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Abstract

For the case of two buyers we show that equilibrium in the sealed high-bid auction is unique when
(i) buyers’ reservations prices are drawn independently from distributions with finite support and
positive mass at the lower endpoint; (ii) buyers have private values; and (iii) buyers’ preferences
are log supermodular. For more than two buyers, we obtain the same result under the additional
assumptions that (iv) buyers with the same reservation price have the same preferences; (v) buyers
are risk neutral or risk averse with non-increasing absolute risk aversion; and (vi) the supports of the
different buyers’ distributions of reservation prices have the same upper endpoint.
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Introduction

Although much has been written on the theory of auctions, most of this work focuses
exclusively on the symmetric equilibrium of an auction in which biddersearante the
same in the sense that the joint distribution of buyers’ types is symmetric. In previous work
(Maskin and Riley, 2000a, 2000b), we have begun exploring the theory in the absence of
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symmetry! Specifically we have examined (i) the existence of equilibrium in a sealed high-
bid auction and (ii) the differences between the equilibrium in high-bid and second-price
auctions when buyers are asymmegiante.

Here we turn to the question of uniqueness. With a symmetric distribution of types, it
is well known that there is only ong/mmetric equilibrium (Milgrom and Weber, 1982;
Maskin and Riley, 1984). However, it is not implausible to conjecture that, even @& an
ante symmetric setting, a particular buyer might establish a reputation as an aggressive
bidder if it is in his interest to do so. Riley (1980) provides an example of the “war of
attrition” in which this is indeed the case. In fact, there is a continuum of asymmetric
equilibria in which one buyer bids “aggressively” and the other “passively.” Furthermore,
the greater the degree of aggression, the larger is the equilibrium expected gain of the
aggressive buyer.

A second example of a continuum of equilibria occurs in a pure common-values setting,
if the item is sold by open ascending bid. As first noted by Milgrom (1981) there is always a
continuum of equilibria in the two-buyer case. Bikhchandani and Riley (1991) also present
an example in which, with bidders, there is a continuum of equilibria.

For the symmetric high-bid auction with private values, however, we show that there
can be no asymmetric equilibrium under the assumption that reservation prices are drawn
independently from a distribution with finite suppornd positive mass at the lower
endpoint That is, equilibrium is unique.

When we drop the symmetry assumption, uniqueness continues to obtain under same
assumptions if there are only two buyers. For more than two buyers, we need the
additional fairly mild assumptions that buyers with the same reservation price have the
same preferences, that absolute risk aversion is non-increasing, and that the supports of the
different buyers’ distributions of reservation prices have the same upper endpoint.

The argument that equilibrium is unique is basically an application of the fundamental
theorem of ordinary differential equations (FTODE). As we will see, the major problems
with applying this theorem are (i) ensuring that buyers’ (inverse) bid functions are
differentiable, so that they satisfy a system of differential equations; and (ii) establishing
that there exists a unique “boundary condition” for that system.

We describe the model in Section 1. In Section 2 we present characterization results. We
use these in Section 3 to derive our main theorems. Concluding remarks are in Section 4.

1. The model

Throughout we shall make the following assumptions about the auction and the buyers
participating in it. A single item is to be sold to the buyer who makes the highest non-

1 There is also a literature on efficient auctions (see (Maskin, 2003), for a survey) that eschews the symmetry
assumption.

2 |f the support of the distribution is unbounded, we conjecture that there will be a continuum of asymmetric
equilibria.

3 This latter assumption is weak because it is satisfied automatically if the seller sets a reserve price that is
even marginally above the lowest possible buyer reservation price.
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negative sealed bid. If two or more bids tie, the winner is selected at random from among
the high bidders. There arepotential buyers. Buyearof types; obtains utilityU; (b, s;) if
he wins a bid ob, whereU; is twice continuously differentiable. We assume that
oU; <0 and oU;
ab 8S,‘
Without loss of generality, we can interprgt as buyeri’s reservation price. Hence
Ui (si,si) = 0. Buyeri’s reservation price is drawn independently from a distribution with
support[s;, 5;], wheres; > 0, and c.d.f.F;(-). We assume thak; is twice continuously
differentiable, that its derivative is strictly positive dsy, 5;]1, and thatF;(s;) > 0 (see
footnote 4).
Clearly it is a dominated strategy for a buyer to bid more than his reservation price.
Hence, we will rule this out by assumption.

