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CHAPTER 2

The theory of incentives: an overview

Jean-Jacques Laffont and Erid Maskin

The theory of incentives is concerned with the problem that a planner
(alternatively called a designer, principal, or government, depending on
context!) faces when his own objectives do not coincide with those of
the members of society? (whom we shall call agents). This lack of coinci-
dence of goals_distinguishes incentives theory from the theory of teams
(Marschak and Radner, 1972), which postulates identical objectives, but
which otherwise shares many features with our subject. In turn, the
assumption that the planner, often the surrogate for society itself, has
well-defined objectives separates incentives theory from most of social
choice theory, which, since Arrow (1951), examines the possibility of
deriving social objectives from those of individual preferences.

For an incentive problem to arise, noncoincidence of goals is not
enough; the planner must care about either what agents know or what
they do. That is, his objective function must depend either on agents’
information or on their behavior.

An example of pure informational dependence is provided by the
literature on resource allocation mechanisms. There, the planner’s
objective - social welfare - is a function of consumers’ (agents’) pref-
erences and endowments. The incentive problem is, typically, that of
eliciting this information.

Pure behavioral dependence is exhibited by an employee-employer
relationship in which the employer is interested only in the employee’s
output. In this case, incentives pertain not to revealing what the
employee knows but to inducing him to work hard. Of course, incentive
problems typically involve both kinds of dependence.

The planner pursues his objectives by the choice of an incentive
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scheme,? a rule that specifies, in advance, the planner’s behavior on the -
basis of his perceptions of agents’ information and actions.* . -

This choice is nontrivial if either (1) some of the agents’ payoff-relevants -
information is not known, a priori, to the planner or else (2) the planner
cannot observe agents’ actions perfectly. (If the planner both knew all
relevant information and could precisely monitor actions, he could pre- -
sumably force agents to take the optimal action based on this informa-
tion by promising dire consequences otherwise.) .

The first difficulty is frequently called the problem of adverse selec-
tion. It is not necessary that the planner’s own objective function depend
on agents’ information - as in the allocation literature - for adverse
selection to arise; it is enough that agents’ payoffs should. Consider, for
example, a monopolist wishing to maximize his (expected) revenue using
a nonlinear price schedule. Although his revenue function does not
depend directly on consumers’ taste parameters - only on their demand
- such information is obviously relevant to his choice of schedule. The
monopolist’s problem is, indeed, a prime example of pure adverse selec-
tion.

At the other extreme is the employer-employee relationship mentioned
before. Imagine that the employee possesses no information not known
to the employer. Suppose, furthermore, that the employee’s output
depends stochastically on his effort, which is unobservable by the
employer. Then, the employer faces a problem of the second kind - a
moral hazard problem. His failure to induce the ‘‘optimal’’ effort level
by the agent derives solely from his limited ability to monitor this effort.

The theories of adverse selection and moral hazard are similar, but
there are some important differences between them. It is useful, there-
fore, to keep them separate conceptually, as we do in Section 2.

The planner’s choice of an incentive scheme entails a double maxi-
mization: He chooses that scheme which maximizes his (typically,
expected) payoff subject to the constraint that, given this scheme, agents
will maximize their own objective functions: In many contexts agents
must be guaranteed a minimal expected payoff to induce them to partici-
pate in the scheme at all. In such cases the planner must maximize
subject to the additional constraints that agents obtain these minimal
levels. The planner is, therefore, the ‘‘leader’’ in a two-move game; his
move consists of selecting a scheme.

What it means for an agent to ‘‘maximize his objective function’
may be complex if there are other agents, for his payoff then depends on
their responses to the planner’s scheme as well his own. Thus, with more
than one agent, an incentive scheme induces a game among the agents,
and the planner optimizes subject to the agents’ being in equilibrium. Of .
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course, to say what an equilibrium is, one must specify an equilibrium
concept. Even restricting to noncooperative (noncollusive) behavior by
“agents, at least four solution concepts (not including their refinements)
figure prominently in the incentives literature. We shall have more to say
about them later.

We have informally indicated the subject matter of incentives theory
in general terms. Of course, questions of incentives are rarely analyzed
at this level of generality. Nonetheless, it may be helpful to have a
framework within which to relate the disparate pieces of the large incen-
tives literature. To this purpose, we present a formal model in Section 1
and discuss certain modeling difficulties. In Section 2 we show how the
literature consists of studies of special cases of this model. Finally, in
Section 3, we analyze as an illustrative example a particular, but much
studied, special case - a model of public project selection.

1 A general framework

1.1 The model

We consider a model consisting of a planner and »n agents (indexed
i=1, ..., n). Each agent i has private information represented by §' € ©'.
On the basis of this information, he sends a message m' €M’ to the
planner. The planner replies to these messages with response r€ R. The
agent then chooses action a’ € A’. The planner cannot, in general, observe
@' directly but observes the outcome ¥’ € Y’ of @', ', and his own response
r, where y'is, in general, the value of the realization of a random func-
tion 7(a’, ', r). Finally, the planner selects decision d € D.

An incentive scheme is a choice by the planner of message spaces
M, ..., M" (the other spaces, A’, R, Y’ and D are exogenous), response
function p:M— R, and decision function é6: Mx Y — D, where
M=TIM' and Y=I1Y'. Thus we can represent an incentive scheme by
(M, p, ). For reasons discussed in Section 1.4, efficiency will ordinarily
be improved if the planner can take p and & to be random functions.
Thus, we shall often write an incentive scheme as (M, p, §) where the
tildes indicate possible randomness.

This is not the most general model of incentives that one could imag-
ine, but it is sufficiently broad to accommodate virtually all work on
incentives to date.” To see how the elements of this model fit together,
suppose that agents are production units and that the planner wishes to
allocate capital efficiently across these units. Each agent i produces out-
put from capital and labor according to the production process #,
known, ex ante, only to him. The planner asks each agent to provide
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data about his process. Thus m’ consists of possible messages that i
could send about his production technology. Based on this data, the
planner allocates capital across units. Thus r is an allocation, and p an®
allocation rule. Given his capital, agent ; then chooses a quantity of
labor ‘. Capital, labor, the production process, and, perhaps, nature
combine to produce output ¥(a’,#',r). Finally, production units are
rewarded by the planner according to the rule é on the basis of their
output and the information they provided.

For another, quite different, example that illustrates the model well,
suppose that the planner is an insurance company that insures agents
against accidents. Based on the message m' he provides about his acci-
dent-proneness 6, agent i is offered an insurance policy r. Whether or
not he has an accident (the value of y’) depends (randomly) on his
accident-proneness and the level a’ of preventive care he chooses.
(Notice that, in this example, ¥’ does not depend directly on r.) His ulti-
mate compensation, d, depends on y’ and his policy. Because the policy
itself depends on the information he provides, we can write é as a func-
tion of m’ directly.

We shall suppose that agent i’s payoff depends on his information ¢,
his action a@‘, and the planner’s decision d. We shall represent his pref-
erences by the von Neumann-Morgenstern utility function

u:DxA'x 0 - R

Agent i’s behavior presumably depends on ¢'. Thus, given ¢, we can
represent his behavior by the strategy o'(8') = (u/(6"), o(6',-)), where
p'(6"y € M and, for all r, o'(6’,r) €A’. (Throughout this chapter, we
shall ignore the possibility that agents might use random (mixed) strate-
gies.) The agent’s contingent strategy or strategy rule is given by the
function o’(-). If agent i is the sole agent, he will choose p/(#) and
o/(6, -) to maximize the expected value of u,(-, -, §'), where we speak of
expected value, because r, d, and y' may be random. With more than
one agent, an incentive scheme is a genuine game; agent i’s payoff will,
in general, depend, through r and d, on the strategies of others. Thus,
his choice of strategy will ordinarily depend on how he believes others
behave. In other words, in addition to the ‘‘objective’’ uncertainty
associated with the possible randomness of r, d, and y’, the agent may
face ‘‘strategic’’ uncertainty: uncertainty about others’ strategies.
Notice that he would face this uncertainty even if he knew the values of
others’ parameters 8/, The fact that he might not know these values
merely compounds his problem.

There are several alternative hypotheses (drawn from game theory) in
the incentives literature about how an agent might act under strategic
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uncertainty. These hypotheses are embodied in alternative solution con-
cepts. That is, a solution concept implicitly prescribes a way of resolving
strategic uncertainty.

We shall discuss four often-studied solution concepts later. For the
time being, we observe that for a specified solution concept, the planner’s
problem is to choose an incentive scheme whose equilibrium maximizes
his expected payoff. We assume that the planner’s preferences depend
on his decision d, the vector of outcomes y, and agents’ information
6= (0!, ...,0".° His preferences are represented by the von Neumann-
Morgenstern utility function

v:DxYx06 —->R

We can think of the planner as the Stackelberg leader in a two-move
game. First, he moves by choosing an incentive scheme; then, everyone
else reacts to that scheme.

Unfortunately, the preceding phrase, ‘‘choose an incentive scheme
whose equilibrium maximizes,’” may not have a well-defined meaning.
For a given incentive scheme, and relative to a specific solution concept,
there may be no equilibrium, or there may be several. The former possi-
bility poses no great conceptual difficulty; the planner can simply
confine his attention to those schemes that have an equilibrium. More-
over, the latter may not be especially troubling in the case of a single
agent. If an agent has multiple optimal strategies, it may not be overly
heroic to suppose that he chooses the one (or among the ones) that the
planner prefers. At any rate, that is what the literature, for the most
part, assumes. With more than one agent, however, agents will not, in
general, be indifferent among multiple equilibria. Therefore, for the
planner to count on a particular equilibrium arising may be unwar-
ranted; agents who prefer another may thwart him. The issue of multiple
equilibria has not been uniformly satisfactorily resolved throughout the
incentives literature for more than one agent. As we-shall see below, it
remains, for certain solution concepts in particular, an important diffi-
culty.

In contrast with the optimal incentive scheme - the incentive scheme
that maximizes the planner’s (expected) payoff - is the full optimum,
which consists, in addition to response and decision functions, of the
strategy rules that the planner, were he permitted, would impose on the
agents. Because in the full optimum there is no informational problem,
we can take the joint message space M!x --- x M"tobe ©'x --- x0".
Formally, (6, r*,d*), together with functions

a*:0'xR—> A, i=1,...,n
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is a full optimum with respect to the prior distribution F(8) if it solves
the problem

max Eyv(d,y,0)
r(-),d(-), al(-)

subject to
Eui(d(8, 7),a'(6',r(6)),0) 2 4', i=1,...,n

for some choice of #!,..., #". The @"’s can be interpreted as the ‘‘mini-
mal expected payoffs’’ mentioned in the introduction.

There are two reasons, mentioned in the introduction, why an opti-
mal incentive scheme may not be a full optimum. One is that the value
of & may not be known to the planner a priori. This is the problem of
adverse selection. The other is that y' may depend on &’. This is moral
hazard. We shall have more to say about these two problems later.

1.2 Solution concepts

In this subsection we discuss some of the more widely used solution con-
cepts in the incentives literature. Several others will be mentioned in
Sections 2 and 3. We divide solution concepts into three categories:
those that can be defined without reference to the information that
agents possess about one another (e.g., equilibrium in dominant and
maximin strategies); those that require the vector # of informational
parameters to be drawn from a joint probability distribution (viz., Bay-
esian equilibrium); and those that, in effect, assume complete informa-
tion (e.g., Nash equilibrium).

By far the strongest, but in several ways the least controversial, solu-
tion concept is that of equilibrium in dominant strategies. A dominant
strategy is a strategy that an agent, given his information, is willing to
use regardless of what he believes others know and the way he believes
others behave. Formally, (u'(6'), &/(¢',-)) is a dominant strategy for
agent i with information ¢ in incentive scheme (M, p, ) if for any choice
(m~',a”(-)) of strategies by other agents (where a~' is such that
a " ":R—A"", (m' a'(-))=(4(8"), &/ (#, -)) maximizes

(1.1)  Eu'(d(m,5(a(7(m)),8)), a'(7(m)),6%

for all 8=/, where the expectation is taken with respect to 3, y,and 7. The
strategy rules o= (o', ..., ¢”) are in dominant strategy equilibrium if for
all i and all &', o’(8') = (4(8"), &'(#', -)) is a dominant strategy for agent
i with information 6'.

To suppose that if agents have dominant strategies they will play
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them is an appealing behavioral postulate, because it assumes very little,
about agents. It is a weak assumption in three senses. First, it does not
specify what beliefs an agent has about others’ information. Second, it
does not ascribe to an agent any particular theory of how others behave
(i.e., how they choose their strategies). Third, it does dictate how the
agent resolves his strategic uncertainty: The maximaxer, the maximiner,
and the Bayesian will all play their dominant strategies, if they have
them.

The principal limitation of the dominant strategy solution concept for
the planner (apart from its neglect of possible collusion by agents) is the
difficulty of designing incentive schemes whose dominant strategy equi-
libria generate a satisfactory payoff for the designer. The Gibbard-
Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) gives an
indication of this difficulty. It asserts that, in the case where 4 and Y are
null (so that an incentive scheme is given by 6 : M — D), if for each i and
each ordering of D there exists '€ ©' such that w'(-, ') corresponds to
that ordering, then the only incentive schemes é6:M-»D for which
8(M) contains at least three elements and a dominant strategy equi-
librium exists are dictatorships, that is, schemes in which there exists an
agent j such that for all d€ 8(M) there exists /2’ € M/ with 8(m/, m /)y =
d for all m~/. Such an agent j is called a dictator because of his complete
power to have his own way. If the planner’s objective function v reflects
the preferences of agents at all democratically, it is clear that a dicta-
torial incentive scheme will not go very far toward the maximization of
the planner’s expected payoff.

