assume that b(0) < b for 0< 01 and b(0)> b for 0> 02. Then a parameter 02 
buyer who bids b( 02) has probability of winning 

.H= s?k (n 1 (F( 02) - F(0l))kF(0l)n-l-k. 

But if the buyer bids b( 02) + E, for E > 0, his probability of winning is greater 
than F(02)n-', which in turn is greater than H. Thus by an infinitesimal increase 
E in his bid, the buyer can gain a discrete increase of, at least, F( 02)n-' -H in 
his probability of winning, and so b(02) cannot be an equilibrium bid. 

Therefore, for 0 3 00, b(0) must be strictly increasing, and so G is given by 
(12). If b(0) is not continuous, then there exists 0* - 00 with 

lim sup b(0)<lim inf b(0). 
6<6* 6>6* 

But, for E > 0 sufficiently small, a buyerbidding lim sup b(0) - E has a probability 
of winning that is arbitrarily close to that of one bidding lim inf b(O) + E. This is 
impossible, however, since lim sup b(0) is strictly less than lim inf b(0), so no 
one would ever bid lim inf b(0) + E. Hence b(0) is continuous. 

To see that b(0) is differentiable for 03 00, note that for any AO 

G(0)u(-b(0), 0) 3 G(0 +A 0)u(-b(0 +A 0), 0) 

and 

G(0 + AO)u(-b(0 + AO), 0 + AO) 3 G(0)u(-b(0), 0 +AO). 

Hence, invoking the mean value theorem, we obtain 

(G(0) - G(0 +AO))u(-b(0), 0) + G(0 +A0)ul(-b*, 0) 

x (b(0 + A0) - b(0)) 3 0 

and 

(G(0+AO) -G(0))(u(-b(0+AO), 0+AO))+ G(0)ul(-b**, 0+AO) 

x (b(0) - b(0 +AO)) 3 0, 
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where both b* and b** are between b(G) and b(G + AO). Combining these last 
two inequalities, we have 

(G(G +AO) - G(G))u(-b(G +AO), 0 +AO) b(G +A 0) - b(G) 

G(G)ul(-b**, a + AO)AO AO 

(G(G +AO) - G(G))u(-b(G), 0) 
G(G +AO)ul(-b*, G)AO 

But because b is continuous, the left and right-most terms of this double inequality 
tend to 

G'(G)u(-b(O), 0) 

G(G)uj(b(O), 0) 

as AO-> O. Hence b(G) is differentiable for 0> O0 and thus satisfies (14) everywhere. 
Since b(G) was an arbitrary selection, b(0) must satisfy (14) too. If b(G0) <b?, 

then for a > 0 sufficiently small b(G0 + a) < bo. Thus the payoff of a buyer with 
parameter 00 + a is zero. But if he bids bo, his expected payoff is 

F'n-I(0)u(-bo, 00 +a)> O, 

a contradiction. If b(G0) > b?, then u(-b(G0), 00) < 0, also an impossibility. Thus 
b(00) = bo, and so b(0) = b(G) for 0 0. Q.E.D. 

REMARK 2.1: If the seller gets a minimum price so low that even the least 
eager buyers (0 =0) would strictly prefer to buy at that price, there is still a 
unique equilibrium b(G) with boundary condition u(-b(0), 0) = 0. 

REMARK 2.2: Theorem 2 is stated for preferences such that ul 1 < 0 and w,1 < 0, 
but it is clear from the proof that it is true as well if these inequalities hold weakly. 

REMARK 2.3: This theorem does not discuss the possibility of asymmetric 
equilibria. Under the hypotheses of the theorem, however, one can show (see 
Maskin and Riley [13]) that the only equilibrium is the symmetric equilibrium. 
A crucial hypothesis in this uniqueness result is that the distribution F has 
bounded support. When the support of F has no upper bound, there can be a 
continuum of asymmetric equilibria. 

REMARK 2.4: We can incorporate the possibility that buyers care about others' 
parameter values by writing the utility of buyer i as u(-bi, Gi, 0-i). Then if the 
equilibrium bid function b( Oj) is increasing and buyer i is the winner, his expected 
utility is 

ua(-b, G1) = E{u(-b, Gi, G_)I03 S G1j # i}. 
6 
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Appealing to the results of Milgrom and Weber [17] it is readily confirmed that 
if u(x, 0i, 0-i) is a strictly increasing and concave function of x, if au(x, 0i, 0-i)/&x 
is a nonincreasing function, and if parameter values are "affiliated" (roughly 
speaking, positively correlated),'4 then a satisfies Assumption A and a(al/ i)/a0 < 
0. We may therefore apply the argument of Theorem 2 to establish existence and 
uniqueness with affiliated parameter values. This generalizes Milgrom and 
Weber's existence proof for the case of risk neutral buyers. 

REMARK 2.5: To see that the assumption a(u1/u)/a0<0 is weak suppose a 
buyer of type 0 is indifferent between paying b for the item and paying b - 8(0) 
for a lottery in which the item is not awarded with some small probability p. 
Since w(O) = 0, the buyer's indifference can be expressed as 

(1 -p)u(-b + 8(0), 0) = u(-b, 0). 

Taking a Taylor's expansion of the left-hand side and rearranging we obtain 

(1 _p) 
(-b, 0) 

We are therefore assuming only that an individual who places a higher value on 
the item would require greater compensation in order to accept such a risk. 

Turning now to the second bid auction, we define o-(0) to be the reservation 
price of a buyer with parameter 0. That is 

(19) u(-or(0), 0)=0. 

THEOREM 3: In a second bid auction with n - 2 buyers suppose the seller announ- 
ces a minimum price, bo, such that at least one buyer is indifferent between buying 
and not buying at this price, that is 

u(-bo, 0) =O, for some 00 E [O, 1]. 

Then if preferences satisfy Assumption A there is an equilibrium in which each buyer 
for whom 0 8 00 bids his reservation price while the remainder do not submit 
acceptable bids. Moreover, this is the unique symmetric equilibrium. 

PROOF: Given u(-bo, 00) =0 all those for whom 0< 00 are better off not 
bidding. Suppose that all buyers use the same bid function h(0) in equilibrium 
and that h (0) is increasing. Since u (- bo, 0) > 0 for all 0 > 00 we must have 
h(0) - bo for all 0 - 00. Then if buyers bid according to h(0), G(0) satisfies (12). 

14 For joint density functions f(O,, .6 ., On) which are twice differentiable and non-zero for all 
6i E [0, 1], i = 1, . n, the n variables are affiliated if 

2 

00 logf(01, . On) - 0, for all i,j = 1., n. 
ao jo 
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Thus for all 6 60, x = 6 maximizes 

rx 
(20) E{u}= u(-b0, 6)F-'(60) + f u(-h(t), 0) dFn-l(t). 

Differentiating (20) by x we obtain 

-E{u} = u(-h(x), 6) dFn-I (x)/dx. 
ax 

By assumption h(6) is increasing and by Assumption Al u > 0. Thus 

-E{u}l u(-h(6), 6) dFn-I(x)/dx, x' 6. 
ax 

But from the definition of a(8), u(-uT(6), 0) = 0. Moreover, since u2 > 0, o-(6) is 
an increasing function. Then h(6) = a(0), 6 > 60, is an equilibrium of the second 
bid auction. 

To prove uniqueness, suppose h(6) is the (possibly random) bid function in 
a symmetric equilibrium. Let h(6) be a deterministic selection. 

Suppose first that Pr {6 060, h(6) > a(8)}> 0. Then there exists 6* : 00 such 
that h(0*) > o(6*) and for all > 0 

Pr {h(0) E [h(6*) - s, h(6*)]}>0. 

But then a buyer with parameter 0* is better off bidding less than h(6*), since 
otherwise there is a positive probability he will pay more than his reservation price. 

Next suppose that Pr {6 - 60, h(6) < o(6)}> 0. Then there exists 0**6 60 such 
that h(0**) < c(6**) and for all ? > 0 

Pr {h(6) E [h(0**), h(6**) + E]} > 0. 

But then a buyer with parameter 6** is better off bidding more than h(6**) since 
otherwise there is a positive probability that he will lose to a bid less than his 
reservation price. 

Hence, Pr {h(6) = o(0)I6- 60} = 1, and so h(6) = o-(6) for all G E [60, 1). There- 
fore h(0) = o-(8) for all 6 E [60, 1). Q.E.D. 

REMARK 3.1: Examining the last line of the proof, we see that equilibrium is 
not quite unique. Although bids must coincide with o(6) for all 6 E [60, 1), they 
need not for 6 = 1. All that is necessary is that h(l) - o-(l). 

