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Abstract

This paper integrates diagnostic expectations into a general equilibrium macroe-

conomic model with a financial intermediary sector. Diagnostic expectations

are a forward-looking model of extrapolative expectations that overreact to

recent news. Frictions in financial intermediation produce nonlinear spikes in

risk premia and slumps in investment during periods of financial distress. The

interaction of sentiment with financial frictions generates a short-run amplifi-

cation effect followed by a long-run reversal effect, termed the feedback from

behavioral frictions to financial frictions. The model features sentiment-driven

financial crises characterized by low pre-crisis risk premia and neglected risk.

The conflicting short-run and long-run effect of sentiment produces boom-bust

investment cycles. The model also identifies a stabilizing role for diagnostic

expectations. Under the baseline calibration, financial crises are less likely to

occur when expectations are diagnostic than when they are rational.
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1 Introduction

Models of financial frictions successfully replicate crisis-driven spikes in risk premia

and the transmission of financial sector vulnerabilities into aggregate downturns.

However, the rational expectations version of these models struggles to match the

empirical pattern of low risk premia in the lead-up to crises. Baron and Xiong (2017)

find that bank equity is overvalued prior to financial crises due to overoptimistic be-

liefs. Krishnamurthy and Muir (2020) show that credit spreads are regularly “too

low” before financial crises, and that frothy financial markets predict future crises.

This conclusion is strengthened in Greenwood et al. (2020a), who document that the

combination of rapid credit and asset price growth is highly predictive of future fi-

nancial crises. All three papers conclude from this pre-crisis evidence that systemic

crash risk is neglected during the buildup to crises.

These findings are not unique to crises. Patterns of excessive optimism preceding

economic downturns appear consistently (Greenwood and Hanson, 2013, López-Salido

et al., 2017). This is supported by direct expectations data from professional fore-

casters, which displays cyclical overreaction to recent macro-financial trends (Mian

et al., 2017, Bordalo et al., 2018b, Bordalo et al., 2020).

In this paper I propose a macro-finance model that is consistent with this evidence

of non-rational expectations. To do so, I incorporate diagnostic expectations into

a macroeconomic model with a financial intermediary sector. Frictions in financial

intermediation allow the model to capture the nonlinear behavior of risk premia during

crises and the asymmetric effect of financial fragility on macroeconomic dynamics.

However, under rational expectations the model relies on a long sequence of negative

shocks to set crises in motion. By introducing behavioral frictions to this model

of financial frictions, this paper is able to investigate the sentiment-driven triggers

of financial fragility. The contribution of this paper is its characterization of the

endogenous financial market and business cycle dynamics that are generated by the

interaction of sentiment and financial frictions.
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The economic model is based on He and Krishnamurthy (2019). This is a continuous-

time RBC model augmented with a financial intermediary sector. Intermediaries are

subject to an occasionally binding equity issuance constraint. In non-distress periods

the model behaves similarly to a frictionless RBC model. A sequence of poor returns

moves intermediaries closer to their constraint and leads to financial distress. In dis-

tress periods the nonlinearities arising from financial frictions become quantitatively

important. Financial crises are triggered in the tail state where the constraint binds,

causing risk premia to spike and asset prices to plummet.

I depart from rational expectations by introducing behavioral frictions to this

model of financial intermediary frictions. This paper develops a method for extending

rational models with a continuous-time variant of diagnostic expectations. Diagnos-

tic expectations are a forward-looking model of extrapolative expectations in which

agents overweight future states that are representative of recent news (Bordalo et al.,

2018a). When recent shocks have tended to be positive, agents are overoptimistic

about future economic growth. The reverse holds for negative shocks. Diagnostic

expectations do not add an independent source of shocks to the model. Instead,

diagnostic expectations alter the way that shocks drive the economy in equilibrium.

The interaction of diagnostic expectations with frictions in financial intermedia-

tion produces conflicting short-run and long-run dynamics. A sequence of positive

shocks alleviates financial frictions. This increases asset prices and investment. In the

short run, diagnostic expectations amplify this effect. Positive shocks induce overopti-

mism about fundamentals, which further elevates asset prices and investment. In the

long run, this paper identifies a novel feedback from behavioral frictions to financial

frictions that reverses the short-run effect. Elevated sentiment induces a progressive

erosion of intermediary risk-bearing capacity as expectations are disappointed.

I present three results arising from the interaction of behavioral and financial

frictions. First, the model produces sentiment-driven financial crises. Overoptimism

dislocates asset prices from fundamentals. The inflation of asset prices initiates a
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feedback from behavioral frictions to financial frictions that impairs the risk-bearing

capacity of intermediaries and heightens financial fragility in the background of seem-

ingly low-risk environments. Consistent with the empirical findings outlined above,

sentiment-driven crises feature low pre-crisis risk premia and neglected crash risk.

Second, the interaction of sentiment with financial frictions produces boom-bust

fluctuations in investment and output growth. These cyclical business cycle dynamics

are driven by the conflicting short-run and long-run effect of diagnostic expectations.

Sentiment-driven amplification in the short run begets its own financial-frictions-

driven reversal in the long run.

Third, though diagnostic expectations amplify business cycles, diagnostic expec-

tations can simultaneously stabilize financial cycles. Under the baseline calibration,

financial crises are less likely to occur when expectations are diagnostic than when

they are rational. This possibility sits in direct opposition to the typical narrative

that extrapolative expectations create financial fragility (e.g., the Financial Instabil-

ity Hypothesis of Minsky (1977)). Since sentiment tracks recent economic shocks,

sentiment is typically depressed during periods of financial distress. The long-run

feedback effect of depressed sentiment increases intermediary returns relative to ex-

pectations. This repairs intermediary balance sheets and reduces the potential for

financial distress to erupt into a full-blown crisis.