Despite the negativism of the Gibbard-Satterthwaite result, satis-
factory dominant strategy incentive schemes do exist in some models. In
Section 3, we shall study one such model in considerable detail.

Maximin strategies, like dominant strategies, implicitly ascribe to an
agent neither a theory of what others know nor a theory of how they
behave. Maximin equilibrium, however, imposes a very strong method
for resolving strategic uncertainty: namely, extreme pessimism. Formally,
(1¥(8), &' (0, -)) is a maximin strategy for agent i with information ¢ if
(mi,a'(-)) = (p'(6"), o(#, -)) maximizes
(1.2) _,,mi_r;8_,_Eu"(21(m,y<a<r'(m)),0)),a"(f(m)),f)")

m~ta’,
where the expectation is taken with respect to d, 7, and 7. The strategy
rule vector o(-) = (c'(+), ..., ¢"(-)) is a maximin equilibrium if for all i
and 6, ¢'(6%) is a maximin strategy for agent i with information 6'.

The shortcomings (except in two-person zero-sum games) of maximin
strategies as a plausible hypothesis for strategic behavior are well
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known. Even accepting the maximin hypothesis, moreover, one cannot
typically make very accurate predictions about the outcome of a game.
This is because, in many games, virtually any strategy maximizes equa-
tion (1.2), so that almost anything can be an equilibrium.

In contrast with dominant and maximin strategies, the Bayesian solu-
tion concept (Harsanyi, 1967) is defined explicitly in terms of an agent’s
beliefs about others. Assume that each agent ; believes that # is drawn
from a joint probability distribution G’ (not all agents need have the
same G'). Suppose, furthermore, that agent i believes that agent j uses
the strategy rule 6/(-). The strategy rule vector 6(-) = (G!(-), ..., 3(+))
is a Bayesian equilibrium as long as for all i and ¢, ¢'(6") =5'(6")
maximizes

(1.3) SEu"(a"(e"),&—"(e-"))dG"(e",e"')

o

where Eu'(4'(6'),5-1(8~7)) is shorthand for agent i’s expected utility
when strategies are (¢‘(8"),5/(87*)). Of course, an equilibrium may
not exist in general unless agents can play random strategies, but we will
not worry about this problem.

One objection to this definition of a Bayesian equilibrium is that it
does not explain why agent i believes that others use the strategy rule
37'(-). In a conventional Nash equilibrium (in a game where players
know all relevant information about each other) a player can calculate
other players’ equilibrium strategies. In the Bayesian setting, to predict
that agent j will use the strategy rule &/, one must attribute to him not
only probabilistic beliefs about 6 but also beliefs about others’ beliefs
about #, beliefs about beliefs about beliefs, etc. That is, there is an
infinite and increasingly complex sequence of attributions of beliefs.
Moreover, besides creating a very complicated problem for agent i, this
formulation serves only to push back the unexplained hypotheses one
step, from the level of behavior to the level of belief.

One case in which this complexity is avoided is when probabilistic
beliefs about § arise as the result of some common experience - say a
public pronouncement about the distribution of 6.7 In that case, every-
one knows the distribution, everyone knows that everyone knows it, and
so on. That is, the distribution of # is common knowledge. Of course,
that knowledge of this kind is common is by no means an innocuous
assumption, but its enormously simplifying implications have led to its
almost universal adoption in the literature on Bayesian incentives.

We turn finally to complete information and Nash equilibrium. The
incentives literature employing Nash equilibrium has typically not for-
mally modeled the information that agents have about others. That is, 6
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is generally taken to embody only data about agent i’s own preferences,
endowment, etc. In this case a vector of strategies (not strategy-rules)
(5'(6Y),...,5"(0") is an equilibrium for agents with parameters
(6, ..., 07 if for all i, o'(6) = 5'(8') maximizes

Eu'(a'(6'),57(67"))

where the expectation is taken with respect to d, 7, and 7. This approach
has the defect that we can no longer speak of an equilibrium vector of
strategy rules, contrary to our approach so far; if 6! changes, o'(¢') is
no longer, in general, a Nash equilibrium strategy. Thus an approach
more in keeping with the rest of this chapter is to let ¢ incorporate all of
agent #’s information. In fact, we can write

6' = (6},6°))

where 6! can be interpreted as agent /’s information about his own pref-
erences, etc., whereas 8 ; represents his information about others. The
assumption of complete information can then be stated formally as

(1.4) 0,=6 forall i,j, and k

On the basis of equation (1.4) we can define a Nash equilibrium of strat-
egy rules. Indeed, formulated in this way, a Nash equilibrium is merely a
special case of a Bayesian equilibrium, where the ‘‘specialness’ is
embodied in (1.4). The reason why the literatures on Bayesian and Nash
incentives have evolved separately is that work in the former area has
typically assumed that 9“5 are distributed independently, whereas the
latter approach, as (1.4) indicates, requires not only that the 6"’s be per-
fectly correlated but coincident.

It may seem strange to model behavior by a solution concept of com-
plete information when, so often in the incentives literature, the very
lack of information is the central problem. For example, in many models
of public goods allocation only the absence of information about pref-
erences of consumers for these goods potentially prevents a full opti-
mum from being attained. One might argue that if consumers have com-
plete information about each others’ preferences, then the planner should
have this knowledge too. But if so, he can simply propose the optimum
ab initio, avoiding the design of an incentive scheme altogether.

Nonetheless, there are at least two distinct justifications for the Nash
equilibrium approach. First, the approach makes sense in many situa-
tions in which the “‘planner”’ is ficti ious (or a surrogate for the collec-
tion of agents themselves) and the m_thod of making collective decisions
(the incentive scheme) must be determined well in advance of the deci-
sion making itself. For example, in democratic societies, the allocation
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of resources to public goods is not imposed by an omniscient plaﬁner
but is decided by legislative methods fixed long before people’s (or their

representatives’) preferences for any particular public good are known. -

Nonetheless, by the time that representatives actually decide on a par-_
ticular allocation, they may well have a good idea about what each
others’ preferences are or (and what will often suffice) at least what the
distribution of preferences is. Thus Nash equilibrium (or one of its
refinements) may not be too bad a way to model behavior.

The other justification for Nash equilibrium is quite different and
relies on viewing an equilibrium as a stationary point of some kind of
(usually implicit) adjustment process. The idea is that at each stage of
the process, an agent either responds explicitly to the others’ current
strategies by modifying his own or, ignorant perhaps of what others are
doing, ‘“‘experiments’’ with his strategy and modifies it according to his
experimental success or failure. In either case, strategy revision ceases (a
stationary point is reached) when the current strategies form a Nash
equilibrium, because only then will agents find further (unilateral) devia-
tion undesirable. Thus Nash equilibrium is the appropriate concept to
predict the outcome, even though agents may not have complete
information.

Neither of these justifications is entirely satisfactory. The first rationale
has the virtue of being consistent game-theoretically. Indeed, if agents
do, in fact, have complete information, Nash equilibrium seems vir-
tually the only way to model (noncooperative) behavior. It has, how-
-ever, the drawback of limited applicability. There are simply many situa-
tions where supposing that agents have complete information does not
make sense.

The second rationale would appear to apply to situations regardless
of agents’ information, but it does not cohere so well formally. On the
one hand, if agents react merely to the current strategies of others, then
there is a strong element of myopia in their behavior. Why do they not
foresee the reactions that their own deviations induce in others? More-
over, if they are ignorant of others’ preferences, they should presumably
attempt to draw inferences about these from others’ behavior. On the
other hand, if agents merely ‘‘experiment’’ without directly observing
the behavior of others, they may have trouble disentangling the effects
of their own experiments from those of others.®

1.3 Direct revelation

The four solution concepts we have considered share the property that,
with some qualification, the only incentive schemes a planner need con-
sider are those where the message spaces are of the form
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and each agent’s equilibrium message is his true parameter. That is, an
* agent’s message is equivalent to an element 6’ of his information space,
and in equilibrium he truthfully reveals his information. That one can
restrict attention to message spaces of this form has been observed by
many, including Harris and Townsend (1981), Gibbard (1973), and Green
and Laffont (1977) and has been called the idea of direct revelation
(Dasgupta, Hammond, and Maskin, 1979) or the revelation principle
(Myerson, 1979).

Its explanation is straightforward. If (M, p, 6) is an incentive scheme
and o(-) =(a'(-),...,0"(-)), where o/(-)=(p/(-),a’(:)) is a corre-
sponding equilibrium, define

pliel - M/
a6/ xR—> A’
so that
56, y) = 8(x'(6"),...,u"(8"),¥)
() = p(p'(8Y), ..., u"(6"))
ﬁ/‘(g/’) = §/
& (0/,r) = ol (u/(6)), 1)

Then, it is immediate to verify that for dominant Bayesian and Nash
strategies the strategy rule vector (6',...,8") is an equilibrium for the
incentive scheme (O, p, 6). Thus, if (M, p, §) is an “‘optimal’’ incentive
scheme, so is (0, 5, §). For maximin equilibrium, this argument does
not quite work, because in moving from (M,p,8) to (6,5,8) we
change the joint strategy space and change the domain over which the
minimization (1.2) is performed. Thus, although ¢/(+) may be a maxi-
min strategy rule in the former scheme, 6/(+) may not be maximin in the
latter. This difficulty can, to some extent, be avoided by changing the
definition of a maximin equilibrium so that agents’ minimizations are
performed only over those strategies that could be maximin strategies
for others. (For the details on this kind of restricted maximin equilibrium,
see the work of Dasgupta, Hammond, and Maskin, 1979, pp. 207-9.)
There may also be a problem with direct revelation schemes in the
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case of dominant strategies. Here the problem is not that &/(-) might fail
to be a dominant strategy rule in (6, p, 8) but that even if (M, p, §) has
a unique equilibrium (or, alternatively, all equilibria generate the same .
expected payoff for the planner), (8, g, §) may have multiple equilibria,
some of which give the planner a lower payoff.’

Still, one feels intuitively that, at least in incentive problems that are
sufficiently nondegenerate, the problem of multiple equilibria with dom-
inant strategies should not be terribly severe in direct revelation schemes.
This rather vague intuition can be expressed formally in several different
ways. First, it can easily be shown that when agents’ preference orderings
are strict (i.e., when for all 8’ the indifference sets corresponding to
u'(-, -, 8) are singletons), there exists at most one dominant strategy
equilibrium outcome (the equilibrium outcome consists of the planner’s
decision and the agents’ actions) (Dasgupta, Hammond, and Maskin,
1979, p. 196) for each profile (8, ..., 6"). Second, it is obvious that if,
as in some problems, agents’ preferences are strictly convex in their own
strategies, they cannot have more than one dominant strategy. Third,
suppose that changing 6’ or a’ changes agent i’s preferences over D. One
way of capturing the idea that the incentive scheme is not degenerate is
to suppose that by varying m’ (holding a’(-) and other players’ strategies
fixed) agent / can make the incentive scheme trace out a subset of D with
the same dimension as the hyperplane tangent to a point of agent /’s in-
difference surface in D and, furthermore, that as other agents’ strategies
vary (holding @’(-) and m’ fixed) the incentive scheme traces out all of
D. Formally, suppose that all spaces have suitable topologies and that
the u/’s are analytic functions such that, for all 8/, 8/’, @/, and a’"

wi(,al,¢) =u/(-,a’",6)

if and only if @/=a’’ and 8/=6/’. Suppose that (6, p, §) is a (differenti-
able) direct revelation scheme with a truthful dominant strategy equi-
librium o(-) = (¢'(+), ..., ¢"(-)). (By truthful, we mean that ¢/(8’) =
(#’(87),a’(87)), where p/(8/) =6/ for all j and #’.) Assume that y’
(differentiable) does not depend on a’ and that R is null, so that we can
ignore p. Because 6 depends on 8 through p, o, and y, we may write § as
a function of 8 directly, where 8(8) is the decision if all agents use their
truthful dominant strategies. For d€D, a’ € A/, and 8, let D/(d, a’, §’)
be the hyperplane tangent to agent j’s indifference surface (for utility
function #/(-, -, 7)) at (d,a’). (That such a hyperplane exists at every
point implies that indifference surfaces are not thick.) Let C/(8,8) be
the linear space spanned by the derivative of 8(8) with respect to 6/, and
let C~/(8, ) be the space spanned by the derivatives of  with respect to
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all 8”’s other than 6/. Because o/(8) is a dominant strategy for agent j
with parameter §/,

C/(5,0) € D/(5(8), o/ (67),67)

The result is Proposition 1.1.

Proposition 1.1: In the formulation of the preceding paragraph, if for
all j and ¢

C/(8,0) = D/(8(8), a/(67),6’) and C~/(4,0) =

then if (o'(-),...,0"(+)) is a dominant strategy equilibrium for the
direct revelation incentive scheme (©,8), only truthful strategies are
dominant.

Remark: The condition C/= D/ amounts to requiring that, by varying
m/, agent j can trace out a subset of D with the same dimension as that
of the hyperplane tanget to his indifference surface. The condition
C~/=D means that the set of outcomes obtained by varying m ~/ locally
looks like D.

