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 Strategy-Proofness, Independence of Irrelevant 
Alternatives, and Majority Rule†

By Partha Dasgupta and Eric Maskin*

We show that  strategy-proofness, the Pareto principle, anonymity, 
neutrality, independence of irrelevant alternatives, and decisiveness 
uniquely characterize majority rule on any domain of preferences 
for which there exists a voting rule satisfying these axioms. In our 
formulation,  strategy-proofness includes manipulations by coali-
tions. However, we demonstrate that the characterization still holds 
when coalitions are restricted to arbitrarily small size. We also show 
that when coalitions can manipulate outside the domain, there is an 
extension of majority rule that satisfies these axioms on any domain 
without Condorcet cycles. (JEL D72)

Current election methods leave room for improvement. In the United States, 
Donald Trump won none of his first 17 victories in the 2016 Republican primaries 
by a majority: mainstream Republicans “canceled” each other out by splitting the 
 anti-Trump vote. In France,  far-right candidate Marine Le Pen made it to the runoff 
of the 2017 presidential election even though, almost certainly, she would have lost 
to François Fillon (eliminated in the first round) in a  head-to-head contest. Better
election methods would probably have prevented these anomalies.

There are many possible election methods, called voting rules, from which to 
choose. Here are some examples.

In plurality rule (used to elect members of Parliament in the United Kingdom and
members of Congress in the United States), each citizen votes for a candidate, and
the winner is the candidate with the most votes,1 even if short of majority.2

In runoff voting, there are two rounds. First, each citizen votes for one candidate. 
If some candidate gets a majority, she wins. Otherwise, the top two  vote-getters face 
each other in a runoff determining the winner.3

1 There can be a tie for the most votes, an issue that also arises for the other voting rules we mention and that is 
dealt with formally in our discussion of decisiveness in Section II.

2  Plurality rule was the method the Republican Party adopted for many of its 2016 primaries. 
3  Runoff voting is used for presidential elections in France, Russia, Brazil, and many other countries.
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Under majority rule—advocated by the Marquis de Condorcet (Condorcet 1785)—
each voter ranks the candidates in order of preference. The winner is then the candi-
date who, according to the rankings, beats each opponent in a  head-to-head contest.

In  rank-order voting (the Borda count)—proposed by Condorcet’s intellectual 
archrival  Jean-Charles Borda (Borda 1781)—voters again rank the candidates. With 
n candidates, a candidate gets n points for every voter who ranks her first,  n − 1  
points for a  second-place vote, and so on. The winner is the candidate with the most 
points.

Each voting rule so far is ordinal in the sense that the way a citizen votes can be 
deduced from his ordinal preferences over candidates (we define ordinality formally 
in Section II).4 Next are two voting rules that are cardinal (i.e., dependent on more 
than just ordinal preferences).

In approval voting, each citizen approves as many candidates as he wants. The 
winner is the candidate with the most approvals. The voting rule fails ordinality 
because a citizen’s preference ordering doesn’t by itself determine the boundary 
between “approved” and “unapproved” candidates.5

In range voting, a citizen grades each candidate on, say, a  ten-point scale (“1” 
denotes dreadful, and “10” denotes superb). A candidate’s points are then summed 
over citizens, and the candidate with the biggest total score wins.6

Faced with many possibilities, how should society decide what voting rule to adopt? 
Ever since Arrow (1951), a standard answer is for society to consider what it wants 
in a voting rule, that is, to (i) posit a set of principles or axioms that any good voting 
rule should satisfy and (ii) determine the voting rule(s) with which they are consistent.

We use the axiomatic approach here (Section II gives precise definitions of our 
axioms, all familiar from the literature). Specifically, we suppose that there is a large 
number of voters and examine the Pareto principle (Pareto, for short): if all citizens 
prefer candidate x to y, then y should not be elected; anonymity: all citizens’ votes 
should count equally; neutrality: all candidates should be treated equally; decisive-
ness: the election should result in a  clear-cut winner; independence of irrelevant 
alternatives (IIA): if x is the winner among a set of candidates Y (the “ballot”), then 
x must still be the winner if the ballot is reduced from  Y  to  Y′  by dropping some losing 
(irrelevant) candidates;7 and ordinality: the winner should depend only on citizens’ 
ordinal rankings and not on preference intensities or other cardinal information.8

Of these six axioms, IIA is arguably the least “obvious.” Still, it has strong appeal, 
in large part because it implies that a voting rule should not be vulnerable to vote 
splitting. Vote splitting arises when candidate x would beat y in a  one-on-one contest 

4 More accurately, the way the citizen votes can be deduced if he is voting  nonstrategically. We consider strate-
gic voting—a major theme of this paper—later in this introduction.

5 Behind approval voting is the idea that a minimum quality level—a cardinal concept—determines the boundary.
6 Two variants of range voting are (i) majority judgment (Balinski and Laraki 2010), which is the same as range 

voting except that the winner has the biggest median (not total) score, and (ii) budget voting, in which a citizen has 
a set number of votes that he can allocate in any way to the different candidates. The winner is, again, the candidate 
with the biggest total. 

