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We study the optimality of allowing the designer to withhold or damage resources in 
Bayesian incentive compatible mechanisms for bilateral trade with independent private 
values. The following results hold when the buyer and the seller have discrete value distri-
butions. Burning money or withholding the good from both traders never enhances welfare. 
Similarly, damaging the good for the buyer cannot increase welfare. By contrast, damaging 
the good for the seller may improve welfare. However, such welfare improvements are pos-
sible only if the damage hurts some lower valuation type of seller more severely than the 
highest valuation type. Results extend to the case of continuous value distributions under 
certain hypotheses regarding virtual values. Methods also apply to optimal Bayesian imple-
mentation for allocation problems. In the absence of property rights, damaging goods for 
any agent has negative welfare consequences.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

A major theme of the literature on mechanism design with asymmetric information is that to achieve an optimal al-
location of resources, it may be necessary to deliberately introduce distortions that would be inefficient in a complete 
information setting. For example, consider a seller who has an indivisible good to which she attaches no value facing a 
buyer whose valuation for the good is equally likely to be 3 or 7. In the mechanism that maximizes the seller’s expected 
revenue, the seller sets a price of 7, and the buyer acquires the good when his valuation is 7, but not when it is 3. This 
outcome is inefficient because either buyer type derives greater value from the good than the seller. The inefficiency arises 
because by not trading with the low-value buyer, the seller is able to demand a high price from the high-value buyer. If 
the valuation of the high-type buyer were reduced from 7 to 5, then the revenue maximizing mechanism prescribes that 
the seller trade with both buyer types at price 3. The reduction in the value of the high-type buyer not only increases 
the probability of an efficient allocation under the revenue maximizing mechanism from 1/2 to 1, but also increases total 
expected welfare (the sum of expected buyer and seller payoffs) from 7/2 to 4.

Going a step further, Green and Laffont (1979), Laffont and Maskin (1979) and Myerson and Satterthwaite (1983) exhibit 
models in which, because of asymmetric information, there is no mechanism that implements efficient allocations and 
satisfies natural participation and budget balance constraints. For an illustration, consider the following instance of the 
Myerson-Satterthwaite model of bilateral trade with incomplete information. A seller owns an indivisible good, which she 
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values at either s1 ∈ (0, 1) or 3 with equal probability. A buyer is interested in acquiring the good, and values it at either 1 
or 4, also with equal probability. The valuations of the seller and the buyer are independently distributed. Efficiency dictates 
that the good be sold with probability 1 for the pairs of buyer and seller types (1, s1), (4, s1), (4, 3) and with probability 
0 for the pair (1, 3). However, no Bayesian incentive compatible mechanism that is interim idividually rational and ex 
post budget balanced delivers these outcomes. The welfare maximizing mechanism in this class entails that for the pair of 
types (1, s1), the good is traded with probability 2/(2 + s1). In this example, reducing the value s1 of the low-type seller 
increases the probability that the good is allocated efficiently in the optimal mechanism, and also enhances total welfare if 
s1 ≤ √

6 − 2.
The examples above suggest that reducing valuations and, more generally, creating inefficiencies at the ex ante stage of 

a mechanism may improve ex post allocative efficiency and social welfare. In this paper, we explore the possibility of such 
welfare improvements in the Myerson-Satterthwaite bilateral trade setting when the mechanism designer has access to two 
types of inefficient actions: withholding and damage.

Under withholding, we imagine that when the good is handed over by the seller, it does not necessarily reach the buyer: 
the mechanism designer can withhold or destroy the good with some probability. Similarly, the mechanism designer has 
the option to withhold part of the monetary transfer from the buyer to the seller (i.e., “burn money” or run an ex post 
budget surplus). We assume that the mechanism designer can condition both types of withholding on traders’ reports.

When the good is deliberately damaged, it is reduced in value for one or more buyer or seller types. This may entail 
physical damage that is intentional or exogenous. Regulations that restrict the use of the good or prohibit bundling may 
also reduce a trader’s valuation and have idiosyncratic effects on types (whereas property taxes reduce valuations uniformly 
across types). For a concrete example, suppose that the good being sold is a private airplane that has a navigational device 
attuned to the seller’s geographic region. The buyer lives in a different region, and removing the device will not affect him 
at all. However, removing it will impact a seller with low valuation more because higher-valuation seller types are intensely 
invested in flying and have other equipment that could substitute for the missing device. Similarly, a broker handling an 
estate or an art collection can decide which items should be included for sale as a package, and dictate what the seller 
should do with the excluded items prior to the sale.

We begin our analysis with the case in which the two traders have discrete value distributions. This setting helps us 
develop intuition and yields the strongest versions of the results. The general principle behind creating inefficiencies is 
that they may enhance a mechanism’s ability to discriminate between different agent types. Since our model (as much of 
the mechanism design literature) assumes quasilinear preferences, there is no difference between types in their marginal 
utility for money. Hence, there should be no welfare gain from withholding money, and this intuition is borne out by our 
Proposition 1.

More interestingly, Proposition 2 establishes that withholding the good never improves welfare either. To understand 
the issues involved in establishing this seemingly intuitive result, note that if a mechanism withholds the good for some 
pair of buyer and seller types, the natural path to welfare improvement requires increasing the probability that the good 
is allocated to either of these types. However, this perturbation may result in a violation of the monotonicity of traders’ 
probability of being allocated the good with respect to their types, which is a necessary condition for implementation. In 
this situation, we show how the allocation can be further perturbed via a sequence of changes in trading probabilities 
that has a neutral effect on the overall probability that each buyer and seller type affected by the changes is allocated the 
good until we eventually reach a type for which the monotonicity condition is not binding. With suitable adjustments in 
monetary transfers, the perturbed allocation is implementable and improves welfare over the original one.

Proposition 3 shows that damaging the good for the buyer is never socially optimal. The intuition is that reducing buyer 
valuations entails less scope for allocating the good to the buyer and thus decreases potential gains from trade.

By contrast, damaging the good for the seller may enhance social welfare, as our second opening example demonstrates. 
This is true even if the seller needs to consent to the damage, which imposes the constraint that the utility she obtains 
from participating in the mechanism should be greater than or equal to her value for the undamaged good. Proposition 4
synthesizes the potential welfare benefits of damage for the seller. The idea is that a seller type whose valuation has been 
reduced finds it less attractive to pretend to be a higher-type seller. The slack created in the underlying incentive constraint 
can be leveraged to increase the probability of trade for seller types with reduced valuations. Proposition 4 suggests that it 
may be valuable to employ a mechanism designer who is more “active” than usually considered.

However, Proposition 4 relies on the mechanism designer damaging the good to a greater extent for seller types that 
value it less. In some situations, the mechanism designer may be constrained to damage the good in a fashion that affects 
higher-valuation seller types equally or more. Then, Proposition 5 reverses the conclusion of Proposition 4 under the main-
tained assumption that the seller should weakly prefer trading the damaged good in the mechanism to walking away with 
the undamaged good: damage that affects the seller type with the highest valuation most severely cannot improve welfare. 
The proof of Proposition 5 shows that even though reduced valuations for lower seller types decrease the information rents 
commanded by the seller as highlighted in Proposition 4, the transfers the designer saves on lower types by damaging the 
good are not sufficient to compensate the highest valuation seller type for participating in the mechanism and running the 
risk of being allocated the damaged good.

We develop parallel results for the original Myerson-Satterthwaite setting in which the buyer and the seller have con-
tinuous value distributions. Propositions 6, 7, 8 and 9 extend Propositions 1, 2, 3 and 5, respectively, under mild conditions 
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regarding virtual valuations. We also briefly consider related questions for social choice rules and allocation problems with-
out initial ownership as modeled by Wolitzky (2016).

There are several contributions related to our paper. Cramton et al. (1987) show that the tension between incomplete 
information and allocative efficiency highlighted by the impossibility theorem of Myerson and Satterthwaite is remediated 
by dispersing property rights among agents. Matsuo (1989) and Kos and Manea (2009) dispense with another key ingredient 
for the Myerson-Satterthwaite impossibility theorem—the assumption that agents have continuous value distributions—
and characterize the discrete value distributions for which an ex post efficient allocation is implementable. Makowski and 
Mezzetti (1993) argue that the impossibility theorem is not robust to the introduction of a second buyer.

Guo and Conitzer (2008, 2009), Moulin (2009) and de Clippel et al. (2014) show that burning money and withholding 
goods enhance welfare in multi-unit allocation problems where agents do not have property rights.1 Results in this literature 
are driven by the adoption of the stronger solution concept of dominant strategy incentive compatibility coupled with the 
requirement of no ex post budget deficit. By contrast, our results show that burning money and withholding goods cannot 
improve welfare in the Bayesian framework for bilateral trade. Remarkably, Drexl and Kleiner (2015) prove that in the 
absence of property rights, ex post efficient allocations are implementable in the Bayesian framework when agents have 
regular value distributions, closing the door on any potential benefits from withholding.2 Our results regarding the negative 
welfare effects of reducing an agent’s valuation in allocation problems mirror the analysis of damage for the buyer in 
bilateral trade. Therefore, the ownership structure in the bilateral trade setting generates fundamental asymmetries between 
the two traders that are not encountered in allocation problems without property rights.

The effects of withholding and damaging goods have been considered in other strategic environments by Postlewaite 
(1979), Deneckere and McAfee (1996), Hart and Reny (2015) and Condorelli and Szentes (2020).

The rest of the paper is organized as follows. In the next section, we set up the model with discrete types. Sections 3
and 4 present the results for money burning and withholding the good, respectively. In Sections 5 and 6, we analyze the 
effects of damaging the good for the buyer and for the seller, respectively. Section 7 extends our results to the continuous-
type setting. In Section 9, we discuss mechanisms for allocation problems without initial ownership. Section 10 provides 
concluding remarks. Proofs are relegated to the Appendix.

2. Framework

We first consider a discrete-value version of the bilateral trade problem with incomplete information modeled by My-
erson and Satterthwaite (1983), in which a buyer is interested in acquiring an indivisible good that a seller owns. The 
valuations of the buyer and of the seller for the good are independently distributed random variables with probability mass 
functions pb and ps , respectively, which have corresponding supports Vb = {b1, b2, . . . , bm} and V s = {s1, s2, . . . , sn}, where 
0 ≤ b1 < b2 < . . . < bm and 0 ≤ s1 < s2 < . . . < sn . Each trader is privately informed about his or her own value for the good 
(the trader’s type) and believes that the other trader’s value is a random variable drawn from the specified distribution. The 
two traders are risk neutral and have additively separable utility functions for money and the good.

The mechanism designer needs to specify a game that determines the probability of allocating the good to each of the 
two traders and the monetary transfers sent or received by the traders. The objective of the mechanism designer is to 
maximize expected total welfare in some Bayesian Nash equilibrium of the game. By the revelation principle, we can focus 
the analysis on direct mechanisms without loss of generality. In a direct mechanism, the traders simultaneously report their 
values, and the outcome is determined by four functions (xb, xs, tb, ts) with xb, xs : Vb × V s → [0, 1] and tb, ts : Vb × V s →R. 
If the buyer reports value bi and the seller reports value s j , then xb(bi, s j) and xs(bi, s j) are the probabilities with which 
the good is allocated to the buyer and to the seller, respectively, and tb(bi, s j) is the monetary transfer sent by the buyer, 
whereas ts(bi, s j) is the monetary transfer received by the seller.

This formulation departs from the Myerson-Satterthwaite model by allowing the mechanism designer to withhold both 
money and the good: for a profile of reports (bi, s j), tb(bi, s j) − ts(bi, s j) is the amount of money withheld (or “burned”), 
and 1 − xb(bi, s j) − xs(bi, s j) is the probability that the good is withheld (or destroyed) by the mechanism designer. The 
mechanism designer does not bring any resources to the market, and feasibility requires that tb(bi, s j) − ts(bi, s j) ≥ 0 and 
xb(bi, s j) + xs(bi, s j) ≤ 1.

A direct mechanism is (Bayesian) incentive compatible if honest reporting of values forms a Bayesian Nash equilibrium 
of the game between the buyer and the seller induced by the mechanism. A mechanism is (interim) individually rational if 
each trader type obtains non-negative expected utility gains from participating in the mechanism. We say that a mecha-
nism (xb, xs, tb, ts) is implementable if it is feasible, individually rational, and incentive compatible. An allocation (xb, xs) is 
implementable if there exist transfer functions (tb, ts) such that (xb, xs, tb, ts) is an implementable mechanism. The designer’s 

1 Other related contributions include Hartline and Roughgarden (2008) and Long et al. (2017).
2 Green and Laffont (1979) showed that ex post efficiency cannot be achieved under dominant strategy implementation subject to ex post budget balance. 

Drexl and Kleiner note that Green and Laffont’s conclusion is reversed if the budget balance constraint is relaxed from the ex post to the ex ante stage. 
Drexl and Kleiner also cogently argue that the results of Manelli and Vincent (2010) and Gershkov et al. (2013) regarding the equivalence of Bayesian and 
dominant strategy implementation in general classes of mechanism design problems do not apply under the additional desideratum of no ex post budget 
deficit.
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objective is to specify an implementable mechanism that maximizes total welfare—the sum of expected utility for the buyer 
and the seller.

For a mechanism (xb, xs, tb, ts), let

x̄b(bi) =
n∑

j=1

ps(s j)xb(bi, s j) & t̄b(bi) =
n∑

j=1

ps(s j)tb(bi, s j)

denote the probability that the buyer of type bi receives the good and the expected payment type bi makes respectively, and 
let

x̄s(s j) =
m∑

i=1

pb(bi)xs(bi, s j) & t̄s(s j) =
m∑

i=1

pb(bi)ts(bi, s j)

denote the probability that the seller of type s j keeps the good and the expected payment type s j receives, respectively. An 
optimal implementable mechanism (xb, xs, tb, ts) solves the following linear program:3

max
m∑

i=1

pb(bi)(x̄b(bi)bi − t̄b(bi)) +
n∑

j=1

ps(s j)(x̄s(s j)s j + t̄s(s j))

s.t. I Rbi : x̄b(bi)bi − t̄b(bi) ≥ 0,∀i = 1,m

I Rs j : x̄s(s j)s j + t̄s(s j) ≥ s j,∀ j = 1,n

ICbi→bk : x̄b(bi)bi − t̄b(bi) ≥ x̄b(bk)bi − t̄b(bk),∀i,k = 1,m

ICs j→sk : t̄s(s j) − (1 − x̄s(s j))s j ≥ t̄s(sk) − (1 − x̄s(sk))s j,∀ j,k = 1,n

F Tbi ,s j : tb(bi, s j) − ts(bi, s j) ≥ 0,∀i = 1,m, j = 1,n

F Xbi ,s j : xb(bi, s j) + xs(bi, s j) ≤ 1,∀i = 1,m, j = 1,n.