By interacting sentiment and financial frictions, this paper identifies a long-run

feedback from behavioral frictions to financial frictions that is a key driver of equilib-

rium dynamics. I explore three predictions to evaluate whether this feedback effect

improves the model’s empirical fit. First, the feedback effect produces long-run re-

versals. I examine the persistence of financial distress, the price-dividend ratio, and

the investment-output ratio. In all three cases, the shorter persistence produced by

diagnostic expectations improves the model’s fit. Second, the feedback effect implies

that elevated sentiment generates financial market overheating that can trigger the

emergence of financial fragility. Once this fragility has been triggered, however, it
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can persist even after sentiment has subsided. I use this prediction to identify a new

fact about financial markets in the buildup to crises: the first eruption of a financial

crisis is often preceded by frothy financial markets, but this is rarely the case for

residual “double-dip” crises. Third, I evaluate the prediction of sentiment-driven fi-

nancial crises by applying the model to the 2007-2008 Financial Crisis. This exercise

suggests that overoptimism in the mid-2000s was critical for exacerbating financial

market vulnerability prior to the failure of Lehman Brothers.

The analysis in this paper relies on two methodological contributions. First, this

paper develops a method for applying diagnostic expectations to an endogenous eco-

nomic growth process. I use this method to generalize the He and Krishnamurthy

(2019) model with non-rational expectations. This allows for the study of beliefs

without compromising the equilibrium dynamics on which sentiment can interact.

Indeed, a key takeaway from this paper is that both behavioral and financial frictions

are necessary for understanding the evolution of the economy around financial crises.

Second, this paper highlights the benefits of using global solution methods for

characterizing the full equilibrium impact of beliefs on economic dynamics. The

analysis of sentiment-driven expansions and slumps fundamentally requires evaluat-

ing the cyclical effects of expectations away from the steady state. Global solution

methods characterize the complete nonlinear dynamical system.

Related Literature. This paper builds on a large financial frictions literature.

Seminal work includes Kiyotaki and Moore (1997) and Bernanke et al. (1999). Recent

research often uses continuous-time methods to analyze global dynamics in models

with nonlinearities. Examples include Adrian and Boyarchenko (2012), He and Krish-

namurthy (2013, 2019), Brunnermeier and Sannikov (2014), Di Tella (2017), Maggiori

(2017), and Moreira and Savov (2017).

There is a growing theoretical literature on credit cycles and the behavioral triggers

of crises. Bordalo et al. (2018a) develop the original model of diagnostic expectations.

Bordalo et al. (2019a) quantify the business cycle implications of diagnostic expec-
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tations in a partial equilibrium heterogeneous-firm model. Gennaioli and Shleifer

(2018) summarize the research on diagnostic expectations and present a belief-driven

narrative of the 2007-2008 Financial Crisis. The authors identify understanding the

interaction between beliefs and financial frictions as a key “open problem,” which this

paper aims to address.

The contribution of this paper is the analysis of diagnostic expectations jointly

with frictions in financial intermediation. This allows the model to characterize how

sentiment shapes disruptions in financial intermediation, and how this propagates to

the real economy. In more recent work, Krishnamurthy and Li (2020) extend the

financial crisis model of Li (2020) with non-rational expectations of bank-run shocks

in order to quantitatively dissect the mechanisms driving “crisis cycles.” Greenwood

et al. (2019), Gertler et al. (2020), and Wachter and Kahana (2020) also study the

effect of beliefs on booms and busts in financial markets. While this paper contributes

to a growing literature studying the behavioral drivers of financial crises, rational ex-

planations have also been forwarded to account for certain pre-crisis patterns (Gomes

et al., 2018, Farboodi and Kondor, 2020). Barberis (2018) surveys the research on

extrapolative expectations and their application in macro-finance.

This paper also contributes to a budding literature on general equilibrium macroe-

conomic theory augmented with behavioral features. A small set of recent exam-

ples includes Fuster et al. (2012), Woodford (2013), Hirshleifer et al. (2015), Gabaix

(2016), Adam and Merkel (2019), Caballero and Simsek (2020), and Farhi and Wern-

ing (2020).

2 Macro-Finance Model

This paper embeds diagnostic expectations into the macro-finance model of He and

Krishnamurthy (2019, henceforth HK). The HK model is one of the first quantitative

papers in the continuous-time macro-finance literature, and it successfully replicates

the downside macroeconomic risks precipitated by disruptions in financial intermedi-
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ation. However, because the HK model features rational expectations, risk premia in

this model are always high when financial crises are likely, whereas in the data they

are often low (e.g., Baron and Xiong, 2017, Krishnamurthy and Muir, 2020).

I extend HK in two ways. Most importantly, I generalize the model to allow for

diagnostic expectations. I also introduce a simple labor income margin to improve

the model’s quantitative fit. I adopt HK’s notation when possible.

2.1 Model Setup

Time is continuous, with t denoting the current period. The economy has two sectors:

households and financial intermediaries. The economy has two types of assets in

positive supply: productive capital Kt and housing H.1 The housing supply is fixed

and normalized to H ≡ 1. The price of capital is denoted qt, and the price of housing

is denoted Pt. Asset prices are endogenous and will be determined in equilibrium.

Only intermediaries can directly hold Kt and H.2 Intermediaries fund these pur-

chases by issuing debt and equity to households. Each intermediary faces an “equity

capital constraint” that restricts its ability to raise equity funding. This is the key

financial friction. When binding, intermediaries must replace their equity funding

with additional debt funding.