7 Arrow (1951) and Nash (1950) formulate (nonequivalent) axioms with the name “independence.” In this paper 
and its predecessor (Dasgupta and Maskin 2008), we adopt the Nash formulation but could have used Arrow’s ver-
sion instead (indeed, an early paper in this line of work, Maskin 1995, does just that).

8 Arrow (1951) notes that a citizen’s ordinal preference between x and y can be ascertained from a simple exper-
iment: give the citizen the choice between x and y. However, he argues that there is no reliable way of eliciting pref-
erence intensities. We support this view with Theorem 1 showing that cardinal voting rules can’t be strategy-proof.



461DASGUPTA AND MASKIN: STRATEGY-PROOFNESS, IIA, AND MAJORITY RULEVOL. 2 NO. 4

but loses to y when z runs too (because z splits off some of the vote that otherwise 
would go to x). See Figure 1 for an illustration that both plurality rule and runoff 
voting violate IIA because of vote splitting.

The Arrow impossibility theorem establishes that there is no voting rule satisfy-
ing all six axioms with at least three candidates and unrestricted voter preferences 
(see Theorem A in Section II).9 In particular, majority rule doesn’t even produce a 
winner for all rankings that voters might have, as Condorcet himself showed in a 
famous example of a “Condorcet cycle” (see Figure 2).

Thus, in Dasgupta and Maskin (2008), we argue that the natural  follow-up ques-
tion to Arrow is, which voting rule satisfies these axioms for the widest class of 
restricted domains of preferences? That paper shows that there is a sharp answer to 
this question: majority rule. Specifically, Theorem B states that majority rule satis-
fies the six axioms when preferences are drawn from a given domain if and only if 
that domain does not contain a Condorcet cycle. More strikingly, if some voting rule 
satisfies the six axioms on a given domain, then majority rule must also satisfy the 
axioms on that same domain. And, unless the original voting rule is itself majority 
rule, there exists another domain on which majority rule satisfies the axioms and the 
original voting rule does not (Theorem C).

9 Arrow (1951) considers social welfare functions (mappings from profiles to social rankings) rather than voting 
rules. However, making the translation from one kind of mapping to the other is straightforward. Arrow (1951) uses 
a weak form of anonymity called nondictatorship and doesn’t require decisiveness or neutrality; thus his version of 
the impossibility theorem is stronger than Theorem A. 

Figure 1. Vote Splitting

Notes: For the rankings above, Trump wins (with 40 percent) under plurality rule. However, both John Kasich and 
Marco Rubio would defeat Trump in a  head-to-head contest (and, indeed, there is evidence from 2016 polls to 
 back up this hypothetical). They lose in a  three-way race because they split the  anti-Trump vote. Hence, plurality 
rule violates IIA. Runoff voting does too: Rubio wins in a  three-way race (first Kasich is dropped, and then Rubio 
defeats Trump in the runoff), but Kasich wins  head to head against Rubio.

40% 35% 25%

Trump Rubio Kasich
Kasich Kasich Rubio
Rubio Trump Trump

Figure 2. Condorcet Cycles

Notes: Given the rankings above, candidate z can’t be the winner under majority rule because a majority of vot-
ers (68 percent) prefer y. Moreover, y can’t be the winner because a majority (67 percent) prefer x. But x can’t win 
because a majority (65 percent) prefer z. The three rankings constitute a Condorcet cycle.

35% 33% 32%

x y z
y z x
z x y
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In this paper, we consider an additional,  often-invoked axiom:  
 strategy-proofness—a voting rule should induce citizens to vote according to 
their true preferences, not strategically. There are at least two justifications for 
 strategy-proofness. First, if citizens do vote strategically, then the voting rule in 
question doesn’t produce the outcomes intended; since the rule’s inputs are dis-
torted, so are the outputs. Second, strategic voting imposes a burden on citizens. It 
is hard enough for a conscientious citizen to determine his own preferences: he has 
to study the candidates’ characters, backgrounds, and positions. If, additionally, he 
must know other citizens’ preferences and strategies in order to react strategically 
to them, his decision problem becomes much more difficult. For example, consider 
Figure 1. In a plurality rule election, Kasich supporters can stop Trump from win-
ning by voting for Rubio, but this requires them to know this and coordinate on that 
manipulation.

Our first new result (Theorem 1 in Section III) establishes that any voting rule 
satisfying  strategy-proofness and decisiveness on a given domain must be ordinal. 
The proof is straightforward; indeed, the argument ruling out range voting is espe-
cially simple: suppose there are two candidates x and y running, and a particular 
citizen judges them both to be quite good. If he were grading honestly, he would 
give x a grade of 8 and y a grade of 7. But, in an election, he has the incentive to give 
x a grade of 10 and y a grade of 1 to maximize x’s chance of winning, a violation of 
 strategy-proofness.

Just as we ran into the Arrow impossibility theorem in our previous work, we 
collide with the  Gibbard-Satterthwaite impossibility theorem (Gibbard 1973, 
Satterthwaite 1975) once we impose  strategy-proofness. A fortiori (in view of 
Theorem A), there exists no voting rule that satisfies all seven axioms when voters’ 
preferences are unrestricted. Indeed, there is no voting rule that even satisfies all of 
anonymity, neutrality, decisiveness, and  strategy-proofness (Theorem E). Hence, we 
turn our attention again to restricted domains and show that majority rule satisfies 
the seven axioms on any restricted domain without a Condorcet cycle (Theorem 2 
in Section IV).