The seller’s individual rationality constraint I Rs j guarantees that by participating in the mechanism, a seller of type s j
obtains utility at least s j , reflecting the seller’s initial ownership of the good (and option to walk away from the mechanism 
and hold on to the good).

Myerson and Satterthwaite (1983) assume that the mechanism designer cannot withhold either money or the good, 
which corresponds to imposing the feasibility constraints F Tbi ,s j and F Xbi ,s j with equality for all i and j. This assump-
tion restricts the set of mechanisms the designer can implement. The next two sections investigate whether giving the 
mechanism designer the freedom to withhold money or the good can enhance welfare.

3. Money burning

We first show that withholding monetary transfers (“burning money”) is never optimal.

Proposition 1. Optimal implementable mechanisms never withhold monetary transfers.

The proof of this and subsequent results are presented in the Appendix. The argument is straightforward. If an imple-
mentable mechanism involves money withholding for a pair of reports (bi , s j), we can increase the transfer to seller type 
s j to match the transfer from bi when the buyer reports type bi , and reduce the transfers s j receives from all buyer types 
uniformly and then credit them to the buyer, so that s j enjoys the same expected outcomes following the perturbation. The 
perturbed mechanism preserves individual rationality and incentive compatibility, and increases the expected utility of the 
buyer without affecting the expected utility of the seller.

4. Withholding the good

The previous section shows that in solving the linear program for the optimal mechanism, we can assume that the F Tbi ,s j

constraints hold with equality, i.e., tb(bi, s j) = ts(bi, s j) for all (bi, s j). In what follows, we restrict attention to mechanisms 
with this property, and use a single function t to describe monetary transfers; notation for a mechanism simplifies to 
(xb, xs, t) with the understanding that tb(bi, s j) = ts(bi, s j) = t(bi, s j).

The next result shows that withholding the good cannot enhance welfare under the optimal mechanism.

3 The notation a,b stands for the sequence of integers in the interval [a, b].
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Proposition 2. There exists an optimal implementable mechanism that withholds the good with probability zero. If s1 > 0, then every 
optimal implementable mechanism withholds the good with probability zero.

The following lemmata collect standard insights from mechanism design about binding “local” incentive constraints and 
monotonicity properties of the allocation needed for the proof (some appear in Lovejoy, 2006).

Lemma 1. A mechanism (xb, xs, t) is implementable if and only if it satisfies I Rb1 , I Rsn , ICbi→bi+1 , ICbi+1→bi , ICs j→s j+1 and ICs j+1→s j

for i = 1,m − 1 and j = 1,n − 1. If (xb, xs, t) is implementable, then x̄b(bi+1) ≥ x̄b(bi) and x̄s(s j+1) ≥ x̄s(s j) for i = 1,m − 1 and 
j = 1,n − 1. For any mechanism (xb, xs, t), if x̄b(bi+1) > x̄b(bi) and ICbi+1→bi holds with equality, then ICbi→bi+1 is satisfied with 
strict inequality. Similarly, if x̄s(s j+1) > x̄s(s j) and ICs j→s j+1 holds with equality, then ICs j+1→s j is satisfied with strict inequality.

Lemma 2. For every implementable mechanism (xb, xs, t), there exists a transfer specification t′ such that (xb, xs, t′) is implementable, 
and I Rb1 , ICbi→bi−1 and ICs j→s j+1 hold with equality under (xb, xs, t′) for i = 2,m and j = 1,n − 1.

We sketch the proof for the second part of Proposition 2 here (the first part follows from similar ideas and a compactness 
argument). Suppose that s1 > 0, and consider an implementable mechanism (xb, xs, t′′) that withholds the good with positive 
probability for a profile of reports (bi, s j), i.e., xb(bi, s j) + xs(bi, s j) < 1. Lemma 2 implies the existence of a transfer function 
t that implements the same allocation (xb, xs) such that (xb, xs, t) satisfies the constraints listed in the lemma with equality. 
Since neither mechanism withholds money, (xb, xs, t) generates the same total welfare as (xb, xs, t′′), so (xb, xs, t′′) is optimal 
if and only if (xb, xs, t) is optimal. To increase the welfare generated by (xb, xs, t), we contemplate a perturbation of the 
allocation whereby the seller of type s j keeps the good with higher probability in the event agents report types (bi, s j): 
x′

s(bi, s j) = xs(bi, s j) + ε.
If x̄s(s j) < x̄s(s j+1) and ε is sufficiently small, the monotonicity of x̄s implies that x̄′

s is monotonic, which per Lemma 1
is a necessary condition for the implementation of the allocation (xb, x′

s). To provide incentives supporting the new allo-
cation (xb, x′

s), we modify transfers to type s j uniformly so that s j receives the same utility in the perturbed mechanism: 
t′(bk, s j) = t(bk, s j) − pb(bi)εs j for all k. ICs j+1→s j is the main constraint from Lemma 1 we need to check in order to estab-
lish that (xb, x′

s, t′) is an implementable mechanism. Indeed, the perturbation reduces payments to a type s j by pb(bi)εs j to 
account for the extra probability pb(bi)ε with which this type is allocated the good. This marginal change is also attractive 
to type s j+1 for whom the increase in the allocation probability is worth pb(bi)εs j+1, which is greater than the implicit cost 
of pb(bi)εs j . However, the condition x̄s(s j) < x̄s(s j+1) and the assumption that (xb, xs, t) satisfies ICs j→s j+1 with equality, 
along with Lemma 1, imply that (xb, xs, t) satisfies ICs j+1→s j with strict inequality. By continuity, (xb, x′

s, t′) must also satisfy 
ICs j+1→s j for small ε. The perturbation increases welfare by pb(bi)ps(s j)εs j > 0, which means that (xb, xs, t) is suboptimal.

The case x̄s(s j) = x̄s(s j+1) requires a more extensive sequence of perturbations since the monotonicity condition neces-
sary for implementability from Lemma 1 cannot be maintained if we increase x̄s(s j) without altering x̄s(s j+1). However, in 
seeking a welfare improvement over the mechanism (xb, xs, t), we still take advantage of the slack in the constraint F Xbi ,s j

by increasing the probability that type s j keeps the good to x′
s(bi, s j) = xs(bi, s j) + ε for some small ε. For this change to 

have a neutral effect on x̄s(s j), we decrease xs(bi′ , s j) and increase xb(bi′ , s j) by εpb(bi)/pb(bi′ ) for some other buyer type 
bi′ . We can then neutralize the effect of this perturbation on type bi′ by decreasing the probability that bi′ receives the good 
from some other seller type s j′ . Finally, the increase in the probability that s j′ keeps the good can be implemented without 
a further change in the allocation of s j′ using the idea from the first step of the proof if x̄s(s j′ ) < x̄s(s j′+1). In the proof, we 
choose s j′ to be the highest seller type such that x̄s(s j′ ) = x̄s(s j), and demonstrate the existence of a buyer type bi′ such 
that all perturbations generate allocation probabilities in [0, 1]. We then adjust transfers for seller type s j′ as in the first 
step of the proof to preserve the structure of incentives for the seller. We show that the perturbed mechanism boosts the 
welfare of (xb, xs, t) by pb(bi)ps(s j)εs j′ > 0, proving that (xb, xs, t) is not optimal.

Interestingly, an analogous argument does not go through if x̄b(bi) < x̄b(bi+1), and we perturb the mechanism (xb, xs, t)
to allocate the good with ε additional probability to the buyer—rather than to the seller—in the event agents report types 
(bi, s j), i.e., x′

b(bi, s j) = xb(bi, s j) + ε. Indeed, if ICbi+1→bi and ICbi→bi−1 are binding under (xb, xs, t), then maintaining these 
constraints under the perturbed mechanism (x′

b, x
′
s, t′) requires that ps(s j)εbi+1 ≤ t̄′

b(bi) − t̄b(bi) ≤ ps(s j)εbi , which is im-
possible because ps(s j) > 0 and bi+1 > bi . This explains the buyer-seller asymmetry in the statement of Proposition 2. The 
forthcoming analysis of damaging the good for the buyer and for the seller reveals other asymmetries in the interaction 
between the allocation and incentives for the two agents.

5. Damaging the good for the buyer

In this section and the next, we examine whether damaging the good for the buyer or for the seller can enhance welfare. 
Specifically, we assume that the mechanism designer can reduce the value of either the buyer or the seller for the good by 
shifting the corresponding value distribution down in the sense of first-order stochastic dominance. The shift does not have 
to be uniform across agent types. If the good has multiple components (or is offered as a bundle) and there is heterogeneity 
in how agent types value each component, then the mechanism designer may “damage” the good by prohibiting the sale 
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or regulating the use of certain components with varying effects on different types. Uniform value reduction can also be 
accomplished by imposing a property tax.

Since Propositions 1 and 2 show that withholding money and the good cannot improve welfare, we revert to the 
Myerson-Satterthwaite formulation of the optimal mechanism in which the constraints F Tbi ,s j and F Xbi ,s j are imposed 
with equality. Following the notation from the previous section, the transfer function t : Vb × V s → R specifies a payment 
from the buyer to the seller. We update notation for allocations to reflect the fact that withholding the good is ruled out: 
the allocation is now determined by a single function x : Vb × V s → [0, 1] that describes the probability of trade between the 
buyer and the seller. In the mechanism (x, t), when the buyer reports type bi and the seller reports type s j , the two agents 
trade the good with probability x(bi, s j) in exchange for a payment t(bi, s j).

Let

x̄b(bi) =
n∑

j=1

ps(s j)x(bi, s j) & t̄b(bi) =
n∑

j=1

ps(s j)t(bi, s j)

denote the probability that the buyer of type bi buys the good and the expected payment type bi sends to the seller, 
respectively, and let

x̄s(s j) =
m∑

i=1

pb(bi)x(bi, s j) & t̄s(s j) =
m∑

i=1

pb(bi)t(bi, s j)

denote the probability that the seller of type s j sells the good and the expected payment type s j receives from the buyer, 
respectively (note the change in notation: unlike in the previous sections, x̄s denotes trading probabilities for the seller here). 
The optimal implementable mechanism (x, t) then solves the following linear program:

max
m∑

i=1

pb(bi)x̄b(bi)bi +
n∑

j=1

ps(s j)(1 − x̄s(s j))s j

s.t. I Rbi : x̄b(bi)bi − t̄b(bi) ≥ 0,∀i = 1,m

I Rs j : t̄s(s j) − x̄s(s j)s j ≥ 0,∀ j = 1,n

ICbi→bk : x̄b(bi)bi − t̄b(bi) ≥ x̄b(bk)bi − t̄b(bk),∀i,k = 1,m

ICs j→sk : t̄s(s j) − x̄s(s j)s j ≥ t̄s(sk) − x̄s(sk)s j,∀ j,k = 1,n.

We establish that damaging the good for the buyer can never improve welfare.

Proposition 3. If pb and p′
b are two value distributions for the buyer such that pb first-order stochastically dominates p′

b, then for 
any seller value distribution ps, no implementable mechanism for the pair of value distributions (p′

b, ps) achieves greater total welfare 
than the optimal implementable mechanism for (pb, ps).

The intuition for this result is that reducing buyer value entails less scope for allocating the good to the buyer and thus 
decreases potential gains from trade. For the proof, it is helpful to approach this intuition from the opposite angle: if the 
buyer value distribution improves from p′

b to pb , it becomes easier to incentivize trade with buyer types whose values 
increase.

We can assume that the optimal mechanisms for (pb, ps) and (p′
b, ps) are defined for buyer valuations in the union 

of the supports of pb and p′
b since any implementable mechanism can be extended to a set of probability-zero types by 

specifying allocations and transfers for each such type as an optimal selection for that type from the menu of allocations and 
transfers prescribed by the mechanism for positive-probability types, along with the option of no trade and zero transfers. 
For any pair of distributions with finite supports that is ranked with respect to first-order stochastic dominance, we can 
reach the dominating distribution from the dominated one via a finite sequence of changes that move probability mass up 
between single pairs of adjacent points in the union of the two supports. Therefore, it is sufficient to establish the result for 
the case in which pb(bi) = p′

b(bi) − δ and pb(bi+1) = p′
b(bi+1) + δ for some δ > 0, and p′

b(bk) = pb(bk) for k 
= i, i + 1.
We show that any mechanism (x′, t′) that is implementable when traders’ values are distributed according to (p′

b, ps)

and satisfies the constraint ICbi+1→bi from Lemma 2 with equality can be perturbed to obtain an implementable mechanism 
(x, t) for the value distributions (pb, ps) that differs from (x′, t′) only for the following profiles of types:

x(bi+1, s j) = δ

pb(bi+1)
x′(bi, s j) + pb(bi+1) − δ

pb(bi+1)
x′(bi+1, s j)

t(bi+1, s j) = δ
t′(bi, s j) + pb(bi+1) − δ

t′(bi+1, s j),∀ j = 1,n.

pb(bi+1) pb(bi+1)
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The perturbed mechanism (x, t) channels δx̄′
b(bi) volume of trade from the measure δ of buyer types whose valuations 

improve from bi to bi+1 in the shift from p′
b to pb without affecting the expected pattern of trade for other buyer and seller 

types, and consequently generates δx̄′
b(bi)(bi+1 − bi) ≥ 0 more surplus than (x′, t′).