>0 foralli.

Assumption 1. Bidder i never bids more than his reservation price s; in equilibrium.

If a buyeri has a negative reservation price, then it is a dominated strategy for him to
bid at all, and so without loss of generality we can assumesthato.
Let I7; be the probability that bidderwins. Then his expected utility is

E; =1I1;U; (b, s;).

We shall assume throughout that the higher is a bidder’s reservation price, the “flatter”
are his indifference curves in bid-probability space. That is, the single-crossing property
holds. Given our assumptions, biddés indifference curve depicted in Fig. 1. Specifi-
cally, at an indifference curve,

db _9E /ol 1 U
AT | —const  9Ei/0b 1T, 0U;/0b

Indifference curve for

Win probability reservation price s

H L
Indifference curve for
reservation price 5"

Hl
s">5

»
b b" bid

Fig. 1. Single-crossing property.

5 In technical terms, this is the assumption that utility is log supermodular.
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Thus, for single-crossing, we require the following assumption.

Assumption 2 (Single-crossing).

oU;
— ab’/U,-(b,si)

isa decreasing function of s;.

Note that if U; takes the fornU; (b, s;) = V;(s; — b), then Assumption 2 is satisfied
provided that bidder is risk-neutral or risk-averse, i.e//” < 0.

As we shall see in Section 3, it will be helpful to define the “log cost” of having to bid
to win the item, rather than gettinggtatis:

ci(b,s;) =1ogU; (0, s;) —logU; (b, s;). (1.1)
Then,

dc; aU;

— = i(b,si), 12

o _ % / Uitb.s) (1.2)

and so Assumption 2 is equivalent to the assumption that the marginal log cost is lower
for higher reservation prices. Given this assumption, buigebidding behavior will be
monotonic ins; (see Lemma 2 below).

Since it will be useful below, we note that

826‘,' 36‘,’ 8C,’
=(A;b,s)+ L) 2L 1.3
oy = (w0 + 51) 3 L3)

whereA; (b, s;) = (32U; /0b?)/(8U; /9b) is buyeri’s coefficient of absolute risk aversion.
Note that as long as a buyer is risk-neutral or risk-averse (and bgiiess;) > 0), ¢; (b, s;)
is strictly convex for alb € [0, s;).

2. Characterizing the equilibrium bid functions

From (Maskin and Riley, 2000a, b) we have the following two results:
Lemma 1. If Assumptions 1 and 2 hold, the distribution of winning bids in equilibrium
has a support consisting of aninterval [b,, b*] and a c.d.f. G,,(b) which is continuous on
(bs, b*] (see Maskin and Riley, 2000b, Proposition 3)
Lemma 2 (Monotonicity).If Assumptions 1 and 2 hold, then if b; (s;) is a best response by
buyer i with reservation prices; to theother buyers' bidding strategies, it isnon-decreasing

ins; (see Maskin and Riley, 2000a, Proposition 1)

To understand Lemma 2 geometrically, consider Fig. (&'IfIT") is optimal for a buyer
with reservation price’, there can be no feasible alternatives in the heavily shaded region.
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Thus, any alternatives preferred @, I7’) by the higher reservation pricé¢ must lie in
the lightly shaded region, i.e., they must entail higher bids.

As our first preliminary result, we characterizg the lower endpoint of the support of
the distribution of winning bids.

Lemma 3 (Characterization of the minimum winning bid)Mthout loss of generality,
supposethat s, < --- <s1. If Assumptions 1 and 2 hold, then the minimum bid satisfies

52 < by < s1. (2.1)

Furthermore, if s2 < 51, then

b, = maxarg r?ai;:[lﬂ(b)Ul(b, 51). (2.2)

Proof. Suppose first thab, > s1. Consider a buyer with a reservation priéec

(%51 + %b*, b.). Because& < b, the lowest winning bid, the buyer has an equilibrium
expected payoff of zero. But there is a positive probability that all other buyers have
reservation prices less thé@l + %b*. Thus, from Assumption 1, our buyer has a strictly
positive payoff if he bid%gl + %b*, a contradiction. We conclude thiat < s1.