Implicit in Theorem 2 is the assumption that voters are confined to the restricted 
domain in question when they misrepresent their preferences. As we argue in our dis-
cussion of public goods in Section IV, this assumption makes sense in some circum-
stances but not all. Yet, when voters can misrepresent freely, a majority (Condorcet) 
winner may not exist. Thus, we must extend majority rule so that it always produces 
a  well-defined outcome. Specifically, we use the Smith set (Smith 1973, Fishburn 
1977), the (unique) minimal subset of candidates that beat any other candidate by a 
majority.10 When a majority winner does not exist, we choose a random member of 
the Smith set as the outcome. Theorem 3 establishes that this extension of majority 
rule satisfies the seven axioms11 on any domain without Condorcet cycles.

Theorem C from  Dasgupta-Maskin (2008) shows that majority rule dom-
inates other voting rules in the sense of satisfying Pareto, anonymity, neutrality, 

10 We could alternatively work with a refinement of the Smith set, e.g., the uncovered set (see Miller 1977), but 
this wouldn’t change our analysis or results significantly.

11  Strategy-proofness needs to be modified slightly to accommodate misrepresentations outside the domain in 
question.



463DASGUPTA AND MASKIN: STRATEGY-PROOFNESS, IIA, AND MAJORITY RULEVOL. 2 NO. 4

decisiveness, IIA, and ordinality more often. When we add  strategy-proofness to 
the mix, majority rule is, in fact, uniquely characterized. Theorem 4 establishes 
that a voting rule satisfying Pareto, anonymity, neutrality, decisiveness, IIA, and 
 strategy-proofness (ordinality is redundant) on some domain can only be majority 
rule, a result that generalizes May (1952).

Our definition of  strategy-proofness considers misrepresentations by coalitions. 
Intuitively, coordinating misrepresentations in a large coalition is harder than in a 
small one. Hence, a result that relies on large coalitions may not be entirely con-
vincing. Accordingly, Theorem 5 strengthens Theorem 4 by showing it holds when 
coalitions are restricted to be of arbitrarily small size.

I. Model

There is a finite set X of potential candidates for a given office.12 The electorate 
is a continuum of voters, taken to be the unit interval [0, 1] (the continuum makes 
the probability that there is a tie for the winner negligible, an issue discussed in 
Section II).

Each voter  i ∈  [0, 1]   is described by his utility function   u i   : X → ℝ . To simplify 
analysis, we rule indifference out by assumption. That is, for all  x, y ∈ X , if  x ≠ y ,  
then   u i  (x) ≠  u i  (y) . Let   U X    consist of all utility functions on X without indifference. 
A profile   u (·)    on U   ( ⊆      U X   ) is a specification of a utility function   u i   ∈  U for each 
voter  i ∈  [0, 1]  . A ballot is a subset  Y (⊆ X )  consisting of the candidates who are 
actually running for the office. Let  ΔY  consist of the probability distributions over Y.

A voting rule is a function that, for each profile   u (·)    and each ballot Y, selects a 
winner  F( u (·)  , Y) ∈ ΔY , where  ΔY  is the set of randomizations over Y. This for-
mulation allows for election methods in which the winner is determined partly by 
chance.

To facilitate our analysis, we focus henceforth on voting rules that are finitely 
based in the sense that a voter’s set of possible utility functions can be parti-
tioned into a finite number of equivalence classes.13 Formally, F is finitely based 
provided there exist a finite set S (the base set) and, for each voter i, a mapping  
  h i   :  U X   → S  such that, for all profiles   u (·)    and   u  (·)  ′  ,  if   h i  ( u i  ) =  h i  ( u  i  ′   )  for all  i ∈  
[0, 1]  , then for all  Y ⊆ X, F( u (·)  , Y ) = F( u  (·)  ′  , Y ).  All the voting rules discussed in 
the introduction are finitely based (e.g., for an ordinal voting rule, S is just the set 
of rankings; for range voting, S is the set of possible mappings from candidates to 
grades between 1 and 10).

With a continuum of voters, we can’t literally count the number of vot-
ers with a particular preference; we must instead consider proportions of vot-
ers. For that purpose, we can use Lebesgue measure  μ  on [0,1]. Thus, for profile  
  u (·)  ,  μ ( {i |  u i   (x) >  u i  (y)} )   is the proportion of voters who prefer candidate x to  
candidate y.14

12 A “potential” candidate is one who could conceivably run for the office in question but, in the end, might not. 
13 This focus makes it easier to define the concept of a generic profile: see the discussion of decisiveness in 

Section II. 
14 To be accurate, we must confine attention to profiles for which the set  {i |  u i  (x) >  u i  (y)}  is measurable with 

respect to  μ .
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We can now formally define the voting rules mentioned in the introduction. We 
suppose that if there is tie, it is broken randomly. That is, if W is the set of candidates 
who tie for first, the outcome is q(W ), a random selection (with equal probabilities) 
from W. Here is the definition of plurality rule.