6. Damaging the good for the seller

We now consider the situation in which the mechanism designer can damage the good for the seller. It is reasonable to 
assume that the seller has the option to keep the undamaged good, so the mechanism designer is constrained to provide 
each seller type at least the utility the seller would derive from consuming the good prior to the damage. To express 
this participation constraint for the seller, we focus on type-by-type damage whereby the value of each seller type j is 
reduced from s j to s′

j . Thus, the mechanism designer can shift down the initial distribution of seller values ps with support 
s1 < s2 < . . . < sn to a distribution p′

s with support s′
1 < s′

2 < . . . < s′
n such that s′

j ≤ s j and ps(s j) = p′
s(s′

j) for j = 1,n. Then, 
in the notation of the previous section, the damage participation constraint for seller type j in an implementable mechanism 
(x, t) following the value reduction from ps to p′

s requires that

t̄s(s′
j) + (1 − x̄s(s′

j))s′
j ≥ s j .

Note that the standard I Rs′j constraint for the pair of distributions (pb, p′
s) is weaker, with s j being replaced by s′

j on the 
right-hand side of the inequality above.

In contrast to Proposition 3, the next result shows that damaging the good for the seller may enhance welfare.

Proposition 4. Let x be an implementable allocation for a pair of value distributions (pb, ps). Suppose that there exist i ≤ m − 1
and j ≤ n − 1 such that x̄b(b1) = x̄b(bi) < x̄b(bi+1) and x̄s(s1) = x̄s(s j) > x̄s(s j+1) > 0. If bi > s1 and x(bi, s1) < 1, then for any 
sufficiently small ε > 0, damaging the good to reduce the valuations of seller types 1, . . . , j uniformly by ε (without affecting other 
types) enables the mechanism designer to implement an allocation x′ (while obeying the seller’s damage participation constraint) that 
coincides with x for every pair of corresponding buyer and seller types except that

x′(bi, s1 − ε) = x(bi, s1) + ε
(x̄s(s j) − x̄s(s j+1))

∑ j
l=1 ps(sl)

ps(s1)(bi+1 − bi)
∑m

k=i+1 pb(bk)
.

It is possible that the allocation x′ generates greater total welfare given the damaged seller values than x given the original seller values 
even in situations where x is an optimal implementable allocation for (pb, ps).4

To understand this result, note that x̄s(s1) = x̄s(s j) implies that any mechanism implementing allocation x generates the 
same expected outcomes (x̄s and t̄s) for seller types 1 through j, and damaging the good for these types decreases their 
incentives to mimic higher types. Indeed, higher seller types keep the good with higher probability, but keeping the good 
becomes less attractive for a low-type seller whose value has been reduced. The slack created in the constraints ICs j′ →s j+1

by the ε reduction in valuations for seller types j′ ≤ j can be used to decrease transfers from the buyer of type i + 1
and higher to the seller of type j and lower. This perturbation introduces slack in the constraint ICbi+1→bi , which can be 
leveraged to increase the probability of an ex post efficient trade between the seller with reduced valuation s1 − ε and the 
buyer with valuation bi at marginal terms that make type bi indifferent and would be attractive to type bi+1 if not for the 
decrease in transfers granted to this type under the perturbation.

However, the improvement in allocative efficiency generated by increased trading between types bi and s1 −ε is achieved 
at the cost of damaging the good and thus reducing the utility of affected seller types in the event of no trade. Hence, there 
is a trade-off between the additional gains from trade for the pair (bi , s1 − ε),

pb(bi)ps(s1)(bi − s1 + ε)(x′(bi, s1 − ε) − x(bi, s1)) = ε
(bi − s1 + ε)(x̄s(s j) − x̄s(s j+1))pb(bi)

∑ j
l=1 ps(sl)

(bi+1 − bi)
∑m

k=i+1 pb(bk)
, (1)

and the expected utility loss suffered by seller types 1 through j in the event that they do not trade the damaged good,

ε(1 − x̄s(s1))

j∑
l=1

ps(sl). (2)

Both the marginal efficiency gain deriving from the perturbed allocation and the marginal loss resulting from the damage 
are of order ε, and the net effect of the perturbation on total welfare depends on the original allocation x and the value 
distributions (pb, ps).

4 We can replace the hypothesis x(bi, s1) < 1 with the weaker condition x̄s(s1) < 1, and adjust the conclusion to state that x̄′ coincides with x̄ for all 
corresponding buyer and seller types except that x̄′

b(bi) = x̄b(bi) + ε′ ps(s1) and x̄′
s(s1 − ε) = x̄s(s1) + ε′ pb(bi) for some ε′ > 0. See the Appendix for a proof.
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Fig. 1. Total welfare under the optimal mechanism as a function of s1.

We illustrate this trade-off in an example showing that either effect (1) or (2) can dominate when x is the optimal 
implementable allocation for the original value distributions. Suppose that there are two buyer and two seller types (m =
n = 2). The buyer’s valuations are b1 = 1 and b2 = 4 with equal probability, while the seller’s valuations are (a parameter) 
s1 ∈ [0, 1) and s2 = 3 with equal probability. We assume that the designer can damage the good for the low-type seller 
alone, and consider the welfare consequences of reducing s1.

In the Appendix, we show that the optimal mechanism implements the following allocation:

x(b1, s1) = 2

2 + s1
, x(b1, s2) = 0, x(b2, s1) = 1, x(b2, s2) = 1. (3)

The optimal mechanism allocates the good efficiently with higher probability as s1 decreases to 0, reaching ex post efficiency 
for s1 = 0.5 As implied by Proposition 4, making the good less valuable for the low-type seller s1 reduces her incentive to 
mimic the high type s2, who trades less in the optimal mechanism. The resulting slack in the constraint ICs1→s2 is leveraged 
to increase the probability of trade between types b1 and s1.

The optimal implementable allocation x identified in (3) generates a total welfare of

24 + 11s1 + s2
1

4(2 + s1)
,

which is decreasing for s1 ∈ [0, 
√

6 − 2] and increasing for s1 ∈ [√6 − 2, 1) as seen in Fig. 1. At s1 = √
6 − 2 ≈ 0.449, the 

marginal improvement in gains from trade quantified by formula (1) resulting from a small decrease in s1 exactly offsets 
the marginal utility loss described by expression (2) that seller type s1 suffers in the event she retains the damaged good. 
For s1 <

√
6 − 2, the gain is greater than the loss, while for s1 >

√
6 − 2 the opposite is true. For a concrete computa-

tion, when s1 takes values 0 and 0.4, the corresponding optimal implementable mechanisms achieve total welfare 3 and 
2.975, respectively. Therefore, reducing the value of the low-type seller from 0.4 to 0 enhances welfare under the optimal 
mechanism.

The seller’s damage participation constraint is satisfied in this example when the designer damages the good for the 
low-type seller and implements the optimal mechanism given the seller’s reduced valuation. Indeed, a seller with any 
initial valuation s1 ∈ (0, 1) would consent to the damage and then participate in the optimal mechanism with a reduced 
valuation s′

1 ∈ [0, s1) because trading in the optimal mechanism with value s′
1 yields an expected payoff of at least 3/2, 

which exceeds the seller’s value s1 for the undamaged good. To see this, note that the individual rationality constraint I Rs2

and the incentive compatibility constraint ICs′1→s2
hold with equality under the optimal mechanism for the reduced value 

s′
1. Since seller type s2 trades the good with probability 1/2 under this mechanism, she receives an expected payment of 

1/2 × s2 = 3/2. Then, seller type s′
1 expects a utility of 1/2 × s′

1 + 3/2 ≥ 3/2 under the mechanism.
Proposition 4 presumes that the mechanism designer is able to target the damage of the good at seller types with low 

valuations. Suppose instead that damage must hurt the seller type with the highest valuation most severely. Specifically, 
damage is restricted to shifting down the seller value distribution ps with support s1 < s2 < . . . < sn to distributions p′

s
with support s′

1 < s′
2 < . . . < s′

n such that 0 ≤ s j − s′
j ≤ sn − s′

n and p′
s(s′

j) = ps(s j) for j = 1,n. In this case, we say that p′
s

reflects damage at the top relative to ps . We show that damage at the top for the seller cannot raise expected welfare.

5 Myerson and Satterthwaite (1983) note that their result about the impossibility of implementing the ex post efficient allocation for continuous value 
distributions does not extend to the case of discrete distributions. This example with s1 = 0 is an instance where their impossibility result does not apply.
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Proposition 5. If p′
s is a seller value distribution that reflects damage at the top relative to ps, then for any buyer value distribution pb, 

there is no implementable mechanism for the pair of value distributions (pb, p′
s) that obeys the seller’s damage participation constraint 

for the value reduction from ps to p′
s and achieves greater total welfare than the optimal implementable mechanism for (pb, ps).6

To develop intuition for this result, recall from the discussion of Proposition 4 that reducing the valuation of a seller type 
that is not the highest introduces slack in the incentives for that type not to report higher values if the same allocation is 
to be implemented; this decreases the information rent needed to compensate that type relative to the next higher type. 
However, this potentially positive welfare effect is offset by the direct loss created by the damage as well as by the increased 
transfers required to meet the seller’s damage participation constraint. In particular, the damage participation constraint for 
the seller with the highest valuation is more restrictive than the post-damage individual rationality constraint for this type; 
a higher expected transfer is required for this type to implement the same allocation. The proof of Proposition 5 shows that 
under damage at the top, the additional transfer imposed by the damage participation constraint for the seller type with 
the highest valuation is greater than the sum of transfers saved on lower types as a result of the diminished information 
rents dispensed to these types after the damage.

7. Results for continuous types

In this section, we present versions of our results for the original Myerson-Satterthwaite model, in which buyer and 
seller valuations have continuous distributions. Assume that the valuations of the buyer and the seller have cumulative 
distribution functions Fb and Fs with continuous densities fb = F ′

b and f s = F ′
s that are positive at every point in their 

respective supports [b, ̄b] and [s, ̄s]. Recall that the virtual values of the buyer of type b and the seller of type s are defined 
by

ψ
Fb
b (b) = b − 1 − Fb(b)

fb(b)
and ψ

Fs
s (s) = s + Fs(s)

f s(s)
, respectively.

A buyer distribution Fb or a seller distribution Fs is said to be regular if its respective virtual value function ψ Fb
b or ψ Fs

s is 
strictly increasing.

In the continuous-type setting, a direct mechanism (xb, xs, tb, ts) that permits withholding is described by allocation 
functions xb, xs : [b, ̄b] × [s, ̄s] → [0, 1] and transfer functions tb, ts : [b, ̄b] × [s, ̄s] → R that are Riemann integrable. Con-
straints for an implementable mechanism are specified analogously to the discrete-type setting (with integrals replacing 
summations).

The first result for the continuous-type setting establishes the counterpart of Proposition 1—money burning is never 
optimal. The proof relies on a perturbation similar to the one used to prove Proposition 1.

Proposition 6. Suppose that (xb, xs, tb, ts) is an optimal implementable mechanism for a pair of value distributions (Fb, Fs). Then,

s̄∫
s

b̄∫
b

(tb(b, s) − ts(b, s)) fb(b) f s(s)db ds = 0.

Given this result, in solving for optimal mechanisms we can now assume that tb(b, s) = ts(b, s) for all pairs of types 
(b, s). We simplify notation for a mechanism to (xb, xs, t) with the understanding that tb(b, s) = ts(b, s) = t(b, s).

We next prove the analog of Proposition 2—withholding the good with positive probability is not optimal—under the 
assumption that buyer and seller value distributions are regular. The proof shows that the optimal mechanism characterized 
by Myerson and Satterthwaite in the case of regular value distributions continues to be optimal when the designer is given 
the extra flexibility to withhold the good.

Proposition 7. Under any optimal implementable mechanism (xb, xs, t) for a pair of regular value distributions (Fb, Fs), the set of 
pairs of types (b, s) for which xb(b, s) + xs(b, s) 
= 1 has probability zero under the product distribution Fb × Fs.

In light of Proposition 7, the rest of this section assumes that xb(b, s) + xs(b, s) = 1 for all pairs (b, s). A mechanism 
is now simply denoted by (x, t), with allocation functions given by xb(b, s) = x(b, s) and xs(b, s) = 1 − x(b, s). This is the 

6 If the mechanism designer could damage the good without the seller’s consent—i.e., has to abide by the individual rationality constraint with respect 
to the seller’s reduced valuation, but not by the more restrictive damage participation constraint—then a modification of the example above demonstrates 
that damage at the top may increase welfare under the optimal mechanism. This is possible even when the mechanism designer is subject to an ex ante 
damage participation constraint requiring that the seller’s expected payoff in the post-damage mechanism is not smaller than the seller’s expected value 
for the undamaged good. See the Appendix for a discussion.
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universe of mechanisms considered by Myerson and Satterthwaite from the outset of their analysis. However, we do not 
maintain the hypothesis of Proposition 7 that value distributions are regular.

The next result extends Proposition 3 to the continuous-type setting under the additional assumption that the damage 
for each buyer type results in a reduction in corresponding virtual values. Specifically, we interpret damaging the good for 
the buyer as a first-order stochastic dominance shift from Fb to Gb whereby the value of the buyer of type b is reduced 
from b to α(b) := G−1

b ◦ Fb(b), and require that the virtual value of type b under the original distribution Fb is greater than 
or equal to the virtual value of the corresponding type α(b) under the post-damage distribution Gb: ψ Fb

b (b) ≥ ψ
Gb
b (α(b)). 

Since Gb(α(b)) = Fb(b) and gb(α(b))α′(b) = fb(b), this sufficient condition is equivalent to

b − α(b) ≥ (1 − α′(b))
1 − Fb(b)

fb(b)
. (4)

The inequality above can be rewritten as

fb(b)

1 − Fb(b)
≥ 1 − α′(b)

b − α(b)
⇐⇒ (log [(b − α(b))(1 − Fb(b))])′ ≤ 0,

which is equivalent to (b − α(b))(1 − Fb(b)) being a decreasing function of b.
The proof combines Myerson and Satterthwaite’s feasibility condition for implementing monotonic allocations with the 

intuition behind Proposition 3 that an implementable mechanism under (Gb, Fs) can be modified to obtain an imple-
mentable mechanism under (Fb, Fs) by redirecting trade with type α(b) under Gb to type b under Fb in a way that does 
not affect trading probabilities for individual seller types.