Output flow Yt is produced according to an “AK” production technology

Yt = AKt. (1)

Parameter A determines the productivity of capital. Capital evolves endogenously

according to:

dKt

Kt

= (it − δ)dt+ σdZt. (2)

1He and Krishnamurthy (2019) use two assets to improve the model’s quantitative predictions.
Appendix B.3 provides further discussion.

2The model can be extended to allow households to directly hold a share of Kt and H, but He
and Krishnamurthy (2019) conclude that the quantitative impact is negligible.
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it is the endogenous rate of capital installation at time t, δ is the exogenous depre-

ciation rate, and {Zt} is a standard Brownian motion. The term σdZt is a capital

quality shock. Capital quality shocks are the only source of uncertainty in the model.

Investment in capital is subject to quadratic adjustment costs. For a gross capital

installation of itKt, the cost is given by Φ(it, Kt) = itKt + ξ
2
(it − δ)2Kt.

2.2 Diagnostic Expectations

Overview. All agents have diagnostic expectations about the log capital stock.3

Capital is the fundamental in this economy — capital alone determines output (Yt =

AKt), and capital quality shocks are the only source of uncertainty.

Diagnostic expectations are based on Kahneman and Tversky’s representativeness

heuristic, defined as follows: “an attribute is representative of a class if it is very

diagnostic; that is, the relative frequency of this attribute is much higher in that class

than in the relevant reference class.” (Tversky and Kahneman, 1983, p. 296) In the

context of expectations, the reference class reflects the absence of new information.

Representative future states are those that become more likely to occur in light of

incoming data.

This paper features two innovations on the original diagnostic expectations model

of Bordalo et al. (2018a). First, diagnostic expectations are cast in continuous time.

Second, the methodology developed here allows diagnostic expectations to be applied

to the endogenous capital process.4 This will imply not only that recent economic

performance affects expectations (a standard feature of extrapolative expectations),

but also that expectations feed back into the dynamical system to alter the future

evolution of the capital process on which expectations are formed.

This section presents the reduced-form specification of diagnostic expectations as

applied to the macroeconomic model. Appendix A.1 provides a microfoundation.

This paper’s specification is designed portably so that diagnostic expectations can

3Log capital evolves according to dkt = (it − δ − σ2

2 )dt+ σdZt.
4The Bordalo et al. (2018a) model only applies to exogenous AR(N) processes.
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be added to rational models using a single additional state variable. Even though

I introduce an additional state variable to the HK model, I do not introduce any

additional shocks. Capital quality shocks remain the sole driving shock in the model.

Expectations of Capital. The psychology of diagnostic expectations is as follows.

Agents have in the back of their mind all necessary information to form correct

expectations. However, limited and selective memory means that representative states

come to mind more easily. Representative states are those that are diagnostic of

incoming data, which in this model corresponds to recent capital quality shocks.

This is formalized in the following measure of “recent information” at time t:

It ≡
∫ t

0

e−κ(t−s)σdZs. (3)

It is a weighted integral of past shocks to capital, where the weight decays at rate κ

as shocks occur further in the past.5 It > 0 when recent shocks have tended to be

positive, and It < 0 when recent shocks have tended to be negative. It drifts back to

0 at rate κ in the absence of new shocks.

Throughout, I will use hat notation to denote the beliefs of diagnostic agents.

The current period is t, and let τ ≥ 0 denote a prediction horizon. Diagnostic agents

believe that capital in period t+ τ evolves according to:

d̂Kt+τ

Kt+τ

= (it+τ − δ + θIte−κτ )dt+ σdZt+τ . (4)

Parameter θ governs the extent to which agents judge by representativeness. θ = 0

recovers rationality. When θ > 0, expectations of capital growth are biased toward

states that are diagnostic of recent information. For this reason, information param-

eter It will be referred to as “sentiment” henceforth.

5It is an Ornstein-Uhlenbeck process. In discrete time, any individual shock can itself represent
new information. In continuous time, I integrate over the past sequence of shocks because each
individual shock σdZs has only an infinitesimal effect on the capital stock. My specification is
similar to the definition of sentiment in Barberis et al. (2015).
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Consider equation (4) when τ = 0: d̂Kt

Kt
= (it − δ + θIt)dt + σdZt. Diagnostic

expectations bias the perceived growth rate of capital by θIt. At more distant horizons

(τ > 0), this bias dissipates at rate κ. Information that is diagnostic of economic

conditions at time t slowly dims as the agent forms expectations about the economy’s

evolution in the more distant future.

Equation (4) should be interpreted as an “as if” process. Diagnostic agents do

not consciously calculate the evolution of capital in a biased way. Agents have the

true model in their memory database, but are exceedingly drawn to representative

states. It is an unconscious internal parameter that characterizes the state of repre-

sentativeness at time t.

Figure 1 provides an illustrative example of diagnostic expectations applied to an

arithmetic Brownian motion (ABM).6 The blue line plots the realized sample path

of the ABM up to time t. The dashed black line plots the rational prediction of the

ABM’s future path. The solid red line plots the diagnostic prediction. Because recent

shocks have tended to be positive, diagnostic expectations are biased upward.

Figure 1: Diagnostic expectations of arithmetic Brownian motion. The blue
line plots the sample path of an arithmetic Brownian motion (ABM). The solid red
line plots diagnostic expectations of the ABM’s future evolution, and the dashed black
line plots rational expectations. The calibration is illustrative.