DEFINITION (Plurality Rule (First Past the Post)):

  F   P ( u (·)  , Y) 

= q ( {x ∈ Y  |  μ ( {i  |  u i  (x) >  u i   (y) for all y ≠ x, y ∈ Y} ) 

 ≥ μ ( {i  |  u i   (x′  )  >  u i  (y) for all y ≠ x′, y ∈ Y} )  for all x′ ∈ Y} ) . 

In words, candidate x wins if a higher proportion of voters rank x first than they 
do any other candidate x′. If there are multiple such x, one is selected at random. 
Similarly, here is the formal definition of majority rule.

DEFINITION (Majority Rule (Condorcet’s Method)):

   F   C ( u (·)  , Y ) = q ( {x ∈ Y  | μ ( {i  |  u i  (x) >  u i   (y)} )   ≥   1 _ 
2
   , for all y ≠ x, y ∈ Y} )  .

That is, candidate x is a Condorcet winner if, for any other candidate y, a majority 
prefer x to y; ties among Condorcet winners are resolved randomly (there can be 
multiple Condorcet winners because the inequality in the definition of   F   C   is weak).15

II. Axioms

We now define our axioms, which with two small exceptions are standard in the 
voting literature.16 We say that a voting rule satisfies a given axiom on domain U if 
the axiom holds for all profiles   u (·)    drawn from U.

Pareto on U: For all   u (·)    on U,  Y ⊆ X  and  x, y ∈ Y,  if   u i  (x) >  u i  (y)  for all i, 
then  y ∉ F( u (·)  , Y) . That is, if everyone prefers x to y and x is on the ballot, then y 
can’t be elected.

Anonymity on U: Fix any  measure-preserving17 permutation of the electorate  
 π :  [0, 1]  →  [0, 1]   . For any   u (·)    on U, let   u  (·)  π    be the profile such that, for all i,  
  u  i  π  =  u  π (i)     . Then, for all Y, if  x = F( u (·)  , Y), we have x = F( u  (·)  π  , Y  ) . In words, if we 
permute a profile so that voter j gets i’s preferences, k gets j’s preferences, etc., the 
winner remains the same.

15 Strictly speaking, majority rule as defined here is not a voting rule on domains for which a Condorcet winner 
may not exist, since, by definition, a voting rule produces a winner. In Section IV, we extend the definition of major-
ity rule to ensure that a winner always exists. 

16 Decisiveness and  strategy-proofness are slightly nonstandard because they explicitly deal with ties (ties are 
usually ruled out by assumption; for example, in the literature on majority rule the number of the voters is typically 
assumed to be odd).

17 “ Measure-preserving” means that, for any  C ⊆ [0, 1], μ(C) = μ(π(C)).  
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Neutrality on U: Fix any ballot Y and any permutation  ρ  :  Y → Y  of Y. For any pro-
file   u (·)    on U, suppose   u  (·)  

ρ,Y   is a profile on U such that, for all i,   u  i  
ρ,Y (ρ(x)) =  u i  (x)  for 

all  x ∈ Y.  Then, if  x = F( u (·)  , Y ),  we have  F( u  (·)  
ρ,Y , Y ) = ρ(x).  That is, suppose we 

start with a profile on U and we (i) permute the candidates so that candidate x becomes 
y, y becomes z, etc., and (ii) permute voters’ utilities for the candidates correspond-
ingly. Assume that the resulting profile is on U. Then if x won originally, now y wins.

Pareto, anonymity, and neutrality are so “natural” in political elections that few 
voting rules used in practice or studied theoretically violate any of them. The same 
is not true of the next axiom.

IIA on U: For any   u (·)    on U and any ballot Y, if  x = F( u (·)  , Y)  and  x ∈ Y′ ⊆ Y,  
then  x = F( u (·)  ,Y′ ). 

As mentioned before, IIA implies that voting rules shouldn’t be vulnerable to 
vote splitting. It rules out plurality rule, runoff voting, and  rank-order voting (leav-
ing only majority rule, approval voting, and range voting from the introduction).

Ordinality on U: For all   u (·)    and   u  (·)  ′    on U and all  Y ⊆ X,  
if   u i  (x) >  u i  (y) ⇔  u  i  ′  (x) >  u  i  ′  (y)  for all  i ∈  [0, 1]   and all  x, y ∈ Y,  then  
F( u (·)  , Y ) = F( u  (·)  ′  , Y) . That is, only voters’ rankings—and not cardinal information 
about preferences—determine the winner.

We next turn to decisiveness, the principle that the winner should be determin-
istic. In fact, none of the voting rules from the introduction is fully decisive in this 
sense; for each, ties may occur (and so, from neutrality, must be broken stochasti-
cally). For example, with plurality rule, two (or more) candidates might be ranked 
first by a maximal proportion of voters. Nevertheless, if the number of voters is 
large, the likelihood of a tie under plurality rule is small. That is why we assume a 
continuum of voters: the probability of a tie under plurality rule is zero, or, more pre-
cisely, ties are nongeneric. To express this formally, fix a (finitely based) voting rule 
F with base set S and mappings   h i   :  U X   → S  for all  i ∈  [0, 1] .  Given profile   u (·)  ,  let

   m s   = μ ( {i | h i   (  u i   )  = s} )  for each s ∈ S, 

that is,   m s    is the proportion of voters whose utility functions correspond to s in   u (·)   .