REMARK 3.2: One can also show that there are no asymmetric equilibria with 
three or more buyers in the second bid auction with a minimum price greater 
than o(0) (see Maskin and Riley [13]). With two buyers, however, there is a vast 
family of asymmetric equilibria. For example, consider the continuum of pairs 
of bid functions in which one buyer announces that if his reservation price o-(6) 
exceeds b* > bo he will bid u(l ), otherwise he will bid his reservation value, and 
the other buyer bids min {C(6), b*}. It is readily confirmed that all these pairs 
are equilibria. 
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Even in the case n = 2, however, there is good reason to single out the symmetric 
equilibrium. Besides its appeal from its very symmetry, the symmetric equilibrium 
is also the unique dominant strategy equilibrium. Closely related to this point is 
the fact that it corresponds to the unique (subgame) perfect equilibrium of the 
English auction (recall that our motivation for examining second bid auctions 
was their equivalence to English auctions). There is a one-to-one correspondence 
between the asymmetric equilibria of, the second bid and English auctions. 
However, those in the latter auction fail to be subgame perfect, whereas those 
in the former are not trembling-hand perfect (see Selten [24]). For greater 
elaboration of these points see Maskin and Riley [13]. 

REMARK 3.3: If the seller sets a minimum price so low that even a buyer with 
parameter 0 = 0 has a reservation price or(O) > b? the unique symmetric equili- 
brium is for all buyers to bid their reservation values. 

REMARK 3.4: Like Theorem 2, Theorem 3 holds for risk neutral buyers, that 
is, u, =O09 Wi =0. 

We are now ready to show that, under weak assumptions, high bid auctions 
are superior to second bid auctions from the seller's viewpoint. In general, to 
compare two auctions entails specifying which equilibria in each are to be 
examined. We shall in fact compare the (unique) symmetric equilibria. However, 
in view of Remarks 2.3 and 3.2, we need not have made this qualification, since, 
at least in the case n - 3, equilibrium in both the high bid and second bid auctions 
is unique.'5 

THEOREM 4: Under the assumptions of Theorem 2 the symmetric equilibrium of 
the high bid auction with reserve price bo generates greater expected revenue for the 
seller than the symmetric equilibrium of the second bid auction with the same reserve 
price. 

REMARK 4.1: For the preferences of Case 1 this result has already been 
established in those papers mentioned in Footnote 3. 

PROOF: Let B(0) be the expected payment by a winner with parameter 0 in 
the second bid auction. We shall establish that b(0) - B(0) for all 0, with strict 
inequality for 0 - 00 where b(0) satisfies (14). From Theorem 3 if a buyer with 
parameter value 0 is the winner in the second bid auction his payment is a 
random variable 

(21) B = max {b?, o-(t)I where t is the highest of the other n - I buyer's 
parameter values}. 

15 Even in the case n = 2, it is not necessary to single out any particular equilibrium in the second 
bid auction since, as one can easily confirm, all asymmetric equilibria are dominated, from the seller's 
perspective, by the symmetric equilibrium. 
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Therefore the expected payment by the winner, B(6), satisfies 

(22) B(6) = E{B} = [boFnI(60) +{ o(t) dFn-,(t)] Fn-'(0). 

Differentiating (22) with respect to 6 we obtain 

dB(6) G'(0) (6)(O) - B())), o ? H? 

(23) ~dO G(6) 

B(60)=bo, where u(-bo, 00)=0, 

where G(6) satisfies (12); that is, G(6) = F'n- (6), for 6 00. 
Comparing (14) and (23) first note that b(60) = B(60). Thus if we can show that 

(24) u(-b(6), 6)>o-(6)-b(6) whenever b=B, 

then (14) and (23) imply that b(0) > B(0) for 0 > 00. Consider the left- and 
right-hand sides of (24) as functions of b. For b = o(6), both sides vanish. The 
derivative of the left-hand side is -1+uu1 /u2 whereas the derivative of the 
right-hand side is -1. Therefore, because b (0) < cr(6) we conclude that (24) holds. 

Q.E.D. 

The proof of Theorem 4 actually establishes a bit more than the theorem asserts. 
The proof indicates that, for each 0 > 60, b(6) > B(6); that is, the high bid auction 
generates greater expected revenue for each possible value of 6. From this 
observation we can draw strong conclusions if the seller is himself risk averse- 
with strictly concave utility function, v(*). In the second bid auction the seller's 
expected utility is 

rl r 
E v(B(6)) dFn(6) < v(B(0)) dFn(6), 

by Jensen's Inequality, since B(6) = EB(6), 

< v(b(6)) dFn(6), since B(6) < b(6), 

from Theorem 4. 

This last expression is just the seller's expected utility in the high bid auction. 
We have therefore proved the following theorem. 

THEOREM 5: Under the assumptions of Theorem 2 a risk averse seller strictly 
prefers the high bid to the second bid auction. 

REMARK 5.1: This result was established by Vickrey [25] for a uniform distribu- 
tion of risk neutral buyers and by Matthews [14] for Case 1 preferences. 

If buyers are risk averse, one might expect an auction where they are insured 
against losing to generate more revenue for the seller than the high bid auction. 
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After all, the seller could extract a premium for the insurance in such an auction. 
As we shall see, however, this is not normally the case because the insurance 
interferes with the seller's ability to screen. By a perfect insurance auction with 
reserve price b? (see Riley and Samuelson [22] for a discussion of such auctions), 
we shall mean a triple (G, b, a), where G satisfies (12), 

b(00)= bo, 

(25) x = 0 maximizes G(x)u(-b(x), 0) +(1- G(x))w(-a(x)), 

(26) ul(-b(0), 0) = wl(-a(0)), and 

(27) G( 0 )u(-b (00), 00) + (1 - G(00))w(-a(00)) = 0. 

Here we have defined perfect insurance to entail equalization of marginal utilities 
across states, since that is what a rational risk bearer will attempt to do. For 
many utility functions, e.g., those of Case 1, equalizing marginal utilities is the 
same as equalizing the utilities themselves. 

THEOREM 6: For the preferences of Case 1, a perfect insurance auction with 
reserve price bo generates the same expected revenuefor the seller as the second bid 
auction with the same reserve price. 

PROOF: For Case 1 preferences, (26) implies 

0 - b() = -a(0). 

Thus, the first order condition for the maximization, (25), is 

-GU'(0 - b)b'+ (I - G) U'(0 - b)(I - b') = 0. 

Hence, 

(28) b' = (1 - G). 

Also, for Case 1 preferences, 

(29) (00)= 0. 

From (28) and (29), revenue from both the second bid and perfect insurance 
auctions is independent of the utility function U. In particular, we may assume 
U(x) = x. But for such risk neutral preferences, we know (see Myerson [21, 22], 
Maskin and Riley [10]) that two auctions generate the same expected revenue if 
they share the same G function and if the most reluctant buyers (0 = 0) obtain 
a zero payoff. Q.E.D. 

Theorem 6 implies in particular that, for the preferences of Case 1, the high 
bid auction generates strictly more revenue than the perfect insurance auction. 
That this proposition does not hold for general preferences, however, will become 
clear in Section 4 (see the discussion following Theorem 11). 
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3. CHARACTERIZATION OF THE SELLER'S OPTIMIZATION PROBLEM 

We now consider all possible auction schemes and show that the choice of an 
optimal auction can be characterized as the solution to a control problem. This 
is summarized in Theorem 9 at the end of the section. Inferences about the 
properties of optimal auctions are then drawn in Section 4. 

3a. The Buyer's Problem 

Let us restrict attention for the time being to deterministic auctions, that is, 
auctions where the payment by a buyer with parameter 0 is the deterministic 
function b(O) if he wins and a(O) if he loses. 

If truth-telling constitutes an equilibrium (which, as we have noted, we can 
assume without loss of generality), then we can express maximized expected 
utility as 

(30) V(O, 0)=max V(x, 0) 
x 

where 

(31) V(x, 0) G(x)u(-b(x), 0) + (1 - G(x)) w(-a(x)). 

From (31) 
0 

(32) V(x, 0) - V(x, x) = G(x) u2(-b(x), a) da. 
x 

Because V(x, 0)> V(x, x) (if 0> x) and (from (30)) V(0, 0) > V(x, 0), 

V(0,0 ) - V(x, x)> O, 0 >x. 

Also, from (32) 

V(0, 0)- V(0, x) = G(0) u2(-b(0), a) da 

G(O) U2(- b(0), x) (0- x), 

since u2> 0 and u22 <0. Then, since V(x, x) - V(0, x) and V(x, x) is increasing, 

(33) 0 -- V(O, 0) - V(x, x) -- G(O) U2(- b(0), x) (8- x), 0> X. 

Therefore V(x, x) is also continuous. 
From (30), for all x, 0 

(34) 0 E arg min [ V(x, x) - V(0, x)]. 
x 

From (31) V(0, x) is a differentiable function of x. Moreover we have just 
argued that V(x, x) is continuous and increasing, hence differentiable almost 
everywhere. Then, almost everywhere we can write the first order condition for 
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(34) as 

-(x, x) - V2(0, x) = O, at x = 0. 
dx 

From (31) V2(0, 0) = G(0)U2(-b(0), 0). Then a necessary condition for truth- 
telling is 

(35) d V(O, 0) = G(O)u2(-b(0), 0) a.e. 
dO 

We next show that the first order condition (35) may be sufficient for truth- 
telling. 

LEMMA 2: Suppose that preferences satisfy Assumption A and U12 0 0. If G and 
b are nondecreasing and V, defined by (31), is continuous, then (35) implies that 

V(0, 0)- V(x, 0)>O for all x and 0, 

i.e., truth-telling constitutes an equilibrium. 