6Log capital kt would follow arithmetic Brownian motion if it were constant.
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Decomposing Diagnostic Expectations. This paper’s specification of diagnos-

tic expectations reconciles dynamic, forward-looking, expectations with mechanical

models of extrapolation. A decomposition of the perceived capital process highlights

this property:

d̂Kt+τ

Kt+τ

=
dKt+τ

Kt+τ︸ ︷︷ ︸
Rational

+ θIte−κτdt︸ ︷︷ ︸
Wedge

. (5)

The rational component of expectations is forward looking. The “diagnostic wedge”

is a backward-looking function of past shocks, since It ≡
∫ t

0
e−κ(t−s)σdZs. Diagnostic

expectations are characterized by the “kernel of truth” property: expectations depend

on the true economic process, but overreact to recent patterns in the data.7

2.3 The Financial Intermediary Sector

Individual Intermediaries. There is a continuum of financial intermediaries, each

run by a single banker. Intermediaries raise funds from households by issuing risk-

free (instantaneous) debt and risky equity. Equity issuance is subject to a constraint.

Each intermediary can issue up to εt of equity. Constraint εt evolves as follows:

dεt
εt

= dR̃t. (6)

dR̃t denotes the instantaneous return on the intermediary’s equity at time t. Fol-

lowing HK, constraint εt can be thought of as the intermediary’s “reputation.” Poor

investment returns damage the intermediary’s reputation and inhibit its ability to

issue equity in the future.

The banker does not consume. Instead, the banker has mean-variance preferences

7The decomposition highlights the extent to which diagnostic expectations are robust to the Lucas
critique. Diagnostic expectations are forward looking and dependent on the underlying economic
model. However, diagnostic expectations are still subject to persistent extrapolative errors due to
the diagnostic wedge.
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over their intermediary’s reputation:

Êt
[
dεt
εt

]
− γ

2
V̂ art

[
dεt
εt

]
= Êt

[
dR̃t

]
− γ

2
V̂ art

[
dR̃t

]
. (7)

Hat-notation is used in equation (7) to indicate that the banker has diagnostic ex-

pectations of the return process dR̃t.

The reputational constraint behaves similarly to the standard net-worth constraint

in which an intermediary’s ability to raise capital depends on its net worth. The ben-

efit of the reputational constraint is that it produces a more conventional calibration

of the HK model.8

The Aggregate Intermediary Sector. Let Et denote the maximum equity that

can be raised by the aggregate intermediary sector. Et evolves as follows:

dEt
Et

= dR̃t − ηdt+ dψt. (8)

All intermediaries behave identically. The term dR̃t implies that the aggregate con-

straint evolves with the reputation of each individual intermediary. Parameter η

governs the exogenous exit rate of intermediaries. Exit is needed to ensure that in-

termediaries do not escape their equity issuance constraint in equilibrium. The term

dψt ≥ 0 reflects entry into the banking sector. Entry occurs deep in crisis times when

reputation is sufficiently low, and establishes a boundary condition for the model.

Details are provided in Appendix B.4.

2.4 The Household Sector

Consumption. There is a unit measure of households. Households consume the

output good (cyt ) and housing services (cht ). The output good is the numeraire. Since

households do not hold housing directly, housing services are rented at price Dt.

8With the reputation-based constraint, bankers do not consume. This allows the representative
household to consume all of the economy’s output, as is standard in macroeconomic models without
financial frictions. For further details, see Section I.B of He and Krishnamurthy (2019).
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Households maximize the value function

Ê
[∫ ∞

t

e−ρ(s−t) C
1−γh
s

1− γh
ds

]
, (9)

where Ct is a Cobb-Douglas consumption aggregator Ct = (cyt )
1−φ(cht )

φ. Intratemporal

maximization yields:

cyt
cht

=
1− φ
φ

Dt. (10)

Labor Income. Households can supply up to one unit of labor, without disutility,

at wage Wt. In equilibrium, households earn share 1− ν of output as labor income:

Wt = (1− ν)AKt. (11)

Here I take this wage equation as given. A microfoundation is provided in Appendix

B.1. In addition to diagnostic expectations, this stylized labor income margin is where

my model differs from HK. The benefit of introducing labor income is that it produces

more realistic consumption and investment output shares. See Appendix B.2 for a

full discussion.

Capital Production. Investment follows q-theory. There exists a capital producer

who is responsible for investment. The capital producer solves max
it

qtitKt−Φ(it, Kt).

All profits are passed on to households. This results in an equilibrium investment

rate of:

it = δ +
qt − 1

ξ
. (12)

Equation (12) highlights the propagation of behavioral and financial frictions from

financial markets to the real economy. The economy’s growth rate depends on it, so

these frictions influence economic growth through their effect on qt.
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2.5 Portfolio Choice and Asset Returns

Household Portfolio Choice. Let Wt denote aggregate household wealth. House-

holds can invest in two assets: the debt and equity issued by intermediaries. Debt

offers a risk-free return of rt, and equity offers a stochastic return of dR̃t. Reduced-

form assumptions will now be made to ensure that households purchase at least λWt

of intermediary debt. Households are not the focal point of the model, and these

simplifying assumptions allow the equilibrium leverage of the financial sector to be

regulated by exogenous parameter λ.

Each household is split into a “debt member” and an “equity member.” The debt

member can only invest in the risk-free debt of intermediaries. The equity member

is free to purchase intermediary equity (but cannot make levered investments). At

the start of each period, the debt member is given share λ of wealth and the equity

member is given share 1 − λ. Investments pay off at time t + dt, and returns are

pooled before this process is repeated.