Proof: Suppose that besides o'(8'), ¢'’=(m'’,a’’) is dominant for
agent / with parameter 6. Because the scheme is direct revelation,
m'’=6 for some §' €O, Then,

du' o 386,87 iy
(1.5) 4 (5(6,67",a',68" YT =0 forall 8

Because o'(#’) is dominant for agent / with parameter 6,

ou' Giog—iy i i g-iy = -i

(1.6) 7d (5(6°,077), ai(6), 6°) - 60' (6,6=1) =0 for all 6

Because C'(5, 0',0~') = D'(8(¢",6~7), &/(6'),6") by hypothe51s and because
of (1.5) and (1.6), the vector au'/ad(é(()‘ ~y,a",8) isa scalar multi-
ple of au’/ad(a(()‘ ) a (0) 6') for all 6~'. For some §~' , let d=
6(6' —iy. Because_ Ci(s, 0' 6~H=D, 6(0‘, ) is (locally) onto Dina
neighborhood_of 0”’ there exists a neighborhood N of d such that
du'/dd(d, a (6') 0) is a scalar multiple of au‘/ad(d a” 8’y for all
d€N. Thus the ordering corresponding to u'(-, « (6‘) 0‘) coincides
with that of u/(-,a’’,6") when restricted to N. Because u' is analytic,
these orderings coincide for all of D. But then, from hypothesis,

(a(6%),67) = (a'’,0") andso 6'=6 Q.E.D.
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With Bayesian equilibrium, multiple equilibria do not create diffi-
culty in converting an incentive scheme to an equivalent direct revelation
scheme; the set of equilibria in the original scheme is isomorphic to that ~
in the direct scheme. However, multiple equilibria are a more general
problem for Bayesian equilibrium. Very little is known about the
circumstances under which a scheme has unique equilibrium or, alterna-
tively, all equilibrium outcomes are equivalent. Indeed, we will show in
Section 3 that in a simple public goods model - much studied in the liter-
ature - there is a whole continuum of Bayesian equilibria, almost all
““bad.”’

The issue of multiple equilibria is important too for Nash equilibrium
as a solution concept. But, in this case, the existing literature has dealt
with it. Usually the approach has been not to design schemes for which
equilibrium is unique - indeed, with Nash equilibrium that is often
impossible - but rather (e.g., Groves and Ledyard, 1977; Maskin, 1977;
Hurwicz, 1979a; Schmeidler, 1980) to ensure that all Nash equilibria are
equally desirable. A characterization of when such insurance is possible
(in the case where the A'’s are null) is given by Maskin (1977).

1.4 Random incentive schemes

In our general incentives model we allow for the possibility that 6 and «
may be stochastic. There are two reasons why the planner may wish to
make them stochastic.

The first is that the spaces D and R may not be convex. Randomiza-
tion simply permits the planner to convexify these spaces. A recent
example where this kind of randomization figures prominently is the
problem of auctioning an indivisible object (Myerson, 1978; Maskin and
Riley, 1980a). Here a nonconvexity is created by the constraint that the
seller (planner) can assign the object to at most one bidder. (That is, D is
nonconvex.) The seller may therefore wish to randomize among certain
bidders to determine the winner in order to overcome the nonconvexity.
Another model in which D is inherently nonconvex is the model of
discrete public investment studied in Section 3 of this chapter.

The second rationale for randomization is, formally, that the con-
straints of the planner’s maximization problem will not in general be
convex. The planner maximizes subject to agents’ maximizing as well. If
5'(8') is a maximizing strategy for agent i, then

(1.7)  Eu'(6'(6")) = Eui(m',a'(+))

for any alternative strategy choice (m’,a’(-)) (where we have, for con-
venience, written /’s utility as a function of his strategy directly and have
omitted other agents’ strategies). If u’ is linear in strategies, then (1.7)
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represents a convex constraint. But if utility is strictly concave (if the
agent is risk-averse), then the set generated by (1.7) will in general not be
- convex (because a concave function appears on both sides of the
inequality).

This argument constitutes a prima facie case for randomization when
agents are risk-averse. On closer examination (Maskin, 19800) it turns
out that this kind of randomization is quite generally useful as a screen-
ing device in models of adverse selection, but it is desirable only under
rather restrictive (and often implausible) assumptions in models of pure
moral hazard.

2 The incentive literature

In this section we quickly review the incentives literature to illustrate
how work in this field fits neatly into the framework of Section 1. We do
not attempt, however, to survey the literature exhaustively. Our greatest
emphasis is on work about implementation and resource allocation.

2.1 Models of adverse selection

We begin by discussing models in which adverse selection (the inability
of the planner to observe agents’ information) prevents the attainment
of a full optimum. The simplest variety of adverse selection model is one
in which agents do nothing but transmit messages. That is, A" is null.
Pure message transmission. A substantial part of incentives theory con-
sists of models of pure message transmission. These include the imple-
mentation, allocation mechanism, nonlinear-pricing, and auction-
design literatures.

In the implementation literature, the planner represents society. His
objectives are embodied in a correspondence

fi©--D

where ©' typically consists of the possible preference orderings over D
that agent / can have. For any profile 8, f(8) consists of the ‘‘welfare-
optimal’’ or “‘best’’ decisions. In the notation of Section 1, the planner’s
objectives can be expressed as

v:Dx06 —-R
where
v(d,0) =1, de€f(b)

= 0, otherwise
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The implementation problem is to find an incentive scheme (M8) (we
can ignore p) such that for each 6 the set of equilibria (with respect to a
given solution concept) coincides with, or is a subset of, f(8). (See the -
work of Dasgupta, Hammond, and Maskin, 1979, for more detail.) If
such a scheme exists, f'is said to be implementable.

The implementation literature subdivides according to solution con-
cepts. In addition to the four solution concepts discussed in Section 1,
there are numerous variants.

The basic (negative) result for dominant strategies (see Section 1) is
due to Gibbard (1973) and Satterthwaite (1975). Related results are due
to Pattanaik (1975), Barbera (1977a), Giardenfors (1976), Kelly (1977),
and others. These results are proved for unrestricted domains. Exten-
sions to restricted domains, showing the connection between implemen-
tability of a correspondence and the existence of a social welfare func-
tion satisfying Arrow’s conditions, have been studied by Maskin (1976)
and Kalai and Miiller (1977). (For more on restricted domains, see the
work of Pattanaik and Sengupta, 1977, Moulin, 19805.) In particular, it
is shown (Dasgupta, Hammond, and Maskin, 1979) that if the corre-
spondence fis generated by an Arrow social welfare function (i.e., f(8)
represents the top-ranked elements in the social ordering), then it can be
implemented not only in dominant strategies but in coalitionally domi-
nant strategies. That is, the formation of collusive coalitions does not
change the set of equilibria.

The implementability of a single-valued correspondence f in domi-
nant strategies is equivalent to f’s satisfying ‘‘independent person-by-
person monotonicity.”” IPM asserts that if a € f(6) and a is strictly pre-
ferred to b under 6°’, then b€ f(6'’, ). The conditions for implement-
ability in coalitionally dominant strategies are stronger (independent
weak monotonicity), but the two kinds of implementability are equiva-
lent when preferences are strict (indifference is ruled out) and pref-
erences are sufficiently “‘rich.’’10

There is a recent literature on dominant strategy implementation
when preferences and incentive schemes are differentiable. Contribu-
tions include those of Chichilnisky and Heal (1980a, 1980b) (which also
consider Nash equilibrium) and Satterthwaite and Sonnenschein (1981).

Another line consists of studying random incentive schemes (i.e.,
schemes where & is a stochastic function of m). Gibbard (1977) has
shown that by allowing the scheme to be stochastic, but otherwise pre-
serving the hypotheses of the Gibbard-Satterthwaite theorem, one
enlarges the set of implementable correspondences (here allowing for
random correspondences) to include those that are lotteries over dicta-
torships and those correspondences with a range of at most two ele-
ments. For related results, see the work of Barbera (1977h).
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There is practically no analysis of maximin equilibrium at the most
. general level of implementation theory. There is also relatively little on

- Bayesian equilibrium; however, see the work of Myerson (1979) and
Rosenthal (1979). On the other hand, the literature on Nash equilibrium
and its variants is large. Hurwicz and Schmeidler (1978) have studied the
possibility of constructing incentive schemes whose Nash equilibria are
Pareto-optimal when message spaces have the cardinality of preference
spaces. Maskin (1977) enlarged the message spaces and showed that any
correspondence that is monotonic (see Section 3.4) and satisfies a weak
nonveto property!! is Nash-implementable. In particular, the Pareto
correspondence (the correspondence that selects all Pareto optima) is
implementable for any domain of preferences.

There is an intimate connection between Nash and dominant strategy
implementation. K. Roberts (1979a) demonstrated that with unrestricted
domain, the only single-valued Nash-implementable correspondences
are dictatorial (see also Pattanaik, 1976). This corresponds to the
Gibbard-Satterthwaite theorem for dominant strategies. Dasgupta,
“ Hammond, and Maskin (1979) extended this result by showing that any
single-valued Nash-implementable correspondence is implementable if
the domain of strategies is rich. This means that, at least for rich
domains, one does not extend the set of implementable correspondences
by weakening the solution concept from dominant strategies to Nash, if
single-valuedness is maintained.

Much work has been done on implementation with variants of Nash
equilibriom. Moulin (1979, 1980a) studied implementation by successive
elimination of dominated strategies (dominance solvability). This solu-
tion concept, due to Farquharson (1969), is closely related to the notion
of perfect equilibrium proposed by Selten (1975). In particular, Moulin
was able to show that in contrast to the results for Nash equilibrium, a
large class of single-valued correspondences are implementable even for
an unrestricted domain of preferences.

Another variant of Nash equilibrium is the strong equilibrium, in
which equilibrium strategies are compared not just with the deviations
of single agents but with those of coalitions. Contributions to the theory
of strong implementation include the work of Moulin and Peleg (1980),
Maskin (1979a), and Kalai, Postlewaite, and Roberts (1977).

One difficulty with incentive schemes that implement correspon-
dences in strong equilibrium is that they typically have many ordinary
(i.e., noncooperative) Nash equilibria in addition to their strong equi-
libria. These Nash equilibria, moreover, may well not be elements of
f(8). That is, to adopt strong equilibrium as a solution concept is not
. just to allow for the collusion of coalitions but to insist on it; without
collusion, equilibrium may not be in f(8). To accommodate a planner’s
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uncertainty about the collusiveness of agents, Maskin (1979b) proposed
the concept of double implementation, in which the Nash and strong
equilibria of an incentive scheme coincide. Because of this coincidence, °
it makes no difference which coalitions, if any, form; the set of equilibria
is always the same.

A line of research related to implementation derives from the work of
Peleg (1978a). For a scheme to be consistent with f, Peleg, in effect,
required that at least one of its strong equilibria be in f(6). If f(6) is a
subset of the strong equilibria of the scheme, then, in the terminology of
Sengupta (1979), fis partially implemented. In addition to these articles
by Peleg and Sengupta, work on consistency and partial implementation
includes that of Peleg (1978b) and Dutta and Pattanaik (1978).

The literature on incentives in resource allocation closely resembles
that on implementation, but it deals with more structured models. In
particular, D becomes the space of possible allocations of goods across
agents rather than just an abstract decision space, and the correspon-
dence f becomes an allocation rule. Moreover, preferences are restricted.
As before, the subject subdivides according to solution concept.

In his pioneering article, Hurwicz (1972) showed that in a pure
exchange economy of private goods, no Pareto-optimal, individually
rational !? allocation rule is implementable in dominant strategies when the
preference domains include at least the Cobb-Douglas family. This
result has been extended by Satterthwaite (1976), Satterthwaite and
Sonnenschein (1981), and Dasgupta, Hammond, and Maskin (1979) by

- dropping the hypothesis of individual rationality and substituting the
conclusion that only dictatorial allocation rules are implementable.

Most work on dominant strategy allocation rules, however, concerns
public goods. Indeed, most of it assumes that agents’ preferences for a
public good and private good take the form

Q.1 dix, ) =vix)+1t

where x is the level of the public good and ¢ is a transfer of the private
good. Virtually all research has been concerned with successful alloca-
tion rules, rules that, given »!(-),..., v"(-)), choose the public-good
level to maximize

;, vi(x)

In three seminal articles, Groves (1973), Clarke (1971), and Smets (1972)
independently demonstrated the existence of successful allocation rules
that are implementable in dominant strategies. Groves showed that a
successful allocation rule is implementable if its transfers take the form
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. where x=d maximizes L7—, v'(x),

) = (WIE) L T, UG, L 0 ()

and A'is an arbitrary function of v ~/(-). Let us call the set of successful
rules whose transfers satisfy (2.2) the Groves class. Clarke (1971) exhib-
ited the particularly interesting member of the class in which
h(v~'()) = = ¥ v/(d")
JEi

where x=d' maximizes I;.; v/(x). This is often callen the ‘“pivotal”
mechanism because only agents who change the public-good level from
what it would be without them get transfers (which are, in fact,
negative). The second price auction of Vickrey (1961) is, in fact, the
private-good analogue of this rule. Smets (1972) examined the Groves
rule in which A'=0. )

Green and Laffont (1977) established that the Groves class coincides
with the set of all implementable allocation rules when the domain of
possible valuation functions v(-) is unrestricted. A monograph by
Green and Laffont (1979a) provides a detailed analysis of the properties
of the Groves class. Green and Laffont (1976) and Hurwicz (1975) estab-
lished, in particular, that no member of the Groves class has transfers
that balance (sum to zero identically). Walker (1980) generalized this
result. That no member of the Groves class is immune from manipula-
tion by coalitions has been demonstrated by Green and Laffont (1979b)
and Bennett and Conn (1977).

There is a small literature on interesting restrictions of the domain of
valuation functions. Groves and Loeb (1975) examined quadratic valua-
tions and showed that, for this domain, balancing the transfers is possible.
Laffont and Maskin (1980a) studied successful and implementable allo-
cation rules when valuation functions are differentiable and are parame-
trized by @ ranging in an open interval of the real line. In this frame-
work, the proof that the set of such allocation rules coincides with the
Groves class is virtually immediate, amounting merely to integrating a
partial differential equation. (Indeed, in the differentiable setting, the
whole question of implementability boils down to the integrability of
systems of partial differential equations.) Holmstrom (19795) demon-
strated, however, that this characterization depends crucially on the
domain of 8’ being smoothly connected. He showed that without this
assumption, there are successful and implementable rules outside the
Groves class. Laffont and Maskin (1980a) also showed that, with differ-
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entiability, questions about transfer balance and manipulation by coali-
tions are easy to handle. An illustration of the power of the ‘‘differen-
tiable approach’’ is given in Section 3 of this chapter.