PROOF: From (35) and the continuity of V 

02 
(36) V(02, 02)- V(01, 01)= G(0)u2(-b(0), 0) dO. 

Notice that G(x)u2(-b(x), 0) is nondecreasing in x since G and b are both 
nondecreasing and u12 < 0. Thus, 

02 

(37) V(02, 02) V(01, 01) G(01)U2(-b(01), 0) dO 

= V(01, 02)- V(01, 01). 

Hence 

V(02, 02) V(01, 02). Q. E. D. 

3b. The Seller's Problem 

Turning to the seller's problem, we see that the seller's expected revenue from 
each buyer is given by 

(38) J [G(0)b(0) +(1 - G(0))a(0)] dF(0). 

Thus the seller chooses G, b, a to max-imize (38) subject to the buyers' incentive 
constraints (30), the nonparticipation option, 
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and the constraint that G be derived via (7) from the symmetric probability 
functions H1 . . . , Hn satisfying (1). Obviously, because G is itself the probability 
of winning it must satisfy 0 - G - 1. For technical reasons we impose the tighter 
constraint 

(40) 0 -, G -,-1 - Z(0), 

where Z(0) = E(I - 6) and E > O is small. (We show below, however, that G 1 - 
Z(6) is not binding at the optimum.) But (40) is not enough. The following 
theorem characterizes when symmetric Hi's can be found, at least when G is 
nondecreasing. 

THEOREM 7: Suppose that G(s), the probability of winning with parameter equal 
to s, is piecewise diferentiable. If G(s) can be generated by a direct revelation 
auction, then, conditional on having a parameter value of at least y, the expected 
probability of winning never exceeds the expected probability that y is the highest 
parameter value. That is, a necessary condition for there to exist a permutation 
symmetric family (see footnote 11) of probability functions HjI(x), j = 1,..., n, 
satisfying Ej Hj 1 1, such that 

(7) G(i)= Hi(6i, 0-i) [1 dF(63) for all O6 
J1, joi 

is 

(41) G(s) dF(s) } Fn-I(s) dF(s), 0?y 1. 
Y Y 

Moreover, if G(s) is nondecreasing, (41) is sufficient for Hj's to exist. 

PROOF: The demonstration of sufficiency is complex and so the proof of the 
theorem is relegated to the Appendix. 

REMARK 7.1: In the original version of this paper we were able to establish 
only that (41) is sufficient for (7) when G is a nondecreasing step function. The 
current proof dispenses with the step function requirement by appealing to a 
limiting argument due to Steven Matthews [16]. 

To solve the seller's problem we first consider the control problem of choosing 
G, b, and a, and hence V, where 

(42)- V=Gu +(l-G)w, 

to maximize (38) subject to (35), (39), (40), and (41). 
To convert (41) to standard form we define 

I [ 
Y = [G(x) - Fn (x)] dF(x). 
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Then (41) becomes the constraint 

(43) Y O, 

where 

(44) dY = (Fn-(o) -G)F'(0). 

After applying the maximum principle to obtain necessary conditions, we show 
that there is a solution (G*, b*, a*) that is continuous. Using this result we obtain 
a condition ensuring that G* and b* are everywhere nondecreasing. Thus, under 
this condition, Lemma 2 and Theorem 7 together imply that (G*, b*, a*) is a 
solution to the seller's (deterministic) problem. To be precise, we establish the 
following theorem. 

THEOREM 8: Suppose u and w satisfy Assumptions A and B and that for all y 
and 0 there exists x such that u1 (x, 0) < w, (y). Then if the solution to the control 
problem of maximizing (38) subject to (35) and (39)-(42) satisfies 

(45) O~(O)~2+F"t fwl(-a(O)) (45) 0 <j(O) 2 +(F')2 J ewi(a(x))F'(x) dx 

this solution corresponds to an optimum for the seller among all deterministic auctions. 

REMARK 8.1: Condition (45) requires that the density function, F', not decline 
too rapidly with 0. Indeed, observe that (45) is automatically satisfied if F" ? 0. 
Thus in particular, it is satisfied by the uniform distribution. In the limiting case 
of risk neutrality the condition becomes 

0 -, 2 + (F,T)2 ( 1F) =do( 0- Ft). 

From Myerson [21] and Maskin and Riley [10] we know that with risk neutrality 
(45) guarantees that a high bid or English auction with an appropriately chosen 
seller's reserve price is optimal. However, it will pay to take G'= 0 income 
intervals when this inequality is violated. With risk aversion, one can show that 
a violation of (45) may cause the optimal G' to be negative in places. Since our 
methods rely heavily on establishing that G' - 0 (see Lemma 2 and the Proof of 
Theorem 8) condition (45) is indispensible. 

REMARK 8.2: In an earlier version of this paper we considered finite approxima- 
tions of the control problem of Theorem 8. In such an approximation, the buyer's 
first order condition (35) becomes the pair of "adjacent" incentive constraints 

(*) ~Giu(-bi, 0i) +(1 - Gi)w(-ai) Gi_1u(-bi1, 0i) +(1- Gi_-)w(-ai_1) 

and 

(**) Giu(-bi, Oi) +(1 - Gi)w(-ai) > Gi+lu(-bi+, Oi) +(1 - Gi+,)w(-ai+,) 
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where i indexes the possible values of 0, and i > j if and only if Oi > Oj. However, 
we imposed only the "downward" constraints (*) explicitly. By establishing the 
finite counterpart of Lemma 2, we showed that if (*) holds with equality for all 
i, then, if Gi and bi are nondecreasing in i, all incentive constraints are satisfied, 
i.e., 

Giu(-bi, Oi) +(l - Gi)w(-ai) : Gju(-bj, Oi) +(l - Gj)w(-aj) 

for all i and j. Thus, we can legitimately consider (35) to be the analogue of the 
adjacent downward incentive constraints. 

PROOF: The Hamiltonian for the control problem is 

L= (Gb +(1-G)a)F'+AGu2(-b, 0) +,(Fn- -G)F' 

+v(Gu+(I-G)w- V)+aG+/8(1-Z-G)-yY+OV 

where A and , are the costate variables for (35) and (44), v is the Lagrange 
multiplier for (42) and 4, a, ,l3, y are the Lagrange multipliers for the inequality 
constraints (39), (40), and (43). Define 

z = (G, a, b), K = (A, , u, a, 83, , P). 

Then from the maximum principle, for all feasible z 

L(z; V*(0), Y*(O); K*(0), 0) -- L(z*; V*(0), Y*(O); K*(O),, 0), 

where the starred variables denote a solution to the control problem. 
Writing down the first order conditions we obtain 

(46) aL = (b* -a*)F' + k*u2- t*F' + P*(u -w) + or* -/3*-O, 

(47) -= (1-G*)[F'-v*wl] = O, aa 

aL 
(48) = G*[F'-A *u12 - V*u] = 0. 

From the maximum principle we know that the costate variable A * is continuous 
and piecewise differentiable and satisfies 

(49) (A*)'= 3L= av 

From (35) V* is nondecreasing everywhere and is increasing whenever G* > 0. 
Moreover, with G* = 0 V* is nonnegative only if a* is nonpositive. Therefore, 
to raise any revenue at all, G* must be positive over some subinterval of [0, 1]. 
Because V* is continuous, it follows that there exists 00, 0 S 00 < 1 such that 

V* =0 only if 0 - 00, 

(50) G*=O if 0 < 0. 
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From constraint (40) G* < 1 for all 0 < 1. Hence, from (47), P*> 0, and so 
(49) and (50) imply that (A *)'> 0 for 0 > 00. From the maximum principle, 

(51) A*(1) = 0. 

Therefore, 

(52) A*(0)<0 for 0 < 1. 

From (40) and (47), the bracketed expression in (47) is zero. Hence 

(53) >* > 
' . 

WI 

If G* > 0, then the bracketed expression in (48) vanishes. Hence 

(54) A*= F(u - wl) 
u12w1 

We will show that there exists a solution to the control problem that satisfies 
(46), (53), and (54) everywhere. First, choose b** and A** to satisfy 

F'-Ak**ui2-v *u1 = 0.16 

Then b** = b* whenever G*> 0, and, since (G*, b*, a*) is a solution, so is 
(G*, b**, a*). Define 

H**(0) (b** - a*)F'+ A**u2(-b**, 0) - p*F' 

+ v*(u(-b**, 0)- w(-a*)) -3*. 

Also define the nonnegative function 

a**(0) {H**(0), H**(0) 
- 0, 

0, otherwise. 

Then, with a* replaced by a** and b* by b**, (46)-(48) become 

(46') aGL 
a G' 

(47') 
a L 

0, aa 

(48') a= O. 
ab 

16 To see that such a b** and A** exist, notice that because ul > 0 and u11 < 0, for any 0 we can 
choose b-(6) sufficiently large that u(-b-(6), 0) < w(-a*(6)). Then, Assumption B3 implies that 
u,(-b-(6), 0): wi(-a*(6)) and so, from Assumption Bi, (52), and (53) 

F'(0) - A*UI2(-b-(6), 0)- v*u,(-b-(6), 0) < 0. 

