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A major theme of the recent theoretical advances in the theory of
auctions is that auction rules which maximize expected revenue are not
efficient, ex-post. That is, a seller exploiting his monopoly power to
the maximum will design a scheme in which there is a finite probability
that the agent with the highest valuation will not end up with the object
for sale.

Discussion of the issue to date has focussed on the simplest auction
in which each buyer has a valuation which is perceived by others to be
an independent random draw from some known distribution F(+). In his
seminal paper Vickrey (1961) established that, with risk neutral buyers,
expected seller revenue is the same for high and second bid auctionms.

While this conclusion holds for any announced minimum price Vickrey focussed
on the case in which the minimum price is equal to the seller's own use
value of the object. Since the winner is the buyer with the highest valua-
tion in excess of the minimum price both auctions are efficient.

Butters (1975) first posed the question as to the optimal design of
an auction from the seller's viewpoint. He showed that expected revenue
was necessarily increased by announcing a minimum price in excess of the
seller's use value.

Independently Harris and Raviv (1978), Riley and Samuelson (1981), and
Myerson (1981) have all considered optimal auction design from the seller's view-
point under successively weaker assumptions about the distribution F(v). From these
papers we know that when buyers are risk neutral and a mild restriction
on F(v) is satisfied, there is no auction which yields greater expected
revenue than the high bid (or second bid) auction with the appropriately

selected minimum price.1 Then, for the revenue maximizing auction, the

1For the most complete discussion of the revenue maximizing auction when
F(v) does not satisfy the restriction see Maskin and Riley (1980).



inefficiency is associated with the possibility that one or more buyers have
valuations between the seller's use value and his announced minimum price,
Various authors including Holt (1979) and Matthews (1979) have also
shown that, when buyers are risk averse, the high and second bid auctions
no longer generate the same expected revenue. In the second bid auction
the payment by the winning buyer is independent of his bid. Therefore
buyers continue to bid their reservation values. However, in the high bid
auction, risk averse buyers place a lower marginal valuation on larger
gains. To understand the implications of this it is easiest to consider
the open auction equivalent of the high bid auction. In this "Dutch" auction
the auctioneer calls out successively lower prices. Loosely speaking, a risk
averse buyer has a greater fear of losing and so signals to stop the auction
more quickly than if he were risk neutral. The resulting bids are therefore
“higher on average. This conclusion holds regardless of the preannounced price
at which the seller will withdraw the object. Thus, for any minimum price,
the high bid auction yields greater expected revenue than the second bid
auction.
It is then natural to inquire as to whether the high bid auction can
itself be improved upon. The answer turns out to be in the affirmative.
For a broad class of auctions which include the independent valuations
auction and the "mineral rights" auction (with mild additional restrictions)
Maskin and Riley (1980) establish that a seller can increase expected
revenue if losers share the burden of payment with the winner. Making
losers pay lowers the equilibrium bids and thus raises the expected gains
of the winner. The outcome of the auction is thus more risky than>with payment

only by the winner. This exacerbates each buyer's fear of loss. As a result



bids are not lowered by so much that the decline in expected revenue from
the winner completely offsets the revenue received from losers. -

Since the analysis of the general case is complicated the goal of this
paper is to illustrate our conclusion by means of an example. In the
following section we shall show, for a simple two buyer auction with risk
averse buyers, that the seller increases expected revenue by employing
both a minimum price and an entry fee. General results are summarized

in section 2.

1. An Example

Consider two buyers, each with a valuation of some object v, € [0,1]

i
where vy is an independent random draw from the uniform distribution:

F(v) = v. Each buyer has the piecewise linear utility function

X sy, X< w 0<acx<1l
1) u(x) ={

x + a(x-w) y X > W

The smaller is a the greater the kink at x = w and hence the more risk averse
are the buyers.

The seller announces that the object will be sold to the highest bidder
submitting a bid above some minimum price m. Moreover each bidder must
also submit an entry fee of ¢ along with the bid.