Another line of work concerns nonsuccessful allocation rules. K.
Roberts (1979) showed that when the space of valuation functions is
unrestricted, any implementable rule must choose the public-good level
to maximize

El Noi(x) + K(x)

i=
where A’ 2 0 and X is an arbitrary function. Laffont and Maskin (19805)
placed the further restrictions on valuation functions of differentiability
and concavity and showed that any member of the class of implementable
and neutral (treating all public-good levels symmetrically) ruies must
take the public-good level to satisfy

1 n
h(%— o, 2 (x)) =0

dx

where A : R” — R is continuous and semi-strictly increasing. In Section 3
of this chapter we characterize all (piecewise differentiable) imple-
mentable allocation rules when the public-good level is restricted to the
values 0 and 1 (although we allow for randomization as well).

Finally, instead of working with severely restricted preferences,
Roberts and Postlewaite (1976), Hammond (1979), and Mas-Colell
(1978) examined dominant strategies in economies with many agents.
Roberts and Postlewaite showed that in the limit, price-taking behavior
becomes a dominant strategy as a pure exchange economy grows.
Hammond studied an economy with a continuum of agents and demon-
strated that implementable and Pareto-optimal allocation rules must be
competitive. Similarly, Mas-Colell showed that an implementable allo-
cation rule satisfying convexity, anonymity, nondegeneracy, and neu-
trality properties is necessarily competitive.

The literature on maximin equilibrium and resource allocation is con-
siderably smaller than that for dominant strategies. Dubins (1974) exhib-
ited a balanced allocation rule that can be implemented in maximin
equilibrium when utility functions take the form of equation (2.1).
Green and Laffont (1979a, Chapter 7) showed that this rule is not indi-
vidually rational (does not guarantee agents at least the utility of their
initial endowments) and that it encounters difficulties when consump-
tion sets are bounded from below. They constructed a generalized rule
that is individually rational on average and argued that this modified
Dubins rule is the static analogue of the Malinvaud-Dréze-de la Vallée
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Poussin planning procedure (see the discussion of planning procedures

- that follows). Thomson (19792) characterized all maximin imple-

mentable allocation rules when preferences are of the form (2.1) and
also in the 0-1 project case.

. Using the Harsanyi (1967) concept of Bayesian equilibrium (see
" Section 1), d’Aspremont and Gérard-Varet (1979) showed that there
exist Bayesian implementable allocation rules that are successful and for
which transfers balance when preferences take the form of equation
(2.1) and when the joint probability distribution of valuation functions
is common knowledge, with v(-) distributed independently of v ~/(-).
Arrow (1979) offered a similar analysis. Laffont and Maskin (1979a)
characterized the class of Bayesian implementable successful rules and
demonstrated its close connection with the Groves class. They also
extended the d’Aspremont-Gérard-Varet results to the case where the
vi’s are ‘‘negatively correlated.”” Unfortunately, these analyses
examined only ‘‘truthful’’ equilibria in which agents, in effect, reveal
their true preferences. The possibility of untruthful equilibria was not
considered. That untruthful equilibria are likely to exist in profusion is
discussed in Section 3. Other work on Bayesian incentives and resource
allocation includes that of Harris and Townsend (1981) and Ledyard
(1977), both general discussions of the issues and concepts involved in
resource allocation with incomplete information.

Groves and Ledyard (1977) inspired much of the literature on incen-
tives and Nash equilibrium. They developed an incentive scheme that,
for any number of private and public goods, and for a domain of pref-
erences restricted little more than by the “‘classical’’ assumption of con-
vexity, monotonicity, and continuity, has the feature that all its Nash
equilibrium'® outcomes are Pareto-efficient. (There may, however, be
difficulties with the existence of equilibrium unless preferences are
restricted rather more. See the work of Green and Laffont, 1979a,
Chapter 7.) Schmeidler (1980) exhibited an incentive scheme for a pure
exchange economy of private goods whose Nash equilibria coincide with
the Walrasian (competitive) equilibria when preferences are classical.
However, the scheme violates both individual and aggregate feasibility
constraints out of equilibrium. Hurwicz (1979a) devised a scheme whose
Nash equilibria coincide with the Lindahl equilibria of a classical
economy, but again the scheme may be aggregately infeasible when in
disequilibrium. These infeasibilities, moreover, are necessary; feasible
implementation in Nash equilibrium of the Lindahl and Walras corre-
spondences is impossible. The difficulty is, as shown by Postlewaite,
that these correspondences are not monotonic at the boundary of the
feasible set as Nash implementation requires (Maskin, 1977). However,
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as Hurwicz, Postlewaite, and Maskin (1979) demonstrated, the con-
strained Walrasian and Lindahl correspondences are Nash imple- -
mentable (the constrained correspondences include, in addition to -
ordinary Walrasian and Lindahl allocations, the allocations obtained by
constraining an individual’s demand from exceeding the total endow- -
ment of the economy). Moreover, as shown by Hurwicz (197%9a), the -
constrained Walrasian and Lindahl correspondences are the smallest
continuous, Pareto-optimal, and indivually rational correspondences
that are Nash implementable if the domain includes all classical pref-
erences. That is, any other such correspondence must include all con-
strained Walrasian allocations (for a private-good economy) or all con-
strained Lindahl allocations (for an economy with public goods). Other
work on Nash implementation in resource allocation includes that of
Hurwicz (1975), Thomson (1980), Walker (1977), and Wilson (1978).

The incentive schemes mentioned so far for allocation of resources
have been “‘one-shot’’ games: Agents report their messages, on the basis
of which the planner chooses an allocation (aithough, as discussed in
Section 1, Nash equilibrium is sometimes viewed as a stationary point in
an adjustment process). An alternative approach, pioneered by Dréze
and de la Vallée Poussin (1971), Malinvaud (1972), and Tideman (1972),
is to allocate through a dynamic incentive scheme. In the three articles
cited, each agent consumer reports his marginal rates of substitution
between a public good and private good at each instant of time. The
planner uses this information to alter the public-good level and to make
transfers of private good. Over time, the allocation converges to a Pareto
optimum. Moreover, along the way, the utility of each consumer con-
tinually increases (i.e., the procedure is individually rational). Champ-
saur (1976) showed that the class of such ‘““MDP”’ procedures is ‘‘neu-
tral’’ or “‘unbiased’’; that is, any individually rational Pareto optimum
is the limit point of a member of this class (see the work of Champsaur,
Dréze, and Henry, 1977, for a comprehensive study of the stability and
existence of solutions in these procedures). -

One important question about MDP procedures is the incentive for
truthful reporting of marginal rates of substitution. Dréze and de la
Vallée Poussin (1971) showed that truthful revelation is a local maximin
strategy (i.e., maximizes the minimum instantaneous payoff, the instan-
taneous payoff here being the gradient of utility) and consequently also
globally maximin (maximizes the minimum utility of the final
allocation). They also observed that at the stopping point of a process,
revelation of true marginal rates of substitution forms a Nash equi-
librium. Malinvaud (1971) suggested that MDP procedures will converge
even if agents “lie’”’ along the way. Indeed, J. Roberts (1979) proved
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that if, at each instant, consumers report their Nash equilibrium strat-
. egies of the local revelation game (by local revelation games we mean
that consumers report so as to maximize the instantaneous increase of
utility), Nash equilibrium is unique, but the equilibrium strategies are
.untruthful except at the stopping point.!* The procedure still converges
to a Pareto optimum, aithough at a slower speed than under truthful
revelation (see also Henry, 1977).

As discussed in Section 1, modeling consumers’ behavior by Nash

equilibrium implicitly entails one of two alternative assumptions. Either
one assumes that consumers know one another’s preferences and so can
directly calculate the Nash equilibrium, or one supposes that equilibrium
is itself reached through an iterative adjustment procedure. Both
assumptions have unappealing features. In particular, the second leads
to a double infinity - an infinity of adjustments in the local Nash game
and another in the MDP procedure itself. Schoumaker (1977) and Henry
(1977) attempted to disentangle this double infinity by studying discrete- ~
time versions of the MDP procedure.
“ One way of avoiding both assumptions is to devise a procedure
ensuring that at each instant truthful revelation is a dominant strategy
for the agent. Green and Laffont (1979a2) devised procedures with this
incentive property, but these are not individually rational, and their
transfers do not balance. Fugigaki and Sato (1981), however, exhibited a
class of generalized MDP procedures for which truthful reporting is
locally dominant. One member of this class, moreover, is individually
rational. Laffont and Maskin (1980b) exhibited the entire class of such
procedures. They also showed the close connection between the theory
of dynamic procedures and the static schemes mentioned earlier.

Most of the literature on incentives in resource allocation has taken
preferences to be the information that agents transmit to the planner.
There is, however, a small literature in which the relevant information is
endowments. This includes the work of Postlewaite (1979) (dominant
strategy equilibrium), Maskin (1980a) (dominant strategy and Nash
equilibrium), and Hurwicz, Maskin, and Postlewaite (1979) (Nash equi-
librium, both preferences and endowments private information).

The theory of optimal nonlinear pricing by a monopolist who does
not know the preferences of individual consumers (although he may
know the distribution of preferences) is another instance of pure message
transmission by agents. Here the monopolist assumes the role of planner

_and maximizes profit (or expected profit, if he does not know the actual
distribution of preferences). An incentive scheme is a rule that on the
basis of an agent’s professed preferences assigns the agent a quantity of
.the good and a price he must pay for it. A more familiar, but entirely
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equivalent, formulation has the monopolist announce a schedule relat-
ing prices and quantities, with the agents then choosing their favorite
points along the schedule. Contributions to this literature include those -
of Spence (1977), Goldman, Leland, and Sibley (1977), Harris and
Raviv (1981), Maskin and Riley (1980a), K. Roberts (19794) among
numerous others. An interesting special case is where the monopolist -
sells a single or several indivisible items. Then the monopolist’s selling
scheme is an auction. In an auction, an agent’s message is his bid, and
the incentive scheme is a rule that assigns each agent an amount to pay
and a probability of winning the item on the basis of these bids. Optimal
auctions (from the monopolist’s viewpoint) have been studied by Harris
and Raviv (1978), Riley and Samuelson (1981), Myerson (1981), Maskin
and Riley (1980b), and Holt (1980).

The value of information in models of pure information transmission
has been studied by Green (1979) and Green and Stokey (1980a)."* In
this work, 8/, agent i’s information, is a signal that is correlated with the
payoff-relevant state of nature. On the basis of the message the agent
sends him (there is only one agent), the planner takes a decision. The
planner’s and agent’s ultimate payoffs depend on this decision as well as
on the state of nature. To place this model within our framework, we
must ‘‘expect out’’ the state of nature - which is not observed by anyone
until all actions are taken - so that objective functions do not depend on
the state.

Adverse selection with “‘active’’ agents. Some incentive models of adverse
selection involve agents taking actions instead of (or in addition to)
sending messages. These remain essentially adverse selection models,
however, because the actions are perfectly observable.

In the literature on optimal commodity taxation (Diamond and Mirr-
lees, 1971), for example, agents choose net trades that are perfectly
observable by the planner (tax authority). In the notation of Section 1, a
net trade corresponds to @', and y'=a’. Decisions (taxes) are a function
of the y'’s alone. However, the only obstacle to the attainment of a full
optimum is the planner’s imperfect knowledge of agents’ preferences
over net trades. Indeed, we can reformulate the problem equivalently as
a pure message transmission in which agents report their preferences,
and the planner thereupon assigns them net trades.

The recent research on implicit contracts with asymmetric information
(for example, Green, 1980; Grossman and Hart, 1981) provides another
example. In these models, a worker (who may be thought of as the
planner) signs a contract with a firm (the agent) that specifies his com-
pensation for each level of employment. It is assumed that when employ-
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ment decisions are to be made, only the firm knows the worker’s pro-
ductivity, and so he chooses the level of employment unilaterally. This
procedure is, of course, equivalent to an incentive scheme in which an
employment-compensation pair is assigned to each possible announce-
ment the firm could make about the worker’s productivity.

2.2 Models of moral hazard

We next turn to models in which the failure to attain a full optimum is
due to the inability of the planner to observe agents’ actions perfectly.
Many of these fall under the rubric of the principal-agent problem. For
instance, see the work of Ross (1973), Holmstrom (1979b), Guenerie
and Laffont (1979), Harris and Raviv (1979), Mirrlees (1975), Shavell
(19794, 1979b), Grossman and Hart (1980), and Stiglitz (1974). In these
models, the principal (planner) observes outcome y, which depends ran-
domly on the agent’s action. A “‘decision’ often takes the form of a
monetary reward. An incentive scheme assigns a reward to the agent for
each possible observed outcome. The planner’s payoff depends on the
reward (negatively) and outcome, whereas the agent’s payoff depends on
the reward (positively) and his action.

In the principal-agen:t problem, only moral hazard creates incentive
problems. There are a number of models, however, that combine moral
hazard and adverse selection.

One example is the capital allocation model described in Section 1.
Another is the income tax model of Mirrlees (1971). In this latter model,
agents share the same preferences for consumption and leisure. They
differ, however, in their (constant) marginal products for producing the
consumption good. Adverse selection arises because the planner (tax
authority) does not know individual agents’ marginal products. There is
an additional problem (‘‘moral hazard’’) created by his inability to
observe agents’ labor-leisure choices.