Decisiveness on U: For any Y, F results in a deterministic winner for generic  
 ( m  s 1    , … ,  m  s  |S|     )  on U, that is, the Lebesgue measure of the set of   | S |  -tuples for which 
there are ties is zero when profiles are drawn from U.

It is easy to verify that all the voting rules in the introduction (except majority 
rule) satisfy decisiveness on any domain U.

We can now state a version of the Arrow impossibility theorem.

THEOREM A (Arrow 1951): If   | X |  ≥ 3 18 and  U =  U X  ,  there exists no voting 
rule on U satisfying all of Pareto, anonymity, neutrality, IIA, decisiveness, and 
ordinality.

18 For any set T,   | T |   denotes the number of elements of T.
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In view of this negative result,  Dasgupta-Maskin (2008) considers restricted 
domains U. Specifically, although majority rule   F   C   fails to determine a winner 
on   U X   , as Condorcet’s own example (Figure  2) illustrates, this problem cannot 
arise on a domain U that does not contain Condorcet cycles (i.e., U doesn’t con-
tain utility functions  u, u′, u″  and candidates x, y, z such that  u(x) > u(y) > u(z), 
u′(y) > u′(z) > u′(x),  and  u″(z) > u″(x) > u″(y)) .

THEOREM B ( Dasgupta-Maskin 2008; see also Sen 1966 and Inada 1969): Majority 
rule satisfies Pareto, anonymity, neutrality, IIA, ordinality, and decisiveness on U 
if and only if U does not contain Condorcet cycles. Moreover, when U doesn’t have 
Condorcet cycles, Condorcet winners are generically strict (i.e., the winner beats all 
other candidates by a strict majority).

Furthermore, majority rule dominates all other voting rules in the sense that it 
satisfies the axioms on a wider class of domains than any other.

THEOREM C ( Dasgupta-Maskin 2008): If F satisfies Pareto, anonymity, neutrality, 
IIA, decisiveness, and ordinality on domain U, then majority rule   F   C   also satisfies 
these axioms on U. Furthermore, if  F( u (·)  , Y ) ≠  F   C ( u (·)  , Y  )  for some profile   u (·)    on 
U, then there exists domain  U′  on which   F   C   satisfies all the axioms but F does not.

The current paper’s contribution is to add  strategy-proofness to the mix.

(Group)  Strategy-Proofness on U: For a generic profile   u (·)    on U, all coali-
tions  C ⊆ [0, 1],  all profiles   u  (·)  ′    (with   u  i  ′   =  u i    for all  i ∉ C)  on U, and all bal-
lots Y, suppose  x = F( u (·)  , Y )  and  x ≠ F( u  (·)  ′  , Y ) . Then, there exist  i ∈ C  and 
 y ∈  supp  F( u  (·)  ′  , Y) 19 such that   u i  (x) >  u i  (y) . That is, if coalition C causes the win-
ner to change from x to random variable   y ̃    by manipulating preferences from   u C     
to   u  C  ′   , someone in the coalition doesn’t gain from the manipulation.20

III.  Strategy-Proofness and Ordinality

Together with decisiveness,  strategy-proofness implies that a voting rule is gener-
ically ordinal.

THEOREM 1: Suppose that F satisfies  strategy-proofness and decisiveness on U. 
Then, F satisfies ordinality for generic profiles on U.

PROOF:
Suppose, to the contrary, that there exist generic profiles   u  (·)  ∗    and   u  (·)  ∗∗    and ballot  

Y ⊆ X  such that   u  i  ∗ (x) >  u  i  ∗ (y) ⇔  u  i  ∗∗ (x) >  u  i  ∗∗ (y)  for all  i ∈ [0, 1]  and  x, y ∈ Y  
and yet   x   ∗  ≠  x   ∗∗ ,  where   x   ∗  = F( u  (·)  ∗  , Y)  and   x   ∗∗  = F( u  (·)  ∗∗  , Y) . We will show that 
transforming   u  (·)  ∗    to   u  (·)  ∗∗    one ordering at a time leads to contradiction.

19 supp  F( u  (·)  ′  , Y)  is the set of candidates from which the winner is selected randomly.
20 If supp F(  u  (·)  ′   , Y) is  multivalued, then implicitly we are assuming that voter i is deterred from deviating by the 

positive probability of a realization y worse than x.
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Let   ≻   1   be an ordering of Y, and let   u  (·)  1    be the profile such that, for all i,

       u  i  1  =  {  u  i  ∗∗ ,  if  ≻   1  is the ordering corresponding to  u  i  ∗∗ ;      
 u  i  ∗ ,

  
otherwise.

    

Take   x   1  = F( u  (·)  1  , Y  ) . If   x   ∗   ≻   1   x   1 ,  then voters with ordering   ≻   1   in profile   u  (·)  1    (each 
such voter i has utility function   u  i  ∗∗  ) are better off manipulating to make the pro-
file   u  (·)  ∗    (i.e., voter i will pretend to have utility function   u  i  ∗  ). If   x   1   ≻   1   x   ∗ ,  then voters 
with ordering   ≻   1   in profile   u  (·)  ∗    are better off manipulating to make the profile   u  (·)  1   . 
Thus, from  strategy-proofness, we must have   x   1  =  x   ∗ . 