We wish to establish that the seller can raise more expected revenue.
by utilizing some pair <m,c> which is strictly positive than if he employs
only a minimum price m. For any pair <m,c> there is some valuation v
below which there is no incentive to enter the auction. A buyer with the

"entry valuation" v bids the minimum, m, and wins if the other buyer has



a lower valuation, that is, with probability F(v) = v. With no entry fee
v = m. Therefore, with ¢ sufficiently small, the wealth of the buyer,

if he wins, is less than w and the entry value satisfies -
(2) EU = v(v-m) - c = 0.

To determine the symmetric Bayesian equilibrium bid function, b(v),
we begin by assuming that buyer 2 bids according to a bid function with
the general characteristics depicted in Figure 1. We then show that there
is some such function with the property that buyer 1's best response is

to employ the same bid function. That is, with buyer 2 making a bid b, = b(v

2 2)

buyer 1's best response bl = b(v*) is to choose v* = vy-
At this point it is useful to note that expected utility is a function
of buyer 1's true valuation, his bid b and his probability of winning p.

That is, we may write
EU = U(-b,p,vl).

In making a bid buyer 1 considers the trade off between a higher bid,
and hence a smaller increase in wealth if he wins, and a higher probability
of winning.

Consider first the case in which buyer 1's valuation is close to the
entry value v. Then, win or lose, his wealth is less than w. Expected

utility is therefore
(3) U(-b,p,v;) = plv;-b-c] + (1-p)[-c].

But with a bid of b1 = b(v) buyer 1 wins with probability v. Therefore
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expected utility can be rewritten as

U(-b(v), v;vl) = v(vl—b(v)—c) - (1-v)c

The optimization %roblem of buyer 1 can then be thought of as choosing
a point on the curve b = b(v) to maximize U(-b,v;vl). This is illustrated
in Figure 1. For b(*) to be the equilibrium bidding strategy expected

utility must take on its maximum at v = vl, that is,

du

—_—=y

d
v - EG{Vb(V)) =0, atv=yv

1 )

Integrating and making use of the boundary condition, bl(z) = m we have

1
mv - =v
4) b (v) = v+ —2 |
n 2 v

The subscript n denotes the fact that this is the equilibrium bid function
for a buyer remaining always in his risk neutral range. From (4), the wealth

of buyer 1, if he is the high bidder, is

mv - lvz
v, = b(v,) - ¢c = L, -2 _¢
1 1 21 Vl *

At some valuation, v', this wealth is equal to w. Substituting for c from

(2) we then have

2

—

éw

(5) %V' - (mv- Sv)/v' - v(yv-m) =w .

N

For all higher valuations the wealth of the winner is at least w. Therefore
expected utility is no longer given by (2). Instead, if buyer 1 wins, his

wealth is beyond the kink and we have

U(-b(v),v;vl) e viw + a(vl-b(v) -c -w] - (1-v)e

=av[(—1-;—°‘) () + v, - W] - ¢



Arguing exactly as above, b(v) is the Bayesian equilibrium bidding strategy

if U has its maximum at v = vl. Then

a a[(lég)(w+c) + vy - %; (vb(v))] =0 atve=yvy

dv 1°

Reintegrating we have
1 1-a k
= Pt _— > '.
(6) b_(v) v+ () (we) + S V>V

The subscript a denotes the fact that for v > v' the bidder is risk averse.
The constant of integration is determined by the requirement that the bid
function be continuous. Utilizing (4) we therefore have

my - 2w
-_— 2_

+ + (1(;0‘) (1- z—") (wtc), wv> v

(7) ba(V) 3

NJ:H

b + - Dywe), v > v

The curves bn(v) and bn(v) are depicted in Figure 1. For ¢ > 0 and suf-
ficiently small it can be confirmed that bn(v) is an increasing function
with slope less than 1/2. Thus it intersects the curve b = v - w only
once at v'. Moreover, from (7), it follows that, for o sufficiently close
to l,ba(v) must also lie below the curve b = v - w. Thus ba(v) is indeed
the equilibrium bid function over the interval [v',l]z.