The model will be calibrated such that equity members collectively invest their

allocated wealth of (1 − λ)Wt in intermediary equity, subject to the restriction that

they do not purchase more than Et.9 If the constraint binds, equity members place

their remaining wealth in bonds. The total equity capital raised by the intermediary

sector at time t is therefore

Et ≡ min{Et, (1− λ)Wt}. (13)

Risk-free rate rt is pinned down by households’ intertemporal optimization:

rt = ρ+ ζÊt
[
dcyt
cyt

]
− ζ(ζ + 1)

2
V̂ art

[
dcyt
cyt

]
. (14)

Parameter ζ = 1− (1− φ)(1− γh) can be interpreted as the inverse of the elasticity

of intertemporal substitution (EIS). Again, hat notation is used because household

9This condition is verified as part of the model solution. For details, see Appendix C.3.
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expectations of the consumption process are diagnostic. Equation (14) is the standard

consumption-based risk-free rate formula in continuous time.10

Intermediary Portfolio Choice. Diagnostic agents may not have correct beliefs

about equilibrium asset returns. I postulate that agents expect qt and Pt to evolve

according to:

d̂qt
qt

= µ̂qtdt+ σ̂qt dZt, (15)

d̂Pt
Pt

= µ̂Pt dt+ σ̂Pt dZt. (16)

These endogenous processes will be determined in equilibrium.

Using (15), the return on an investment in capital is perceived to be:

d̂Rk
t =

(
νA

qt
+ µ̂qt − δ + θIt + σσ̂qt

)
dt+

(
σ + σ̂qt

)
dZt. (17)

The perceived return on capital consists of a dividend component
(
νA
qt
dt
)

and a

capital gains component
( ̂d(qtKt)

qtKt
− itdt

)
. Equation (17) illustrates how diagnosticity

affects expectations of capital returns. First, there is a direct effect: capital growth

expectations are biased by θIt.11 Second, diagnostic agents misjudge how the economy

evolves in equilibrium. This introduces an indirect effect in which diagnostic agents

misperceive the endogenous drift and volatility of qt.

Proceeding similarly, the perceived return on housing is:

d̂Rh
t =

(
Dt

Pt
+ µ̂Pt

)
dt+ σ̂Pt dZt. (18)

10To generate equation (14), it is assumed that any marginal savings are given to the debt member.
The benefit of this assumption is that it recovers the standard continuous-time risk-free rate formula.
See footnote 5 of He and Krishnamurthy (2019) for details.

11For empirical evidence on the extrapolation of fundamentals by financial market professionals,
see Greenwood and Hanson (2013), Fahlenbrach et al. (2017), Bordalo et al. (2018b), Bordalo et al.
(2019b, 2020), Gulen et al. (2019), Nagel and Xu (2019), and Pflueger et al. (2019).
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The dividend on housing is given by rental income Dt. Price Pt is the present dis-

counted value of these cash flows. Diagnosticity biases expectations of housing rent

growth, which produces non-rational expectations of price process Pt.

Let π̂kt ≡
(
νA
qt

+ µ̂qt − δ + θIt + σσ̂qt

)
− rt denote the perceived risk premium on

capital. Let π̂ht ≡
(
Dt
Pt

+ µ̂Pt

)
− rt denote the perceived risk premium on housing.

Equations (17) and (18) can be rewritten as follows:

d̂Rk
t =

(
π̂kt + rt

)
dt+ σ̂kt dZt, and

d̂Rh
t =

(
π̂ht + rt

)
dt+ σ̂ht dZt,

where σ̂kt ≡ σ + σ̂qt and σ̂ht ≡ σ̂Pt .

Let αkt and αht denote the intermediary’s portfolio share of capital and housing,

respectively. The intermediary’s perceived return on equity is:

d̂R̃t = αkt d̂R
k
t + αht d̂R

h
t + (1− αkt − αht )rtdt.

From the objective in equation (7), the intermediary solves:

max
αkt ,α

h
t

[
rt + αkt π̂

k
t + αht π̂

h
t

]
− γ

2

(
αkt σ̂

k
t + αht σ̂

h
t

)2

. (19)

This results in the optimality condition:

π̂kt

σ̂kt
=
π̂ht

σ̂ht
= γ(αkt σ̂

k
t + αht σ̂

h
t ). (20)

Equation (20) says that intermediaries choose portfolio shares in order to equate

the perceived Sharpe ratio on each asset to their risk aversion times their perceived

portfolio risk. When intermediaries are required to bear additional risk, they demand

higher Sharpe ratios as compensation.
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2.6 Summary: Financial Frictions and Behavioral Frictions

Financial Frictions: Constraints and Crises. Following HK, crises are defined

as states in which the equity issuance constraint binds: Et < (1 − λ)Wt. When

the constraint binds, the economy exhibits a dramatic increase in risk premia, a

collapse in asset prices, and impaired economic growth. Crisis nonlinearities arise

for two reasons, as can be seen with equation (20). First, a binding equity issuance

constraint means that intermediaries are forced to increase leverage in order to fund

asset purchases.12 Second, a binding constraint endogenously amplifies the sensitivity

of asset prices to negative shocks. Negative shocks cause the constraint to bind even

more tightly, thereby increasing leverage and risk premia even further. Increased

leverage is reflected in portfolio shares αkt and αht . The amplification of shocks is

reflected in volatility coefficients σ̂kt and σ̂ht . As equation (20) shows, both of these

effects increase the risk premia that intermediaries demand.

Short-Run Behavioral Frictions: Amplification. A series of positive shocks

alleviates financial frictions. This raises asset prices and promotes investment. The

reverse holds for negative shocks. Diagnostic expectations amplify the short-run

impact of shocks, since shocks simultaneously shift sentiment about economic fun-

damentals. Bordalo et al. (2020) provide direct evidence of this effect, documenting

that stock market analysts’ expectations of aggregate earnings are overoptimistic, and

asset prices are inflated, following positive fundamental news.