A final example combining moral hazard and adverse selection is
described in the ‘“bonus’’ literature (Weitzman, 1976). In these models,
a planner attempts to elicit statistical information from an agent by an
incentive scheme depending on the agent’s message and an observed out-
come y that depends stochastically on 6.

K] Indivisible public projects: an extended example
of incentive theory

In this section we concentrate on a single, but much-studied, problem in
incentive theory: the question whether or not society ought to undertake
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a given public project. Within the scheme of Section 1, this is a pure
informational problem; the answer depends solely on agents prefer-
ences - there is no question of observing their behavior. Nevertheless;
the problem is representative of a large chunk of the incentive literature
and is thus a useful illustrative example. Our intention is to show that by
assuming that the relevant functions are differentiable (or, at least,
piecewise differentiable), many of the major theorems, as well as some
new results, can be easily derived. For a summary of these new results,
see Section 3.2.

Throughout we shall consider a model with n consumers and two
goods: one public, one private. The public good can either be produced
(x=1) or not be produced (x=0); that is, it is indivisible. (For a
similar analysis when the possible public project levels are continuous,
see the work of Laffont and Maskin, 1979a, 1979b, 1980a, 1980b; the
two theories are qualitatively very similar.) However, because, as
pointed out in Section 1.4, randomization may be desirable in incentive
problems where the outcome space is not convex, we shall often allow x
to assume any value in the interval [0, 1]; x is then to be interpreted as
the probability that the project will be carried out. Consumers pref-
erences for the public good and a vector of transfers t=(t1,...,t") of
private good are assumed to be representable by utility functlons of the
form

G.1) uix,n=60x+1¢

where 6' lies in ©/, an open interval (containing zero) of the real line. If
x=0 or 1, then equation (3.1) simply asserts that preferences are addi-
tively separable and linear in the private good. ' is consumer i’s mar-
ginal rate of substitution or his ‘‘willingness to pay’’ (in terms of private
good) for the public project.! If x can assume values strictly between 0
and 1, then (3.1) further implies that the consumer is risk-neutral in his

mtude toward gambles on the level of public good. We shall assume
that the functional form (3.1) is public knowledge but that the value 6'is
known, a priori, to consumer i alone.

For most of this part of the chapter, we shall work with dominant
strategies (or coalitionally dominant strategies) as our solution concept.
We do this not only because dominant strategies have figured most
prominently in the literature to date but also because this solution con-
cept, for a number of reasons discussed in Section 1.2, is the least con-
troversial and the one making the weakest behavioral assumptions of
those in current use.
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3.1 Definitions and summary of resulits

In Section 1 we argued that, except for possible problems caused by mul-
tiple equilibria, it suffices to consider only direct revelation schemes
when working with dominant strategies. Because we can show (see
Theorem 3.8, infra) that, in our framework, multiple equilibrium out-
comes cannot occur, we shall work only with such schemes.

An incentive scheme § is a mapping,

6= (x,t',...,t": 16— [0,1] X R"
i=1

which associates with each n-tuple 6= (8, ..., #") of announced pref-
erence parameters a (possibly random) public decision x(f) and a
vector 1(8) = (1(), ..., t"(6))" of private-good transfers. Let §~ /=
(6", ...,671, 6% ..., 6" and

(6,67 =(8",...,61,6,6%,..., 6.
An incentive scheme is individually rational if and only if
0'x(8) +1'(6) 20 forall i, 8

That is, agent i, whatever the value of his preference parameter, can
guarantee himself at least a zero or *‘status quo’’ payoff by announcing
the truth.

An incentive scheme is incentive-compatible in dominant strategies
(DSIC) if and only if

Oix(0),071) + 1(6),07%) = 0ix(6',077) + ti(,077)

for all i, 6', §', and /. That is, the truth is always a dominant strategy.
Let C be a subset of {1,...,n}. 8 shall represent a vector of char-

acteristics of members of C, whereas 8~ ¢ shall be a vector for the com-
plement of C. An incentive scheme is incentive-compatible in coalition-
ally dominant strategies (CDSIC) if for all CS{1,..., n}

L [6%(6C,67C) + 1°(6,67)]

iec

> T [0x(8%,07C) +t(8C,679)]
i€eC

for all i, 8, and 6€. That is, the truth is a dominant strategy even for a

- collusive coalition.
A DSIC scheme is feasible if and only if
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7 .
Y8y <0 foral 8
i=1
Feasibility ensures that the designer will not run a deficit of private good.
A stronger condition still is the requirement that the budget balance. A
DSIC scheme is balanced if and only if

n .
Y@ =0 forall €06
i=1
If consumers’ utilities are interpersonally and cardinally comparable,
a common welfare objective is the maximization of the utilitarian social
welfare function

(3.2) 2 (6'x + t')
i=1

Clearly, the maximizing choice of x is 1 if £6'20 and 0 if L 6'<0. This
corresponds to the idea from cost-benefit theorythat a project should be
undertaken if the sum of the net benefits is positive. It is natural, there-
fore, to say that an incentive scheme is successful if and only if

33 x(8=1, Y620
=0, 26,<0

A property considerably weaker than success is the stipulation that
the project be undertaken at least when everyone derives net positive
benefit and that it be rejected (at least) when everyone suffers a net loss.
Hence, a DSIC scheme is weakly efficient if and only if

x()y =1, if 6,>0 foralli
=0, if 6;,<0 forall i

Finally, we shall call a scheme fully optimal if it is both successful and
balanced. (It is fully optimal in that it maximizes (3.2) subject to the
constraint of feasibility.)

The study of incentive in public-good provision has, to date, been
largely concerned with successful mechanisms. We shall argue here that
this emphasis has been, to some extent, misguided. But first, we begin,
in Section 3.2, with success. Apart from reviewing some of the major
results from the literature, we demonstrate (Theorem 3.3) that no feasible
and successful incentive scheme dominates the much-studied Groves-
Clarke pivotal mechanism. We then turn, in Section 3.3, to schemes that
need not be successful. So that we can use calculus, we study schemes
that are piecewise differentiable (more precisely, regular). We also often
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limit our attention to deterministic schemes (ones for which x takes on .
only the values O and 1). In the corollary to Theorem 3.7 we charac-
-terize all DSIC regular schemes. Next (Theorem 3.8), we show that equi-
librium is essentially unique in such schemes. In Theorem 3.9 we char-
acterize all deterministic DSIC schemes. Then, in Theorem 3.11, we
show that a regular DSIC scheme that is weakly efficient, balanced, and
symmetric (treats all agents identically) must be a positional dictatorship
(i.e., there exists an integer i such that for each profile of parameters
(8',...,0") the agent with the ith highest parameter ‘‘decides’’ on the
project - if his parameter is nonnegative, the project is undertaken,
otherwise not). Theorem 3.12 exhibits the ““best’” balanced DSIC
scheme, the balanced scheme that maximizes the expectation of the util-
itarian criterion (3.2). In Theorem 3.13 we show that the only weakly
efficient, feasible, and individually rational DSIC scheme is the nth
positional dictator. Finally, Theorem 3.14 establishes that no weakly
efficient DSIC incentive scheme is immune to manipulation by
coalitions. :

Turning to Bayesian equilibrium in Section 3.4, we show that in our
public project model the scheme proposed by d’Aspremont and Geérard-
Varet (1979) and Arrow (1979) has a continuum of equilibria in addition
to the one they proposed. We conclude in Theorems 3.16 and 3.17 by
characterizing Nash-incentive-compatible schemes.

3.2 Successful DSIC incentive schemes

Theorem 3.1: Successful and feasible DSIC incentive schemes exist
(Vickrey, 1961; Groves, 1973; Clarke, 1971; Smets, 1972):

Proof: Take x as in (3.3) and define

fi)=Y6, if Lé*>0 and T é <o
J#i k=1 JEi
~ n -~ -~
=-Y6, if Lo <0 and L >0
J#i k=1 J#i
= (0, otherwise

The incentive scheme so defined is successful, feasible, and DSIC.
Q.E.D.
The scheme defined in the proof of Theorem 3.1 is called the Groves-
Clarke pivotal mechanism (the term ‘‘pivotal’’ refers to the fact that
only pivotal agents - those whose strategy changes the public decision
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-from what it would be without them - are affected by transfers). Among -

feasible successful schemes, the pivotal mechanism is optimal in a sense

defined by Theorem 3.3 (infra). .
We first characterize all successful schemes.

Theorem 3.2: An incentive scheme is DSIC and successful if and only if
x(+) satisfies (3.3) and

N . . . 7 .
(3.4) @) =Xe+hi(6, if L620
J#i i=1

N . n N
=hi(87), if L6 <0

i=1]

where A'(+) is an arbitrary function of 7.

Proof: (See the work of Green and Laffont, 1979a, Chapter 3, and
Theorem 3.9, infra.) The pivotal mechanism is not balanced. Some of
the transfers may be strictly negative; that is, there may be a net budget
surplus. A natural question, therefore, is whether or not there exist
feasible and successful schemes for which the magnitude of the surplus is
smaller. Although it is easy to give examples of feasible schemes yielding
smaller surpluses for some values of 6, no such scheme dominates the
pivotal mechanism uniformly. That is:

Theorem 3.3: There exists no feasible and successful incentive scheme
(x,t) such that for all §

|Zt(8)] < |Z7(6)]

with strict inequality for some 6, where, as before, 7' is the pivotal mech-
anism’s transfer to agent i.

Proof: Because the proof is long and messy, we relegate it to the
Appendix.

Corollary: (See the work of Green and Laffont, 1976, 1979a, Chapter 5,
and Hurwicz, 1975.) There exists no fully optimal DSIC scheme.

Proof: The Groves-Clarke mechanism is successful and feasible but not
balanced; it sometimes generates a strictly positive surplus. From
Theorem 3.3, there exists no successful and feasible scheme that domi-
nates Groves-Clarke. That is, no such scheme is balanced. Q.E.D.
The Groves-Clarke mechanism shows that success and feasibility are
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mutually consistent. Similarly, by taking #/(#~*) =0 in (3.4), we obtain
a successful and individually rational scheme. However, feasibility, indi-
-vidual rationality, and success cannot be satisfied simultaneously.

Theorem 3.4: No feasible, individually rational, successful DSIC scheme
exists.

Proof: Choose § such that ©7_, 6> 0 and such that for all / there exists
6'€ 6 with 0‘+E,¢, ¢/ <0. Suppose that 6= (x,7) is a feasible, indi-
vidually rational, successful scheme. From Theorem 3.2, ¢’ satisfies (3.4)
for some function h'. Thus, from success, the payoff to agent / with
parameter 6, if other agents have parameters ~/, is /(7). From indi-
vidual rationality,

(3.15) K67 20

But from feasibility and success,

(n—1)20‘+ Eh(o <0

and so

)": R <0

i=1

in contradiction to (3.15). Q.E.D.
Theorem 3.5 No successful CDSIC scheme exists.

Proof: (See the work of Bennett and Conn, 1977, and Green and Laffont,
1979a, Chapter 5, and Theorem 3.14, infra.)

Because fully optimal DSIC incentive schemes do not exist, the
requirement that schemes nonetheless be successful is arbitrary. After
all, success pertains only to the public decision, and so to require success
alone in a scheme is to ignore the welfare implications of its private
transfers. A more general approach consists of characterizing the class
of all DSIC incentive schemes and then optimizing whatever welfare
function one might have (e.g., function (3.2)) subject to the scheme’s
being in this or a narrower class (e.g., the class of balanced schemes or
the class of successful schemes). This is the approach we now briefly
pursue. We establish a number of results characterizing DSIC incentive
schemes, and, in particular (see Theorem 3.12), we consider the optimi-
zation of (3.2) subject to the scheme’s being balanced.
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3.3 General DSIC incentive schemes

An incentive scheme is differentiable if x(-) and #(-) are differentiable,
For analytical simplicity, we are concerned in this section with simple
and regular incentive schemes. A simple incentive scheme (x,f) is
defined in terms of a closed set 4 with the property that if §€ A and
9’26, then §’€A. The scheme is simple if there exist differentiable
functions x~ and x* such that

x(0) =x"(9), 0¢ A
=x%(0), 0€ A

A regular scheme (x, 1) is a straightforward generalization of a simple
scheme. Instead of the single set A, there is a collection of closed sets
Ay, ..., A,, each with the property that if € 4; and 6’206, then fEA;.
For each j, there is a pair of differentiable functions x;” and xf such that

x(8) = ¥ x*0)(0)
=1

where z(j) is — if 8¢ A;, and z(J) is + if §EA;.

Some examples of simple incentive schemes are the Groves-Clarke
mechanism (see Theorem 3.1), the ith dictatorship, and the ith posi-
tional dictatorship.

- Example 3.1: The ith dictatorship.

x(8)=1, 620
=0, otherwise

t(8) = h/(677) for all j

Example 3.2: The ith positional dictatorship.

x(8) =1, {Jj|6/ 20} has at least / elements,
=0, otherwise

t(0) = h/(677) forall j

An example of a regular scheme that is not simple is the random
dictatorship.

Example 3.3: Random dictatorship.
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x(6) = ¥ x¥(8), where x¥(8) =0, if 6<0
J=1

if =0

>

_ 1
T on

t/(8) = h/(677) for all j

We shall call a public decision function x:II7-, ©'—[0,1] imple-
mentable if there exists a transfer rule vector f such that (x, ) isa DSIC
scheme.

Lemma: A public decision function x(-) is implementable only if it is
weakly increasing.

Proof: Let §' and §' be alternative values of agent /’s characteristic. If x
is implementable, there exists 7 such that
(3.16) x(8,67") +¢'(6,67") 2 O'x(§',67") + 1'(",67") forall 67
and
(B.17)  Gx(§7,67) + £'(§,607%) = §'x(6",07") + £'(§',67") for all 67’
Adding (3.16) to (3.17) and collecting terms, we obtain

(6 — 6x(6',67") — x(8,67)) 20  Q.E.D.

