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Abstract , ,

Arrov !'l°'^9] and r'Aspremont and Gerard-'Varet 'la^ol showed that when

agenta' preference parameterB are independently diBtributed there erist public

decision-oalrine mechanisms that take optimal decisions in Bavesian equilibrium

and balance the budget. V»e show that this result extends to the case where the

parameters are correlated.





Optimal Bayeeian Mechanisms

Introduction

Suppose that a population of agents i "^ I,...,n have von Neumann-Morgenstern

utility functions

v^(d,e^) + t^,

where d is a public decision and t. is a transfer of a private good to agent i.

The parameter G. is private information for agent i and the joint distribution of

(9 ,...,9 ) is given by the c. d. f. P(© ,...',9 ), which is common knowledge.

Suppose that d*(©.,...',© ) solves the problem

n

(0) max I v (d,9 ),

dzD i=1

where D is the space of possible public decisions (assume a solution to (O)

ezists) . Ve shall refer to d*(G^,...',9 ) as the optimal public decision given

r n

A mechanism is a public decision function d(9, ,.-.G ) and a set of transfers

{t.(G,...,9 )}. The interpretation of such a mechanism is that agents announce

the values of their parameters (possibly untruthfully) and, on the basis of the

announcements (G.,...',G ), the public decision d(G. ,-..', G ) is taken and agent i

receives transfer t.(G^,...',G )• In an ontimal Bsvesiar mechanism,
a' 1' n — '

for all (©.,..., G ),

'

(1) d(G^,..:,G^) = d*(9^,..:,9^)

(2) G. maximizes E„ i^ rv.(d*(G.,G .),G.) + t.(©.,G .)1^
1 G.G.^i 1-11 11-1 -'

-3. 1

and

(3) ^t^(G^,..;,G^) =0,

where E i denotes the expectation operator with respect to G . conditional on

-i i ~



o o

(4) t.(e,,...',0 ) = t..(G.) — y t..(G.),

G . That is, an optimal Bavesian mechanism (a) induces each agent to tell the
i

truth about his parameter, assuming that other agents are truthful, (b) chooses

the optimal public decision and (c) balances the budget.

Arrow [l979] and D'Aspremont and Gerard-Varet [l979] (ADG) showed that

optimal Bayesian mechanisms exist when the 0. 's are independently distributed.

The transfers in these mechanisms take the form

o

j^i
'''^''

where

(5) t (0 ) = E I V (d*(0.,G ),0 ).2

-i i*l
^ X X J

Laffont and Maskin [l979] and Riordan [1984] showed that the independence

hypothesis in the ADG proposition can be weakened. Making stronger assiimptions

about the v.'b and 0. 's', they demonstrated that when, roughly speaking, the G. 's

are nonpositively correlated, optimal Bayesian mechanisms can be found where

transfers take the additively separable form (4), although t.. is no longer given

by (5).

3

In tiiis paper we present two results. ¥e first provide a proposition in the

spirit of the Laffont-Maskin-Siordan resxilts on additively separable transfers

(Theorem l). ¥e then argue (Theorem 2) that if one does not impose the

additively separable form, one can find optimal Bayesian mechanisms regardless of

the nature of the correlation across 0. 's.

1. Additively Separable Transfers '
'

J'or the purposes of this section only , assume that (a) the space of public

decisions D is (0,1 ); (b) agent i's parameter 0. is a n\mber in (0,l) and that

agent i has a differentiable conditional density function f.(0 . |0.)

corresponding to F(G. ,...,G ); (c) the function v.(«,») is strictly concave in



its first argument, twice continuously differentiable, and satisfies

1

Suppose first that we attempt to mimic the AUG solution (5). That is,

suppose we take

(7) VV - \je. j. V<V«-i''«3'

O

= / y v.(d*(e.,© .),0.)f(e .|G.)de .

and then define t. by (4)> Tnen, assuming that other agents are truthful, agent

i maximizes

(8) /v^(d*(e.,G.),G.)f(e_.|0.)d0_. + t..(e.),

since t. .(©•)» J ^ i» does not depend on G.. The first derivative of (7) is

&V. ^
jr_i(a.(e.,e.,)e.)|f-(e,.e.,)f(e.,l6,)

1

(9)

av . - ,„

+ l^^{i*{B.,e .),g.)|^(g;,g .)f(G Jg.)
.i:.OQ 1 -1 ibQ. 1 -1 -1 1

&f. o

+ y v.(d*(G.,0 .),G.)^(e .|©.)]d0 .^
J^l 1

Row, because d*(G.',...,G ) solves (I )

n &v.

10) y ^(d*(G.,...,G ),G.) = 0.
>, OQ ^ ^ 1' ' n ' J
J=1

Therefore, when G. = G.', (9) becomes
1 1

Bf.