Long-Run Behavioral Frictions: Reversal. This paper identifies a novel long-

run effect of behavioral frictions that works in opposition to the short-run effect. The

long-run effect is called the feedback from behavioral frictions to financial frictions.

The intermediary sector’s capital capacity evolves with realized returns dR̃t. How-

ever, intermediaries price assets according to the perceived return process d̂R̃t. When

12The model predicts that the market leverage of financial intermediaries is countercyclical. For
empirical evidence, see He et al. (2017).

17



the perceived return process differs from the true return process, market prices will

not reflect fundamentals. In the case of elevated sentiment, persistent forecast er-

rors lower realized returns and cause intermediaries’ capital capacity to deteriorate

relative to expectations. Thus, overoptimism induces a gradual tightening of finan-

cial frictions. Alternatively, excessive pessimism gradually relaxes financial frictions.

This long-run feedback from behavioral frictions to financial frictions will be a key

mechanism driving many of the model’s main predictions.

3 Equilibrium and Model Calibration

3.1 Equilibrium

Definition 1. Diagnostic Expectations Equilibrium (DEE). A diagnostic ex-

pectations equilibrium is a set of prices {qt, Pt, Dt, rt,Wt} and decisions {cyt , cht , it, αkt , αht }

such that:

1. Given prices, decisions as specified by (10), (12), (14), and (19) are optimal

under diagnostic expectations.

2. The goods market and housing rental market clear (using Cy and Ch to indicate

aggregate household consumption):

Yt = AKt = Cy
t + Φ(it, Kt), and (21)

Ch
t = H ≡ 1.

3. The equity issuance constraint is satisfied:

Et = min{Et, (1− λ)Wt}.
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4. Asset markets clear with intermediaries holding all capital and housing:

qtKt = αktEt, and (22)

Pt = αhtEt. (23)

5. The total value of assets equals total household wealth:

Wt = qtKt + Pt.

Diagnostic expectations generalize rational expectations. Rationality is recovered

by setting θ = 0. This is formalized in the following definition, which will serve as a

benchmark for later comparison.

Definition 2. Rational Expectations Equilibrium (REE). A rational expecta-

tions equilibrium is a diagnostic expectations equilibrium for θ = 0.

Solution Strategy. I consider Markov equilibria in state variables Kt, Et, and It.

Kt scales the size of the economy, Et is the financial sector’s capital capacity, and It
characterizes sentiment. HK use Kt and Et as state variables in their rational model.

The innovation of this paper is to capture behavioral frictions with state variable It.

When expectations are extrapolative it is not enough to know the current state of

the economy (Kt and Et); one must also know the path taken to get there (It).

The solution can be simplified further by scaling the economy by Kt. Define

et ≡
Et
Kt

.

et captures the capital capacity of the intermediary sector relative to the size of

the overall economy. I look for price functions of the form pt = Pt
Kt

= p(et, It)

and qt = q(et, It). The model is solved numerically as a function of et and It: et

characterizes financial frictions, and It characterizes behavioral frictions.
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In the class of Markov equilibria considered here, each diagnostic expectations

equilibrium nests its corresponding rational expectations equilibrium. When solving

for a DEE, this means that the REE comes “for free.” Formally:

Proposition 1. For any DEE that is Markov in {K, e, I}, the price and policy func-

tions for {K, e, I = 0} compose a REE that is Markov in {K, e}.

Proof. Equation (4) specifies that when It = 0, agents act as if I = 0 in perpetuity.

Decisions that are optimal when I = 0 in perpetuity must also be optimal when θ = 0

(REE), because in both cases I is perceived to have no further effect on the resulting

equilibrium.

3.2 Calibration

The HK model is a standard RBC model augmented with a financial intermediary

sector. The economy behaves like an RBC model when et is far from the constraint,

and intermediary frictions become quantitatively important near the crisis region. I

follow HK in defining edistress as the 33rd percentile value of et in the model’s stationary

distribution. edistress separates “normal” periods from periods of financial distress.

Table 1 presents the baseline calibration. I use the parameters and/or calibration

targets of He and Krishnamurthy (2019) when possible. Parameter values that are

marked with an asterisk in the “Choice” column are equivalent to the parameter

values of HK. Asterisks in the “Target” column indicate parameters for which the

value differs from HK, but the target is the same. The only parameters for which

neither the value nor the target aligns with HK are the three new parameters. These

are behavioral parameters θ and κ, and labor income parameter ν.

RBC Parameters. Discount rate ρ, depreciation rate δ, and adjustment cost ξ are

relatively standard RBC parameters. My calibration follows HK.

Parameter σ governs the volatility of capital quality shocks. As in HK, I set

σ = 3%. HK report that from 1975 to 2015 the volatility of investment growth

in non-distress periods was 5.79%, and the volatility of consumption growth was
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Parameter Choice Target
Panel A: Intermediation Parameters
γ Banker Risk Aversion 2∗ Mean Sharpe Ratio
λ Debt Ratio 0.75∗ Intermediary Leverage
η Bank Exit Rate 0.13 Prob(Crisis)∗

e Lower Entry Barrier 0.081 Max I = 0 Sharpe Ratio∗

β Entry Cost 2.8∗ Land Price Volatility
Panel B: Technology Parameters
σ Capital Shock Volatility 3%∗ C and I Volatility
δ Depreciation Rate 10%∗ Literature
ξ Adjustment Cost 3∗ Literature
A Productivity 1