Summarizing, we have established that the equilibrium bid function is3

0 s V <vVv

8) bv) = b (v), v<v<v'

ba(v), vicv <l

2For @ sufficiently small the equilibrium bid function has a second kink at some
point v'>v'. For v>v" the equilibrium bid function is b(v) = ba(v") + v-v",

3To be precise we have only considered necessary conditions for b; = b(vy) to be
buyer 1's optimal response. Using arguments similar to those in Riley and
Samuelson (1981) it is not difficult to confirm that this is buyer 1's globally
optimal response.



Since ba(v) > bn(v), for all v > v', it follows immediately that the
sellers expected revenue is higher when buyers are risk averse. Moreover,
as the kink becomes larger (a declines) expected revenue increases. Thus
the more risk averse are the buyers the greater is the seller's expected revenue.
These results illustrate more general conclusions obtained by Riley and
Samuelson (1981).

To determine the effects of introducing an entry fee we are interested
in perturbing the equilibrium from an initial situation in which there is
no entry fee. The expected revenue of the seller is the sum of the expected
entry fees plus the expected high bid. Since the high bid is made by the
individual with the high valuation and Prob {high value is less than v} = Fz(v),
we may write expected revenue as

1 1

9) Ra(m,z) =2 [ cdF(v) + S b(v)dFZ(v)
v v

Substituting for b(v) from (4) and (7) we have
1 1 2 1 2
Ra(m,z) =2 [ cdF(Vv) + [ bn(v)dF ) + J (ba(v) - bn(V))dF (v)
v v v
If a = 1 (no kink so that buyers are everywhere risk neutral) the third term
is zero. Moreover the first two terms are independent of a. Therefore we
may write
1 2
(10) R, (m,v) = R, (m,¥) +‘{ (b_(v) - b_(v))dF”(v)
Substituting from (2) and (4)

1
A R @y = S (v2vd)dv
v



Note that R1 is independent of m. That is, when buyers are risk neutral,
any pair <m,c> yielding the same entry value, v, yields the same expected
revenue. Moreover, it is readily confirmed that R1 takes on its maximum

at v = %n Then, from (2), any pair <m,c> satisfying

=1_1_
€=z

2
maximizes expected revenue. In particular expected revenue is maximized

by the pair <m,c> = <%30>. Returning to expression (10) and substituting

from (2) and (7) we have
1) R,@, = K@ + A v (wrom .

Differentiating (12) with respect to m we have

oR '
A = EBvavn? - 20 B

From (2) m=v - %-. We wish to establish that at ¢ = 0, so that m = v,
v

aR '
~2 is negative. This will be the case if éz—-is positive. From (5)
om om
mv lvz
1 - 2= . %' 1 .y

\]
At m = v the bracket is positive. Then %%—- is positive and the proof is

complete.
We conclude this section by comparing expected revenue with and without

the entry fee. For concreteness we consider the special case

w=1/8, o =1/2.

In Samuelson and Riley (1981) it is established that, for any entry fee and

minimum price, the expected revenue from a second bid auction is equal to



the expected revenue from a high bid auction when buyers are risk neutral.

We have already seen that with risk neutral buyers the seller can do no better
than announce a minimum price of one-half and a zero entry fee. Mo;;over,

in the second bid auction risk aversion has no effect on buyers' strategies.
Then the second row of Table 1 indicates the greatest expected revenue obtain-

able using a second bid auction. As a standard of comparison row 1 indicates

expected revenue in the absence of a minimum price.

minimum entry expected % increase
auction .
price fee revenue over row 1
second bid 0 0 .333 -
" " .5 0 416 25
high bid .5 0 .432 30
" " 445 0 .435 31
" " .209 .093 .483 45

Table 1: Expected Revenue from Alternative Auctions

(two buyers, w = 1/8, a = 1/2)

Turning to the high bid auction, the equilibrium bid function has a kink
at v' which is implicitly defined by equation (5). Setting the entry fee

equal to zero so that m = v we can solve for v' obtaining

(15) v' =w + (wz+12);é

Combining (11), (12), and (15) we then have
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o2 - 43

(16) R = 3V

+ &Y Qw02 H %

W=

Row 3 of Table 1 indicates expected revenue when the minimum price m(= v)
is set at the level which is optimal for the second bid auction. Row 4
indicates the outcome when the minimum price is chosen to maximize expected
revenue, as given by (16).