Suppose next thdt, < s2. From Lemma 1, there are no mass pointgin b*]. Thus,
buyers 1 and 2, regardless of their reservation prices, have strictly positive expected payoffs
from bidding just above,. This means that if = {i | buyeri bids b, or more with
probability 3, then 12 e I. For alli € I, let p; be the probability that buyerbids b..

If, for all i € I, p; > 0, then biddingp,. results in a tie with positive probability. Thus,
buyer 1 is strictly better off bidding slightly abowg, since this increases his probability of
winning discontinuously. Hence, for some I, p; = 0. If i # 1, then buyer 1's probability

of winning, and hence his expected utility, is approximately zero for bids heaBut

we have already argued that buyer 1's equilibrium expected utility is strictly positive,
a contradiction. Hencep; = 0. But now the same contradiction pertains to buyer 2. We
conclude that (2.1) holds.

Suppose that; < s1. From Assumption 1, if buyer 1 with reservation pricg bids
b # by, his expected payoff is at IeaEL-761 F;(b)U1(b, s1). It follows that forb, to be an
equilibrium bid for him,

[[F® Uk, 50 <[ | Fib)Us(be, 1) forallb.

i#£1 i#l
Hence,
b. e argmaq [ F1(b)Us(b, s1).
i#1

Finally, suppose that bothi andb” solve this maximization problem and thdt< 5”.
Buyer 1 with reservation pricg weakly prefersg” to any lower bid. Given Assumption 2,
all other buyer 1 types strictly prefét’ to any lower bid. Thus the minimum bid for all
reservation prices; > s1 is at least”. But thend’ is not the lower endpoint of the support
of the equilibrium distribution of winning bids. We conclude that (2.2) holds.
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Lemma 4 (Strict monotonicity of the probability of winningBuppose that »’ < »” and
that »’ and b” arein the support of the distribution of winning bids in equilibrium. Then at
least two buyers bid in the interval (&', b”) with positive probability.

Proof. From Lemma 1, the support a¥,,(b) is connected, and so all the bids in the
interval (b', b”") are also in the support. This implies that at least one buyer bi@s,ih”)
with positive probability. Suppose, contradicting the lemma, that buygithe only one
to do so. Specifically, assume that for reservation psicbuyeri bids 5 € (b',b") in
equilibrium. But buyeri can reduce his bid 6 — ¢ € (b, b") without diminishing his
probability of winning, a contradiction. O

Let (b1(s1), ..., bu(sy)) be equilibrium bidding strategies (possibly mixed strategies).
BecauseG,, (b) is continuous, any deterministic selectidp(s;) from b;(s;) is strictly
increasing at al; for which b; (s;) > b.. It follows that

i) =b;1)
is a non-decreasing function that is well defined abal b.. for which there exists; with
b € suppb; (s;). Thus, for allb > b, we can define

i (b) = supy; (b) | b < b, y;(b) defined. (2.3)

Becausey; (-) is non-decreasingp; (-) is non-decreasing and continuous for &l b,.
Note, furthermore, that buyeis probability of winning can be written as

Gib)y=[]Fi(p;®)). (2.4)
J#i
Becausep; (b) is continuous for allj, so isG, (b). Any realization ofb; (s;) solves

MaxE; (b, s;) = mbaxl_[ Fi(¢;(b)Ui(b, s7).
J#i
Equivalently, it solves:

Ui, si)
Fi(¢;j(b))———.
mbaxl_[ 5(#i®) Ui (0, s;)
J#
That is, the bidder maximizes the ratio of his expected utility to his utility if he is simply
given the item for free.

Define
pi(b) =log Fi (i (b)). (2.5)
Then, any realization df; (s;) solves
mbaXe,» (b, si),
Ui(b, s
where ¢;(b, s;) = |Og|:l_[ F; ((]5] (b)) U'EO i;i| = Z pj(b) —ci(b,s;),
J#i N J#i

andc; (b, s;) is given by (1.1).
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As a preliminary to establishing uniqueness, we now derive propertigg(of and
>_j+i pj(b). Proofs of Lemmas 5-8 can be found in Appendix A.

Lemma 5 (Strict monotonicity property of bid distributiondjor any » > b, and any i,
Z#i p;j(b) isstrictly increasing at b.

Lemma 6. If ¢; (b) is strictly increasing to the right or left at b = b > b, then b is a best
response for buyer i with reservation price s; = ¢; (b).