Choose b'(0) big enough so that u, (b'(0), 0) < wi (-a*(0)) and A** close enough to zero so that 

F'(0) -A*UI2(-b+(6), 0)- v*u,(-b+(), 0)> 0. 

By continuity b**(6) exists. 
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By construction the altered program satisfies all the constraints and the corre- 
sponding complementary slackness conditions and generates the same expected 
revenue as (G*, b*, a*). But if (46') holds strictly on some interval, (46')-(48') 
together imply that (G*, b**, a*) is not optimum. Then (G*, b*, a*) is also not 
a solution to the control problem, a contradiction. Therefore (46') must hold 
with equality everywhere, establishing our claim. We shall henceforth assume 
that (G*, b*, a*) satisfies (53) and (54) everywhere. We shall also drop the super- 
script *. 

From (51), (52), and (54) it follows that 

tul - WI = 05, 0 = 1, 
(U1-W1=?0=1. 

Then, by Assumption B3 we may conclude that 

(56) u-w>O, 0< 1. 

From the maximum principle the costate variable g(0) is piecewise differenti- 
able and satisfies 

aL 
(0) =-dY = y 

plus the endpoint condition g(O) 0. Furthermore, one can show that , is 
continuous."' Since the Lagrange multiplier, y, is everywhere nonnegative, we 
therefore deduce 

(57) ,u(0) ? O, for all 0. 

Next, substituting (53) in (46) we obtain 

(58) b-a + A U2+- w (+ a_1 3 0. 

We now show that G(0), a(0), and b(0) are continuous. Suppose to the 
contrary that a(0) has an upward discontinuity from the right at 0*. (The argument 
is virtually the same if the upward discontinuity is from the left.) 

Then 

a*--lim a*(0* +,A) > a(0*). 
oAj 

Similarly, define 

b*-lim b(0* +,A) and G*-lim G(0* +,A). 
,AIO A]O 

17 We are indebted to Steven Matthews for pointing out to us that the continuity of ,u does not 
follow directly from the maximum principle, since Y is a bounded state variable. However, it does 
follow from the word-for-word translation of an argument that he provides in Matthews [15, p. Al 1]. 
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From (54), 

(59) A (0*) ul(-b(0*), 0*) - wl(-a(0*)) ul(-b*, 0*) - wl(-a*) 
F'(0*) u12(-b(O*), 0*)wi(-a(0*)) u12(-b*, 0*)wl(-a*) 

For each x c [a(0*), a*], choose b (x) so that b (a(0*)) b(0*), b(a*) = b* and 

(60) FA(0*) u1(-b(x), 0*)_wl(_x) 
F'(0* U12(-b(x), 0*)wl (-x) 

Such a choice is possible from (59) and Assumption B. Consider the expression 

[(x) = b(x)-x+ F((*) U2(-b(x), 0*) 

(61) F'(0*) 
1 

+ 1 (u(-b(x), 0*) - w(-x)). 
WI (-X) 

Differentiating by x we obtain 

(62) Q'(x) = b'(x) - 1 - F'((*) U12(-b(x), 0*)b'(x) 

+ (1) (-U b(-(x), 0*)b'(x) + wl(-x)) 

+ 
+ (u(_-bU(x) (), 0* ) A) w,I(-x) 

WI (_X)2 

(u5(_ b(x), 0*) - w(-x))w(-x) 

W1 ( FX)2 

+b'(x)[l- WI ((_X) -F,(O*) 12(-b(x), 0*)] 

From (60) the term in brackets is zero. From (56) and the concavity of w the 
other term is negative. 

Thus Q2(x) is decreasing in x and so (6 1) is larger when x = a (O*) than when 
x = a*. From (58), at Ix = a(O*) and x = a* 

A u-w 3- a 
b -a + F' U2 +-= ,u + F 

Since we have just proved that the left-hand side is larger at x = a(0*) than at 
x = a* = lim,,,* a(0), and since F' and , are continuous it therefore follows that 
13(0*)-a(0*)>f3*-a*. The Lagrange multipliers, a and 13 are everywhere 
nonnegative. Hence either 13(0*)>0 implying G(0*)=1 or a*>0 implying 
G* = 0. Since 0 S G - 1 we therefore obtain 

(63) G(0*) >G* = 0. 
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From (59) 

(64) -lA(0*)(ui2(-b*, 0*)-ui2(-b(0*), 0*)) 

/ui(-b*, 0*) ul(-b(0*), 0*) 
WI(-a*) wl(-a(O*)) 

If b* -<b(0*), then the left-hand side of (64) is nonnegative by Assumption 
B5 and A < 0. But the right-hand side is negative by Assumptions A2 and A4. 
Hence b*>b(0*). 

Since V(0) is continuous, from (42) we have 

G*u(-b*, 0*) +(1-G*)w(-a*) 

= G(0*)u(-b(0*), 0*) +(1 - G(0*))w(-a(0*)). 

Appealing to the mean value theorem we then obtain 

(65) [u(-b(0*), 0*) - w(-a(0*))](G* - G(0*)) - G*ul(_b, 0*) 

x (b* - b(0*)) - (1 - G*)w (-a)(a* - a(0*)) = 0 

where b c [b(0*), b*] and a E [a(0*), a*]. Because b* - b(0*) and a*-a(0*) are 
positive, (56) and (65) imply G*> G(0*). But this contradicts (63). Hence a(0) 
cannot have an upward discontinuity. From virtually the same argument it can 
be established that a(0) cannot have a downward discontinuity. From (64), if 
a(0) is continuous at 0* then b(0) must be continuous there. Finally, from (65) 
G is also continuous. 

We now show that for all 0 such that 0< G(0) < 1, G' and b' are positive.18 
Taking the logarithmic derivative of (54) we obtain 

(66) A' F" U12 U122_b'[ u,, U112 +a'[ wi +WI, 
A F' u1-w1 U12 U1-W1 U12 U1-W1 W1 

Also, from (49), (53), and (54), 

F' A' -_12 
A'=- and -= 

WI A ul-w1 

Making use of these conditions we can rewrite (66) as 

(67) b['Ui U1i2 [ wi ]wl 
U - WI U12 WI(UI - WI) 

- [ u12 ] {2-Awl F;} + [-122] 

18 While the proof assumes differentiability an almost identical argument can be used to show that 
G and b are increasing at points of nondifferentiability as well. 
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From (49), (51), and (53), 

X1 F'(x) (68) Ax(0) = - f') dx, for all 0> 0g. 
0 wI(-a(x)) 

Substituting (68) in (67) we have finally 

(69) b[Uii U I2 -a' wu =[ U12 i(0) + [-u112] 
Ul -WI U12 WI(UI- WI) Ul - WI U12 

where j(0) is defined by (45). 
From the hypotheses of the theorem and (56) and (57), each of the bracketed 

expressions in (69) is positive. Then if a'> 0, b'> 0. 
Next, differentiating (42) by 0 and making use of (35) we obtain 

(70) G'(u - w) - b'Gul - a'(1 - G)W1 = 0. 

Thus if a' and b' are positive so is G'. 
We now show that if the integral constraint, (41), is not binding a' is necessarily 

positive. With 0 < G < 1 we can differentiate (58) by 0 to obtain 

b ( j-;2) u22+ (-ul2b'+u22)+-2+(u-w) (l)2a 

+-(-uIb' + w1a') = 0. 
WI 

Collecting terms and making use of (54) we can rewrite this as 

(WI - UU22 +(u-w) 2a + A) 

Making use of (49), (53), and (54) and then multiplying by wI/u2 we obtain 

(71) a w-u)w, 1 [( w,-u)u22 {AwF" j() L 2WI a-~ U2u12 J (FI )25 j() 

From (56), (57), and Assumptions A and B all the bracketed terms in (71) are 
positive. Then a'> 0. 

It remains to show that if a' < 0 and the integral constraint is binding both G' 
and b' are positive. But if (41) is binding then locally G = F'-' and so G'> 0. 
Then, from (70), if a'< 0, b'> 0. 

Recall that in the statement of the control problem of Theorem 8 we imposed 
the tighter constraint (40). Note, however, that we can choose ? > 0 so small that 
if G is continuous and nondecreasing and satisfies (41), the constraint G(0) 
1 - e(1 - 0) is never binding. Therefore, the solution to the control problem is an 
optimal deterministic auction. Q.E.D. 

We mentioned in Remark 8.1 that the density condition (45) is crucial to the 
conclusion that G is nondecreasing in the optimal auction. It is also essential to 
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ensuring that only the local downward constraint (35) is binding among all the 
incentive constraints. Violations of (45) can lead to other constraints being 
binding. Moore [19] drops condition (45) (but strengthens Assumption B). He 
explicitly introduces all the downward constraints (not just (35)) into the control 
problem and shows that a solution to the revised control problem automatically 
satisfies all the upper constraints. He then derives many of the same qualitative 
properties of optimal auctions that we do (excluding, of course, G' , 0). 

So far in this section, we have confined our attention to deterministic auctions- 
ones where b and d are deterministic. That this restriction is justified, assuming 
the hypotheses of Theorem 8, is confirmed by the following result: 

THEOREM 9: Under the hypotheses of Theorem 8, the optimal auction is deter- 
ministic. 