Finally, we consider the gain to using an entry fee as well as a minimum
price. Given the piecewise linearity of the objective function it is perhaps
not surprising that, holding v constant, the seller's optimal strategy is to
raise the entry fee until the winner is always in the risk averse range.

In terms of Figure 1, as the entry fee is raised and the minimum bid
lowered the kink moves to the left. Expected revenue continues to rise until
«', the point at which the bid function is kinked, approaches the entry

value v. From (5) this occurs when

5

(17) ¢ = i~ °

and hence, from (2)

w
sy

Substituting (17) and (18) into (12) and making use of (11) we have

19) Ry =1+ 9% - ﬁ3g3 + EH Q-vw

Setting @ = 1/2 and w = 1/8 it is readily confirmed that R, takes on its

maximum at

1
v=1(2+2°/8 x .427
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In reaching this result we have assumed that for all v > v the wealth
of the winner, v - b_(v), exceeds w. To confirm this we note that, sub-
a‘:

stituting (17) and (18) into (7), we have

2
v wv wv

1 r v ) X
b (V) =5v+[5- ?I:ETJ/V + A -9 ¢ =

For the parameter values used in Table 1 the bracket is negative so that ba(v)
is a concave function. But, by construction v - ba(z) = w. Then, for all
v>v, v - ba(v) does in fact exceed w.

The final row of Table 1 is then computed using (17), (18) and (19).

2. General Results

In Maskin and Riley (1980) a general auction model is developed which
encompasses a broad class of "one-shot" auctions, Rather than elaborate here
on this general model, we shall summarize the main conclusions for the
two most commonly studied models: (1) the "independent values auction"
and (ii) the "common value" or "mineral rights" auction.

The former is precisely the model examined in the previous section.
Each agent has a valuation vy which is an independent draw from some
known distribution F(v). As in our illustration, it is natural to intro-
duce risk aversion by making each buyer's return a concave function of the
difference between the gross gain (vi for the agent with the highest valua-
tion and zero for the others) and any payments due. For such a model it can

be shown that making some losers pay always raises expected revenue.
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Formally, we have
Proposition 1: Making some losers pay in the Independent Values Auction.

Suppose each of n buyers has a valuationv,, i =1, ..., n, an independent

i
draw from the distribution F(v). Suppose also that each buyer's return
can be expressed as
U(vi—w), if the object is awarded to agent 1
U(-w), otherwise
where w is wealth and U(*) is a concave function.
Then it is always possible to raise expected revenue by giving

buyers a choice as to whether or not to pay an entry fee. '"Free bids"

are considered only if no entry fee is received.

The first step in the proof of Proposition 1 involves establishing
that, for any v*, there is an equilibrium bid strategy in which only those
with valuations exceeding v* have an incentive to pay the entry fee. The
second step involves demonstrating that, for sufficiently high v*, introduction

of a small entry fee raises expected revenue.

From the same general theorem in Maskin and Riley (1980) we also have:
Proposition 2: Making all losers pay in the Independent Values Auction.
Under the assumptions of Proposition 1 it is always possible to

raise expected revenue from a high bid auction cum positive reserve

price by lowering the latter and introducing a required entry fee.

As the example in section 1 makes clear, expected revenue is generally
maximized by establishing auction rules such that those with sufficiently
low valuations in excess of the seller choose not to participate. The

resulting auction is therefore inefficient, ex-post, because there is a
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chance that some buyer with a valuation in excess of the seller remains out
of the auction.

It might then be argued that in the sale of some right to access by a
governmental unit, which has no alternative governmental use, an auction should
be designed so that any buyer with a positive valuation has an incentive to bid.
Accepting this argument, Proposition 1 then implies that the governmental unit
can do better than utilize a high bid auction with zero minimum price.

Expected revenue is revised by introducing a voluntary entry fee and giving
priority to those submitting the fee with their bids.*

Finally we turn to the "common value" auction. Each of n buyers is
assumed to observe a signal, Xy of which is jointly distributed with
the true value, s, according to the continuous density function g(s,xi).