Proposition 8. Let Fb and Gb be distributions of buyer values such that Fb first-order stochastically dominates Gb, and denote α =
G−1

b ◦ Fb. Suppose that ψ Fb
b (b) ≥ ψ

Gb
b (α(b)) for all b in the support of Fb. Then, for every seller value distribution Fs, the total welfare 

under an optimal implementable mechanism for the pair of value distributions (Gb, Fs) does not exceed the one for (Fb, Fs).

The final result for the continuous-type setting extends Proposition 5 under a different version of the hypothesis that no 
seller type is hurt by the damage more than the type with the highest valuation. The new hypothesis presumes that damage 
for seller type s whose value is reduced to α(s) via a first-order stochastic dominance shift from Fs to Gs is reflected by 
the difference in virtual values of type s under the distribution Fs and the corresponding type α(s) under the distribution 
Gs . The hypothesis requires that the reduction in virtual values ψ Fs

s (s) − ψ
Gs
s (α(s)) for every type s should not exceed the 

reduction in actual values s̄ − α(s̄) for the highest type s̄.7 As in the discrete-type setting, post-damage mechanisms must 
obey the seller’s damage participation constraint, which requires that for every s in the support of Fs , the seller type with 
reduced valuation α(s) receives an expected utility of at least s from participating in the mechanism after the damage.

Proposition 9. Let Fs and Gs be distributions of seller values such that Fs first-order stochastically dominates Gs, and denote α =
G−1

s ◦ Fs. Suppose that ψ Fs
s (s) − ψ

Gs
s (α(s)) ≤ s̄ − α(s̄) for all s in the support of Fs, where s̄ denotes the maximum of the support of 

Fs. Then, there is no implementable mechanism for the pair of value distributions (Fb, Gs) that obeys the seller’s damage participation 
constraint for the reduction in values from Fs to Gs and achieves greater total welfare than the optimal mechanism for (Fb, Fs).

8. Comparisons of methods and results for discrete and continuous value distributions

The proofs of Propositions 7 through 9 rely on applying revenue equivalence for the continuous-type setting (Myerson, 
1981) and adjusting the argument for Theorem 1 in Myerson and Satterthwaite (1983) to show that an allocation (xb, xs)

(that potentially involves withholding the good) is implementable if and only if x̄b and x̄s are increasing functions and the 
following inequality holds:8

b̄∫
b

s̄∫
s

(
xb(b, s)ψ Fb

b (b) − (1 − xs(b, s))ψ Fs
s (s)

)
fb(b) f s(s)ds db ≥ 0.

This result allows us to verify whether allocations are implementable without specifying supporting transfers.
Revenue equivalence also holds for mechanisms that satisfy the local incentive compatibility constraints from Lemma 2

(downward for buyer types, and upward for seller types) with equality in the discrete-type setting. As in the continuous-
type setting, it can be shown that an allocation (xb, xs) is implementable if and only if x̄b and x̄s are increasing functions 
and the inequality aggregating these constraints holds:

7 For s = s̄, the hypothesis requires that α′(s̄) ≤ 1.
8 Recall that in our setting x̄s(s) represents the probability that seller type s keeps the good, and not the probability that type s trades the good, which 

is the primitive variable in the analysis of Myerson and Satterthwaite; the two variables have opposite monotonicity.
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m∑
i=1

n∑
j=1

(
xb(bi, s j)ψ

pb
b (bi) − (1 − xs(bi, s j))ψ

ps
s (s j)

)
pb(bi)ps(s j) ≥ 0.

Here ψ pb
b and ψ ps

s denote the discrete-type analogues of Myerson’s (1981) virtual values (e.g., Lovejoy, 2006):

ψ
pb
b (bi) = bi − (bi+1 − bi)

pb(bi+1) + . . . + pb(bm)

pb(bi)
and ψ

ps
s (s j) = s j + (s j − s j−1)

ps(s1) + . . . + ps(s j−1)

ps(s j)
.

Versions of this “folk theorem” appear in Kos and Manea (2009) and Schottmuller (2023). One can use this result to verify 
that the various perturbations of allocations underlying our arguments for Propositions 2 and 3 are implementable without 
specifying the corresponding transfers.9 Nevertheless, we took an approach that explicitly defines the accompanying transfer 
perturbations in order to develop intuition into how slack in the local incentive compatibility constraints from Lemma 2 can 
be leveraged towards welfare improvement.

Embedded in the characterization of implementable allocations without reference to supporting transfers is the equiv-
alence between ex ante and ex post budget balance constraints in Bayesian mechanisms with independent types. This 
equivalence is showcased in the early constructions of Arrow (1979), d’Aspremont and Gerard-Varet (1979) and Myerson 
and Satterthwaite (1983), and has been established in general environments by Borgers and Norman (2009). Proposition 2 in 
the latter study applied to the bilateral trade problem implies that for any implementable mechanism that runs an expected 
budget surplus � ≥ 0, there exists an implementable mechanism that implements the same allocation and runs an ex post 
budget surplus � for every profile of types. Our Propositions 1 and 6 can then be viewed as corollaries of this result.

Propositions 7 through 9 invoke hypotheses related to virtual values that were not needed for their discrete-type counter-
parts. These hypotheses would appear as restrictive in the context of discrete value distributions as they are for continuous 
ones; in this sense, our results for the discrete-type setting are stronger. Whether the results for continuous types continue 
to hold if we drop the hypotheses pertaining to virtual values remains a question for future research. One approach that 
might be useful in extending our results to all continuous distributions would be to develop convergent upper and lower 
bounds on total welfare under the optimal mechanism for any pair of continuous distributions via discrete grid approxima-
tions, and derive Propositions 7, 8 and 9 from Propositions 2, 3 and 5, respectively.10 The underlying convergence argument 
would entail showing that the value of the linear program associated with the optimal mechanism for discrete value dis-
tributions varies continuously with the distribution (within the class of discrete distributions employed to derive upper and 
lower bounds). This is a separate hurdle since the optimal value of a linear program is not always a continuous function of 
coefficients in the constraints (see Gale, 1960 (p. 95), Williams, 1963 and Wets, 1985).

9. Allocation mechanisms without property rights

We extend our analysis to the model of social choice rules formulated by Wolitzky (2016). A set N of n ≥ 1 agents face 
a set of alternatives X ⊂ [0, ∞)n . The type of each agent i is drawn independently from a set of nonnegative numbers V i , 
which is either finite or a closed interval. Agents have a common prior, and agent i is privately informed about his type 
vi . The set of type profiles is denoted by V = ∏

i∈N V i . If alternative x ∈ X is implemented, then an agent i of type vi who 
makes a payment ti gets payoff xi vi − ti . Special instances of this framework include allocation problems for multiple units 
of an indivisible good for which agents have unit demand (in this case, xi is the probability that agent i receives a unit) and 
allocation problems for a divisible good (in this case, xi is the quantity agent i receives).11

In this environment, a direct mechanism specifies an allocation function x : V → X and a transfer function t : V → Rn . 
The IC , I R and F T constraints and total welfare for Bayesian implementable mechanisms are defined analogously to those 
for bilateral trade (the F X constraint is encapsulated in the requirement that the range of x is X).12

We assume that the set of alternatives X is convex and compact. Convexity captures the ability of the mechanism 
designer to randomize over alternatives, and compactness ensures the existence of optimal implementable mechanisms.

The analog of Propositions 1 and 6 in this new environment is that for every optimal implementable mechanism (x, t), 
all F T constraints hold with equality, that is, 

∑
i∈N ti(v) = 0 for all v ∈ V (with probability 1). Adapting the proofs for both 

the discrete- and the continuous-type settings requires primarily notational adjustments.
Proposition 3 also admits a straightforward extension to the discrete-type version of this environment: a reduction in 

any agent’s valuation in terms of first-order stochastic dominance cannot enhance welfare under the optimal implementable 

9 This approach is not directly applicable to Propositions 4 and 5 due to additional restrictions on transfers stemming from the damage participation 
constraint for the seller.
10 Madarasz and Prat (2017) carry on a related exercise in a screening problem with a single agent, and construct a mechanism in which the agent’s 

optimal decisions may respond discontinuously to approximations of his type, but affect the principal’s profit continuously. In our setting, perturbations in 
the mechanism affect the optimal reports of both the buyer and the seller, and the challenge is to maintain the continuity of the allocation resulting from 
this interaction.
11 This framework does not formally nest our bilateral trade setting because it rules out property rights. Wolitzky applies it to bilateral trade by assuming 

that the seller does not hold the good, but instead produces it ex post at a privately known cost only when the mechanism prescribes that trade take place.
12 In contrast to the Bayesian approach we maintain in this analysis, Wolitzky studies the case of agents with maxmin preferences.
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mechanism. As in the case of bilateral trade, the main step in proving this claim relies on the assumed convexity of the set 
X of feasible alternatives. Similarly, Proposition 8 extends to the continuous-type version of the current environment under 
the same hypothesis regarding the effect of damage on the agent’s virtual values.13

To draw parallels with Propositions 2 and 7 in this environment, consider an instance in which the set of alternatives 
X represents a multi-unit allocation problem in which agents have unit demand. In this setting, for both discrete and 
continuous value distributions that are regular, ex post efficient allocations are implementable—hence, withholding goods is 
categorically inefficient—under the maintained assumptions of Bayesian incentive compatibility, ex post budget balance and 
interim individual rationality. Drexl and Kleiner (2015) establish this result for an allocation problem with two agents and a 
single unit in which each agent’s valuation for the unit has a regular continuous distribution, but their argument generalizes 
to problems with larger numbers of agents and units. Therefore, the results of Guo and Conitzer (2008, 2009), Moulin (2009)
and de Clippel et al. (2014) regarding the necessity of burning money and the optimality of withholding goods in this setting 
hinge on their imposition of the stronger solution concept of dominant strategy incentive compatibility.

10. Conclusion

In this paper, we investigated the optimality of withholding and damaging resources in the context of Bayesian imple-
mentation for bilateral trade and allocation problems with independent private values. In the bilateral trade setting with 
discrete value distributions, we established that neither burning money nor withholding the good can enhance welfare. 
We found that the welfare effects of damaging the good are driven by the asymmetry in property rights between the two 
traders: damage for the buyer cannot improve welfare, while damage for the seller can. Nevertheless, damaging the good 
for the seller may enhance welfare only if it hurts a seller type with a low valuation more than the type with the highest 
valuation. We hope that the perturbation techniques we developed in this analysis will prove useful in other mechanism 
design problems with discrete types.

Extending our results to the bilateral trade setting with continuous value distributions required introducing some hy-
potheses about virtual values. It is an open question whether these hypotheses are necessary for the continuous-type results.

We also expanded our analysis to allocation problems without property rights. In this environment, we showed that 
damaging the good for any agent does not increase welfare, mirroring the result from the bilateral trade model that concerns 
damage for the buyer. We argued that money burning is never optimal, while withholding goods is not optimal if agents 
have regular value distributions. The divergence of these conclusions from existing research can be attributed to our focus 
on Bayesian implementation in contrast to the more demanding criterion of dominant strategy implementation (coupled 
with the desideratum of no ex post budget deficit) commonly imposed in the literature.
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Appendix. Proofs

Proof of Proposition 1. Let (xb, xs, tb, ts) be an optimal implementable mechanism. We prove by contradiction that 
tb(bi, s j) = ts(bi, s j) for all pairs of types (bi, s j). Suppose that there exists a pair (bi, s j) with δ := tb(bi, s j) − ts(bi, s j) > 0. 
Consider a perturbation (xb, xs, t′

b, t
′
s) of the mechanism (xb, xs, tb, ts) specifying that the transfer to seller type s j is in-

creased to match the transfer from bi when the buyer reports type bi and that the transfers s j receives from all buyer types 
are uniformly reduced and credited to the buyer, so that s j has the same expected utility following the perturbation. The 
perturbed mechanism (xb, xs, t′

b, t
′
s) is identical to (xb, xs, tb, ts) except for the following profiles of reports:

t′
s(bi, s j) = ts(bi, s j) + δ − pb(bi)δ

t′
s(bk, s j) = ts(bk, s j) − pb(bi)δ,∀k = 1,m,k 
= i

t′
b(bk, s j) = tb(bk, s j) − pb(bi)δ,∀k = 1,m.

The definition is so that (x̄b, ̄xs, ̄t′
b, ̄t

′
s) is identical to (x̄b, ̄xs, ̄tb, ̄ts) at all values with the following exception:

t̄′
b(bk) = t̄b(bk) − pb(bi)ps(s j)δ,∀k = 1,m.

13 Propositions 4, 5 and 9 do not have natural equivalents in this environment because the seller’s ownership of the good is central to our analysis of 
damage for the seller. All agents act as buyers here.
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We can easily compare expected outcomes under the mechanism (xb, xs, t′
b, t

′
s) to those under (xb, xs, tb, ts). Each buyer 

type receives the good with the same probability and expects a uniform decrease in transfers. Each seller type obtains 
the good with the same probability and receives the same expected transfer. Therefore, (xb, xs, t′

b, t
′
s) satisfies all buyer 

and seller rationality and incentive constraints because (xb, xs, tb, ts) does. We conclude that the mechanism (xb, xs, t′
b, t

′
s)

is implementable and yields an increase in welfare of pb(bi)ps(s j)δ > 0 over the mechanism (xb, xs, tb, ts), a contradiction 
with the optimality of the latter. �
Proof of Lemma 1. We need to show that the set of constraints enumerated in the statement imply all the other ones. 
ICbi→bi+1 and ICbi+1→bi lead to

bi(x̄b(bi+1) − x̄b(bi)) ≤ t̄b(bi+1) − t̄b(bi) ≤ bi+1(x̄b(bi+1) − x̄b(bi)),∀i = 1,m − 1. (5)

In particular, bi(x̄b(bi+1) − x̄b(bi)) ≤ bi+1(x̄b(bi+1) − x̄b(bi)) and bi+1 ≥ bi imply that

x̄b(bi+1) ≥ x̄b(bi),∀i = 1,m − 1. (6)

If ICbi+1→bi holds with equality, then the second inequality in (5) holds with equality. If additionally x̄b(bi+1) > x̄b(bi), 
then the first expression in (5) is strictly smaller than the last expression in (5), so the first inequality must be strict, which 
means that ICbi→bi+1 is satisfied with strict inequality.