PROOF: Suppose that (G, b, d) is an optimal (possibly random) auction. By 
analogy with the proof of Theorem 8 we define 

V*(x, 0) = E{G(x)u(-b(x), 0) +(1 - G(x))w(-d(x))}. 

Then (G, b, d) must satisfy the first order condition 

(72) d (0, 0) = G(0)Eu2(-b, 0). 

We next show that there exists an alternative deterministic (G, b, ao) that satisfies 
the local condition (72) (which is the same as (35)) and generates more revenue. 
From Theorem 8 we know that the deterministic revenue-maximizing (G*, b*, a*) 
generates at least as much revenue as (G, b, ao), since Theorem 8 employs only 
condition (72) (not the global condition (30)). Therefore (G*, b*, a*) generates 
greater revenue than (G, b, d). 

Suppose a(0) is random. Then define a**(0) such that w(-a**(0))= 
Ew(-d(0)). It follows that V*(0, 0) continues to satisfy (72) if a** replaces a. 
Also, since w(-a) is a concave function of a, 

Ew(-d(0)) < w(-d(0)), where d(0) = E{d(0)}. 

Then, since w is increasing, 

-a**(0) < -ai(0) -> ai(0) < a**(O). 

Thus the seller's expected revenue is at least as great if he replaces a(0) by a**(0). 
Next, suppose b(0) is random. Defining b(0) = Eb(0) we note that, since u is 

concave in its first argument 

G(0)u(-b(O), 0)+(I-G(0))w(-a(0)) V*(0, 0) for all 0. 

Moreover, since u2 is convex in its first argument, 

dV* 
Gu2 (- b (0), 0) -' GEu2 (- b (0), 0) = do 
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The functions ao(0) and VO(0) = G(0)u(-b(0), 0) +(1 - G(0))w(-ao(0)) are 
defined implicitly by the differential equation dVo/dO = Gu2(-b(0), 0) and the 
boundary condition VO(O) = V*(O, 0). From the above inequality we therefore have 

G(0)u(-b(0), 0) +(I - G(0))w(-a(0)) VO(0) 

and so a(0) - ao(0). Then (G, b, ao) satisfies (72) and generates at least as much 
revenue as the random scheme. Q.E.D. 

A restriction like u1 12 : 0 on the rate at which absolute risk aversion can increase 
with 0 is essential for the conclusion that the optimal auction is deterministic. 
To see that randomization may pay if u112 is negative suppose that 0 can take 
on two values 01 and 02(02> 01) where 

u(-t, 01) = 01 -t, 

u(-t, 02)=log(1 +02-t), 

and 

w(-t) = -t. 

Since u is risk neutral for 0 = 01 and risk averse for 0= 02, risk aversion is 
increasing with 0. Suppose that there is just one buyer. Consider a scheme in 
which the seller offers to sell the item (with probability one) if the buyer accepts 
either of the following two payments schedules: 

01 
7 O with probability I - +H 

with 1~~I+ 02' bi = 

I + 02, with probability - o, 

b2= 02. 

It is readily confirmed that if 0 = 01, the buyer opts for b, and that if 0 = 02 

the buyer prefers b2. Moreover, given these choices, the scheme extracts all buyer 
surplus. Thus the scheme is certainly optimal. Furthermore, it is evident that no 
scheme where b1 is deterministic can extract all surplus. Hence randomization 
is essential. 

Theorem 9 establishes that the first order conditions (46)-(48) are necessary 
for a maximum. They need not be sufficient, however, because, although the 
objective function is concave and the constraints (39)-(41) are convex, the 
incentive constraint, (35), is nonconvex. Indeed, without that nonconvexity, 
establishing that the optimal a and b are deterministic would be trivial and would 
not require any assumptions about how risk aversion changes in 0 (only that the 
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buyer actually be risk averse); we could simply replace ac and b by their certainty 
equivalents. 

4. PROPERTIES OF OPTIMAL AUCTIONS 

The proof of Theorem 8, in addition to demonstrating that designing an optimal 
auction reduces to a conceptually simple and standard control problem, estab- 
lishes and suggests certain interesting properties of optimal auctions. We now 
present some of these properties explicitly. 

THEOREM 10: Under the hypotheses of Theorem 8, the probability of winning 
and the amount a buyer pays if he wins in an optimal auction are increasingfunctions 
of his eagerness to buy, if the probability of his winning is positive. That is, b'> 0 
and G'> 0 if the constraint G - C is not binding. 

PROOF: Established in the proof of Theorem 8. 

THEOREM 11: Under the hypotheses of Theorem 8, the marginal utility of income 
in an optimal auction is lower when a buyer wins than when he loses. That is, 
ul(-b(0), 0) < wj(-a(0)), if 00? 0< 1, where 00=inf {01G(0)> 0}. 

PROOF: Established in the proof of Theorem 8 (see condition (55)). 

Theorem 11 establishes that, under the hypotheses of Theorem 8, it is desirable 
for the seller to make all buyers, except the most conceivably eager (0 = 1) and 
those who have no chance of winning (G = 0), bear risk in order to exploit this 
risk for screening. The result that an optimal incentive scheme introduces 
"inefficiency" for all values of the unknown parameter 0 but one, is a very general 
principle in the incentives literature. In the optimal income tax literature (see 
Mirrlees [18]), for example, it implies that all but the very ablest agent should 
face a positive marginal tax rate. The main interest of Theorem 11, therefore, is 
its description of the nature of the inefficiency, namely, that ul < w1. The direction 
of the inequality ul < w, is due to the Hypothesis B1, i.e., u12<0. If BI holds 
and uj(-b(0), 0) < wj(-a(0)) for given 0, then the difference between 
u1(-b(0), 0) and w1(-a(0)) is greater for 0> 0 than for 0= 0. In other words, 
by having a 0-buyer bear risk, the seller can relax the incentive constraint (35) 
by making (G(0), b(0), a(0)) appear still riskier for buyers with parameters 
greater than 0. 

From this reasoning, it is evident that when u12 = 0, i.e., when preferences take 
the form 

u(-t, 0) = 0- v(t), 

w(-t) =-v(t), 



OPTIMAL AUCTIONS 1505 

there is no value to buyers bearing risk. It is easy to show that for such preferences, 
the optimal auction entails full insurance.'9 This is to be contrasted with Theorem 
6 which demonstrates that, for Case 1 preferences, a perfect insurance auction 
is not only suboptimal but inferior to the high bid auction. 

COROLLARY: Under the hypotheses of Theorem 8, a buyer is strictly better off 
in an optimal auction when he wins than when he loses. That is, u(-b(O), 0)> 
w(-a (0)) for 0 0 <1, where 00 = inf {I0G(0) > 0}. 

PROOF: Follows directly from Theorem 11 and B3. Q.E.D. 

In contrast with Theorem 11, the next result shows that the most eager buyer 
possible (0 = 1) should be perfectly insured. 

THEOREM 12: Under the hypotheses of Theorem 8, the most conceivably eager 
buyer is perfectly insured against losing in an optimal auction. That is, 

ul(-b(l)g 1) = w,(-a(l)). 

REMARK 12.1: For Case 1 preferences with constant absolute risk aversion, 
this result is established by Matthews [15]. 

PROOF: Established in the proof of Theorem (8) (see condition (55)). 

Theorem 12 is in general false when n = 1, as Matthews [15] illustrates with 
Case 1 preferences and constant absolute risk aversion. Intuitively, a high bidder 
in a multi-buyer auction must be insured against losing because there may always 
be a higher bidder. But in a one-buyer auction, a sufficiently high bidder will 
have a probability one chance of winning (see Theorem 17). 

Next we consider the behavior of a, the fee a buyer pays if he loses. We observe 
that for low values of 0 where G is positive, a is positive and increasing, whereas 
a is negative for high 0's. Since, from Theorem 10, b, the buyer's "bid", is 
increasing in 0, we conclude that if a buyer bids low, he is penalized for losing 
in an optimal auction but is compensated for losing if he bids high. 

If a buyer with parameter value 0 chooses x his expected utility from the auction (G, b, a) is 

E(x, 0) = G(x)[0 - v(b(x))]- (1 - G(x))v(a(x)). 

Since v is strictly convex there exists 8(x) 0 with strict inequality whenever a(x) $ b(x) and 
O < G(x) < 1 such that 

E(x, 0) = G(x)[0 - v(c(x) + 6(x))]- (1 - G(x))v(c(x) + 6(x)) 

where 

c(x) = G(x)b(x) +(1 - G(x))a(x). 

Thus expected revenue can be increased whenever b $ a. 
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THEOREM 13: Let (G, b, a) be an optimal auction. Let 00 be the infimum of all 
0's such that the constraint (39), G - 0, is not binding. Then under the hypotheses 
of Theorem 8 a(0)>0 and a'(0)>0 for 0(> 00) sufficiently close to 00. If, in 
addition, ul = wI implies u = w, then for 0 sufficiently close to 1, a(0) < 0. 