(11) f I v.(d*(G.,G .),B.)^(e .|G.)dG ..
'

-ft. n 1 -1 1 50. -1 1 -1



8f.

But xmless t^ = 0, there is no reason why (ll) should vanish. Hence, although
i

truthtellinc satisfies the first-order conditions for a maximum when the 0. 's are

independent, truthtelling is not optimal when the G.'b are correlated. That is

why the ADG procedure requires independence.

o

However, suppose instead that we define t..(0.) so that it satisfies the

first order conditions for a maximum at 0. = 0.. Then, for all 0.,

Bv . ^ ,4^ at . .

1 1

¥ith t. .(•) defined hy (12), the first derivative of agent i's maximand 'becomes

5v.

f[r-=i(d*{0.,0 .),0.)f.(e .10.)

(13)
6v. 0,0

-^(d*(G.,e .),©.)f.(e . |0.)]|?-(0.-,© .)d© ..

3.

^^^
Clearly, (13) vanishes at ©. = ©. . Also, in view of (6), -rr-(©.',© . ) > 0.

'i

Therefore, to estatlish that truth-telling is optimal, it suffices to show that

.

(13) is non-DOsitive for ©. > ©. and nonnegative for ©. < ©.. How these second-
. - XI 11
order conditions will not, in general, be satisfied. To ensure that they hold,

we must impose stronger conditions on f . . For any vector © . , let ©*(© . ) be a

value of agent i's parameter such that

5v'.

(u) T-Ti(d*(e*(0 .),0 .),©*(© .)) = 0.
od 1 -1 -1 1 -1

If ©'^(0 .) exists', it is unique. To see this, suppose that 0. = 0* satisfies



ev.

(15) -sr^^*^^!'®!^'^!^ ' °-

dv.

Differentiatine •r^(d*(G^,e_^),e^) vith respect to G^ we obtain

2 2^

(16) ^(^*(e:.e_.),e.)|f(e.,e_.) . ^_(d*(e..e_.),G.).
5d 13.

From (O),

^,2 . .2

^^ '

^

be. bd&Q. >,bdae:

_ -5 V. n & V.

1 ^ 2_ / y L
bd&Q. >,bdae;

Substituting (17) into (16) we obtain

?i=i ad
a^v.

1

.

2
n 5 V.

I—

2

j=i ad''

bade.

'

1
(18)

which is positive. Hence,

bv. > 0, if e. > e*

(19) ^(d*(e.,e_.),G.)
{ <o. ofe'<e^'

1 1

establishing the uniqueness of e*(9 .). If ©t(G .) fails to ezist, set it equal

5t.

to 1 if -rr—(d*(G. ,9 .),G. ) is positive for all G.', and equal to zero', otherwise.

Prom the definition of d*,

n bv

.

2i

>. Oct ^ l' -1 ' -1
J=1

Thus, G*(B .) is that value of G. which makes the social and individual marginal

products of d both zero. In that case, e*(0 .) is the re-cresentative or average

value of B . .

-i



One way of fonnalizine the idea that G. and 6 . are nonpositively correlated

is to suppose that as G. moves away from the average value of G . the conditional

density f.(G .|G.) does not fall. That is,

af

.

_^ 0, if G. _^ e*(G .)

(20) 6G^(^-il^) ^ <0. ifG^eV) .

1 — 1—1-1

This is the condition we need to establish that truthtelling is optimal.

Theorem 1 : Under the assumptions we have made about v. and G. in this section,

an optimal Bayesian mechanism exists if, for all i, f. satisfies (20).

Proof: ¥e need only show that the bracketed expression of (13) is nonpositive

(nonnegative) for G. greater (less) than G.. Consider G. > G..

Suppose first that

5v.

(21) br(^*(®i'®-i)'®i) > °-

Then, because d* is increasing in G. and v. is concave in d,

bv.

(22) T-ri(d*(G.,G .),G.) > 0.
od 1 -1 1

Furthermore, from (6)

5v. o 5v.

(23) ^(d*(G.,G .),G.) >T^(d*(G.,Q .),G.) >
od i' -a 1^ od ^ i' -1 ' 1^

Prom (19), (22) and (23) we have

e^(G .) < G. <G..1-111
Therefore, from (20),

(24) f(G_.|G.) <_ f(G_.|G.).

But (23) anfl (24) together imply that the bracketed expression in (13) is

nonpositive. ^ .



Suppose next that

dv.

(25) ar^'2*^®i'®-i^'®r
-°-

Then, the bracketed expression is nonpositive unless

&V.

(26) ar(^*(®i'®-i)'ei) < °-

But (26) implies that

o

< 6. < 0*(0 .), which in turn means that
i 1 1-1

(27) f(0_.|0.) 1 f(0_.|e.).