If i < k ≤ m, then (5) and (6) imply that

bi(x̄b(bg+1) − x̄b(bg)) ≤ bg(x̄b(bg+1) − x̄b(bg)) ≤ t̄b(bg+1) − t̄b(bg)

≤ bg+1(x̄b(bg+1) − x̄b(bg)) ≤ bk(x̄b(bg+1) − x̄b(bg)),∀g = i,k − 1.

Adding up these inequalities, we obtain

bi(x̄b(bk) − x̄b(bi)) ≤ t̄b(bk) − t̄b(bi) ≤ bk(x̄b(bk) − x̄b(bi)),

which is equivalent to ICbi→bk and ICbk→bi .
Also, ICbk→b1 and I Rb1 imply that

bkx̄b(bk) − t̄b(bk) ≥ bkx̄b(b1) − t̄b(b1) ≥ b1x̄b(b1) − t̄b(b1) ≥ 0,

verifying I Rbk for k = 2,m.
The claims regarding the seller are checked similarly. �

Proof of Lemma 2. Among the monetary transfer functions t that implement (xb, xs), there exists one, t′ , that maximizes 
the expected payoff of seller type sn . We show that t′ has the desired properties. Suppose that ICbi+1→bi holds with strict 
inequality under (xb, xs, t′). For ε > 0 sufficiently small, the transfer function t′′ defined by

t′′(bk, s j) = t′(bk, s j) for k ≤ i, j = 1,n

t′′(bk, s j) = t′(bk, s j) + ε for k ≥ i + 1, j = 1,n

satisfies the sufficient individual rationality and incentive constraints from Lemma 1, and increases the expected payoff of 
sn by ε

∑n
k=i+1 pb(bk) > 0, a contradiction with the definition of t′ . The conclusion regarding I Rb1 follows from perturbing 

the transfers as in the formulae above with i = 0.
We obtain a similar contradiction if (xb, xs, t′) satisfies ICs j→s j+1 with strict inequality by perturbing the transfer function 

as follows:

t′′(bi, sl) = t′(bi, sl) − ε∑ j
l′=1 ps(sl′)

for l ≤ j, i = 1,m

t′′(bi, sl) = t′(bk, s j) + ε∑n
l′= j+1 ps(sl′)

for l ≥ j + 1, i = 1,m.

This perturbation keeps buyer’s incentives in place because the expected transfer of each buyer type under t′′ is the same 
as under t . �
Proof of Proposition 2. We prove the second part of the statement proceeding by contradiction. Suppose that s1 > 0, and 
let (xb, xs, t) be an optimal implementable mechanism under which the good is withheld with positive probability for some 
buyer-seller value profiles. We can assume without loss of generality that t is selected such that (xb, xs, t) satisfies all the 
constraints in Lemma 2 with equality. Let (bi, s j) be a pair of buyer and seller types for which the good is withheld with 
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positive probability, i.e., xb(bi, s j) + xs(bi, s j) < 1. Let j′ be the highest seller type such that x̄s(s j) = x̄s(s j′ ). By Lemma 1, 
since (xb, xs, t) satisfies ICs j′ →s j′+1

with equality and x̄s(s j′ ) < x̄s(s j′+1), it must satisfy ICs j′+1→s j′ with strict inequality.

Step 1. We show that j 
= j′ and j 
= n.
For a proof by contradiction, suppose that j = j′ or j = n. Consider the mechanism (x′

b, x
′
s, t′), which perturbs (xb, xs, t)

at the following values:

x′
s(bi, s j) = xs(bi, s j) + ε

t′(bk, s j) = t(bk, s j) − s j pb(bi)ε,∀k = 1,m.

For small ε > 0, x′
b(bi, s j) + x′

s(bi, s j) ≤ 1. The definition is so that (x̄′
b, ̄x

′
s, ̄t′

b, ̄t
′
s) take the same values as (x̄b, ̄xs, ̄tb, ̄ts) with 

the following exceptions:

x̄′
s(s j) = x̄s(s j) + pb(bi)ε

t̄′
s(s j) = t̄s(s j) − s j pb(bi)ε

t̄′
b(bk) = t̄b(bk) − s j pb(bi)ps(s j)ε,∀k = 1,m.

We compare expected outcomes under the mechanism (x′
b, x

′
s, t′) to those under (xb, xs, t). For each type report, the 

buyer receives the good with the same probability, and the expected transfer is uniformly reduced by a constant. Hence, 
(x′

b, x
′
s, t′) satisfies all buyer rationality and incentive constraints because (xb, xs, t) does.

The mechanism (x′
b, x

′
s, t′) satisfies all seller constraints that do not involve type s j because (x̄′

s, ̄t′
s) and (x̄s, ̄ts) coin-

cide for those types. Moreover, seller type s j expects the same utility from reporting any given type under (x′
b, x

′
s, t′) and 

(xb, xs, t), so (x′
b, x

′
s, t′) also satisfies the constraints involving the rationality and incentives of type s j . We are left to check 

that (x′
b, x

′
s, t′) satisfies the constraints ICs j−1→s j and ICs j+1→s j from Lemma 1.

ICs j−1→s j for (x′
b, x

′
s, t′) is equivalent to

t̄s(s j−1) − (1 − x̄s(s j−1))s j−1 ≥ (t̄s(s j) − s j pb(bi)ε) − (1 − (x̄s(s j) + pb(bi)ε))s j−1

⇐⇒ t̄s(s j−1) − (1 − x̄s(s j−1))s j−1 ≥ t̄s(s j) − (1 − x̄s(s j))s j−1 − (s j − s j−1)pb(bi)ε,

which follows from s j > s j−1 and the fact that (xb, xs, t) satisfies ICs j−1→s j .
For small ε > 0, (x′

b, x
′
s, t′) satisfies ICs j+1→s j by continuity since (x′

b, x
′
s, t′) satisfies ICs j+1→s j with strict inequality (for 

j = j′ , this was argued immediately after the definition of j′; for j = n, the argument is unnecessary).
Therefore, for small ε > 0, the mechanism (x′

b, x
′
s, t′) is implementable and yields an increase in welfare of s j pb(bi)ps(s j)ε >

0 over the mechanism (xb, xs, t), a contradiction with the optimality of (xb, xs, t).

Step 2. It must be that xb(bi′ , s j′ ) + xs(bi′ , s j′ ) = 1 for all i′ = 1,m.
This follows by replacing i with i′ and j with j′ in the argument from Step 1.

Step 3. We have that xb(bi, s j′ ) = 0 and xs(bi, s j′ ) = 1.
Steps 1 and 2 show that j < j′ and xb(bi, s j′ ) + xs(bi, s j′ ) = 1. Suppose, for a contradiction, that xb(bi, s j′ ) > 0.
Construct the mechanism (x′

b, x
′
s, t′) identical to (xb, xs, t) on Vb × V s with the following exceptions:

x′
b(bi, s j) = xb(bi, s j) + ε

x′
b(bi, s j′) = xb(bi, s j′) − ps(s j)

ps(s j′)
ε & x′

s(bi, s j′) = xs(bi, s j′) + ps(s j)

ps(s j′)
ε

t′(bk, s j′) = t(bk, s j′) − s j′ pb(bi)
ps(s j)

ps(s j′)
ε,∀k = 1,m.

For small ε > 0, we have x′
b(bi, s j) + x′

s(bi, s j) ≤ 1 and x′
b(bi, s j′ ) ≥ 0.

Arguments similar to those used in Step 1 show that the mechanism (x′
b , x′

s, t′) is implementable for small ε > 0. We 
reach the contradiction that (x′

b, x
′
s, t′) generates

s j′ ps(s j′)pb(bi)
ps(s j)

ps(s j′)
ε = s j′ pb(bi)ps(s j)ε > 0

more surplus than (xb, xs, t).

Step 4. We reach the final contradiction.
256



M. Manea and E. Maskin Games and Economic Behavior 142 (2023) 243–265
Steps 1 and 3 establish that j < j′ and xs(bi, s j′ ) = 1. In particular, xs(bi, s j) ≤ xb(bi, s j) + xs(bi, s j) < 1 = xs(bi, s j′ ). Since 
xs(bi, s j) < xs(bi, s j′ ), pb(bi) > 0, and x̄s(s j) = x̄s(s j′ ), there exists a buyer type bi′ such that xs(bi′ , s j) > xs(bi′ , s j′ ). It follows 
that xs(bi′ , s j) > 0, xb(bi′ , s j) < 1, and xs(bi′ , s j′) < 1. By Step 2, xb(bi′ , s j′ ) + xs(bi′ , s j′ ) = 1, and hence xb(bi′ , s j′ ) > 0. We 
collect the relevant inequalities:

xs(bi, s j) < 1, xs(bi′ , s j) > 0, xb(bi′ , s j) < 1, xb(bi′ , s j′) > 0, xs(bi′ , s j′) < 1. (7)

Construct a mechanism (x′
b, x

′
s, t′) that perturbs (xb, xs, t) for the following types:

x′
s(bi, s j) = xs(bi, s j) + ε

x′
s(bi′ , s j) = xs(bi′ , s j) − pb(bi)

pb(bi′)
ε & x′

b(bi′ , s j) = xb(bi′ , s j) + pb(bi)

pb(bi′)
ε

x′
b(bi′ , s j′) = xb(bi′ , s j′) − pb(bi)

pb(bi′)

ps(s j)

ps(s j′)
ε & x′

s(bi′ , s j′) = xs(bi′ , s j′) + pb(bi)

pb(bi′)

ps(s j)

ps(s j′)
ε

t′(bk, s j′) = t(bk, s j′) − s j′ pb(bi′)
pb(bi)

pb(bi′)

ps(s j)

ps(s j′)
ε = t(bk, s j′) − s j′ pb(bi)

ps(s j)

ps(s j′)
ε,∀k = 1,m.

For small ε > 0, the set of inequalities (7) guarantees that all values of x′ belong to the interval of probabilities [0, 1]. We 
can then argue as in Steps 1 and 3 that for small ε > 0, the mechanism (x′

b, x
′
s, t′) is implementable and improves the 

welfare of (xb, xs, t) by

s j′ pb(bi′)ps(s j′)
pb(bi)

pb(bi′)

ps(s j)

ps(s j′)
ε = s j′ ps(s j)pb(bi)ε > 0,

a contradiction.
Steps 1 through 4 show that if (xb, xs, t) is an optimal implementable mechanism, then xb(bi, s j) + xs(bi, s j) = 1.
To establish the first part of the result, note that the set of tuples (xb, xs, ̄t) associated with optimal implementable mech-

anisms (xb, xs, t) is a compact subset of a Euclidean space. It follows that there exists an optimal implementable mechanism 
that minimizes the total probability of withholding. If this mechanism withholds the good with positive probability, then 
the arguments above lead to a contradiction (and also imply that withholding under an optimal mechanism is possible only 
in the case s1 = 0, and withholding may take place in this case only when the seller has type s1). �
Proof of Proposition 3. As discussed in the proof sketch, it is sufficient to establish the result for cases in which pb(bi) =
p′

b(bi) − δ and pb(bi+1) = p′
b(bi+1) + δ with δ > 0, and p′

b(bk) = pb(bk) for k 
= i, i + 1.
Let (x′, t′) be a mechanism that maximizes welfare when traders’ values are distributed according to (p′

b, ps) and satisfies 
all constraints in Lemma 2 with equality (we use only the equality in the constraint ICbi+1→bi for this proof). Define the 
mechanism (x, t) to coincide with (x′, t′) for all type profiles with the following exceptions:

x(bi+1, s j) = δ

pb(bi+1)
x′(bi, s j) + pb(bi+1) − δ

pb(bi+1)
x′(bi+1, s j),∀ j = 1,n

t(bi+1, s j) = δ

pb(bi+1)
t′(bi, s j) + pb(bi+1) − δ

pb(bi+1)
t′(bi+1, s j),∀ j = 1,n.

Denote by x̄b, ̄xs, ̄tb, ̄ts and x̄′
b, ̄x

′
s, ̄t′

b, ̄t
′
s the probabilities of trade and expected transfers for each buyer and seller type 

under the mechanism (x, t) when values are distributed according to (pb, ps) and under the mechanism (x′, t′) when values 
are distributed according to (p′

b, ps), respectively. The allocation x is defined so that

pb(bi)x(bi, s j) + pb(bi+1)x(bi+1, s j) = p′
b(bi)x′(bi, s j) + p′

b(bi+1)x′(bi+1, s j),

which implies that x̄s(s j) = x̄′
s(s j) for all j. Similarly, t̄s(s j) = t̄′

s(s j) for all j. Moreover, (x̄′
b, ̄x

′
s, ̄t′

b, ̄t
′
s) is identical to 

(x̄b, ̄xs, ̄tb, ̄ts) at all values except bi+1, for which we have

x̄b(bi+1) = δ

pb(bi+1)
x̄′

b(bi) + pb(bi+1) − δ

pb(bi+1)
x̄′

b(bi+1)

t̄b(bi+1) = δ

pb(bi+1)
t̄′

b(bi) + pb(bi+1) − δ

pb(bi+1)
t̄′

b(bi+1).

We show that the mechanism (x, t) satisfies all the I R and IC constraints in Lemma 1 when traders’ values are dis-
tributed according to (pb, ps). Since x̄b, ̄tb, ̄xs, ̄ts coincide with x̄′

b, ̄t
′
b, ̄x

′
s, ̄t′

s at all values except for bi+1, the only constraints 
we need to check are those that involve buyer type bi+1. Neither type bi nor type bi+2 have an incentive to mimic type 
bi+1 in the mechanism (x, t) since each of these types is assigned the same allocation probabilities and expected transfers 
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under (x, t) and (x′, t′), and prefers his outcome under (x′, t′) to any other outcome achievable under (x′, t′) as well as to 
the convex combination of outcomes for types bi and bi+1 specified by (x(bi+1, ·), t(bi+1, ·)).