REMARK 13.1: The first but not the second assertion of Theorem 13 holds for 
one-buyer auctions. The hypothesis "ul = wI implies u = w" clearly holds for 
Case 1 preferences and, under constant absolute risk aversion, for those of Case 
3. (See (5) and the subsequent argument. The inequality in Lemma 1 holds with 
equality under constant absolute risk aversion.) 

REMARK 13.2: One simple way of instituting a positive a-so that losers as 
well as winners pay-is to introduce a nonrefundable entry fee. For more on the 
desirability of entry fees, see Maskin and Riley [10]. 

PROOF: We first observe that the nonparticipation constraint (39) must be 
binding at 0= 00; otherwise, we could increase a without altering G and b and 
augment the seller's expected revenue. 

First suppose that G(00) =0. Then (39) implies that 

(73) a(00) = O 

since w(O) = 0. If the integral constraint (41) is not binding at 00, then, from the 
argument in the proof of Theorem 8, a'(0) > 0 for all 0(> 00) sufficiently close 
to 00. In view of (73), this implies that a(0)> 0 for all 0(> 00) sufficiently close 
to 00. If (41) is binding at 00, then locally G = Fn-I, and so G'(00) > 0. From (35) 

dV 
dV-G'(u - w) - G(ulb'- wla') - wla' + Gu2 = Gu2. 

Then, at 00, with G(O.) = 0, 

(74) _, (u-w)G' 
WI 

Now from the Corollary to Theorem 11, u > w. Therefore, (73) and (74) imply 
that a(0) and a'(0) are positive for 0(> 00) close to 00. 

Next suppose that G(00) > 0. Then 00 = 0, from the definition of 00. Because, 
as already was observed, u > w at 0 = 00, the equality of the nonparticipation 
constraint implies that w(-a(00)) <0, and so a(00)> 0. Because (41) cannot be 
binding at 00, a'(00) > O. 

From Theorem 12, ul(-b(l), 1)=wj(-a(l)). If ul=w, implies u=w, then 
w(-a(0))>0. Therefore a(1)<0, and so a(0)<O for 0 near 1. Q.E.D. 

THEOREM 14: Suppose that condition (45) is satisfied. If the preferences of Case 
1 exhibit nonincreasing absolute risk aversion, a buyer pays at least as much if he 
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wins as if he loses in an optimal auction. That is, b - a, and the inequality is strict 
if risk aversion is strictly decreasing. 

PROOF: If we substitute for A using (54), (58) becomes 

(75) b - a = (uIUW1)u2_ (U w) + P 

U12WI WI Fl 

if G> 0. Because preferences take the Case 1 form, the first two terms on the 
right-hand side of (75) can be written as 

(76) [ U"(0 - b) U'(-a) U(-a) 

Rearranged, (76) becomes 

(77) U'(0-b)(U(0-b)-U(-a)) [U'(0-b)-U'(-a) U"(0-b) 
^ ̂  ~~U"(0 -b) U'(- a) U( - b) - U(- a) U'(0 -b). 

We will show that the bracketed factor in (77) is negative for decreasing absolute 
risk aversion, implying that (76) is positive. From the Corollary to Theorem 11, 
U( 0-b) > U(-a), implying that 0 - b( 0) > -a( 0). Thus we can show that the 
bracketed factor is negative by establishing that 

(78) U'(x2) - U'(xI) U"(X2) 
<0 

U(X2) - U(XI) U'(X2) 

when x2 > xI. Since v = U(x) is increasing, define x = U-1(v), xl = U-'(vl), and 
x2 = U- I (v2). Also take 

g(v)= U'(U-'(v)). 

Arguing exactly as in the proof of Lemma 1, we know that 

U"(x) 
g'(v) = U'(x) 

and that g" is positive if absolute risk aversion is decreasing. But if g"> 0, then 

g(V2) -g(VI)'V 

V2- V 

and so (78) holds. Thus (76) is positive. From (57) A is nonnegative. Moreover 
the Lagrange multiplier /8 is nonnegative. Then (75) implies that b > a. Q.E.D. 

COROLLARY: Under the hypotheses of Theorem 14, b > 0 if G > 0. 

PROOF: From Theorem 13, a(00) , 0, where 00 is the infimum of all 0 for 
which G(0) - 0 is not binding. From Theorem 14, b(00) - 0. Thus, from Theorem 
10, b(0) > 0 for all 0 > 00. Q.E.D. 
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We next study the expected revenue generated from a given buyer. 

THEOREM 15: Under the hypotheses of Theorem 8, the expected revenue from a 
given buyer is an increasing function of his willingness to buy. That is, R(0)= 
G(0)b(0) +(1- G(0))a(0) is an increasing function of 0. 

PROOF: From the proof of Theorem 8, (G, b, a) is continuous in 0 and hence 
R(0) is continuous. Then, if the theorem is false there is some interval [01, 02]c 

[00, 1] over which R(0) is nonincreasing. Define 

A() = {G(01), 0 E [01, 02], 
G() = 

{G(0), otherwise, 

A b(01)9 0 E [01, 02], 
b() = 

{b(0), otherwise. 

Also, we can implicitly define the functions a(0) and V(0)= 
G(0)U(-b(0), 0)+(1-G(O))w(-a(0)) by the differential equation 

dV A A 

d= G(0)u2(-b(0), 0) 

and the boundary condition V(O) = V(O). 
Since u2> 0 and u12 <0, Gu2(-b, 0) is an increasing function of G and b. But, 

from the proof of Theorem 8, G(0) and b(0) are strictly increasing. Then for 
0e(01, 02], 

ldV 0>A AdV 
d-= G(0)u2(-b(0), 0)G> (0)u2(-b(0), 0) =- 
dO do' 

From the definition of V, V(0)= V(0), 0 e [0, 01]. Therefore, for 0 e (01, 02], 

V(0) < V(0). 

Also, since 

dvA 
-= Gu2(-b, 0), dO 

V(0) = V(01) = G(01) {u(-b(01), 0) - u(-b(01), 01)}, 0 E [01, 02]. 

Therefore 

V(0) - G(01)u(-b(0l), 0) +(1 - G(0l))w(-a(01)), 0 e [01, 02]. 

Hence a(0) = a(01) for 0 E [01, 02] and so 

R(0)=R(01); 0 e[01, 02]. 

Thus 

R(0) ? R(0), 0 E [0, 02]. 
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For 0> 02, dV/dO = dV/dO. Then, since V(0) < V(0) at 0 = 02 this inequality 
holds for all 0 E (02, 1 ] as well. Moreover, since G = G and b = b over this interval, 
we must have a > a. 

Since G - G, the integral constraint (41) is satisfied and, by construction, 
(G, b, a) satisfies the local self-selection condition (35). Moreover, since G and 
b are nondecreasing functions, it follows from Lemma 2 that (35) is also sufficient. 

Then (G, b, a) is feasible forthe seller. But, by construction R(0) 2 R(0), 0 ? 02 
Finally, over [02, 1), since G = G, b=b and a> a, R(0) > R(0). But this contra- 
dicts the hypothesis that (G, b, a) maximizes expected revenue. Q.E.D. 

Theorem 15 has analogues in many other "monopoly" problems. In the 
optimal tax literature, for example, its counterpart is the property that taxes 
should be increasing in individuals' skill (see, e.g., Mirrlees [18]). Theorem 15 is 
less obvious than many of these counterparts, however, because of the feasibility 
constraint (41) and because there is a two-dimensional vector of payments 
(b(0), a(0)) rather a single function relating 0 to a payment. 

We next demonstrate that, at least for Case I preferences exhibiting nonincreas- 
ing absolute risk aversion, the seller will find it advantageous to set a positive 
reserve price-that is, he will refuse to sell to a buyer with a 0 less than some 
positive level 00. 

THEOREM 16: Under the hypotheses of Theorem 14, there exists 00> 0 such that 
G(0)=0 for 0<00. 

PROOF: Suppose the theorem is false, and G( 0)> 0 for all 0>0. From the 
Corollary to Theorem 11, 

0-b>-a for0<G<I. 

Therefore, letting 0 tend to zero, we have 

O ?,: b (O) - a (O). 

From Theorem 14, 

and so 
b(O) - a(O) =0. 

By hypothesis w,(-a) = U'(-a) and u,(-b, 0) = U'(0 - b). Then, since b(0)= 
a(O), ul=w, at 0=0. 

But, with G > 0 for all 0 > 0, (54) must hold and so A (0) = 0. But this contradicts 
(52) so G(0) cannot be strictly positive for 0>0. Q.E.D. 

Theorem 16 applies as well to the case of a single buyer. In this case, we can 
establish a corresponding result for high values of 0; namely, that for sufficiently 
high 0, the probability of winning is one. 
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THEOREM 17: Under the hypotheses of Theorem 14, if n = 1, then there exists 
0* < 1 such that, for all 0> 0*, G(0) = 1 in an optimal auction. 

PROOF: From the argument of Theorem 8, 

(58) (b b-a)F' - AU2 -A '(u -w) + a -,B -,uF' = O. 

Suppose G < 1, for all 0 < 1. Then 

(79) ,u = ,8 = O. 

Recall that 

(51) A(1) = 0. 

Therefore, since 

A = ul1- F' for 0 < G < 1 (see (54)), 
u12wI 

ul -wI as 0 -1, and so 

(80) u -w, as 0 -1. 