We shall begin by characterizing differentiable DSIC schemes.
Theorem 3.6: A differentiable incentive scheme (x, ) is DSIC if and
only if (i) x is weakly increasing and (ii)

re)=-|s

0

o

- i irp—i
7 (5,07 ds + hi(67)

where h' is an arbitrary piecewise differentiable function of 87/,
i=1,...,n

Proof: We begin with necessity. From tl}c lemma, x must be weakly
increasing. For each 87/, agent i chooses §' to maximize
0'x(6',07") + t1(6,67%)

If the maximum is to occur at §'=6’, we must have
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ar

o
a6’

36’
Because (3.18) must hold for all 6, (3.18) is an identity. Thus

(3.18) ¢ (6,679 + (0,67 =0

i

(.19) 1i(8) = -—Ss
0

9x ~i icp-i
% (5,67 ds+ h'(077)

where k' is an arbitrary differentiable function of 6!, Thus necessity is
established. For sufficiency, observe that, in view of (ii),
Oix(6',077) + 1i(6°,677) > ix(6',07%) + ti(6,6) forall 6,67
if and only if
91'
(3.20) (6" — 6)x(6',877) < Sx(s,()“‘) ds for all §
6 . '
But (3.20) holds because x is weakly increasing. Q.E.D.

We are now ready to characterize simple DSIC incentive schemes. For
simple schemes, as defined earlier, let

a9 = vmin(()"l (6',0"") € A} (if this minimum exists)

Theorem 3.7: A simple scheme is DSIC if and only if (i) x is weakly
increasing and (ii)

ei
- Ss 5%;x'(s,e-") ds+ hi(6™), 6¢A
4]

t'(6)

it

Gi
3 ) - -
- Ss 5 X* (5,070 ds+ A6 + CU07), HEA
0

i

where h'is an arbitrary piecewise differentiable function and

Ci(6~) =0, if a'(6~") isnot defined
ale~h
= 5 (x(5,07) — x*(s,07%)) ds, otherwise
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Proof: Suppose that the simple scheme (x, ¢) is DSIC. From the lemma,
x must be weakly increasing. From Theorem 3.6,

~[s a(;;i (5,6~ ds+ hi(9"), if O¢A
0

__egs ax*
36’
0
Now '6*"x('67", 6~") + ti(éi,g“i) is evidently continuous as a function of '
{Qr 0"<a'(9") and for 6'> a’(.()"). We claim it is continuous as well at
§'=a'(0""). If not, then y(0~) #0, where
y(0~ ) = lim  (§x(8,677) + £(6,67%))
9_"-—#(1'(9“)

— (@67 Hx*(a'(877),07") + £i(a'(67),07%)

(3.21) (8

it

(5,67 ds+ k'(6~"), if 6€A

Suppose y(6~)>0. Then for #’=a’(#~") and #' slightly less than 6,
agent i’s payoff is higher from the strategy 6%, if his parameter is 6, than
from announcing the truth. Similarly, if y(8~) <0, agent i’s payoff is
larger from 6'=a’(6) than from @'=6', if ' is slightly less than
a'(6~"). Hence, v(8~%) =0, and continuity at @'(§~') is established. But
from (3.21), continuity implies

PUC ) B
a'(0=x~(a'(67),07) — | s X (5,07 ds+ K6
a6’
0
a'(6" "
= a6 )x* (a0, 67 - | s (5,070 ds + K'(67)
0

Integrating by parts and rearranging terms, we obtain
a6~
Ki(8') = Ri(8~7) + S (x~(5,87) — x* (x,07%) ds
0
thus establishing the necessity of (ii). For sufficiency, consider § € 4 and

6'=a'(67". The gain to agent / with parameter 8’ from announcing the
truth rather than 6’ is
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=

ox~
36’

(3.22) O'x~(8) - |s (s,077) ds

[y S—

1

T . ax
—— iyt i =y -
((ix (8,679 js Y
0

+

(5,067 ds + C(0")>

PO
= (6 — 0'yx* (61, 67) — g X~ (5,0~ ") ds

9'1
- S xt(s,80 ) ds
ai(()i)
But (3.22) is nonnegative because x is (weakly) incr_¢asing. Similarly, the
gain from truth telling is nonnegative if 8€ A and 8'<a’(67"). Q.E.D.

The generalization of Theorem 3.7 to regular incentive schemes is
immediate. For all i, J, let

aj(6~") =min{6'| (6',6"') € A;} (if this minimum exists)

Corollary: A regular scheme is DSIC if and only if (i) x is weakly increas-
ing and (ii)
. q i a . . . . . A
6y =% [- | g7 X567 ds + W67 + y(j)c;w"')}
Jj=1
0

where h' is an arbitrary piecewise differentiable function, y(j)=1 for
6€A; and O for 6¢ A; and

C}(O“’) =0, if ai(8~’) is not defined
al(s™%)
= (x} (5,67 — xj (5,07%)) ds, otherwise
0

We now can demonstrate that a DSIC regular scheme has a unique
equilibrium public decision for each choice of 6.

Theorem 3.8: A DSIC regular scheme (x,f) has a unique equilibrium
public decision x(6) for each choice of 6.
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Proof: We shall argue for the case of simple schemes. Suppose that, for
some 6 and 8, =40 is a dominant strategy equilibrium if the true para-
-meters are 0. That is, x(8) is an equilibrium public decision in addition
to x(6). In particular, because 9’ is a dominant strategy for agent 1, we
have

01x(8',07") + £1(6',671) = 6'x(8",6™") +£1(6',67")
that is,
(3.23) 61 (x(8',6°1) — x(8',67 1)) =+¢(§",07") - 6,67

If either both (6',6~!) and (8',67!) lie in A or do not lie in A, then
(3.23) becomes

T

6'(x(6',6") — x(8',07)) = X —5rx(s,67") ds
0

6!
9 -1
-+ SS'—a-('}T‘X(S,o ) ds
0
=01x(6',67") — 8'x(6',67")

01
- Sx(s,()”‘)ds
0‘1

Rearranging, we obtain

6!
(3.24) (B - 6h)x(8',67") = Sx(s,é“)ds

91
Because x is weakly increasing, we conclude that
(3.25) x(6',6-"y = x(6',6""), forall §' between 6' and 6.

If (6',6~')¢Abut (§',8") €A (the opposite case can be argued simi-
larly), then (3.23) becomes

Y

91(x~(6',6"1) — x*(§',671)) = S % _x*(s,6" 1) ds
0
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g! !
+ js-—a—~x‘(s 0-1)ds+ C'(6-")
96! ’
0
= —0'x*(8',607") +6'x(6',671)
51
+ S x* (5,0~ ") ds
aeh
PUCRE
+ S x (5,671 ds
9!

Rearranging, we find

- o! al(e—
(5" — a1)x*(6',67") = S x*(s,6™1) ds + g x~ (5,07 1) ds
al(o—l) 01

from which we conclude, because x is weakly increasing and x* 2x 7,
that (3.25) again holds. Thus, in all cases (3.25) holds. Continuing
iteratively for i=2,...,n,

x(8) = x(6) Q.E.D.

From Theorem 3.7 we can immediately characterize those regular
DSIC schemes that are dererministic (x can take on only the values 0 and
1). Such schemes, of course, are automatically simple.

Theorem 3.9: A regular deterministic incentive scheme is DSIC if and
only if
() x(0) =0, 6¢A
=1, €A
h(67'), ¢ A
=-a'(6"") + h'(8™'), €A and a’(67%) defined
= hi(8~7), otherwise

(i) 1'(6)

il

Note that Theorem 3.2 is a special case of Theorem 3.9, in which

x(®) =1 Yo =0
= (0, otherwise
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Hence a’(§~') = —L;,,; ¢/. Theorem 3.9 also shows that the form of the
transfers when the public decision rule is that of a dictatorship or posi-
“tional dictatorship is

t(8) = h'(67)
We turn next to the issue of balance.

Theorem 3.10: If a regular incentive scheme is balanced, then

a”xf 0 8"x;
ae’. .. 90" 86t...00""°

n
il

Jj=1,...,q

Proof: For simplicity we shall argue for the case of simple schemes.
Choose § ¢ A. From balance,

(3.26) ﬁ:’t’(()) =0

From Theorem 3.7,

Iy

4 ox” —i irg-iy | =
X s (5,67 ds + h'(6™) | =0
0
and so
. I
i._.Elo 86" . .. 36" =0

We have, therefore,
"x”
a0'...90"

i

0

Similarly for x*. Q.E.D.

We observed earlier that when the public decision rule corresponds to
a generalized dictatorship, the transfers take the form t/(§) =h’(6 7). In
particular, if h'(6~')=0, the scheme is automatically balanced. One
may ask whether or not there exist balanced deterministic DSIC schemes
that are nondictatorial. The following example answers the question
affirmatively.

Example 3.4: Let n=3 and let x(6) =1 for §2+6° >0 and 0 otherwise,
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i) = —62-63 6°+6°20
0, otherwise
2(6) =6 6°+6°20
= (, otherwise
13(8)=0% 6*+6%°20
= (0, otherwise

it

The scheme of Example 3.4 treats agent 1 asymmetrically, and with
good reason: Nondictatorial, deterministic balanced schemes cannot be
symmetric. We shall call an incentive scheme (x,t) symmetric if x is a
symmetric function.

Theorem 3.11: A weakly efficient, symmetric, deterministic, balanced,
and regular DSIC scheme must be a positional dictatorship.

Proof: See Appendix. ]

Theorem 3.11 applies only to deterministic schemes, and so it is
natural to ask what ‘‘good,’’ nondeterministic schemes that are balanced
look like. By a good scheme, we mean one that maximizes the utilitarian
criterion (3.2) in an expected sense, where the expectation is performed
with respect to a prior distribution F(8!,...,8"). That is, we seek a
balanced scheme (x, ) that maximizes

(3.44) S,é:, (6x(8) + £/(6)) dF(8)

Because transfers sum to zero in a balanced scheme, (3.44) becomes
(3.45) S;Z:l 6x(8) dF (6)

From Theorem 3.10, balance implies that if x is # times differentiable

(or the pointwise limit of a sequence of n-times differentiable functions),
then

(3.46) x(6) = ﬁxi(e“)
i=1

It is easy to see, moreover, that (3.46) is a sufficient condition for the
existence of transfers that balance. Thus, if we restrict our attention to
Xx’s that are pointwise limits of n-times differentiable functions, we seek
X|s -+ +y X, tO maximize
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(3.47) S(z 9")( )) x,(o-f)> dF(6)
i=1 j=1
such that
(3.48) 0< Tx(67) <1
and

(3.49) x;’s are weakly increasing

Suppose that x,, ..., x, have already been chosen optimally and that
E(6']62,...,6") (the expectation of ' conditional on 62, ...,6") is
independent of (8%, ...,6"). We must choose x, to maximize

(3.50) S(EG‘ +60%+ -+ 0M)x, (6~ ) dF'(67)

subject to constraints (3.48) and (3.49), where F Lis the marginal distri-
bution of 8~ !. From (3.48) and (3.49), for any 8!,

(3.51) x; (671 < lim x;(0H<t=Y lim x(87)
6~ i=2 §7iep 00

[/}
Take

pi= lim x(§7")

-l x

From (3:50) and (3.51), the optimal choice of x,(87") is

n .
x (87 =0, ¢/ < Ef!
j=2

'—'1“2#;, EOJ>E01
i=2 j=2
Thus (3.47) becomes

(3.52) Y Prob( Yo > ~Ee">
i=1 Jj#i

We can therefore state Theorem 3.12.

Theorem 3.12: The balanced incentive scheme (x,?), where

x(0) = X x(67)
j:
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x;(87/y=0, Lo +E<O0
=y
= p;, otherwise

Lou=1
JED

D= {j} Prob{ Y6 + E¢ > 0} is maximal}
i)
maximizes (3.44) among all balanced incentive schemes for which x is
the pointwise limit of a sequence of n-times differentiable functions.

Note that if F is symmetric and E8/=0, then x; in Theorem 3.12
becomes

() = i
x;(677) =0, i§j0 <0
1 4
=—, L6220

n i
That is, the best balanced scheme has a public decision rule that is utili-
tarian for each of the n coalitions of n— 1 agents, where each coalition
contributes probability weight 1/n.

It is natural to compare the welfare properties of the best balanced
scheme with those of the Groves-Clarke mechanism. The former has
balanced transfers but does not always take the public decision maxi-
mizing the utilitarian criterion. The latter takes the correct public decision
but does not always balance the budget (although, from Theorem 3.3,
no alternative feasible and successful DSIC scheme dominates it). There
certainly seems to be no a priori reason to favor the Groves-Clarke
mechanism. Therefore, we believe that the emphasis in the literature on
successful mechanisms, ignoring welfare losses due to transfer imbal-
ances, is somewhat misguided. Indeed, as the following example shows,
the best balanced scheme can do better than the Groves-Clarke mech-
anism in the expected sense of (3.44).

Example 3.5: Take n=2 and let F(8',6%) be the joint uniform distri-
bution on [ —1,1]. That is,

F(6',6%) = (6'+ 1)(6*+ )

The expected sum of utilities under the Groves-Clarke mechanism is the
expected sum of utilities from the public decision
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(8! + 6%) dF(8',0%) =

1

6 T,
8 +6220

plus the expected sum of transfers

- S 02 dF(6',62) — S 0! dF(6",62) — S 6! dF (6", 6%)

ol+6%20 ol+6220 6l +6%<0
620 6'<0 620
62<0 6220 62<0
1
2 1 g2y —
- S 02dF(6,6%) = o
ol +62<0
6'<o
6220

That is, the expected sum of utilities is 1/12. The expected sum under the
best balanced mechanism, on the other hand, is just the expected public
payoff:

1 1 7
1 2 e 1 2 R 1 2y dF =
S(o + %) dF + - S(o +6%) dF + - S(e + 0% dF =
6'>0 6'20 6'<0
6220 62<o 62>0

Therefore, the best balanced mechanism is better than Groves-Clarke.
Of course, we have taken the extreme position of treating the budget
surplus under Groves-Clarke as a total loss. Nonetheless, the example
illustrates that it is unduly restrictive to consider only successful
schemes.