Lemma 7. If ¢;(b) is strictly increasing to the right or to the left at b = b > by, then
> i2i Pj () is correspondingly right or left continuoudly differentiable at 5. Moreover, the
right or left derivative satisfies

> p)(B) = 5 (6. ¢1(6)). (2.6)

J#

Lemma 8. ¢; (b) isright or left continuoudly differentiable at all b > b,.

Define the inverse function

hi(-) = (log F;)~10). 2.7)
Then we can rewrite Eq. (2.6) as

NACOE c, (b, hi (pi 1)) (2.8)

JF#

We shall make important use of the following:

Lemma 9. Supposethat (p1, ..., p,) and (p1, ..., p,) aretwo solutionsto the differential
equation system

D Py = —ci(b.hi(pi®)). i=1....n, (2.9)
JF#

on the interval (b1, b2). If for some b, € (bL, b2, pi(bs) < pi(bo) for all i, then, for all
b E (bls bo)y

pi(b) < pi(b), foralli, (2.10)
and

PNACEDINAGY (2.11)

j=1 j=1

Proof. Dividing both sides of (2.09) by — 1 and then summing ovér we obtain

n 1 n
D Py =——22 ¢i(b.hi(p;®)). (2.12)
j=1 =1
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Subtracting (2.9) from (2.12), we have for all

) 1 9 d
”i<">=m(§ab o5y @)~ 0 -2l mlp @) (@13)
J7F

_ Suppose, contrary to (2.10), there exisindb € (b1, bo) such thatp; (b) = p; (b). Let
b be the biggest such Then

pi (b) = pi (b) (2.14)
and

pj(b) < pjb) (2.15)

forall b e (b, b,) andj =1,.

Now, from the fundamental theoremfor ordinary differential equations (FTODE), there
exists a unique solutiotpy, . .., p,) to (2.9) with the point condition; b) = pj (b) for
all j. Hence, from (2.14) and (2.15), there exiktg i such that

pi(b) < pr(b). (2.16)
From (2.13) and (2.14)

~/ (7 A (T 1 0 r N A (T
F(B) = 3i(B) = =3 2 o (i b (35 B)) = s (b1 (33 B)))). @27)
Hé
But from (2.15) and (2.16) and Assumption 2, the right-hand side of (2.17) is positive
and hencep; (b) > p;(b) for b in a right neighborhood ob, contradicting (2.15). We
conclude that (2.10) holds as claimed. Then (2.11) follows from (2.10), (2.12), and
Assumption 2. O

3. Uniqueness

When buyers are ex ante asymmetric, we do not generally obtain uniqueness of equilib-
rium bids that win zero probability. To see this, consider the following example.

Example. Suppose that = 2, thats; is distributed uniformly in the interval [0,1], and
that s is distributed uniformly in [3,4F One equilibrium consists of buyer 2 bidding
ba(s2) = 1 for all so and b1(s1) = s1 for all s1. However, we can replace buyer 1's bid
function with 131(51) = sf without destroying equilibrium. Indeed, there is a continuum of
different possible equilibrium bids for buyer 1. Nevertheless, all this multiplicity occurs
belowb, = 1, and thus pertains only to bids that have no chance of winning.

Such examples dictate that when we speak of “uniqueness of equilibrium” we will
henceforth be referring only to the portions of the equilibrium bid functairs above b,

6 Strictly speaking, this example violates our assumption fét;) > 0, but we could modify it slightly to
satisfy the assumption without changing our conclusion.
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Proposition 1. Supposethat n = 2. If Assumptions 1 and 2 hold, then equilibriumisunique.

Proof. Recall from Lemma 3 thaty < b, < s1. Suppose first thab, > 52. But then,
from Lemma 3, = 52, and buyer 1 with reservation price maximizes his payoff by
biddings,. Clearly, the same is true for all other types of buyer 1, anti$@) = 5 for
all s1, i.e., equilibrium is unigue at or above.

Thus, suppose thdi, < §2. Then, from Lemma 1, for any equilibrium there exists
b* > b, such that the distribution of winning bids has suppaétt, 5*] with continuous
c.d.f. G, (-). From Lemma 4, both bidders bid with strictly positive probability in any
subinterval of(b., b*]. Hence, from Lemma 8, ifb1, b2) is an equilibrium, the transforms
(p1, p2) of the inverse bid functiongp1, ¢2) are differentiable everywhere and satisfy the
differential equation system (2.9).