We are left to check that (x, t) satisfies ICbi+1→bi and ICbi+1→bi+2 . The constraint ICbi+1→bi requires that

δ

pb(bi+1)
(x̄′

b(bi)bi+1 − t̄′
b(bi)) + pb(bi+1) − δ

pb(bi+1)
(x̄′

b(bi+1)bi+1 − t̄′
b(bi+1)) ≥ x̄′

b(bi)bi+1 − t̄′
b(bi),

which is equivalent to

x′
b(bi+1)bi+1 − t̄′

b(bi+1) ≥ x̄′
b(bi)bi+1 − t̄′

b(bi).

The latter inequality is a consequence of ICbi+1→bi under the mechanism (x′, t′).
To check that (x, t) satisfies ICbi+1→bi+2 , we need to show that

δ

pb(bi+1)
(x̄′

b(bi)bi+1 − t̄′
b(bi)) + pb(bi+1) − δ

pb(bi+1)
(x̄′

b(bi+1)bi+1 − t̄′
b(bi+1)) ≥ x̄′

b(bi+2)bi+1 − t̄′
b(bi+2).

As (x′, t′) is assumed to satisfy ICbi+1→bi with equality, we have x̄′
b(bi)bi+1 − t̄′

b(bi) = x̄′
b(bi+1)bi+1 − t̄′

b(bi+1), so the inequality 
above follows from ICbi+1→bi+2 under (x′, t′).

Since pb, ps, ̄xb, ̄tb, ̄xs, ̄ts coincide with p′
b, ps, ̄x′

b, ̄t
′
b, ̄x

′
s, ̄t′

s at all values except for bi and bi+1, the difference in the welfare 
achieved by (x, t) with distributions (pb, ps) and (x′, t′) with distributions (p′

b, ps) is given by

pb(bi)x̄b(bi)bi + pb(bi+1)x̄b(bi+1)bi+1 − p′
b(bi)x̄′

b(bi)bi − p′
b(bi+1)x̄′

b(bi+1)bi+1

= pb(bi)x̄′
b(bi)bi + pb(bi+1)

(
δ

pb(bi+1)
x̄′

b(bi) + pb(bi+1) − δ

pb(bi+1)
x̄′

b(bi+1)

)
bi+1

−(pb(bi) + δ)x̄′
b(bi)bi − (pb(bi+1) − δ)x̄′

b(bi+1)bi+1

= δx̄′
b(bi)(bi+1 − bi),

which is non-negative. Therefore, the optimal mechanism for (pb, ps) yields at least the same amount of welfare as the 
optimal mechanism for (p′

b, ps). �
Proof of Proposition 4. Lemma 2 implies the existence of a transfer function t that implements the allocation x for the 
original pair of value distributions (pb, ps) such that (x, t) satisfies ICbi+1→bi with equality. Fix ε > 0 and let s′

l = sl − ε for 
l = 1, j. Define

ε′ = ε
(x̄s(s j) − x̄s(s j+1))

∑ j
l′=1 ps(sl′)

ps(s1)(bi+1 − bi)
∑m

k′=i+1 pb(bk′)
. (8)

We seek to implement an allocation x′ when the values of seller types l = 1, j are reduced from sl to s′
l that differs from 

x (for corresponding seller types) only in that

x′(bi, s′
1) = x(bi, s1) + ε′.

For this purpose, we perturb the transfer function t for the following pairs of types:

t′(bi, s′
1) = t(bi, s1) + ε′bi

t′(bk, s′
1) = t(bk, s1) − ε′(bi+1 − bi)

ps(s1)∑ j
l′=1 ps(sl′)

− ε′(bi − s′
1)

pb(bi)∑m
k′=i+1 pb(bk′)

,∀k = i + 1,m

t′(bk, s′
l) = t(bk, sl) − ε′(bi+1 − bi)

ps(s1)∑ j
l′=1 ps(sl′)

,∀k = i + 1,m, l = 2, j.

Transfers are specified so that buyer type bi pays exactly his gain from the additional probability of receiving the good 
from seller type s1. Similarly, we have that t̄′

s(s′
1) − t̄′

s(s′
2) = t̄s(s1) − t̄s(s2) + ε′ pb(bi)s′

1, so that the new seller type s′
1 is 

compensated relative to type s′
2 for the utility lost by trading with buyer type bi with the extra ε′ probability.

To show that (x′, t′) is implementable following the value reduction, we verify that (x′, t′) satisfies the sufficient in-
dividual rationality and incentive constraints from Lemma 1 as well as the stricter participation constraints required for 
damaging the good for the seller.
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Buyer expectations (x̄′
b, ̄t

′
b) under the new mechanism differ from the original ones in the following cases:

x̄′
b(bi) = x̄b(bi) + ε′ps(s1)

t̄′
b(bi) = t̄b(bi) + ε′ps(s1)bi

t̄′
b(bk) = t̄b(bk) − ε′ps(s1)(bi+1 − bi) − ε′(bi − s′

1)
pb(bi)ps(s1)∑m
k′=i+1 pb(bk′)

,∀k = i + 1,m.

The mechanism (x′, t′) satisfies the incentive constraints ICbk→bk+1 and ICbk+1→bk for k = i + 1,m − 1 since the involved 
buyer types receive the same allocation under x and x′ and their expected payments are reduced by the same amount 
when shifting from t to t′ . It is clear that (x′, t′) satisfies the constraints ICbk→bk+1 and ICbk+1→bk for k = 1, i − 2 and I Rb1 .

We next check that (x′, t′) satisfies the incentive constraints ICbi−1→bi , ICbi→bi−1 , ICbi→bi+1 and ICbi+1→bi . The mecha-
nism (x′, t′) satisfies ICbi→bi−1 because buyer type bi expects the same utility under (x, t) and (x′, t′) when he reports type 
bi , and the same is true when he reports type bi−1. ICbi−1→bi holds under (x′, t′) since for buyer type bi−1, the marginal 
loss from misreporting his type to be bi when we shift from (x, t) to (x′, t′) entails receiving the good with additional 
probability ε′ ps(s1) for an expected benefit of ε′ ps(s1)bi−1 at the greater cost of ε′ ps(s1)bi .

The buyer’s incentives we are left to check for (x′, t′) are ICbi+1→bi and ICbi→bi+1 . Since ICbi+1→bi holds with equality 
under (x, t), we have that

x̄b(bi+1)bi+1 − t̄b(bi+1) = x̄b(bi)bi+1 − t̄b(bi). (9)

To see that (x′, t′) satisfies ICbi+1→bi , we use (9) to infer that

x̄′
b(bi+1)bi+1 − t̄′

b(bi+1) = x̄b(bi+1)bi+1 − t̄b(bi+1) + ε′ps(s1)(bi+1 − bi) + ε′(bi − s′
1)

pb(bi)ps(s1)∑m
k′=i+1 pb(bk′)

= x̄b(bi)bi+1 − t̄b(bi) + ε′ps(s1)(bi+1 − bi) + ε′(bi − s′
1)

pb(bi)ps(s1)∑m
k′=i+1 pb(bk′)

= x̄′
b(bi)bi+1 − t̄′

b(bi) + ε′(bi − s′
1)

pb(bi)ps(s1)∑m
k′=i+1 pb(bk′)

> x̄′
b(bi)bi+1 − t̄′

b(bi).

The inequality follows from the hypothesis that bi > s1, which implies that bi > s′
1.

Also using (9), we obtain that

x̄′
b(bi)bi − t̄′

b(bi) = x̄b(bi)bi − t̄b(bi) = x̄b(bi+1)bi − t̄b(bi+1) + (bi+1 − bi)(x̄b(bi+1) − x̄b(bi))

= x̄′
b(bi+1)bi − t̄′

b(bi+1) − ε′ps(s1)(bi+1 − bi) − ε′(bi − s′
1)

pb(bi)ps(s1)∑m
k′=i+1 pb(bk′)

+ (bi+1 − bi)(x̄b(bi+1) − x̄b(bi)).

ICbi→bi+1 for (x′, t′) is thus equivalent to

ε′ ps(s1)(bi+1 − bi) + ε′(bi − s′
1)

pb(bi)ps(s1)∑m
k′=i+1 pb(bk′)

≤ (bi+1 − bi)(x̄b(bi+1) − x̄b(bi)),

which holds for small ε > 0 when ε′ is given by (8) since x̄b(bi+1) > x̄b(bi) implies that the right-hand side of the inequality 
is positive.

We now turn to verifying the seller constraints for (x′, t′). Seller expectations (x̄′
s, ̄t′

s) under the perturbed mechanism 
differ from the corresponding ones in the original mechanism in the following instances:

x̄′
s(s′

1) = x̄s(s1) + ε′pb(bi)

t̄′
s(s′

1) = t̄s(s1) + ε′pb(bi)s′
1 − ε′ps(s1)(bi+1 − bi)

∑m
k′=i+1 pb(bk′)∑ j

l′=1 ps(sl′)

t̄′
s(s′

l) = t̄s(sl) − ε′ps(s1)(bi+1 − bi)

∑m
k′=i+1 pb(bk′)∑ j

l′=1 ps(sl′)
,∀l = 2, j.

We provide a proof for j ≥ 2 (the case j = 1 involves similar arguments). Since x̄s(s1) = x̄s(s j), it must be that x̄s(sl) = x̄s(s1)

and t̄s(sl) = t̄s(s1) for l = 2, j. Hence x̄′
s(sl) = x̄′

s(s2) and t̄′
s(sl) = t̄′

s(s2) for l = 2, j. This implies that (x′, t′) satisfies ICs′l→s′l+1

and ICs′l+1→s′l for l = 2, j − 1. As (x̄′
s, ̄t′

s) coincides with (x̄s, ̄ts) for seller types l = j + 1,n, and (x, t) is implementable, (x′, t′)
satisfies ICsl→sl+1 and ICsl+1→sl for l = j + 1,n − 1 and I Rsn . We are left to check the following incentive compatibility 
constraints from Lemma 1: ICs′ →s′ , ICs′ →s′ , ICs′ →s and ICs →s′ .
1 2 2 1 j j+1 j+1 j
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The constraints ICs′1→s′2 and ICs′2→s′1 for (x′, t′) are equivalent to

(x̄′
s(s′

1) − x̄′
s(s′

2))s′
1 ≤ t̄′

s(s′
1) − t̄′

s(s′
2) ≤ (x̄′

s(s′
1) − x̄′

s(s′
2))s′

2.

These inequalities follow from x̄′
s(s′

1) − x̄′
s(s′

2) = ε′ pb(bi), t̄′
s(s′

1) − t̄′
s(s′

2) = ε′ pb(bi)s′
1 and s′

1 < s′
2.

To check ICs′j→s j+1
for the mechanism (x′, t′), note that ICs j→s j+1 for (x, t) implies that

t̄′
s(s′

j) − t̄′
s(s′

j+1) − (x̄′
s(s′

j) − x̄′
s(s′

j+1))s′
j

= t̄s(s j) − t̄s(s j+1) − (x̄s(s j) − x̄s(s j+1))s j + ε(x̄s(s j) − x̄s(s j+1)) − ε′ps(s1)(bi+1 − bi)

∑m
k′=i+1 pb(bk′)∑ j

l′=1 ps(sl′)

≥ ε(x̄s(s j) − x̄s(s j+1)) − ε′ps(s1)(bi+1 − bi)

∑m
k′=i+1 pb(bk′)∑ j

l′=1 ps(sl′)
= 0,

where the last equality follows from the definition of ε′ in (8). The slack created in ICs j→s j+1 by the ε value reduction for 
seller type j is used here to decrease the transfers from buyer types i + 1 through m to seller types 1 through j, which 
makes it possible to introduce the slack in ICbi+1→bi necessary for increasing the probability of trade between seller type s1
and buyer type bi at terms that would be otherwise attractive to buyer type bi+1.

The mechanism (x′, t′) satisfies ICs j+1→s′j because (x, t) satisfies ICs j+1→s j and we have that x̄′
s(s j+1) = x̄s(s j+1), 

t̄′
s(s j+1) = t̄s(s j+1), x̄′

s(s′
j) = x̄s(s j) and t̄′

s(s′
j) < t̄s(s j).

The arguments above establish that (x′, t′) is implementable for the pair of value distributions (p′
b, ps). We finally check 

that seller types l = 1, j have incentives to participate in the damage of the good. Since (x′, t′) satisfies ICs′l→s j+1
and I Rs j+1

and x̄′
s(s j+1) = x̄s(s j+1) > 0, we have that

t̄′
s(s′

l) − x̄′
s(s′

l)s′
l ≥ t̄′

s(s j+1) − x̄′
s(s j+1)s′

l = t̄′
s(s j+1) − x̄′

s(s j+1)s j+1 + x̄s(s j+1)(s j+1 − s′
l)

≥ x̄s(s j+1)(s j+1 − s′
l) > x̄s(s j+1)(s j+1 − s j).

Then,

t̄′
s(s′

l) + (1 − x̄s(s′
l))s′

l − sl = t̄′
s(s′

l) − x̄s(s′
l)s′

l + s′
l − sl > x̄s(s j+1)(s j+1 − s j) − ε.

The last term is positive if ε < x̄s(s j+1)(s j+1 − s j), and the proof is completed by noting that x̄s(s j+1)(s j+1 − s j) > 0. �
Proof for footnote 4. Suppose that x(bi, s1) = 1 and x̄s(s1) < 1. Then, there exists a buyer type i′ such that x(bi′ , s1) < 1. 
Since x̄b(bi) = x̄b(b1) ≤ x̄b(bi′ ) and x(bi′ , s1) < 1 = x(bi, s1), there must exist a seller type j′ such that x(bi′ , s j′) > x(bi, s j′ ). 
In particular, we have x(bi′ , s j′ ) > 0 and x(bi, s j′ ) < 1. Construct a perturbation x1 of the allocation x that differs from x only 
in the following cases:

x1(bi, s1) = x(bi, s1) − η

x1(bi, s j′) = x(bi, s j′) + ps(s1)

ps(s j′)
η

x1(bi′ , s j′) = x(bi′ , s j′) − pb(bi)

pb(bi′)

ps(s1)

ps(s j′)
η

x1(bi′ , s1) = x(bi′ , s1) + pb(bi)

pb(bi′)
η.