Combining (25) - (27), we conclude once again that the bracketed expression is

nonpositive. The argument for 0. < 0. is similar.

Q.E.D.

If the inequalities in (20) are reversed, then one cannot find a transfer

o

function t..(0.) that induces agent i to tell the truth. Hence, with positive

correlation, there does not esist an optimal Bayesian mechanism with transfer

functions of the form (4)-

The conclusion that negative rather than positive correlation makes

incentive requirements easier to fulfill accords well with intuition, as Laffont

and Maskin [l979] point out. Positive correlation aggravates the free

rider problem. If an agent believes his tastes ere similar to those of others,

he can relatively safely leave, provision of a public good in their hands.



2. Tjonseparable Transfers

One linitation of using an additively separable transfer function is that it

does not exploit the differences in beliefs corresponding to different values of

G • If f .(6 . |6.) depends on the value of G.', then an agent of type G. will
i -i -1 1 1 1

o

view a transfer depending on G . as a different gamble than will an agent of type

G • But those different views are irrelevant to i's maximization problem if the
i

o

terms in G. are separable from the terms in G . . Thus additively separable

transfer functions reduce our ability to discriminate among types. This

assertion is confirmed by our next result, which illustrates the power of more

general transfers. Henceforth, we drop the special assumptions of section 1 and

revert to the less structured model of the introduction.

Theorem 2 ; In the model of section T, there exists an optimal Bayesian

mechanism.

Proof ; Becasue the proof is virtually entirely algebraic manipulation, it will

be helpful to consider the simplest possible case to illustrate the ideas as

clearly as possible. Accordingly, suppose that there are just two agents and

1 2
that G. can assume just two values: G and G . After we go through the argument

for this case, it should be apparent how the proof generalizes.

For any 1, j, k, t {1,2} let

vj^^ = v^(d*(G\G^),G^)

and let p"'"'' be the joint probability that G. = G""" and B = G''. Ve shall take t''"''0.0.
to be the transfer to agent 1 if G. = G and G^ = G . Hence, for balance, the

transfer to agent 2 in that event is -t . Our nroblem is to find numbers t ,



t , t , and t such that

(28) Ip^^(v;^^ ^ t^^) >Ip^^(vf . t^^)

(29) Ip^^(vf^'t=^)lIp"^(v;^\,U,

, . V 11/ ill j-il \ V V iV i21 .i2x
(50) Ip (^2 - ^ ) 1 ZP (^^2

-^

i i

,'
. r. 12, 122 ,12v . r i?, 112 ,11v

(51) Ip (^2 - t ) 1 ZP (^2 - t ).

It clearly suffices to find t 's such that

(32) v^^i - t^^ > vf ^ . t^^

and

(55) ^' - 1^^
I .f^

- 1^\
:

for all 1, 3, and k. To see that we can find such t s, first set

(54) t^ ^ = 0.

Prom (52), we must have

111 ^ 211 ^21
v^ > v^ + t .1—1

Hence

,

(55) t^.l ^.]'' -vf^

where

(56) a >_ 0.

Prom (32),

(57) ^212^^21.^^112^
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Prom (35) and (37) we have

, , 212 112 111 211 .

(38) v^ - v^ + v^ - v^ la.

¥e must show that the left hand side of (38) is nonnegative. But for any i, j,

and k

^kjk ^ kjj ijk , ijj12-12'
that is,

(39) v«J - .{^3 > vj.1'^ . ,f^

Similarly, we have

(40) v^" - vf ^ > vf ^ - v^^\

Adding (39) and (40 ), we obtain

f .^\ ^ V ijk kjk ^ kji iji
(41) 2 "^1 ""^1 "^"^1 ~ "^1

Therefore, the left hand side of (3?" -s nonnegative after all. Similarly, we

have

(42) 2 v^^^ - v^^n v^5^ - vf\

for all 2 and k. I3ow from (33) and (35)

211 111 ^ 211 ^ s 221 .22
v^ - v. + V. + a >_ Vp - t .

Therefore,

/,_x .22 221 211 ^ 111 211 ^ r,

(43) t . = v^ - v^ + v^ - v^ - a + p,

where

(44) P >. 0"
.

Prom (33) we require

f.^s 222 ,22 . 212 .21
(45) v^ - t 2 "^'2 - ^ '



11

Substituting from (?5) and (43), we can rewrite (45) as

, ,, 222 212 ^211 221 , „

(46) v^ - v^ + v^ - v^ 2 P-

Prom (42) the left hand side of (46) is nonnegative

.

Now, from (32),

r.r,s 222 ^ .22 . ,122 ^ . 1 2
(47) v^ "^ ^ 2. ^1 + t .

Using (43) we can rewrite (47) as

, , ^12 222 122 221 211 111 211
(48) '^ ^

^'l
" ^1 * ^2 ^'2

1
^1 - a + p - Y,

where

(49) Y 2 0.