Now suppose that there exist equilibtipg, p2) and(p1, p2) such that the support of
the former is(b,, b*] and that of the latter igb,, b*], whereb* > h*. Then, fori = 1, 2,

1= [3,’ (l;*) = [A),' (l;*) > [3,’ (l;*) (3.1)

Because both gquilibria satisfy (2.9) on the inteiégl b*], Lemma 9 and (3.1) imply that,
forall b € (bs, b*],

2 2
D) > i) (3.2)
j=1 j=1

Integrating (3.2) and using the fact that andp; are continuous di,, we obtain

A

2
(7 (6%) = pj(bs)) Z (5 (6%) — b (bs). (3.3)

M~

1

.
Il

Hence, from (3.1) and (3.3), we have

2
pi(be) > pj(b). (3.4)

=1 j=1

M~

But from Lemma 3,p1(bs) = p1(b«) = log Fi(s1) and pa(bs) = p2(bsx) = log F2(b.),
which contradicts (3.4). We conclude that= »* = b*, and so uniqueness follows from
FTODE with boundary conditiop1(b*) = p2(b*) =1. O

The proof of Proposition 1 applies the FTODE to the upper endpoint of the distribution
of winning bids. With two buyers, the upper endpoint is the same for both buyers, but with
three or more buyers, not everyone need share the same maximum bid. To guarantee that
they do, we shall impose two more fairly mild assumptions:
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Assumption 3 (Equal upper endpoints)The upper endpoint of the support of the
distribution of reservation pricesis the same for all buyers, i.e.,’ 51 =--- =5, =5.

We also assume that when bidders have the same reservation price, then they have the
same preferences. Formally, we have:

Assumption 4 (Identical reservation prices imply identical preferencegj.all i and j, if
Si =8, thenU; (-, s;) = Uj(‘, sj)-

Note that Assumption 4 is satisfied if buyers are risk-neutral, as is often assumed in the
auctions literature. We can now state:

Lemma 10. If Assumptions 3 and 4 hold, then the upper endpointsin the supports of all
buyers' equilibriumbid distributions are the same.

Proof. Suppose that we index the buyers according to the upper endpoints of their
equilibrium bid distributionsb] > - - - > by Since equilibrium bidding is monotoniby

is a best reply for bidder 1 when his typesigby leaving the subscript off, we are
invoking Assumption 3). Using the logarithmic transformation of buyer 1's expected utility,
it follows that

n n
145 = 3 py(52) — (55 5) < 3y (45) — (61 5) = (b1, ) = ex(b1. ),
j=2 j=2

where we have used the fact that(b]) = logF;(s;) = 0, and we have invoked
Assumption 4 by leaving the subscript @ff. Suppose thab; < b]. Sinceb;, is in the
support of buyer 1's distribution of winning bidgy (b)) < 0= p,(b}}). Substituting for
pn (b)), we have, from the above inequality,

n—1
en(b3:5) = 3 (57) — c(b35) < (b4, 5) = en (03, 5).
j=1

Thus b} is not a best response for buyerafter all, a contradiction. We conclude that
by=bj. O

The proof of Proposition 1 also relies on the property that, with just two buyers,
equilibrium bid functions are continuous abakg But with three or more buyers, our
assumptions so far do not suffice to rule out the possibility that some bulies a
“gap” [b’,b"] in the support of his equilibrium bid distribution. Still, we require only one
additional weak condition to rule out such gaps.

7 Assumption 3 is weak in the sense that, for any vector of distributi@fs. .., F,,), there exists another
vector (Fq, ..., Fy) that is arbitrarily close tqFy, ..., Fy,) and satisfies the assumption. Moreover, our method
of proof can be extended readily to the case of different upper endpoints.
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Assumption 5 (Non-increasing absolute risk-aversiofr all i, the coefficient of absolute
riskaversion, A; (b, s;) = (32U; /db?)/(dU; /db), isnon-negativeand non-increasingin s; .

We can now establish our final preliminary result.

Lemma 11. If Assumptions 1, 2, 4 and 5 hold, the support of each buyer i’s equilibrium
bid distribution is an interval [b., b7].

Remark. We ignore bids that have no chance of winning for the reasons illustrated by the
example at the beginning of the section.