For sufficiently small η > 0, the inequalities above imply that all the values of x1 are in [0, 1]. Moreover, x1 generates the 
same allocation probability as x for each buyer and seller type, and has the property that x1(bi, s1) < 1. The conclusion of 
footnote 4 then follows from applying Proposition 4 to allocation x1. �
Computations for Proposition 4 and footnote 6. We compute the optimal implementable mechanisms in the example used 
to demonstrate Proposition 4 and in an example supporting footnote 6. Assume that the buyer’s valuations are b1 = 1
and b2 = 4 with probability 1/2 each, and that the seller’s valuations are s1 = ε1 and s2 = 3 + ε2 with probability 1/2
each, where ε1, ε2 are parameters in [0, 1). Consider an implementable mechanism (x, t) that satisfies the constraints from 
Lemma 2 with equality. The total welfare created by the mechanism is

1
((1 − ε1)x(b1, s1) − (2 + ε2)x(b1, s2) + (4 − ε1)x(b2, s1) + (1 − ε2)x(b2, s2) + 2(ε1 + 3 + ε2)) . (10)
4
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Since the mechanism satisfies the constraints from Lemma 2 with equality as well as I Rs2 , the following conditions hold:

t(b1, s1) + t(b1, s2) = x(b1, s1) + x(b1, s2)

t(b1, s1) + t(b1, s2) − t(b2, s1) − t(b2, s2) = 4(x(b1, s1) + x(b1, s2) − x(b2, s1) − x(b2, s2))

t(b1, s2) + t(b2, s2) ≥ (3 + ε2)(x(b1, s2) + x(b2, s2))

t(b1, s1) − t(b1, s2) + t(b2, s1) − t(b2, s2) = ε1(x(b1, s1) − x(b1, s2) + x(b2, s1) − x(b2, s2)).

These constraints correspond in order to I Rb1 , ICb2→b1 , I Rs2 and ICs1→s2 (multiplied by 2). Multiplying the constraints by 
−2, 1, 2, 1, respectively, and adding them up we obtain

(4 − ε1)x(b2, s1) ≥ (2 + ε1)x(b1, s1) + (8 + 2ε2 − ε1)x(b1, s2) + (2 + 2ε2 − ε1)x(b2, s2). (11)

This is the aggregate constraint discussed in Section 8 corresponding to this example.
Given constraint (11), the objective function (10) is maximized only if x(b2, s1) = 1 and x(b1, s2) = 0. Then, (11) reduces 

to

4 − ε1 ≥ (2 + ε1)x(b1, s1) + (2 + 2ε2 − ε1)x(b2, s2). (12)

Therefore, there is a linear trade-off between x(b1, s1) and x(b2, s2) when maximizing (10) with relative weights (1 −
ε1)/(2 + ε1) and (1 − ε2)/(2 + 2ε2 − ε1). If ε1 > ε2, then the latter weight dominates the former, and setting x(b2, s2) = 1
is optimal. If ε1 < ε2, then the former weight dominates, and x(b1, s1) = 1 is optimal. If ε1 = ε2, then the two weights are 
equal, and any specification of x(b1, s1) and x(b2, s2) such that x(b1, s1) + x(b2, s2) = (4 − ε1)/(2 + ε1) is optimal.

We now specialize the analysis to two cases. In the example illustrating Proposition 4, we have that ε1 ≥ ε2 = 0. In this 
case, the allocation x maximizing (10) subject to (12) is given by

x(b1, s1) = 2

2 + ε1
, x(b1, s2) = 0, x(b2, s1) = 1, x(b2, s2) = 1.

It can be easily checked that this allocation can be implemented with transfers t for which the constraints I Rb1 , ICb2→b1 , I Rs2

and ICs1→s2 are binding. The optimal mechanism generates welfare (24 + 11ε1 + ε2
1)/(4(2 + ε1)).

For an example corroborating footnote 6, assume that ε1 ≤ ε2. Then, there exists an optimal mechanism that implements 
the allocation x given by

x(b1, s1) = 1, x(b1, s2) = 0, x(b2, s1) = 1, x(b2, s2) = 2 − 2ε1

2 + 2ε2 − ε1
.

If ε1 = ε2, then this allocation achieves a total welfare of (24 +11ε1 +4ε2
1)/(4(2 +ε1)), which is decreasing for small ε1 ≥ 0. 

For instance, the welfare generated under the optimal x is 3 for ε1 = 0 and approximately 2.993 for ε1 = 0.1. Following the 
damage for the seller implied by the decrease in the common value of ε1 and ε2 from 0.1 to 0, the optimal mechanism 
satisfies the seller’s ex ante damage participation constraint described in footnote 6. Indeed, the seller’s expected payoff 
from participating in the post-damage optimal mechanism is 2.25, which is greater than her expected value 1.6 for the 
undamaged good. �
Proof of Proposition 5. Fix a buyer value distribution pb , and consider a seller value distribution p′

s with support s′
1 < s′

2 <

. . . < s′
n that reflects damage at the top relative to ps with support s1 < s2 < . . . < sn . Let (x′, t′′) be an implementable 

mechanism for the pair of distributions (pb, p′
s) that satisfies the seller’s damage participation constraint for the value 

reduction from ps to p′
s . As in the proof of Lemma 2, any implementable mechanism for the pair of distributions (pb, p′

s)

that implements x′ (not necessarily satisfying the seller’s damage participation constraints) and maximizes the expected 
payoff of seller type s′

n , satisfies all constraints ICs j→s j+1 with equality. Let (x′, t′) be such a mechanism. By definition, (x′, t′)
generates at least the same utility as (x′, t′′) for type s′

n . Since (x′, t′′) obeys the seller’s damage participation constraint, it 
delivers utility of at least sn to the seller of type s′

n , so the same must be true of (x′, t′). It follows that (1 − x̄′
s(s′

n))s′
n +

t̄′
s(s′

n) ≥ sn .
We now construct a mechanism (x, t) for the pair of distributions (pb, ps) that implements the same type-by-type 

allocation x′ , i.e., x(bi, s j) = x′(bi, s′
j) for all i and j, and perturbs the transfer function t′ as follows:

t(bi, s j) = t′(bi, s′
j) − (1 − x̄s(sn))(sn − s′

n) +
n−1∑
l= j

(x̄s(sl) − x̄s(sl+1))(sl − s′
l),∀i = 1,m, j = 1,n.

Since x and x′ represent the same allocation of the good for any profile of corresponding types, and seller values under ps

are higher than under p′
s , the mechanism (x′, t′) with value distributions (pb, p′

s) does not achieve greater welfare than the 
mechanism (x, t) with value distributions (pb, ps).
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We next argue that (x, t) is an implementable mechanism for the pair of distributions (pb, ps) by verifying that it 
satisfies the constraints from Lemma 1. The mechanism (x, t) satisfies the incentive compatibility constraints for the buyer 
because the corresponding constraints hold under (x′, t′), and x̄b coincides with x̄′

b , while t̄b(bi) − t̄′
b(bi) = t̄b(bk) − t̄′

b(bk) for 
i, k = 1,m. The mechanism (x, t) satisfies I Rb1 because (x′, t′) does, and t(b1, s j) ≤ t′(b1, s j) for j = 1,n. The latter inequality 
holds because

n−1∑
l= j

(x̄s(sl) − x̄s(sl+1))(sl − s′
l) ≤

n−1∑
l= j

(x̄s(sl) − x̄s(sl+1))(sn − s′
n)

= (x̄s(s j) − x̄s(sn))(sn − s′
n) ≤ (1 − x̄s(sn))(sn − s′

n),∀ j = 1,n

as sl − s′
l ≤ sn − s′

n , x̄s(sl) − x̄s(sl+1) ≥ 0 for l = j,n − 1, and x̄s(s j) ≤ 1.
We are left to check that (x, t) satisfies the constraints I Rsn , ICs j→s j+1 , and ICs j+1→s j for all j. The constraint I Rsn holds 

under (x, t) since the utility of type sn under (x, t) is

(1 − x̄s(sn))sn + t̄(sn) = (1 − x̄′
s(s′

n))sn + t̄′
s(s′

n) − (1 − x̄s(sn))(sn − s′
n) = (1 − x̄′

s(s′
n))s′

n + t̄′
s(s′

n) ≥ sn,

where the inequality was derived above.
To show that (x, t) satisfies ICs j→s j+1 and ICs j+1→s j , note that the fact that ICs j→s j+1 is binding under (x′, t′) means that

t̄′
s(s′

j) − t̄′
s(s′

j+1) = (x̄s(s j) − x̄s(s j+1))s′
j.

It follows that

t̄s(s j) − t̄s(s j+1) = t̄′
s(s′

j) − t̄′
s(s′

j+1) + (x̄s(s j) − x̄s(s j+1))(s j − s′
j) = (x̄s(s j) − x̄s(s j+1))s j .

Hence,

(x̄s(s j) − x̄s(s j+1))s j = t̄s(s j) − t̄s(s j+1) ≤ (x̄s(s j) − x̄s(s j+1))s j+1.

This proves that (x, t) satisfies ICs j→s j+1 and ICs j+1→s j .
We have argued that (x, t) is an implementable mechanism for the pair of value distributions (pb, ps) that generates at 

least the same amount of welfare as (x′, t′) for the pair of value distributions (pb, p′
s). Therefore, the optimal implementable 

mechanism for the value distributions (pb, ps) achieves at least the same amount of welfare as the mechanism (x′, t′) for 
the value distributions (pb, p′

s). �
Proof of Proposition 6. Let (xb, xs, tb, ts) be an optimal implementable mechanism. Suppose, for a contradiction, that

� :=
s̄∫

s

b̄∫
b

(tb(b, s) − ts(b, s)) fb(b) f s(s)db ds > 0.

Perturb transfers as follows:

t′
b(b, s) = t′

s(b, s) = tb(b, s) −
b̄∫

b

(tb(b̃, s) − ts(b̃, s)) fb(b̃)db̃.

Expected transfers under this perturbation are given by

t̄′
b(b) = t̄b(b) −

s̄∫
s

b̄∫
b

(tb(b̃, s) − ts(b̃, s)) fb(b̃) f s(s)db̃ ds,∀b ∈ [b, b̄]

t̄′
s(s) = t̄s(s),∀s ∈ [s, s̄].

Hence, under the perturbation, expected transfers to each seller type are the same as under the original mechanism, while 
expected transfers from each buyer type are uniformly decreased by 

∫ s̄
s

∫ b̄
b (tb(b̃, s) − ts(b̃, s)) fb(b̃) f s(s) db̃ ds = �. Therefore, 

the mechanism (xb, xs, t′
b, t

′
s) is implementable and yields an increase in welfare of � > 0 over the mechanism (xb, xs, tb, ts), 

a contradiction with the optimality of the latter. �
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Proof of Proposition 7. Let (xb, xs) be an implementable allocation for the pair of regular value distributions (Fb, Fs). Let 
Ub(b) and Us(s) denote the utility the buyer of type b and the seller of type s gain from participating in the mechanism (in 
addition to s for the seller), respectively. As in Myerson (1981) and Myerson and Satterthwaite (1983), revenue equivalence 
leads to

Ub(b) = Ub(b) +
b∫

b

x̄b(b) fb(b)db

Us(s) = Us(s̄) +
s̄∫

s

(1 − x̄s(s)) f s(s)ds.

Then, the gains from trade 
∫ b̄

b Ub(b) fb(b) db + ∫ s̄
s Us(s) f s(s) ds achieved by a mechanism implementing (xb, xs) are given by

Ub(b) + Us(s̄) +
b̄∫

b

(1 − Fb(b))x̄b(b) fb(b)db +
s̄∫

s

Fs(s)(1 − x̄s(s)) f s(s)ds.

Since the gains from trade can be computed also as

b̄∫
b

s̄∫
s

(xb(b, s)b − (1 − xs(b, s))s) fb(b) f s(s)ds db, (13)

we get that

Ub(b) + Us(s̄) =
b̄∫

b

s̄∫
s

(
xb(b, s)

(
b − 1 − Fb(b)

fb(b)

)
− (1 − xs(b, s))

(
s + Fs(s)

f s(s)

))
fb(b) f s(s)ds db ≥ 0. (14)

The proof of Theorem 1 in Myerson and Satterthwaite (1983) can be easily adapted to show that an allocation (xb, xs)

is implementable if and only if inequality (14) holds, xb(b, s) + xs(b, s) ≤ 1 for all pairs of types (b, s), and x̄b and x̄s are 
increasing functions (recall that in our setting x̄s(s) represents the probability that seller type s keeps the good, and not the 
probability that type s trades the good, which is the primitive variable in the analysis of Myerson and Satterthwaite; the 
two variables have opposite monotonicity).

Consider now the relaxed optimization problem of maximizing the gains from trade given by formula (13)—which is 
equivalent to maximizing total welfare—subject to (14) and xb(b, s) + xs(b, s) ≤ 1 for all (b, s). If λ ≥ 0 denotes the Lagrange 
multiplier on constraint (14), we obtain the Lagrangian

(λ + 1)

b̄∫
b

s̄∫
s

(
xb(b, s)

(
b − α

1 − Fb(b)

fb(b)

)
− (1 − xs(b, s))

(
s + α

Fs(s)

f s(s)

))
fb(b) f s(s)ds db,

where α := λ/(λ + 1) ∈ [0, 1).
Let cb(b, α) and cs(s, α) denote the coefficients multiplying the terms xb(b, s) and −(1 − xs(b, s)) in the integrand above, 

respectively. Choosing xb(b, s) and xs(b, s) such that xb(b, s) + xs(b, s) ≤ 1 to maximize the integrand pointwise for every 
pair (b, s) requires that if cb(b, α) > cs(s, α), then xb(b, s) = 1 and xs(b, s) = 0, and if cb(b, α) < cs(s, α), then xb(b, s) = 0
and xs(b, s) = 1. Let xα be an allocation with these properties.