3
Consumption-Output Ratio∗

ν Capital Share 0.41 Investment-Capital Ratio
Panel C: Household Preference Parameters
ρ Time Discount Rate 2%∗ Literature
1/ζ EIS 1.5 Interest Rate Volatility∗

φ Housing Expenditure Share 0.2 Housing-Wealth Ratio∗

Panel D: Diagnostic Expectations Parameters
κ Decay of New Information 0.139 Corr(e, I)
θ Diagnosticity 0.132 Bordalo et al. (2018b)

Unconditional Simulated Moments
Mean

(
Investment

Capital

)
9.85%

Mean
(

Consumption
Output

)
70.43%

Mean(Realized Sharpe Ratio) 0.48
Mean(Realized Intermediary Risk Premium) 15.30%
Probability of Crisis 3.22%
Volatility(Land Price Growth) 11.16%
Volatility(Interest Rate) 0.87%
Corr(e, I) 0.78

Non-Distress Simulated Moments
Volatility(Investment Growth) 4.85%
Volatility(Consumption Growth) 2.19%
Volatility(Output Growth) 2.96%

Mean
(

Housing Wealth
Total Wealth

)
45.37%

Table 1: Baseline calibration. Model-generated moments are calculated by simu-
lating the model at a monthly frequency. Growth rates are computed as log changes
from month t− 6 to month t+ 6.

1.24%. In the model, σ = 3% generates investment growth volatility of 4.8% and

consumption growth volatility of 2.2% in non-distress periods. The model features

too much consumption volatility and too little investment volatility, with σ = 3%

balancing the two inaccuracies.

Parameters A and ν are calibrated jointly to target the average investment-capital

ratio and consumption-output ratio. The targeted investment-capital ratio is 10% so
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that average investment matches depreciation. Since the dividend yield on capi-

tal is νA
qt

, ν and A are calibrated to generate a capital price q commensurate with

a 10% investment-capital ratio. To separately identify A and ν, I also target an

average consumption-output ratio of 70%. The consumption-output ratio equals

AKt−Φ(it,Kt)
AKt

≈ 1− it
A

. An investment-capital ratio of 10% pins down A = 1
3
.

Intermediation Parameters. Parameter γ represents the bankers’ risk aversion.

As in HK, I set γ = 2. This generates an average realized Sharpe ratio of 0.48, and

an average realized intermediary risk premium of 15.30%. This aligns with He et al.

(2017), who estimate an average Sharpe ratio of 0.48 and an average return of 13%

for assets intermediated by the financial sector.

Intermediary leverage is governed by λ. Since intermediaries have assets of Pt +

qtKt = Wt and equity of Et, equation (13) gives a market leverage value of Wt

Et
= 1

1−λ

in non-crisis states. Again following HK, I set λ = 0.75. This generates a leverage

ratio of 4 when the constraint does not bind.

Crisis Parameters. Crises are defined as states in which the equity issuance con-

straint binds. Bank exit rate η targets a 3% crisis probability.

Parameters e and β control the lower boundary condition, represented by dψt in

equation (8) (details in Appendix B.4). Parameter e is the minimum level of capital

capacity at which new entry occurs, and β is the cost of entry into the intermediary

sector. HK set e such that the Sharpe ratio at e is 6.5 (e is set low enough that entry

occurs rarely). Accordingly, I set e such that the perceived Sharpe ratio at e and

I = 0 is 6.5. Parameter β determines the slope of house price Pt at e, which in turn

affects the volatility of Pt throughout the distress region. As in HK, I set β = 2.8.

HK estimate that the empirical volatility of land price growth from 1975 to 2015 is

11.9%. In the model, β = 2.8 generates land price growth volatility of 11.2%.

Household Parameters. Parameter φ governs the relative value of housing ser-

vices to the output good. This determines the rental rate Dt (see equation (10)). Pt
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is the discounted value of these rental payments. I set φ = 0.2 to target a non-distress

housing-wealth ratio of 45%. φ = 0.2 also generates a housing services to total con-

sumption expenditure ratio that is consistent with NIPA consumption data (Davis

and Van Nieuwerburgh, 2015).

ζ is the inverse of the EIS, and determines the responsiveness of the risk-free rate

to expected consumption growth and volatility. When expectations are diagnostic,

agents misperceive the equilibrium consumption process. Thus, ζ also governs the

sensitivity of the risk-free rate to variation in sentiment. The EIS plays an important

role when expectations are diagnostic, because the EIS regulates the extent to which

sentiment gets incorporated into asset prices. When ζ = 1, any bias in growth expec-

tations is passed one-for-one into discount rate rt (see equation (14)). An important

implication is that when ζ = 1, asset prices qt and Pt are independent of It — all

bias in cash-flow expectations is exactly offset by the risk-free rate. When ζ < 1, rt

responds less than one-for-one to biased growth expectations. In this case, qt and Pt

are increasing in It.

I set the EIS equal to 1.5. This is a standard choice in the finance literature

(e.g., Bansal and Yaron, 2004), and, as in HK, generates real interest rate volatility

of roughly 1%. Since ζ < 1, asset prices are increasing in It. This will be important

for generating the results in Section 5.2.

Behavioral Parameters. θ governs the extent to which expectations are biased

by representativeness. κ governs the persistence of sentiment. θ and κ are calibrated

jointly using two targets. The first target aligns the magnitude of the expectations

bias with the estimates of Bordalo et al. (2018b): one standard deviation in sentiment

generates an output growth bias of 0.75 percentage points.13 The second target

matches the model’s unconditional correlation between state variables et and It to

the correlation between intermediary capital and sentiment estimated empirically.