We next turn to feasibility and individual rationality. As in the special
case when x satisfies (3.3), we can readily choose ¢ so that (x, ) is DSIC
and feasible or DSIC and individually rational if x satisfies the condi-
tions for a regular public decision rule. However, feasibility and indi-
vidual rationality together cannot be satisfied by a weakly efficient
DSIC scheme unless it is the nth positional dictator.

Theorem 3.13: If a weakly efficient and feasible regular DSIC scheme is
individually rational, then it is the nth positional dictator.

Proof: Suppose that (x, ) satisfies the hypotheses. We shall assume for
Eonvenience that (x, 1) i_s sjmple. Choose 6 20. From wg_ak efficiency,
f€ A. If for some i, a'(#~') is not defined, then choose §'<0. We have
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(6.6 e A. From Theorem 3.7, agent /’s payoff when the parameters
are (6,67 is '

0'1‘
§x+(s, G-y ds + h'(87)
0

From individual rationality,
0
Ri(B7Y) 2 Sx*(s, 5~y ds
gi

From choice of #’, and because x*(0,6-)=1, [ x*(s,87") ds>0.
Thus

(3.53) A6~ >0
If, for given i, a’(§~7) is defined, then from weak efficiency,
(3.54) a6 <0

For such-, choose é‘fai(é”’). Then (6, §~7) ¢ A. Thus ’s payoff when
the parameters are (6°,07') is

§i '

Sx‘(s, 6=y ds+ hi(67)

0

From individual rationality,

0
(.55 R~ > Sx‘(s,é‘i) ds

él
Therefore, because, from (3.54), /<0,
(3.56) K67 =20

From Theorem 3.7, i’s transfer, when the parameters are # and a’(6~)
is not defined, is

éi
(B.57) —8ix*(f) + gx’“(s,é‘i) ds + hi(6~"
0
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From weak efficiency, x*(s,67 ") =1 for all s>0. Thus, (3.57) reduces to
hi( é—i) .

which is positive, from (3.53). Thus, because the sum of the transfers is
nonpositive by feasibility, there must exist i for whom a i~ is defined
and whose transfer, when parameters are 8, is nonpositive. That is,

éi
(3.58) —Bix*(d) + Sx*(s, G-y ds + hi(87)
0
a'(67l _ . .
+ S (x-(s,é“’) - xt(s5,07))ds+ h'(67) <0

0

The first two terms on the left-hand side of (3.58) cancel, because
x*(s,0)=1 for s 20. Therefore, (3.58) becomes

.- 0
(3.59) R < S (x7(s5,67%) —x¥(s5,07%)) ds
i

a6

Because in (3.55) §'<a’(67*), (3.59) implies

0

(3.60) hi(6~) < hi(BT) - S x*(s, 0~ ds = k(") + a'(8)
) 4

Thus, a’(8~7) 20, and so, from (3.54),

(3.61) a'(67H =0

Furthermore, from feasibility, if there exists j for which a/(8~) is not
defined, then there exists i for which (3.59) and hence (3.60) hold with
strict inequality, an impossibility. Thus, (3.61) holds for all / and all
§>0. But this implies that the incentive scheme is the nth positional
dictatorship. Q.E.D.

We turn finally to the issue of coalitions. The following result gen-
eralizes Theorem 3.5.

Theorem 3.14: There exists no weakly efficient, regular CDSIC incentive
scheme.

Proof: See Appendix.
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3.4 Other solution concepts

In Subsections 3.2 and 3.3 we dealt exclusively with the soliition concept
of dominant strategies. In this subsection, we briefly treat Bayesian and '
Nash equilibria in our simple public project model.

Turning first to Bayesian equilibrium, we suppose that it is common
knowledge that the 6%’s are distributed according to the (cumulative)
probability distribution F(8', .. ., #"). Knowing the prior F and his own
parameter ', agent / has bellefs given by the posterior distribution
F'(6~7|6). We shall suppose that the distribution of 6~/ is, in fact,
independent of ¢/, so that we may write F¥(§ 7). (For a treatment of the
dependent case, see the last section of the chapter by Laffont and Maskin,
1979a.) An incentive scheme (x, 1) is incentive-compatible in Bayesian
strategies (BSIC) if and only if

§[0ix(0’,0“") + 161,671 dFi(9~)
> S[()ix(éi,()‘i) + 118, 07)] dFi(9~7)

for all i, 6', and #’. That is, telling the truth maximizes an agent’s
expected utility, given that others tell the truth.

In the corollary to Theorem 3.3 we demonstrated that there is no fully
optimal DSIC scheme. One advantage that the Bayesian approach to
incentive has is that full optimality is attainable.

Theorem 3.15: (See the work of Arrow, 1979, and d’Aspremont and
Gérard-Varet, 1979.) There exist fully optimal BSIC incentive schemes.

Proof: The proof is by explicit example. (For a characterization of all
such schemes, see the work of Laffont and Maskin, 1979a.) Take

(G.73) 1) = S Y 0/x(6) dFi(6~")
0" J®i

-1 5 S ¥ 67x(8) dF* (8-

n-—1 k=i 2 iEk
where x, of course, satisfies (3.3). By construction,
n
Y=
i=1

Therefore the scheme is balanced. In maximizing his expected utility,
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agent i can ignore the second term in (3.73) because it does not depend
on 6'. Thus agent i chooses §' to maximize

(3.74) S{e"x(é",o“‘) + S L 0/x(6',67") de(H“i)J dFi(6™")
o_ij;é:
After rearrangement, (3.65) becomes

(3.75) S( > ofx(é",o-‘)> dFi(6~7)
. j:]
g

But for each 6=, 6'=6' maximizes L7., 6/x(6',677). Therefore,
6'=6' maximizes (3.66). Q.E.D.

We discussed some of the drawbacks of Bayesian incentive theory in
Section 1. Bayesian equilibrium demands both stronger behavioral
assumptions and stronger informational assumptions (most notably, the
assumption that F is common knowledge) than dominant strategy equi-
librium. Furthermore, as we shall now see, Bayesian incentive schemes
are plagued by multiple equilibria.

Suppose that n=2 and that

Fi(¢hy=0, 6 < -1

i
=0+l, -1<6ig1

=1, =21

That is, the distribution of #' is uniform on the interval [ —1, 1]. From the
proof of Theorem 3.13, we know that the strategy rules (&'(-), #*(+)),
where

A6y = ' for all 6

form a Bayesian equilibrium in the incentive scheme defined by (3.3) and
(3.64). However, there is a continuum of other equilibria. For any k 2 1,
define
ph(@) = -1, ko' < -1
= ko', —-1<kf'<1
=1, k#'>1

and

1
2 02 - 2
px(89) X 6
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The pair (u},u?) is an equilibrium. To see this, first consider agent 1.
Agent 1 chooses §' to maximize

p! g dF'(6?) + SazdFZ(ez)
PACRERTE 0z ¢!

A . :.@itl)) 1 (A2
—0(1 ( 3 +4(l (6°)°)

The first-order condition for an interior maximum is, therefore,

ko' §! - .
2 5= 0 or 0 =k¢
Thus the optimal choice of §' is k8!, if —1<k8'< 1, and one of the two
endpoints, otherwise. The argument is similar for agent 2.

This example is symptomatic of Bayesian equilibrium in our public
project model. For continuous distributions F*, there will, in general, be
continua of equilibria.

Finally, we turn to Nash equilibrium. When Nash equilibrium is the
solution concept, we can no longer take agents’ strategy spaces to coin-
cide with their parameter spaces ©'. This is because, as discussed in Sec-
tion 1, an agent’s relevant information consists not only of his own
parameter but of those of others as well. We therefore define an incen-
tive scheme 6= (x, 1) on the domain

Slx ... x 8"

For each profile (6',...,8"), let NE4(6',...,6") be the set of Nash
equilibrium outcomes for profile (6!, ..., 8") in the scheme d. That is,

NE4(6',...,6™) = {(x(s),t(s)) |s €IS’ is a Nash equilibrium
for (0',...,8") in the scheme d}

NE,4(-) is a correspondence from 6 to [0,1]xR". We will call a
correspondence f: 0 — [0, 1] X R" monotonic if, for all (8',...,8"),
(0',...,6"")€6, and all (x,1) €1(F',..., 07
V(X0 Vi Ox+t'20x +t" >0'x+1'20"'x" +1"]

- (x,t) €f(6",...,0"")
The following result is drawn from the work of Maskin (1977).

Theorem 3.16: For correspondence f:0 - [0, 1] X R” there exists an
incentive scheme d such that
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(3.76) v NE,(60) = f(6)

_if and only if fis monotonic.
An incentive scheme d satisfying (3.76) is said to implement f. In our
public project framework it is simple to characterize those correspond-
ences that are implementable (monotonic):

Theorem 3.17: f is monotonic, and hence implementable, if and only if

(0,7) € f(8',...,0") implies (0,7) € f(8',...,0"")
for all (8'/,...,07%") < (8,...,07)

and

(1,1) € f(8',...,6™) implies (1,7) €(6',...,0"")
forall (6'/,...,0"") = (8',...,6M

Proof: Immediate verification. We can consider f as a welfare criterion.
Theorem 3.16 shows that implementability places little restriction on
welfare criteria in this framework. In particular,

f(01’~-»'9")={(X,t)lt=O and x:{o’ EO<O}

1, e =20
is implementable. Thus, with Nash equilibrium as the solution concept,

we can use the utilitarian public decision rule incentive compatibly with-
out making any transfers at all in equilibrium,.

APPENDIX
We collect here the proofs of those theorems left unproved in the text.

Theorem 3.3: There exists no feasible and successful incentive scheme
(x,t) such that for all #

|Ze) < [ET(0)]

with strict inequality for some 6, where 7' is the pivotal mechanism’s
transfer to agent i.

Proof: We confine our attention to the case n=3 and to schemes whose
transfer functions are piecewise differentiable. Suppose that the scheme
(x, ¢) uniformly dominates the Groves-Clarke mechanism, (x,7). From
Theorem 3.2, ¢’ satisfies (3.4) from some choice of A'(#~7). If 8 is such
that L., 6/ <0 for all i, then because L3_, 7(6) =0, we have
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3 - .
3.5 XY H@EH=0
i=1

Thus, if the h"s are differentiable at 6, we have

on' ok’
392~ 06?
an' 3h*?
36 g7 = T 5
on? _ ok’
'~ a6}
and
3.7) ah' ' A’

36200°  96'06° 30130
From (3.5)-(3.7), we conclude that

h'(62,0%) = £(6%) + g(8%), for 2 +6°<0
(3.8)  h%0',0%) =e(8') —g(6%), for 8'+6°<0

h3(8',0%) = —e(8") — f(8%), for 8' +6°<0
where e, f, and g are piepewise differentiable. Similarly, because
3., 7(0~')=0 when L., 8/ 20 for all i, we have

3
200+ 02+ 8+ L H(O7)=0
i=1

and so

h'(6%,6%) = f(6%) + &(6°) — 267, for 6> +6° >
(3.9)  h%(6',0%) = &(8") — §(6%) — 26%, for 6'+6° >

0
0
h3(0,0%) = —&%(6") — f(6%) — 26!, for 6' + 6> >

0
Now suppose that, for some é,

PROIESEO]
Then

3oL 300 .
G100 X h'(67) < PRACEY

where hi(87') = —Lixi 8/ for Ljx; 6/ 20 and 0 otherwise. Clearly, there
exist i and k such that ¥;; 6/>0and T ek ¢/ <0. In particular, assume
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“that 6'+6%2>0, 62+ 62 <0, and '+ 6> <0 (the other cases can be argued
similarly). Then (3.10) becomes

TR =6+ 02 < f(82) + g(6) + e(6Y)
— g(0%) — é(8") — f(62) — 262 — 26!
If we take §'<§' such that §'+6§2=0, we have
(3.12)  h'(6% 6% + k@', 8%) + h3(§",6?)
= h'(0% 6% + h*(8",6%) + h3(6",6%)
Thus from (3.11) and (3.12), there exists §' with §' < 8'< 6! such that
5n2

a6’

@5 + 2@, < L0,y + g

that is,

(3.13) 1<e’(8") - &' (8"

where primes denote derivatives. Choose 62 and 83 such that
62+8°<0, 6'+62<0, and B+ & =0

Then

—8' - 8> = f(8%) + g(8%) — e(8") — f(67) + &(B") — §(F°) - 267

so that

(3.14)- —1< —e'(6") +&'(8")

Adding (3.13) to (3.14), we have 0<0. Thus § cannot exist after
all. Q.E.D.

Theorem 3.11: A weakly efficient, symmetric, deterministic, balanced,
and regular DSIC scheme must be a positional dictatorship.

Proof: We shall argue the case n= 3 and suppose that the boundary of 4
(a deterministic scheme is simple) is piecewise differentiable. From
Theorem 3.9, if (x,¢) satisfies the hypotheses of the theorem, then ¢ is
of the form

(3.27) () =hi(6~), 6€A or a'(6~') undefined
=-a'(0~y + h'(67"), 6€A and a'(6~') defined
We shall suppose, for convenience, that the #’’s are continuous and

piecewise differentiable. It will suffice to show that, for every 6 in the
boundary of A and every i, a’(6™') is either zero or undefined (if
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@'(6~%) =0 and the number of nonnegative components of 6~'is k, then,
ffom symmetry, the incentive scheme is the (k+1)th positional
dictator). .