Next choose   ≻   2  ≠  ≻   1  , and let   u  (·)  2    be the profile such that, for all i,

       u  i  2  =  { 
 u  i  ∗∗ ,

  
if  ≻   2  is the ordering corresponding to  u  i  ∗∗ ;

      
 u  i  1 ,

  
otherwise.

    

By similar argument,   x   2  =  x   ∗   where   x   2  = F( u  (·)  2  , Y ) . Continuing iteratively, we 
eventually obtain   u  (·)  n   =  u  (·)  ∗∗    (since there are only finitely many orderings of Y), and 
thus   x   n  =  x   ∗  , a contradiction of   x   ∗∗  = F( u  (·)  ∗∗  , Y)  and   x   ∗  ≠  x   ∗∗  . ∎

IV. Results for Majority Rule

In view of Theorems A and 1, we immediately obtain the following result.

THEOREM D:  If  | X |  ≥ 3  there exists no voting rule satisfying  strategy-proofness, 
Pareto, anonymity, neutrality, IIA, and decisiveness on   U X   .21

Hence, we show that Theorem B continues to hold if we add  strategy-proofness 
to the list of axioms.

THEOREM 2: Majority rule   F   C   satisfies  strategy-proofness, Pareto, anonymity, 
neutrality, IIA, and decisiveness on U if and only if U does not contain Condorcet 
cycles.22

PROOF:
If U contains a Condorcet cycle, then from Figure 2,   F   C   isn’t even a voting rule. 

For the converse, it suffices—in view of Theorem B—to show that   F   C   satisfies 
 strategy-proofness on U. Suppose, to the contrary, there exist generic   u (·)    and pro-
file   u  (·)  ′    on U and coalition C such that

(1)  x =  F   C ( u (·)  , Y),  where x is a strict Condorcet winner ,

21 This result also follows directly from Gibbard (1973) and Satterthwaite (1975), except that they also impose 
ordinality. 

22 In view of Theorem 1, ordinality is redundant. For the case of  single-peaked preferences, this result is implicit 
in Dummett and Farquharson (1961). Theorem 2 extends the result to any domain without Condorcet cycles. 
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and

(2)   u i  (y) >  u i  (x)  for all i ∈ C ,

for all

(3)  y ∈ supp  F   C ( u  (·)  ′  , Y ), 

where   u  j  ′   =  u j    for all  j ∉ C . From (3),

(4)  μ ( { i |   u  i  ′  (y) >  u  i  ′  (x)} )  ≥   1 _ 
2
    .

Hence, from (2) and (4),

  μ ( { i |   u i  (y) >  u i  (x)} )  ≥   1 _ 
2
   , 

which contradicts (1), the fact that x is a strict Condorcet winner for   u (·)   . ∎

Our definition of  strategy-proofness presumes that voters can manipulate pref-
erences only within U. This presumption makes sense in some circumstances. For 
example, suppose there are two goods—one public and one private—and that a “can-
didate” x consists of a level p of the public good together with a tax cp levied on each 
citizen, where c is the per capita cost of the public good in terms of the private good. 
Consider the mechanism in which each citizen i chooses   p i   , the median choice   p   ∗   
is implemented, and each citizen pays  c p   ∗  . If citizens’ preferences are convex and 
increasing in the two goods, then preferences for candidates x are  single-peaked. 
Hence, the mechanism results in a Condorcet winner (see Black 1948).

Implicitly, the mechanism constrains a citizen to submit  single-peaked prefer-
ence and thus presumes that the planner knows in advance that preferences are 
 single peaked. While this may be plausible in the public good context, knowing 
how preferences are restricted for presidential elections seems less likely. In such 
settings, constraining manipulations to U seems unrealistic. Thus, the definition of 
 strategy-proofness becomes the following.

   Strategy-Proofness   ∗   on U: For each  C ⊆ [0, 1]  and generic profile   u (·)    on U and 
profile   u  (·)  ′    on   U X   23 (with   u  j  ′   =  u j    for all  j ∉ C ), suppose  x = F( u (·)  , Y)  and  x ≠ 
F( u  (·)  ′  , Y ) . Then there exist  i ∈ C  and  y ∈ supp F( u  (·)  ′  , Y)  such that   u i  (x) >  u i  (y) .

Since coalitions now can manipulate outside U, a Condorcet winner may not 
exist.

Following Smith (1973) and Fishburn (1977), define the Smith set  
 Z( u (·)  , Y ) (⊆ Y  )  for profile   u (·)    and ballot Y to be the set of all Condorcet winners (if 
there are any) or else a minimal set of candidates such that, for each  x ∈ Z( u (·)  , Y)  
and each  y ∉ Y − Z( u (·)  , Y ),  a majority of voters prefer x to y. The Smith set is 
unique (as Fishburn shows); it is a natural generalization of the majority winner 

23 The only change in going from  strategy-proofness to    strategy-proofness   ∗   is that   u  (·)  ′    is no longer restricted 
to U.
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concept. Indeed, Fishburn (1977) argues that the following extension of majority 
voting rule best preserves the spirit of Condorcet:

  F    C   ∗  ( u (·)  , Y ) =  { 
x,

  
if x is the unique Condorcet winner for  u (·)   and Y;

       
q(Z( u (·)  , Y )),

  
if a Condorcet winner doesn’t exist or is multiple.