As in the argument for Theorem 2 of Myerson and Satterthwaite, the assumption that Fb and Fs are regular distributions 
implies that for any α ∈ [0, 1), cb(·, α) and cs(·, α) are strictly increasing functions, and hence x̄α

b and x̄α
s must be increasing. 

Moreover, when [b, ̄b] ∩ [s, ̄s] 
= ∅,14 there exists a unique α∗ ∈ [0, 1) for which constraint (14) holds with equality under 
(xα∗

b , xα∗
s ). It follows that (xα∗

b , xα∗
s ) solves the relaxed optimization problem, and given the monotonicity of x̄α∗

b and x̄α∗
s , is 

an optimal implementable allocation. Moreover, any optimal mechanism must implement an allocation that coincides with 
(xα∗

b , xα∗
s ) with probability 1 under Fb × Fs .

The proof is completed by noting that xα∗
b (b, s) + xα∗

s (b, s) = 1 for all pairs (b, s) such that cb(b, α∗) 
= cs(s, α∗), and that 
the latter condition holds with probability 1 (since cb(·, α) and cs(·, α) are strictly increasing functions, for every b there is 
at most one s such that cb(b, α∗) = cs(s, α∗), and vice versa). �
14 The case of non-overlapping supports is trivial.
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Proof of Proposition 8. Let B and S be random variables with distributions Fb and Fs , respectively. Then, B ′ := α(B) is a 
random variable distributed according to Gb . Since Fb first-order stochastically dominates Gb , and α = G−1

b ◦ Fb , it must be 
that b ≥ α(b), so B ≥ B ′ .

It is sufficient to show that for any implementable mechanism (x′, t′) for the pair of value distributions (Gb, Fs), there 
exists an implementable mechanism (x, t) for the pair of value distributions (Fb, Fs) that generates at least the same amount 
of welfare as (x′, t′) under (Gb, Fs). Fix such a mechanism (x′, t′). By Theorem 1 of Myerson and Satterthwaite (1983), x̄′

b
and x̄′

s are increasing functions.
Define x(b, s) = x′(α(b), s), so that x(B, s) = x′(B ′, s). We have that

x̄b(B) = E [x(B, S)|B] =E
[
x′(B ′, S)|B] = x̄′

b(B ′).
Since α and x̄′

b are increasing functions, x̄b must also be increasing. Similarly, x̄s(S) = x̄′
s(S) and x̄s is decreasing (under the 

new notation, like in Section 5, x̄s(s) denotes the probability that seller type s trades the good).
As (x′, t′) is implementable for the pair of distributions (Gb, Fs), Theorem 1 of Myerson and Satterthwaite (1983) implies 

that

E
[

x̄′
b(B ′)ψGb

b (B ′)
]

≥E
[

x̄s(S)ψ
Fs
s (S)

]
.

Then, the hypothesis that ψ Fb
b (B) ≥ ψ

Gb
b (α(B)) = ψ

Gb
b (B ′), along with x̄b(B) = x̄′

b(B ′), leads to

E
[

x̄b(B)ψ
Fb
b (B)

]
≥ E

[
x̄s(S)ψ

Fs
s (S)

]
.

By Theorem 1 of Myerson and Satterthwaite, the inequality above along with the monotonicity of x̄b and x̄s implies the 
existence of a transfer function t such that (x, t) is an implementable mechanism for the pair of value distributions (Fb, Fs).

The difference in the welfare generated by (x, t) under (Fb, Fs) and by (x′, t′) under (Gb, Fs) is

E [x̄b(B)B] −E
[
x̄′

b(B ′)B ′] = E
[
x̄b(B)(B − B ′)

] ≥ 0,

which completes the proof. �
Proof of Proposition 9. Let B and S be random variables with distributions Fb and Fs , respectively. Then, S ′ := α(S) is a 
random variable distributed according to Gs . It is sufficient to show that for any implementable mechanism (x′, t′) for the 
pair of value distributions (Fb, Gs) that obeys the seller’s damage participation constraint for the value reduction from Fs

to Gs , there exists an implementable mechanism (x, t) for the pair of value distributions (Fb, Fs) that generates at least 
the same amount of welfare as (x′, t′) under (Fb, Gs). Fix such a mechanism (x′, t′), and define x(b, s) = x′(b, α(s)), so that 
x(b, S) = x′(b, S ′). Arguments analogous to those for Proposition 8 establish that S ≥ S ′ , x̄b(B) = x̄′

b(B) and x̄s(S) = x̄′
s(S ′), 

and that x̄b is increasing and x̄s is decreasing.
The fact that (x′, t′) obeys the seller’s damage participation constraint for the value reduction from Fs to Gs implies that 

the expected gains from trade of the highest value type α(s̄) under (x′, t′) are at least s̄ − α(s̄). As (x′, t′) is implementable 
for the pair of distributions (Fb, Gs), Theorem 1 of Myerson and Satterthwaite (1983) implies that

E
[

x̄′
b(B)ψ

Fb
b (B)

]
−E

[
x̄′

s(S ′)ψGs
s (S ′)

]
≥ s̄ − α(s̄).

The hypothesis that ψ Fs
s (s) − ψ

Gs
s (α(s)) ≤ s̄ −α(s̄) for all s in the support of Fs , along with s̄ ≥ α(s̄) and x̄s(S) = x̄′

s(S ′) ∈
[0, 1], implies that x̄′

s(S ′)ψGs
s (S ′) ≥ x̄s(S)ψ

Fs
s (S) − (s̄ − α(s̄)). Since x̄b(B) = x̄′

b(B), it follows that

E
[

x̄b(B)ψ
Fb
b (B)

]
−E

[
x̄s(S)ψ

Fs
s (S)

]
≥ 0.

As in the proof of Proposition 8, we conclude that there exists a transfer function t such that (x, t) is an implementable 
mechanism for the pair of value distributions (Fb, Fs). The difference in welfare generated by (x, t) under (Fb, Fs) and by 
(x′, t′) under (Fb, Gs) is E 

[
(1 − x̄s(S))(S − S ′)

] ≥ 0. �
References

Arrow, K.J., 1979. The property rights doctrine and demand revelation under incomplete information. In: Boskin, M.J. (Ed.), Economics and Human Welfare: 
Essays in Honor of Tibor Scitovsky. Academic Press, New York.

Borgers, T., Norman, P., 2009. A note on budget balance under interim participation constraints: the case of independent types. Econ. Theory 39, 477–489.
Condorelli, C., Szentes, B., 2020. Information design in the hold-up problem. J. Polit. Econ. 128, 681–709.
Cramton, P., Gibbons, R., Klemperer, P., 1987. Dissolving a partnership efficiently. Econometrica 55, 615–632.
d’Aspremont, C., Gerard-Varet, L.-A., 1979. Incentives and incomplete information. J. Public Econ. 11, 25–45.
de Clippel, G., Naroditskiy, V., Polukarov, M., Greenwald, A., Jennings, N.R., 2014. Destroy to save. Games Econ. Behav. 86, 392–404.
Deneckere, R.J., McAfee, R.P., 1996. Damaged goods. J. Econ. Manag. Strategy 5, 149–174.
Drexl, M., Kleiner, A., 2015. Optimal private good allocation: the case for a balanced budget. Games Econ. Behav. 94, 169–181.
264

http://refhub.elsevier.com/S0899-8256(23)00110-0/bib864D72283695E6EDD1FCDCEB473DE77Fs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib864D72283695E6EDD1FCDCEB473DE77Fs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibFC37FBDE490E37C1258738A18B9AA4C7s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib8D7E99C73CD5A10ADAAF4C9F9A520368s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib5D509CB1A4C8F27B5D71D2B6C64BD8BCs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib8A1FE718C2012FAC9B92791E7BF03813s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibA4EC3CA48C9B0A18F3DFE05E34A68360s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib2ECDA7A0252B442AC6ECF47462119F51s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibDD65EF9A5579D4E518C6D4ABBD0CB1C6s1


M. Manea and E. Maskin Games and Economic Behavior 142 (2023) 243–265
Gale, D., 1960. The Theory of Linear Economic Models. McGraw-Hill, New York.
Gershkov, A., Goeree, J.K., Kushnir, A., Moldovanu, B., Shi, X., 2013. On the equivalence of Bayesian and dominant strategy implementation. Econometrica 81, 

197–220.
Green, J.R., Laffont, J.-J., 1979. Incentives in Public Decision-Making. North-Holland, Amsterdam.
Guo, M., Conitzer, V., 2008. Better redistribution with inefficient allocation in multi-unit auctions with unit demand. In: EC ’08: Proceedings of the 9th ACM 

Conference on Electronic Commerce. ACM, New York, pp. 210–219.
Guo, M., Conitzer, V., 2009. Worst-case optimal redistribution of VCG payments in multi-unit auctions. Games Econ. Behav. 67, 69–98.
Hart, S., Reny, P.J., 2015. Maximal revenue with multiple goods: non-monotonicity and other observations. Theor. Econ. 10, 893–922.
Hartline, J.D., Roughgarden, T., 2008. Optimal mechanism design and money burning. In: STOC ’08: Proceedings of the 40th Annual ACM Symposium on 

Theory of Computing. ACM, New York, pp. 75–84.
Kos, N., Manea, M., 2009. Ex post efficient trade mechanisms with discrete types. Mimeo.
Laffont, J.-J., Maskin, E., 1979. A differential approach to expected utility maximizing mechanisms. In: Laffont, J.-J. (Ed.), Aggregation and Revelation of 

Preferences. North-Holland, Amsterdam. Ch. 16.
Long, Y., Mishra, D., Sharma, T., 2017. Balanced ranking mechanisms. Games Econ. Behav. 105, 9–39.
Lovejoy, W.S., 2006. Optimal mechanisms with finite agent types. Manag. Sci. 52, 788–803.
Madarasz, K., Prat, A., 2017. Sellers with misspecified models. Rev. Econ. Stud. 84, 790–815.
Makowski, L., Mezzetti, C., 1993. The possibility of efficient mechanisms for trading an indivisible object. J. Econ. Theory 59, 451–465.
Manelli, A.M., Vincent, D.R., 2010. Bayesian and dominant strategy implementation in the independent private-values model. Econometrica 78, 1905–1938.
Matsuo, T., 1989. On incentive compatibility, individual rationality, and ex post efficient mechanisms for bilateral trading. J. Econ. Theory 49, 189–194.
Moulin, H., 2009. Almost budget-balanced VCG mechanisms to assign multiple objects. J. Econ. Theory 144, 96–119.
Myerson, R.B., 1981. Optimal auction design. Math. Oper. Res. 6, 58–73.
Myerson, R.B., Satterthwaite, M.A., 1983. Efficient mechanisms for bilateral trading. J. Econ. Theory 29, 265–281.
Postlewaite, A., 1979. Manipulation via endowments. Rev. Econ. Stud. 46, 255–262.
Schottmuller, C., 2023. Optimal information structures in bilateral trade. Theor. Econ. 18, 421–461.
Wets, R.J.-B., 1985. On the continuity of the value of a linear program and of related polyhedral-valued multifunctions. In: Cottle, R.W. (Ed.), Mathematical 

Programming Essays in Honor of George B. Dantzig: Part I. Springer, Berlin, Heidelberg.
Williams, A.C., 1963. Marginal values in linear programming. J. Soc. Ind. Appl. Math. 11, 82–94.
Wolitzky, A., 2016. Mechanism design with maxmin agents: theory and an application to bilateral trade. Theor. Econ. 11, 971–1004.
265

http://refhub.elsevier.com/S0899-8256(23)00110-0/bib56A036735E46821195A55359C5AD144Fs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib6EA2B06BB16FFB14C13BABCE5DF70233s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib6EA2B06BB16FFB14C13BABCE5DF70233s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibAD70939237C6F0D638FE79884D91449Bs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibCCCD88F7529534B5B0C466F7EAF7F30Es1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibCCCD88F7529534B5B0C466F7EAF7F30Es1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib7359C3EB5C57547295A76AC1BF775B29s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibFD4C638DA5F85D025963F99FE90B1B1As1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibB17F67E37DEE646E58C7941FEA9DD37Bs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibB17F67E37DEE646E58C7941FEA9DD37Bs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibDFD5B430BC4DB2C2836D0227AD9AC0C4s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibDFD5B430BC4DB2C2836D0227AD9AC0C4s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib66A8F2813DAC128F9D3D9ABEAAAE607Bs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibC9B5C80999DB220512811966293E84D2s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibC90A918B859BD1E56CF99AF6246B128Es1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibE6153E6978A6C88EA5DA81762A425AEBs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib6D4DB22D9468F71FF99EDD55A540582Cs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibA32AECC78337204E961144D94F926955s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib002F27E5064E874ECF4F5DEF17D1B797s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib69691C7BDCC3CE6D5D8A1361F22D04ACs1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib7A663CAEA1B722A63DC2868158ED584Ds1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib03D947A2158373C3B9D74325850CB8B9s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib402052BC3F273D38153A68E1A2E73D1As1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibCAF9DD0B1951F36449C4FB0885CCBC63s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bibCAF9DD0B1951F36449C4FB0885CCBC63s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib2B80F09163F60CE1774B438E605EB1F9s1
http://refhub.elsevier.com/S0899-8256(23)00110-0/bib61E9C06EA9A85A5088A499DF6458D276s1

	Withholding and damage in Bayesian trade mechanisms
	1 Introduction
	2 Framework
	3 Money burning
	4 Withholding the good
	5 Damaging the good for the buyer
	6 Damaging the good for the seller
	7 Results for continuous types
	8 Comparisons of methods and results for discrete and continuous value distributions
	9 Allocation mechanisms without property rights
	10 Conclusion
	Declaration of competing interest
	Data availability
	Appendix Proofs
	References