Suppose not. Choose g from the boundary of 4 so that a' is differen-
tiable in a neighborhood of §~' and a’(87') #0. We may as well assume
that @'(8-') <0. Consider a sequence 8'(n) converging from below to
'. From balance and (3.27),

h1(62,8%) + h2(6'(n),0%) + h3(8'(n),6%) =0 forall n
Hence, by continuity,

Thi(g) =0
Thus, from balance,
(3.28) Lbi(6H=0
where

bi(~ = a'(§7%), if a'(§~%) is defined

= (, otherwise

We first show that a' must be constant in a neighborhood of 6-'(.e.,
that da'/ 36%= da'/ 36> =0 in a neighborhood of §~!). We must rule out
two cases.

Case I: a' strictly decreasing in 62 but constant in 6? in a neighborhood
N of 8.

Suppose first that @3 is not defined in a neighborhood of §~3. Because
a! is constant as a function of ° in N, we may write @' as a function of
6 alone in this neighborhood. Hence, for all 6 €N,

g€ A ifandonlyif 6'>a'(6%
Furthermore, from (3.28),
b3(a'(6%),6%) = —a'(6?) — 6’

since a?(a!(6%),6%) =62 From arguments virtually identical with those
in the proof of Theorem 3.3, we can conclude that for all §EN,

h2(8',6%) = e(6') + g(6%)
h'(6%,0%) = f(6%) — g(8%)
(3.29) h3(6',6%) = —e(9') — f(6%), 6'<a'(6?)
= —e(8") — f(6%) + (a')"1(6") + a'(6%)
+ b3(6',6%), 0'>=al(6?
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where e, £, and g are continuous and piecewise differentiable. Choose
= @€ N such that §' >_a‘(~02) and such that e is differentiable at !, fat 2,
- and A% and k' at (6,62,6"). By symmetry,

h'(6%,6") = h3(6%,6%)
" Thus
(3.30) hK'(6% 6"

i

h3(6',6%)
= —e(0") =f(6%) + (a") "1 (0") +a' (67 + (6", 0)
If (6',6%6') €A (because (0‘ 82,6") need not be in N, we cannot infer
from 6 >a7'(0 ) that (8',6%,8") isin A)
0=Lr(0',6%,8") = ~La'+ Lh'
i
= —a?(',6") — 2b3(8',0%) — 2e(6") — 2£(8%)
(3.31) +2(ah)~H(B8") + 2a'(6%) + 2b%(8,02) + K%', 6"
= —a%(6',8") — 2e(8") — 2£(6%) + 2(a") "1 (")
+2a"(62) + h*(",6")
where we have used the fact, from symmetry, that a'(82, 8') = b3(8", 6%).
Differentiating (3.31) by 6%, we obtain

df
d02
Because g! is strictly decreasing in 62, we have

d
({;(B)<O

da'
= 52 52
0= — (0)+2d02(0)

If (6',62,6")¢ A, then

(3.32) 0=YLh'= —2e(6") — 2f(6%) + 2(a’)~3(8") + 2a'(6?)
+2b3(8", 82) + h2(8',8")

Differentiating (3.32) with respect to 62, we have

df a

0= —
(3.33) 2y

da'
(%) +2 e (65 +2— (6,6
Because 3b*/30%< 0, we conclude that, regardless of whether or not
(6',6%6') €A,
of -
—_— <
26 6y <0

" Now choose 6€N such that §2=62, §! <a?(6?), and such that e is dif-

(3.34)
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ferentiable at 6! and A2 at (é‘,?z,él); From symmetry, h'(6%,6') =
h3(8',6%) = —e(6")—f(6%). If (6',6%,6") €A, then
(3.35) 0= YXhi=h38",6") - 2e(8") — 2/(62)
Differentiating (3.35) with respect to 62, we obtain

df
de?

which contradicts (3.34), as §2=02. Therefore, suppose (4!, §2,6') € A.
But then,

0=Yt=-Ya'+3TH
(3.36) = —a'(84 6"y — a%(6', 8"y — a8, 6%
—2e(8Y) — 21(6%) + h%(6',0")

0= (6%

Differentiating (3.36) with respect to 2, we obtain

(3.37) o=—%0—2—(92 hy — 2(0‘ %) -2 f2(02)

But da'/ 86> and da’/36* are nonpositive, and so, from (3.37), we infer
that df/d6*(6%) is nonnegative, contradicting (3.34). We conclude,
therefore, that Case I is impossible.

Case II: a' is strictly decreasing in both 62 and 6° in a neighborhood N of
- 8.

Consider 6E€N on the boundary of A. Then a'(6%,6%) <6 If the
inequality holds strictly, then for (62, 63) slightly less than (62, 63),
(3.38) (a'(6%,6%),6% 6% < (8',6%,6%)

But (a'(82,6%), 6%, 6% € A. Thus, (3.38) contradicts the assumption that
# is on the boundary. Hence

(3.39) al(6%,6%) =0!

If, for 62<0?, (0‘,52103)€A, then as a' is strictly decreasing 67,
a'(0%,63%) >6". But a'(8%,0%) <", as (8',62,6%) € A. Therefore,

(3.40) a?(8',6%) =62

Similarly,

(3.41) a’(8',0%) =93

Hence, from (3.28) and (3.39)-(3.41),
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(3.42) 0'+6*+63=0

" Because (3.42) holds for all boundary points in N, we conclude that the
incentive scheme is locally successful. From the same argument that
_ establishes the corollary to Theorem 3.3, we thus generate a contra-
diction. Case Il is therefore impossible, and we have verified that in the
neighborhood N of §, da'/362=3a'/86>=0. We can conclude that
(da’/36”)(8~") =0 for any i j and §~' for which da‘/a6’ is defined.

Because a'(6?,8%) <0, (3.28) implies that either a2(8!,6%) >0 or
a*(8', 6%)>0. Without loss of generality, assume the former. Because 8
is on the boundary of A, either a®(8', §%) = 82 or a*(8', §?) = 8°. Assume
the former (if @*(8', §?) = §°, the argument is entirely analogous). Con-
sider points of the form (8", 6%,6°) for 6°26°. Let

6> = min{ 6 > 8% (8", 6%) = a%(8', 6%)).
Because §2=a%(6', 6%) for all ° <8, (8", 6%, 6°) is on the boundary of 4

for such 63. Therefore, (8, 62, §%) is on the boundary of A. Thus, from
(3.28),

(3.43) a'(6%, 8% + a¥(8',6%) + d(6',6)) =0

But from the definition of 83, a'(62, %)< a'(8%, 6% and a%(8',0%) <
a*(6',6%), a contradiction of (3.43). Therefore, 63 does not exist, and,
for all 6°>6°% a%(6',6%°)=6 Choose 63>0. By similar argument,
a®(6',6%) =82 for all §' >§'. Choose 6'>0. Then (8!, 82,6%) lies on the
boundary of 4 because 82=a?(8!,63). But (6',8%,63)>0, so by weak
efficiency it lies in the interior of 4. We conclude that a!(82, 63) cannot
differ from zero after all. Q.E.D.

Theorem 3.14: There exists no weakly efficient, regular CDSIC incentive
scheme.

Proof: Suppose that (x,¢) is a weakly efficient regular CDSIC scheme.
It is convenient to suppose that (x,t) is simple. For ¢ A4, the payoff to
the coalition of agents 1 and 2 is

6! _
(3.62) 6'x~(6) - Ss%%—l—(s,(?“)ds+ 62x~(0)
0
02
9x ~ -2 1eg—-1 20p-2
- (s ST (5,070 ds + hNOTY) + B2(67)
0
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_ Given that the coalition chooses 8 optimally, (3.62) implies
JRPEIS an?
5,07%) ds + -2y =
—(0) = [soprapr (807 ds+ o (07 =0
0

2
(3.63) 8 ae‘

Because (3.63) holds for all 2 locally, we obtain

Ged X =0

36"
Thus

ax~ .
(3.65) YT 0 forall j

For 6 € A, the coalition of agents 1 and 2 has payoff

g! . I

.
(3.66) (8" +6%)x*(8) — Ss%(s,ﬂ“‘)ds- s a;;z (s,672) ds
0 0
al™h
+ | oy - xts07ds
0
02(9'2)

+ X (x~(s5,072) = x*(s,6~%)) ds
0
+ A0 + hH67Y)
If a? is differentiable as a function of 8!, optimal choice of 6! in (3.66)
implies

ax*t ”§ 8’x*

r Al 3yds+ (x (a*(67%),07%)

(3.67) 0*——
a 2
Xt (a¥(077),07%) 2 30, (0 D+ g (679
=0
Because (3.67) holds locally for all 62,

ax*t

EE
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Theréfore,

ax™*
36’

(3.68) =0 foralli

From weak efficiency, (3.65) and (3.68) imply that x =0 and x*=1.
That is, the scheme is simple. Choose 6 on the boundary of A. Then
6'=a’'(6‘) for some i. Suppose, without loss of generality, that
0'=a'(6~"). Then, for §'<a!(6~!), the payoff to a coalition of 1 and 2
for parameters (4',67!) is

(3.69) K671y + n%(6',607'72)
Because 67 is chosen optimally,

dh!
67 D=0

For ' >a'(62,6°%), the payoff to the coalition is
'+ 62— a'(67") —a®(6',67'") + H'(67") + 3(§',67'72)
Optimal choice of 82 implies

da'  3h!
T0) e+ — =
G70) = Zgr + gz =0

Thus, from (3.60) and (3.61),

da'

ST (07 =0
Similarly,
1
‘Z‘;j (6=') =0 forall j#1

That is, a' is locally constant. Now consider §! slightly less than 6'.
Because it is optimal for the coalition of 1 and 2 to play truthful strat-
egies, we have, when parameters are 8,
8'+ 67— a'(67") —a*(672) + h'(6™") + h2(672)
R0 + h¥E', 67172

Therefore,

. (3.71) 62 —a*072) + K307 = hY(61,6717Y
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Similarly, if the true parameters are (6,071, KO-y + k28,612 >
6'+62—0'—a%(6" ) +h" (6~ ")+ h*(67?%), so that

(3.72) AH%(6',67'72) 2 02+ (§' — 0') — a*(07%) + h*(672)

®

Inequalities (3.71) and (>3.72) together imply that
02— a2(07%) 2 h2(0',07'"2) — K3 (672 202+ (6' — 6") — a%(67?)

which is impossible, because the middle expression does not depend on
#%. Thus the scheme cannot be CDSIC after all. Q.E.D.

NOTES

1 There are many other synonyms as well.

2 The term ‘‘members of society’’ may be misleading. Incentives theory applies
to many purely ‘‘private’’ situations as well (e.g., the employer-employee
relationship).

3 Like “‘planner’’ and ‘‘agent,”” ‘‘incentive scheme’’ goes under a variety of
different names, depending on the area of application. For example, the term
‘‘contract’’ is often used in work on insurance, whereas ‘‘mechanism’’ applies
in the allocation literature, and ‘‘voting scheme’’ or ‘‘game form’’ applies in
the social choice context.

4 An incentive scheme is, in effect, a promise by the planner to react in a
specified way to what agents do or reveal. The literature does not generally
consider how the promise is enforced.

S For an alternative model that is, in fact, somewhat more general, see the work
of Myerson (1980).

6 It may seem peculiar that 8 should enter the planner’s payoff function,
because it was assumed to be unobservable. We have included 6 to allow, for
example, the planner’s objective function to be a social welfare function
whose arguments are individual agents’ utilities. Of course, if 8 is unobserv-
able, the planner can only maximize the expectation of his payoff with respect
to 6.

7 In principle, each individual could attach a different subjective distribution to
6, and these distributions could jointly be common knowledge.

8 However, some recent progress in laying the theoretical foundations of
““experimental”’ Nash equilibrium has been made by Levine (1981).

9 An example of this possibility is provided in Dasgupta and associates (1979,
p. 195).

10 A domain of preferences 8/ is *‘rich’’ if and only if for all 8,,6, €6/ and all
d,,d, € D for which d, is preferred (strictly preferred) to d, under 6, implies
that d, is preferred (strictly preferred) to d, under §,, there exists 8, such that
for all c and j=1, 2, d; is preferred to ¢ under 6, if d; is preferred to ¢ under
8.

11 'fhe nonveto property requires that if all agents, except possibly one, prefer d
to all other decisions, then d€ f(8).

12 An allocation rule is individually rational if it assigns allocations that all
agents prefer to their initial endowments.
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13 Actually, the strong equilibria coincide with the Nash equilibria in Schmeidler’s
scheme, as in the work on double implementation.

{4 Hurwicz (1972) and J. Roberts (1979) have shown that truthful behavior
cannot constitute a global Nash equilibrium. However, Champsaur and
Laroque (1980) have demonstrated that if the procedure is truncated at time
7, then the global Nash equilibrium allocations converge to Lindahl equi-
libria as 7 tends to infinity. Truchon (1980) has shown that by introducing
thresholds in the adjustment of public goods, a large class of global Nash
equilibria leads to individually rational Pareto-optimal outcomes.

15 Green and Stokey (1980b) considered a similar model; but where the planner
cannot commit himself to a scheme in advance. Their paper, therefore, does
not fit within our framework.

16 We assume here either that the project is costless or that ¢ is the consumer’s
willingness to pay net of his share of the cost (the rule for dividing the costs is
taken to be exogenous).

17 We have not allowed for random transfers because the space of transfers is
convex and consumers are risk-neutral with respect to the private good. Thus,
according to the reasoning of Section 1.4, there is no need to randomize
transfers.
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