   

THEOREM 3: Extended majority rule    F   C         ∗   satisfies    strategy-proofness   ∗  , Pareto, ano-
nymity, neutrality, IIA, and decisiveness on U if and only if U contains no Condorcet 
cycles.

PROOF:
In view of the proof of Theorem 2, we need show only that if U contains no 

Condorcet cycles and   u (·)    is a generic profile on U, then no coalition C gains by 
manipulating. Suppose, to the contrary, that  x =  F    C   ∗   ( u (·)  , Y)  is a strict Condorcet 
winner and coalition C gains from manipulation   u  (·)  ′    (where   u  i  ′   =  u i    for all  i ∉ C ).

If  Z( u  (·)  ′  , Y )  consists of Condorcet winners, then we obtain the same contradiction 
as in the proof of Theorem 2. Hence, suppose that  Z( u  (·)  ′  , Y ) =  { x   1 ,  … ,  x   m }  , where 
no   x   i   is a Condorcet winner for   u  (·)  ′   .

Assume first that  x ∈  { x   1 ,  … ,  x   m }  . By definition of the Smith set, there exists  
k ∈  {1, … , m}   such that

(5)  μ ( { i |   u  i  ′  ( x   k ) >  u  i  ′   (x)} )  ≥   1 _ 
2
    (otherwise, x is a Condorcet winner).

Because C gains from the manipulation,

(6)   u i  ( x   k ) >  u i  (x)  for all  i ∈ C .

And so, from (5) and (6),

  μ ( { i |   u i   ( x   k ) >  u i   (x)} )  ≥   1 _ 
2
   , 

which contradicts the fact that x is a strict Condorcet winner for u.
If  x ∉  { x   1 ,  … ,  x   m } ,  then (5) holds for all  k ∈  {1, … , m}  , and the rest of the 

argument is the same. ∎

Strikingly, the axioms under discussion uniquely characterize majority rule on 
any domain that admits a voting rule satisfying these axioms.

THEOREM 4: If F satisfies  strategy-proofness, Pareto, anonymity, neutrality, IIA, 
and decisiveness on U, then F is majority rule on U.24

Remark 1: This result generalizes the classic axiomatization of majority rule by 
May (1952) to the case of three or more alternatives. May’s characterization focuses 
on the case   | Y |  = 2 , which is of only limited interest because then plurality rule, 

24 This result still holds if  strategy-proofness is replaced by    strategy-proofness   ∗  .
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runoff voting,  rank-order voting, and many other rules all coincide with majority 
rule. At first glance, May’s axioms may look somewhat different from ours: only 
neutrality and anonymity overlap. In particular, he imposes (in addition to neutral-
ity and anonymity) positive responsiveness,25 and we don’t. However, in the case   
| Y |  = 2 , this axiom immediately implies  strategy-proofness and decisiveness. 
Also, our list of axioms, unlike May’s, includes the Pareto property. But we require 
this only because, in contrast to May, we allow for restricted preference domains. Of 
course, our IIA axiom has no bite when   | Y |  = 2 .

Remark 2: An important difference between Theorem 4 and Theorem C is that, 
in the latter, Pareto, anonymity, neutrality, IIA, decisiveness, and ordinality don’t 
uniquely characterize   F   C  .

PROOF:
The proof is remarkably simple. Suppose F satisfies the axioms on U. From 

Theorem 1, we can confine attention to ordinal preferences (rankings). Assume first 
that   | Y |  = 2,  that is,  Y =  {x, y}  . If U contains only the ranking   x  y  , then the result 

follows from Pareto. Hence, assume that U contains both   x  y   and   y  x  . If, contrary to the 
theorem,

(7)  F 
(

 
  a ̲  
  

  1 − a 
‾

  
  x  y  

y
  

x
  ,  {x, y} 

)
  = y, where a >   1 _ 

2
   for some generic profile  

  a ̲  
  

  1 − a 
‾

  
  x  y  

y
  

x
  , 

then from neutrality and anonymity,

(8)  F 
(

 
  a ̲  
  

  1 − a 
‾

  
  y  x  

x
  

y
  ,  {x, y} 

)
  = x .

But, in profile (8), if a coalition of voters with ranking   y  x   pretends to have ranking   x  y   
so as to attain profile (7), then they attain outcome y, which they prefer to x. Hence 
 strategy-proofness is violated, and the theorem is established for   | Y |  = 2 .

Assume next that   | Y |  > 2.  If, for some profile, everyone prefers x to y but F 
chooses y, then we have a contradiction of Pareto. Hence, assume that there exist x 
and y and a generic profile such that

  F  
(

 
  a ̲  
  

  1 − a 
‾

  
  x  y  

y
  

x
  , Y

)
   = y, where a >   1 _ 

2
   .