Proof. Suppose, to the contrary, that some buysrequilibrium bid distribution has
a“gap”[b°, b°°]. That is, there exists some reservation psice= ¢; (b°) for which both

b° andb°° are best replies, angl (b) = s; for all b € [b°, b°°]. Buyeri with reservation
prices? chooses to maximize

e, b s7 Zp](b)—c,(b s ) (3.5)
J#i
Thus, ath°,
de; 8c bo O
— Z p] — b°,s; ) <0.

Let b be the biggest bid ifb°, b°°] such that

de; 80, o

o = 2P0 = (b.s7) <O (3.6)
J#i

forall b € [b°, 13]. Suppose thai of the equilibrium bid functions are strictly increasing

atb°. Without loss of generality, let these be the bid functions of biddersiand suppose

that they are increasing throughout the intef#al 5] (if not, we can conduct the following

argument on each subinterval of strictly increasing bid functions). Then, from (3.6),

m

de; ac;
SL=2pib) = 3 (b.4i(0) <O (3.7)
j=i

and from (2.6),

m

dc
Zp;(b)—a—;(b,qsk(b)):o, k=1,...,m. (3.8)
o
Comparing (3.7) with (3.8), we obtain
% dck

>— forallk=1,...,m. (3.9)
ab  db

Hence, from Assumptions 2 and 4,
¢i(b) < (b), k=1,....,m, forallbe[b°,b]. (3.10)
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Summing (3.8) ovek, we have

m

=D pi6) =Y =L (b.9;®). (3.11)

j=1 j=1
Differentiating (3.11) by, we obtain, using Assumption 2 and (1.3),
3%c; =, dcj [
" J _ i J J
(m — 1)2]9 (b)<23b2 —;AJE-FZ:L(E)

p
< A Z d¢j Z(acf) (3.12)

where the last inequality foIIows from Assumptions 4 and 5 and (3.10), and where the
fact thatp; (b) is twice differentiable ab follows from our assumptions abo#t and the
FTODE.

From (3.7) and (3.11),

86, 1

o (b ¢i ) = —1[286’@ $;(b)) — (m — 1) (0. q»(b))} (3.13)

j=1
Also, from (3.7),

826,' " 1 826‘,' " 1 8C,‘ 8C,‘ 2
= " = 1o 28
b2 ;p-/ b2 ;p-/ b < ab)

A e 1 N(0e\° , da (B
— —Aj— — from (3.12
<m—1j2_; b T = 1)Z ab o \gp) (rom(E.12)

'36,' 1 “ ac; 2 ac; 2
< A,% + — [;(E) —(m — 1)(%) ] from (3.13) (3.14)

If de;/3b < O it follows from (3.13) thad >_; dc;/db — (m — 1)dc; /b < 0. Hence,

dci [ dcj dci
E(;%)_( —1)< ><o,

and so, from (3.9), the bracketed expression on the right-hand side of (3.14) is negative.
Thus, for allb € [b°, b°°),

de;/db<0 = 9%, /9b* <O.
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It follows thath = »°°, and sc; (b, s7) is strictly decreasing oveéx® = b°°, a contradiction
of our hypothesis that biddémwith reservation price; is indifferent between bidding®
andb®°. Thus there can be no such “gap” after alt

Proposition 2 (Uniqueness witl buyers)If Assumptions 1-5hold, equilibriumis unique.

Proof. Lemmas 8 and 11 imply that equilibrium-inverse bid functions are differentiable,
and Lemma 10 implies that, in equilibrium, each buyer makes the same maximum bid.
Hence, we can apply Lemma 9, as in the proof of Proposition 1, to show that the maximum
bid b* is the same in any equilibrium. Uniqueness then follows from FTODE.

4. Concluding remarks

We have limited our attention to the case of “independent private values,” in which
a buyer’s reservation price does not depend on other buyers’ private information, and
reservation prices are independently distributed. Note that, for this case, our arguments
also establish equilibrium existence without the need to invoke existence theorems for
discontinuous games such as Dasgupta and Maskin (1986), Simon and Zame (1990), and
Reny (1999) (existence results for high-bid auctions twatise these theorems include
Lebrun, 1996; Maskin and Riley, 2000b; Bresky, 1999; Jackson and Swinkels, 2001; and
Reny and Zamir, 2002).