A buyer's signal provides information about the true value in the following

sense. For any s, s', xi,xi
(s—s')(xi-xi) >0 ++g(s,xi)g(s',xi) z_g(s,xi)g(s',xi)

That is, for any pair of draws, (s,xi), (x',xi), it is more likely that s-s'

and xi-xi have the same rather than opposite signs. Following Milgrom and

Weber (1980) we shall say that x, and s are positively related.

i
Suppose that buyer 1 has a signal or "estimate" Xy and that the highest

of the other n-1 signals is yi- If buyer 1 pays an amount b and wins the
auction when the true value is s, his utility is assumed to be u(s-b) where

s 1s a concave function. Knowing only x; and Yys buyer 1's expected utility

*Note that we cannot appeal to Proposition 2 for this result. A buyer
with a zero valuation will never pay an entry fee since his probability of
winning is zero.
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is therefore

v(x -b) = E{U(s-b)lxl,yl}

l’yl’

Under our assumptions the joint distribution of s and XyseoosX, is

n
(20)  £(s,x;5000nx) = T gls,x) /(S (x,8)d0)"
n {=1 b A

From (20) the conditional density f(s,x3,...,xn|x1,x2) can be calculated.

Then
Y1 y1 * I
V(xl’yl’-b) =(n-1) S ... [ I U(S-b)f(s,x3,...xn xl,yl)dx3,...dxnds
X, =~00 X =0 g=_0

3

Knowing ( 20 ) buyer 1 can also compute the conditional density function
h(yllxl). In the high bid auction buyer 1 wins if and only if he outbids
all the others. Then if all but buyer 1 are utilizing the bid function b(x)

and buyer 1 bids ﬁ = b(xl), his expected utility is

1

*1

0Cxp,%;) = S v(x;,y;,-bGx Dhly, |x,)dy,

-0

The equilibrium bid function is then described by the requirement that,

1 = %y That is, when others

are bidding according to b(x) buyer 1l's best response is to bid b

for all X, ¢(xl’;l) takes on its maximum at x
1= b(xl).
In Maskin and Riley (1980) the following result is derived.
Proposition 3: Making some losers pay in the common value auction.
Suppose that the utility function U(*) satisfies conditions such that

each buyer exhibits non-increasing absolute risk aversion. Then if

buyefs are sufficiently risk averse and the rate of absolute risk aversion
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does not decrease too quickly with wealth it is possible to raise
expected revenue by giving buyers a choice as to whether or not to pay
an entry fee and looking at bids without a fee only if there is no

fee paying buyer.
We also have the following counterpart to Proposition 2.

Proposition 4: Making all losers pay in the common value auction.
If buyers exhibit sufficiently large and constant absolute risk
aversion it is always possible to raise expected revenue from a
high bid auction cum positive reserve price by lowering the latter

and introducing a required entry fee.

A few concluding remarks are in order concerning the role of our assump-
tions about risk aversion. First of all it is critical that any buyer
with a very favorable signal should have a lower marginal utility of income
if he submits the high bid than if he does not. That is, a buyer with a favor-
able signal would like to purchase fair insurance against losing out in
the bidding. 1In the absence of such insurance the seller is able to
exploit buyers' fear of loss by introducing payments for losers.

With constant absolute risk aversion all buyers satisfy this "insurance
condition." With decreasing absolute risk aversion it is not satisfied by
buyers with sufficiently unfavorable signals. However, unless absolute risk
aversion decreases rapidly the insurance condition must be satisfied by buyers
with highly favorable signals.

To see how the degree of absolute risk aversion plays a role we first

define
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*

v3() = T vy(x,y by DhGylxg,y < yy)dy

and

*

V3305) = L vaa(x,yabGyhlylx) .y < vy)dy
In proving Propositions 3 and 4 it is assumed that the following inequality
holds for all those buyers satisfying the insurance condition.

<
;3(x1) v(xl,xl,-b(xl) - V()

With buyers' signals positively correlated it can be shown that the right hand
side is negative. Thus the information effect, absent in the independent
valuations model, makes it necessary to introduce the assumption that

buyers are sufficiently risk averse.
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