From

121 ^12 ^ 221 ^ ,22
V, + t > V. + t ,1—1

we deduce that

/^_x 121 221 222 122 .

(50) v^ - v^ + v^ -v^ _> y,

which is possible in view of (41).

¥e have shown that when we define the t'^*''s by (34), (35), (43), and (48).,

all but two of the eight incentive constraints given by (32) and (33) are

satisfied if a, p and y are nonnegative and satisfy (38), (46), and (50). It

remains to show that we can choose d, p, and y within this range so that the last

two incentive constraints,

f^.s 111 ,11 . 121 .12
(51) "^2 ~ - "^2 "

and

fr.^\ 122 .12 ^ 112 ^11
(52) "^2 ' - "^2 ~

also hold.



1?

Prom (AB), (51) and (52) can be reezpressed as

/ 122 112-> , 222 122^ , 221 „21 1 n / 111 21 1 x

(v^ -v^ ) - (v^ -v^ ) - (v^ -v^ ) - (v^ -v^ )

^^^^
^ „ V / 121 Ills / 222 122>, / 221 211s ,111 21

K

HoW, it is possible to satisfy (53) as long as (i) the maximiim value of -a+p-y

is not less than the rightmost expression in (53) » and (ii) the minimum value of

-o+P-y is not greater than the leftmost expression in (53)*

The maximum value of -c+p-y occurs when a = y = and ->

222 212 211 221
P

•= V -V +v -V . Therefore, to establish (i) amounts to showing that

222 212^ 211 221 . 121 111 , 222 122s , 221 211s , 111 21

U

^2-^2 "^^2 -\ ^^2.-^2 -^^1 -^1 ^-(^2 -^'2 )-^^1 -^'1 >'

which reduces to

f^.\ f 222 212s ^ / 111 121s , 222 122s ,111 211s
(54) (v^ -v^ ) + (v^ -v^ ) + (v^ -v^ ) + (v^ -v^'') >_ 0.

Now

,

^121 , ,,122 , ,,2,1 , ,212 . ,111 , (vf '-,.;") . vp . (vf ^ vf2).

That is,

(55) > (.\"..\^') . (vf^-v^) * (vf -vj") . (vf ^-vf2).

Furthermore, from (40) we have

f^rS 111 121 - 121 111
(56j

1
"

1 - "^2 ~ "^2 '

and

,^„s 222 122 . 122 222
(.57; v^ - v^

2. ^1 ~
"^'i

•

Substituting (56) and (57) in (55) we obtain

(58) 1 (v;22 . ,222) , ^^^121 . ^111^ , ^^211 .^111), ^^21 2 . ^222^^^



Similarly, by permuting indiccE, we get

, , ^ , , 112 212<, / 112 122v / 221 121s ^ / 221 21 K

Now, (58) is ^iust (54), establishing (i).

m^-- •, ^ r, ^ r, r. 212112111211
The minimum value of -ct+p-y occurs when p •= 0, a = v. -v +v -v , and

1 21 221 222 1 22
Y = V. -V +v -V . Therefore', establishing (ii) amounts to showing that

, 122 112v , 222 122v , 221 21K , 111 21 1 v

(v^ -v^ ) - (v^ -v^ ) - (v^ -v^ ) - (v^ -v^ )

^^^^
, r, 212 112x / 111 21K ^f 121 221v , 22? 122s-|
>. -[(v^ -v^ ) + (v^ -v^ ) +(v^ -v^ ) + (v^ -v^ )J

After cancellation and rearrangement, (55) becomes

, 122 112v ^ r 211 22K ^ / 212 112v ^/ 121 221v . .

which is just (59)- Hence (ii) is established.

Q.E.I.

ii
Hotice that because the transfers t do not depend on the probabilities, the

theorem and method of proof continue to hold when agents have different beliefs

about the joint distribution of the 9.'s (as long as those beliefs are common

knowledge).
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Footnotes

^If f iB a function of ©.,•.., , the notation f(©.,0 .) is shorthand for

o

f(e^,...,e._^,e^,e^^^,...-,e^).

^Because the G.'b are presumed to be independent, the expectation in (5) is

unconditional.

^See also D'Aspremont and Gerard-Varet [1982] for results on the correlated _

case.

^d* is differentiable because it solves (l ) and because v is strictly concave and

twice continuously differentiable.

^Laffont and Masicin [l979] show that, under the hypotheses of Theorem 1, e.=0. is

a local mn-r-iTnnm when t.. is defined by (l2). Mordan [l984-] establishes a result

related to the Theorem when"n=2. Although his result is couched in terms of

positive correlation, he correlates costs and benefits. Therefore, his positive

correlation of costs and benefits amounts to negative correlation of benefits.
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