When there are only two buyers, Lizzeri and Persico (2000) relax the independence
and private-values assumptions and establish uniqueness (and existence) under affiliation
and certain forms of interdependent values. We believe that our methods can be adapted
to accommodate such relaxations when there are more than two buyers, but this avenue
remains to be explored (Bajari, 2001, establishes uniqueness when there are more than two
buyers under the assumption the inverse bid functions are everywhere differentiable).
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Appendix A

Lemma 5 (Strict monotonicity property of bid distributionsifor any b > b, and any i, Z_/#, p;j(b) is dtrictly
increasing at b.

Proof. Chooses > 0. From Lemma 4, there must be at least one béyer who bids in[6 — ¢, b] with positive
probability. Hencepy (b — ¢) < pi(b) and sozj#i pib—¢) < Z#i pib). DO

Lemma 6. If ¢; (b) is strictly increasing to the right (or left) at b = b > b,., then b is a best response for buyer i
with reservation price §; = ¢; (b).
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Proof. Since both cases are handled in the same way, we consider only the case ingwhicks strictly
increasing to the right. kp; (b) is also strictly increasing to the left, the:rn(l?) =y (13), and so the lemma follows.
Thus for some > 0, suppose thap; (b) = s for all b € [b — 8, b). That s, for some* € [b — 8, b], y; (b*) = 5.
Becausep; (b) is strictly increasing to the right &t there exists a decreasing sequefice. .., b, ...} converging

to b such that sequends; (bY), ..., yi(b"), ...} converges ta;.
Sinced’ is optimal for reservation price; (b'), we have
ei(b', i (b)) Zp/ b') —ci(b', yi (D)) Zp, ) —ci(b*, yi (b)), forallz. (A1)
J# J#

From Lemma 5, it follows thaE#i p;j(b) =log G, (b) is continuous. Alsa; (b, s;) is continuous. Therefore
we have, in the limit,

ij( 7c,bs Zp] ) —ci(b*,s7). (A.2)
J# J#
From (A.2) it follows that buyer with reservation price; is at least as well off choosingasb*. O

Lemma 7. If ¢;(b) is strictly increasing to the right (or to the left) at b =b > b,, then 3", p;(b) is
correspondingly right (or left) continuously differentiable at b. Moreover, the right (left) derivative satisfies

> pi(B) = —-(b.4:())- (A3)

J#

Proof. Since the two cases are handled in the same way, we consider only the case ipmbicis strictly
increasing to the right. We know that;(b) is continuous. Thus ab there exists a decreasing sequence
b, ..., b', ...} converging tob such thaty; (b') converges ta; = ¢; b) monotonically from above. Because
b' is optimal for buyer with reservation price; = y; (b'), we have

Zp/ _(’I b y, bt Zp/ bt _(”(bt y’(bt))

J#i J#i
Rearranging, we obtain

3 i) - pi®) _ @ yi®") —citb.yi0))

= > = (A.4)
[T b —b b —b
By Lemma 6. is optimal for buyeri with reservation price; (b). Thus,
Zp] 7c,b¢, Zp] b’ 7cl(b’ ¢,()) for all 7.
J# J#
Rearranging, we obtain
(b)Y — p: (b (b b (D)) — ¢ (b. & (b
Z P,(b ) P_/(b) < Ct(b v¢t(b)) C,(b, ¢l(b)) (AS)

= b b = b —b

In the limit asb’ — b, the right-hand sides of (A.4) and (A.5) equaldb ¢; (b, ¢i (b)), which is continuous irb.
Thusz#, p;(b) is right continuously differentiable &, and its right derivative satisfies (A.3).0

Lemma 8. ¢; (b) isright (left) continuoudly differentiable at all b > b,.
Proof. Supposqbl(b) ..... ¢x (b) are strictly increasing to the right Atand thatpy1(b), ..., ¢n(b) are constant

to the right ath. By assumption; < k. By Lemma 7 Z#l p;j(b) is right differentiable ah, i =1,... k.
Summlng over and dividing byk — 1, we conclude that

/\ -
Zp,(b) 112217,(&7)
J#

i=1j=1
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is also right-differentiable . Sjnce the difference between these last two expressions ';s,-l(wzat i=1,...,k,
this too is right-differentiable a. But p; (b) = F;(¢; (b)). Thusg; (b) is right-differentiable ab. O
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