From (80) we conclude that 

I - b(1) = -a(1), 
and thus 

(81) b(1) - a(1) > 0. 

But from (49) and (79)-(81) the left-hand side of (58) is positive for 0 =1, an 
impossibility. Q.E.D. 

Theorems 16 and 17 and the continuity of G permit us to conclude that, at 
least for Case 1 preferences with nonincreasing absolute risk aversion, an optimal 
auction divides the unit interval into three nondegenerate subintervals: the lowest 
interval has G =0; the middle interval has 0< G < 1; the upper interval has 
G = 1. The middle interval is perhaps the most interesting. We have taken G(0) 
to be the probability of winning. In the one buyer case we could alternatively 
interpret G(0) as the probability that the item does not "fall apart", i.e., the 
"quality" of the item. The nondegeneracy of the middle interval then implies 
that there are values of 0 for which the seller will offer less than top quality, 
even though quality is costless to provide. This result hinges crucially on risk 
aversion. As Riley and Zeckhauser [23] show, the optimal G equals either 0 or 
1 for all values of 0 if the buyer is risk neutral. 

5. CONCLUDING REMARKS 

We have been most concerned in this paper with elucidating the interplay 
between insurance and screening considerations in models of incomplete informa- 
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tion with risk averse agents. We have studied auctions in particular, but as they 
are formally very similar to a variety of other monopoly problems, the principles 
that emerge all apply elsewhere. 

We have discussed the roles of most of our assumptions, but it is worth returning 
to two of them. First, by assuming that the seller maximizes expected revenue, 
we implicitly suppose that he is risk neutral. For the case of a single buyer this 
assumption makes no qualitative difference. Indeed, for this case, we could have 
presented Theorems 8-11 and 13-17 for a risk averse seller with only slightly 
modified proofs. The assumption of seller risk neutrality is, however, crucial to 
our methods for two or more buyers. Risk neutrality means that the seller's payoff 
depends on the underlying probabilities, Hi, only through the marginal distribu- 
tion G. Thus we can work directly with G rather than with the analytically more 
difficult Hi's. 

For much the same reason, the hypothesis that the Oi's are distributed indepen- 
dently is highly simplifying. Indeed, without independence, a buyer's marginal 
probability of winning depends not just on his bidding behavior but on his 
parameter. Thus, again, we are forced to work with the Hi functions. It is easy 
to see that the seller can exploit any correlation among the Oi's. To take an extreme 
example, suppose that the value of Oi were the same for all buyers. Even if the 
seller did not know this value, he could extract all surplus from buyers by operating 
a second bid auction. 

As Myerson [21] suggests, it is possible, even with imperfect (but nonzero) 
correlation, to construct auctions one of whose equilibria extracts all surplus (at 
least, if 0 can take on only discrete values) when buyers are risk neutral. Maskin 
and Riley [11] show that at least in the case where 0 assumes only two values, 
such auctions can be constructed with a unique equilibrium. Cremer and McLean 
[2] show, for a large class of discrete distributions, that auctions can be devised 
with a dominant strategy equilibrium when correlation is sufficiently strong. How 
these results fare for the more general distributions, and what optimal auctions 
look like with correlation when buyers are risk averse remain conjectural. 

Massachusetts Institute of Technology 
and 

University of California, Los Angeles 

Manuscript received May, 1982; revision received August, 1983. 

APPENDIX 

THEOREM 7: Suppose that G(s), the probability of winning with parameter equal to s, is piecewise 
differentiable and nondecreasing. A necessary condition for there to exist a permutation symmetric family 
of probability functions Hj(x), j = 1. n, satisfying Y,X Hj < 1 such that 

G(s) =1 Hi(s, x_ ) dx_, for all s 
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is 

(41) F`G(s) dF(s)} F1(s) dF(s), O<y 1. 

Moreover, if G(s) is a step function with finitely many steps, (41) is sufficient. 

We prove Theorem 7 in four steps. 
We first show that we can eliminate F from the statement of the problem. 

LEMMA Al: Suppose we can establish that, for all nonnegative and nondecreasing functions G(y) 
on [0, 1], if there exist probability functions HI, . . . I Hn satisfying the symmetry condition, 

(i) H,(x) = Hj(x'), if x = X, xi = xi, and Xk=Xk, k= ij, 
and the feasibility condition 

n 
(ii) E Hil 1, 

1=1 

such that 

(iii) G(s) =X H,(s., x-i) dx-j, 

then 
.I 

(iv) J (G(s)-sn-I) ds o O, for ally E [0, 1]. 
s=y 

Suppose, furthermore, that the converse holds if G is a finite step function. Then Theorem 7 must hold. 

PROOF: Since F is a continuous strictly increasing function we can define Oi = F-'(xi), a strictly 
increasing function from [0, 1] to [0, 1]. 

For any Hi(O) we can define 

Hi(x) = H1(F 1(xI),). 

Then the Hi's satisfy conditions (i) and (ii) if and only if the Hi's do. Similarly, for any G(t), we 
can define G(xi) = G(F-'(xi)). Then G is nondecreasing if and only if G is, and G satisfies (iii) 
and (iv) if and only if G satisfies 

I 

(G(t) - Fn-I( t)) dF(t) --<0, 0 -- 0 -- 1, 

and 

G(0,)= H,(O,, 0-i) f dF(Oj). Q.E.D. 

We next establish the theorem in one direction. 

LEMMA A2: If the probability functions Hi, i = 1, . . ., n, satisfy (i) and (ii) and if G is defined by 
(iii), then (iv) is satisfied. 

PROOF: Let Xr = {xlxi E [y, 1], i < r; x, E [0, y), otherwise}. Over X, the symmetry of Hi implies that 

X HI dx = - * * = I _r dx =-X E H, dx. 
XXr XXr r XEri= X 

Then, since Z= Hi 1, 

X Hi dx < - (I _y)ry n-rs for i= I.., r. 
XE Xr r 
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Moreover there are 

n - I 

ways to choose exactly r- 1 components of (x2,..., Xn) to lie in [y, 1]. Thus by the symmetry of 
H1i. .. Hn, 

I n-I\ 
| G(x,ldxl= HI H(x) dxs E- 1 (n 1(I_Y)ry n-r 
x=Y x12y r=i r r-1I 

(n _Y)ryn-r 
n r=I r 

y-Y) = | n- dxl Q.E.D. 
n 1,y 

Next, we establish the theorem in the other direction for the case where (iv) holds with equality at y = 0. 

LEMMA A3: For any nondecreasing finite step function G(s) satisfying the integral constraint (iv) 
for all y and with equality at y = 0 there exist probability functions Hi(x), i = 1, . n, satisfying the 
symmetry andfeasibility conditions (i) and (ii) such that 

(iii) G(s) = |HI(S, X_,) dx-I. 

PROOF: First note that if the H,(x)'s are symmetric in the sense of (i) and satisfy (ii), then 

G(s) ds HI-(x) dx =- - Hj(x) dx. 

Also since G(s) satisfies the integral constraint (iv) with equality at y = 0, 

G(s) ds=f sn- ds=-. 

It follows that the probability functions Hj(x) must satisfy the adding up condition, 
n 

(v) E HJ(X)= 1. 
j=i 

If G is a finite step function satisfying the hypotheses of the lemma, we can write 

(vi) G(s) = G,, Yi s (i = 1, m), 

where y, = 0 and ym+, = 1. From (vi), 

G,Y2 G(s) ds = 

f 
Sn- ds 

- 
G(s) ds, 

O O Y~~~~~~~~~~~2 
where the last equality is just the requirement that (iv) should hold with equality at y =0. 

Inequality (iv) also implies that 

G(s) dseS} sn-I ds. 
Y2 Y2 

Therefore GI must satisfy the constraint 

1 1 n-I n-I 
(vii) G, I-j sn- ds =-y2 

Y2 o n 

Moreover, using (iv) once more 

Gmn(l G-Y ) = J G(s) ds I S n- I ds 1-Ym 
n-l-~) 
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Hence Gm must satisfy the constraint 

1 (-y%) 
(viii) G (1 

n 1-ym 

Next define 11(x) to be the probability of winning in a second bid auction modified so that, for 
all i all bids in the interval [yi, yi+,) are treated as equal. Then, 

1/1 +c, if for some i, Yi --- x I-- maxj= I_. x Iy{x;}< Yi where c is the 
(ix) Hl(x)= number of components of x_; which are elements of [yi,yi+,), 

0O, otherwise. 

We shall find it useful to modify this probability function in the following manner. Define 

(x) Xr= {XlYr-lxl max {Xj}<Yr+i and at least one 

component of x-I is an element of [Yr-i, Yr+I)} 

For P= (pl,.*, p.-1) E P = {p|O > pi < 1/(1 + i) for all i}, take 

HI (x), X/Xr, 

XI E [Yr-i, Yr), c components of x_ are elements 
of [Yr-i, Yr) and no component of x- is an ele- 

1 + C' ment of [Yr, Yr+i), C ; 1, 

(xi) Hr(X) = (xi) H l (x) = 1 xlIe [ Yr- i, Yr), c components of x_ I are elements o- 

-pc f [Yr-i, Yr+i) and d components of x_ are ele- 
1 + c ments of [Yn Yr+1)1 d 2 1, 

1I/c-d\ XI E [Yr, Yr+i), c components of x-I are elements 
+ P Jc, of [Yr-,Yr+l) and d components of x_ are ele- 

l+c l+d/ ments of [Yr, Yr+l). 