25 Positive responsiveness says that if we alter voters’ preferences so that all voters like x at least as much vis à 
vis y as they did before and some now like x strictly more (and no other changes to preferences are made), then (i) if 
x and y were both chosen by F before, now x is uniquely chosen and (ii) if x was uniquely chosen before, it still is.
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Then, from IIA,

  F 
(

 
  a ̲  
  

  1 − a 
‾

  
  x  y  

y
  

x
  ,  {x, y} 

)
  = y,  

contradicting the previous paragraph. ∎

 Strategy-proofness is demanding in the sense that a voting rule must be unma-
nipulable by coalitions of any size. Let us relax this axiom. Call a voting rule  
F  ε- manipulable on U if, for all  ε > 0,  there exist coalition C with  μ(C) < ε,  
profiles   u (·)    and   u  (·)  ′    on U (with   u  i  ′   =  u i    for all  i ∉ C ), ballot Y, and  x, y ∈ Y  such 
that  x = F( u (·)  , Y ),   y = F( u  (·)  ′  , Y ),  and   u i  (y) >  u i   (x)  for all  i ∈ C.  That is, a vot-
ing rule is  ε- manipulable if there exists a coalition of arbitrarily small size that can 
benefit from misrepresenting. Because imposing a limit on a coalition’s size makes 
profitable manipulations harder, the following is a relaxation of  strategy-proofness.

Weak  Strategy-Proofness on U: F is not  ε- manipulable on U.26

Theorems 2 and 3 clearly continue to hold when weak  strategy-proofness replaces 
 strategy-proofness because the latter implies the former. Showing that Theorem 1 
still holds with this substitution is also quite easy.27 We now establish a stronger 
version of Theorem 4.

THEOREM 5: If F satisfies weak  strategy-proofness, Pareto, anonymity, neutrality, 
IIA, and decisiveness on U, then F is majority rule on U.28

PROOF:
Suppose F satisfies the axioms on U. As in the proof of Theorem 4, we start 

with the case  Y =  {x, y} .  Fix  ε > 0 , and suppose there exists generic profile 

  
  a ̲  
  

  1 − a 
‾

  
  x  y  

y
  

x
    where

(9)  a >   1 _ 
2
   > 1 − a with 2a − 1 < ε 

and

(10)  F 
(

 
  a ̲  
  

  1 − a 
‾

  
  x  y  

y
  

x
  

)
  = y .

26 We thank Shengwu Li, who suggested that we consider this version of  strategy-proofness.
27 Specifically, consider the proof of Theorem 1 and fix  ε > 0.  For each ordering   ≻   j ,  we can partition the 

sets of utility functions   u  i  ∗   and   u  i  ∗∗   corresponding to   ≻   j   into subsets of measure no greater than  ε . Then rather than 
changing all the   u  i  ∗   terms to   u  i  ∗∗   at the same time (as in the current proof), we can change the subsets sequentially 
(so no coalition manipulating is bigger than  ε ).

28 As with Theorem 4, we can replace weak  strategy-proofness with weak  strategy-proofnes  s   ∗   (the analog of 
 strategy-proofnes  s   ∗  ).
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Then we can apply neutrality and anonymity to obtain a contradiction of weak 
 strategy-proofness just like the contradiction of  strategy-proofness in the proof of 
Theorem 4, since the manipulation entailed is by a coalition of size less than  ε . 
Hence, for any a satisfying (9) we have

(11)  F 
(

 
  a ̲  
  

  1 − a 
‾

  
  x  y  

y
  

x
  

)
  = x .

Next consider  a′  with

(12)  a′ >   1 _ 
2
   > 1 − a′ with 2a′ − 1 < 2ε .

If

  F 
(

 
  a ̲  ′

  
  1 − a 
‾

  ′
  x  y  

y
  

x
  

)
  = y, 

then, from (11) and (12), a coalition of voters with ranking   x  y   and size smaller than  
ε  can pretend to have ranking   y  x   and thereby change the outcome to x, contradicting 
weak  strategy-proofness.

Proceeding iteratively, we can show that (11) holds for all a satisfying  a > 1 − a .  
Hence  F =  F   C   on U. The rest of the proof is the same as that for Theorem 4.29 ∎

V. Concluding Remarks

We have shown that, as long as a domain is free of Condorcet cycles, majority 
rule satisfies all the standard axioms for voting rules—Pareto, anonymity, neutral-
ity, decisiveness, IIA, and  strategy-proofness—and that no other voting rule sat-
isfies these axioms, irrespective of the domain. A sufficient condition ruling out 
Condorcet cycles is that each voter be ideological: he ranks candidates according 
to how far away from him they are on a  left-right continuum (this is an example 
of the more general sufficient condition of  single-peaked preferences; for another 
example, see the discussion of public goods in Section IV). Another sufficient con-
dition is that, among each group of three candidates, there is one whom voters feel 
“strongly” about: he might be ranked first or third, but never second (Donald Trump 
seems to have been such a candidate in 2016). A wealth of evidence suggests that, 
in actual elections, Condorcet winners nearly always exist. For example, Popov, 
Popova, and Regenwetter (2014) study elections for the presidency of the American 
Psychological Association and find “virtually no trace of a Condorcet paradox” (see 
Gehrlein 2006, chapter 2 for other evidence on the existence of Condorcet winners).

Indeed, by highlighting the theoretical shortcoming of majority rule, Condorcet 
may have done himself—and the world—an injustice.

29 The proof of Theorem 5 indicates that if we worked with a finite number of voters instead of a continuum, 
we could establish the uniqueness result using ordinary  strategy-proofness (rather than group  strategy-proofness).
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