It is a straightforward although tedious exercise to confirm that if H r(x),j = 2, . n, are defined 
symmetrically, then for any choice of p = (Pl,. Pn-1) E P, the Hj(x) are nonnegative functions 
satisfying both the symmetry condition, (i), and the adding up condition, (v). With these preliminaries 
completed we now suppose the lemma to be true for any (m - 1)-step function and show that it must 
then also hold for any m-step function. Since it holds trivially for any 1-step function (set Hj(x) = 1/ n) 
this will establish the lemma. 

Consider any nondecreasing m-step function G(s) defined by (vi). We can, in effect, delete the 
rth step by defining 

Gi, yi s <yi+, (i= I,. , r-2), 

(xii) Gr(S)=( Yr -Yr- l Gr-l + YrI 
)rGr Yr-I_ -<sYr+I, 

Yr+I Yr-I Yr+l Yr-I 

Gi, y,ls<yi+, (i=r+l.in). 

Since G(s) is nondecreasing so is Gr(s). By inductive hypothesis there exist probability functions 
H(x) such that (i), (iii), and (v) are satisfied. Define 

(xiii) H,(x) {H (x), xeXr, 
H(X,X EXr, 

for some P = (PI., Pn-) E P. 
We will show that there exist choices of p and r such that 

(xiv) G = Hr(yi, x_) dx_ (I=. m +). 

Notice that for any choice of p and r, (xiv) holds for all i ? r -1, r by definition of H r(x) and H . 
Also, since both the Hj(x) and Hjr(x) functions satisfy the adding up condition so must the Hr(x). 
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Hence, from symmetry, 

IJ 
G(s) ds ==JH'(x) dx. o n 

Since (xiv) holds for all i r - 1, r we have 

(xv) (YrYr-i) [Gri-- H(Yr, -x-) dx-i] +(Yr+i-Yr) [Gr-j H (Yr, x1) dx-] =0. 

Thus, if (xiv) holds for i = r it must also hold for i = r- 1. First set p = (0, O, . . .0, ) in (xi) and (xiii). 
Then, for all x-1, it follows from the definitions of H r(x) and Hlr(x) that 

(xvi) HI(Yri1, x-1) = HI(Yr, X1). 

Hence, since G(s) is nondecreasing, (xv) and (xvi) imply that 

(xvii) Gr a H I(yr, XI) dx when p (O, O, .0 . ). 

Suppose that for all p E P, and all r, 

A 
Gr> J W(Yr, X_1) dX-1 

From (xv) we must therefore have 

Gr_ < H lr(yi_ls X_,) dX_I. 

Hence 

A A 
(xviii) Gr-Gr- > [H r(r x-,) - H r(rl _) _ 

From the definition of Hlr, 

(xix) E(r-I x.1)-H'i(yr_i, x.1) = EYr j I (Yr 1) X- 01dXI x.1) 

if (Yr,X_DEXr 

Again from definition, 

(xx) HI (Yr, x-1) - HI (Yri, x1) = HI(Yr, x-1) - HI(Yr-1, X-1) = 0, 

if (Yr, X 1 ) E Xr- 

if (Yr, X-I)9Xr. 

If p =2 ,ll/n), then for all x 

H r(x) = H, (x). 

Hence, 

(xxi) Hlr(yrs rI(Yr,X i(Yr-1, X1) HI(Yr, Xi1) HI(Yr-i, XI), 

for p 

Therefore 

(xxii) Hi(Yr, Xi1) HI(Yri1, Xi1) 0 if (Yr, X-I)'Xr. 

Combining (xix)-(xxii) we obtain 

Hl(Yr, x i1)-Hl(Yri,, x_I) HI(yr, x_I)-HI(Yri, Xi) for ( 

Hence, from (xviii) 

Gr-Grl>} [HI(Yr,xiI)-HI(Yr-I, X_I)]dX-I for ( 
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Summing over r, we obtain 

(xxiii) Gm - G > J [HICvm xl)-H1(y1, x1)] dx1, for p = .* )- 

But from the definition of Hf(x), 

J HI(y,, x!i) dx_ = -y2 

and 

{ H(ymI x_ ) dx- = E (n 1) (1 

1 1 -yn, 
n i-ym 

Thus we may rewrite (xxiii) as 

(xxiv) Gm-G > 1 r)_1Yn 
n 1-ym n 

But (xxiv) contradicts (vii) and (viii). Thus we conclude that there exist p e P and r such that 
Gr = | W(Yr, x_1) dx_1, to complete the induction. Q.E.D. 

The final step is to extend the previous lemma to G's for which the constraint (iv) does not hold 
with equality. 

LEMMA A4: Lemma A3 is also true if the integral constraint (iv) holds with strict inequality at y = 0. 

PROOF: Suppose that G(s) is a nondecreasing finite step function satisfying the integral constraint 
(iv) and with strict inequality at y = 0. We first claim that there exists a finite step function G > G 
such that 

(xxv) G is nondecreasing 

and 

(xxvi) (G(z) - zn-I) dz - O for all y, 

where (xxvi) holds with equality for y = 0. 
Let us write G(s) as in (vi). Define the step function G*(s) so that for s E [yi, yi,j) 

G* (s) = 
I 

1+zn-I dz. 
Yi+I -Yi JY, 

Clearly G*(s) is nondecreasing and satisfies (iv) everywhere and with equality at yi, i- 1, . . ., m. Let 
Y1 be the set of "crossing points" of G(s) and G*(s). That is, Y1 = {y I for all E > 0 sufficiently small 
(G(yi + E) - G*(yi + E))(G(yi - E) - G*(yi - E)) < 0}. If Y1 is empty, then from (iv), G(s) < G*(s) for 
all s, and so we can take G(s) = G*(s) to establish the claim. Therefore, assume that Y1 is nonempty. 
Let 

(xxvii) Y2 = {yi E Y1 | max {G*(s), G(s)} ds + G(z) dz | z- dz}. 

Take 

* 1, if Y2 is empty, 
min Y2, if Y2 is nonempty, 

and 

y= max {y E Y1 ly < y**}, if {y E Y1 ly < y**} is nonempty, 
0 0, otherwise. 
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Define 

(max { G(s), G*(s)}, s<y*, 
(xxix) 0(s) = AG(s)+(1-A)kmax{G(s), G*(s)}, y*< s y**, 

tG(s), s >y** 

for choice of A between 0 and 1. If A = 1, then by choice of y*, JO G(z) dz <f zn-' dz. Suppose 
A = 0. If Y2 is empty, then y** = 1, and so (xxix) implies that G(s) : G*(s) for all s. Thus, if Y2 is 
empty, J0 G(z) dz > J0 z"' dz. If Y2 is nonempty then y** E Y2, and (xxvii) implies that, again, ' G0(z) dz > J' zn-1 dz. Thus we may choose A < 1 so that 

I 

(xxx) G(z) dz = zn-I dz. 

Because y* e Y, u {0} and y** e Y u {l}, G(s) is nondecreasing. It is obvious from (xxix) that 
G(s) 2 G(s). Thus it remains only to show that (xxvi) holds. Suppose that 

(xxxi) (G(z)-zn-1) dz>0 for some y. 

If G(y)>) >y , then J (G(z)-zn-) dz>0, where j-E[yi,Yi+1). If G(y)yn-ln then 4 (0(z)-- 
zn ) dz>O, where Y-E[yj-,y). Therefore, we may as well assume that =yj for some I. If y<y*, 
then because 0(s) a G*(s) for all s <y* and Jo G*(z) dz Z 

no z-' dz (since (iv) holds with equality 
for G* at y =y and y = O), 

(xxxii) 0(z) dz J z"' dz. 

But (xxxi) and (xxxii) together imply that 

(xxxiii) G(z) dz> } zn- dz, 

which contradicts (xxx). 
Suppose y E [y*, y**). By definition of y*, either G(s) S G*(s) for all s E (y*, y**) or G(s) > G*(s) 

for all s E (y*, y**). If the former, then G(s) < G*(s) for s E (y*, y**), and so 
rY** 

(xxxiv) (C (z)-znz- 1) dz < O. 

From (xxxi) and (xxxiv) 

(G(z)-zn'-) dz>O 

which contradicts the fact that 0(s) = G(s) for s> y**. If the latter, then G(s) = G(s) for s > y*, 
which contradicts (xxxi). 

Finally, if y : y**, (xxxi) is impossible, since G(s) = G(s) for all s > y**. We conclude that (xxxi) 
is impossible and that the claim is established. 

From Lemma A3 there exist probability functions Hj satisfying the counterparts of (i)-(iii) for G. 
Define Q(z)= G(z)/G(z) and take 

HjI(x) = Q(xj)I-1(x). 
It is immediate that the Hj's satisfy (i)-(iii). Q.E.D. 
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