To estimate this correlation in the data, I measure et with the “Intermediary Capital

13Note that V ar(θIt) = θ2σ2

2κ . This calibration target sets θ σ√
2κ

= 0.0075.
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Ratio” of He et al. (2017). It can be calculated using expectations data, given κ and

θ. Full calibration details are provided in Appendix A.2.

These two calibration targets produce θ = 0.132 and κ = 0.139. κ = 0.139 implies

that sentiment is slow moving, with a half-life of 5 years.14 Slow-moving sentiment

captures prolonged periods of relatively positive and negative news, such as the Great

Moderation, rather than high-frequency volatility.15 Appendix B.6 examines robust-

ness to parameters κ, θ, and ζ.

4 Global Solution

4.1 Prices, Policy Functions, and Forecast Errors

Select price and policy functions for the DEE are shown in Figure 2.16 The horizontal

axis lists capital capacity e = E
K

. All panels plot three curves. The blue curve

corresponds to depressed sentiment (I = −1.5SD), the red curve corresponds to

neutral sentiment (I = 0), and the yellow curve corresponds to elevated sentiment

(I = +1.5SD).

The two leftmost panels of Figure 2 show asset prices q(e, I) and p(e, I). Finan-

cial frictions make asset prices sensitive to capital capacity e. In the crisis region

(approximately e < 0.4), the binding constraint causes asset prices to plummet. The

Sharpe ratio panels illustrate the nonlinear spike in risk premia that characterizes

crisis times. Moving right, asset prices rise as intermediaries’ risk-bearing capacity

increases. Asset prices asymptote for high values of e as financial frictions dissipate.

Asset prices exhibit what HK refer to as “anticipation effects”: asset prices start

to fall well before the equity issuance constraint binds. Anticipation effects arise in

equilibrium because forward-looking intermediaries are unwilling to support elevated

asset prices in the face of mounting systemic risk.17 Anticipation effects mean that

14Using a different specification than this paper, Bordalo et al. (2019b) estimate that the diagnostic
expectations of stock market analysts incorporate the past three years of shocks.

15The beliefs model can be extended such that sentiment contains both a slow-moving component
and a high-frequency component. However, this requires an additional state variable.

16See Appendix Figure 6 for more.
17Intermediaries perceive that risk premia will be low when asset prices are high, and vice-versa.
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Figure 2: Selected price and policy functions. The horizontal axis lists capital
capacity e = E

K
. Each panel plots three curves, corresponding to I = −1.5SD (blue),

I = 0 (red), and I = +1.5SD (yellow).

financial frictions affect macro-financial dynamics well before the constraint binds.

This is captured by the “financial distress” region of the model, defined as e below its

33rd percentile, where constraints don’t necessarily bind but financial friction effects

are still present.18

Sentiment generates additional variation in asset prices. Asset prices are increasing

in I because sentiment inflates expectations of cash-flow growth. Specifically, asset

prices move so that sentiment gets “priced in” in equilibrium. This is illustrated

by the Perceived Sharpe Ratio panel, which shows that variation in risk premia is

driven almost entirely by e. The consequence of pricing assets based on non-rational

This goes against the evidence presented in Greenwood and Shleifer (2014). However, Greenwood
and Shleifer (2014) study total returns rather than excess returns, and focus predominantly on
household expectations. In the model, it is the beliefs of financial intermediaries that are relevant
for pricing assets. Adam et al. (2020) find that professional investors have excess return expectations
that covary negatively with the price-dividend ratio.

18Consistent with anticipation effects, Baron et al. (2020) document that bank equity declines
predict output gaps, even when panics do not materialize.
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expectations is shown in the True Sharpe Ratio panel. Elevated sentiment lowers

realized risk premia, while depressed sentiment raises realized risk premia.

The investment and consumption panels show the propagation of financial and

behavioral frictions to the real economy. The investment rate is high whenever either

e or I is high. The consumption share Cy

Y
moves in the opposite manner. This follows

from output market clearing in equation (21).

4.2 Stationary Distribution

Figure 3 plots the economy’s stationary distribution over state variables e and I.

The ergodic distribution is solved numerically using a Kolmogorov forward equation.

The economy is more likely to be in lighter-colored areas, while dark blue regions are

rarely encountered. The dotted gray line marks the boundary of the crisis region.

The unconditional correlation between et and It is 0.78. This tight correlation

arises in equilibrium because et and It both load positively on the same shocks. For

example, a positive shock increases et by generating large returns for the financial

sector, and also increases sentiment by making future states with high levels of capital

more representative.

Figure 3: Ergodic distribution. Sentiment is reported in standard deviation units.
The gray dotted line marks the boundary of the crisis region.
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5 Results: Financial Market and Macroeconomic Dynamics

5.1 Sentiment-Driven Financial Crises

A critical shortcoming of rational models of financial crises is that they struggle to

generate periods in which the probability of a crisis is high and yet risk premia are

low. With diagnostic expectations, elevated sentiment can amplify financial fragility

in the background of low risk premium environments.

To show this result, I use a Kolmogorov backward equation to calculate both the

true and the diagnostically expected probability that the economy finds itself in a

crisis at some point in the next three years. Each panel in Figure 4 below plots three

contour lines, corresponding to a 10%, 30%, and 50% crisis probability. The left-

hand panel plots the probability of a crisis that is perceived by agents with diagnostic

expectations. The right-hand panel plots the true probability. The solid gray area

marks the crisis region. For reference, the three dotted lines correspond to the 25th,

50th, and 75th percentile level of et.

Figure 4: Crisis hitting probabilities. The three colored curves are contour lines
corresponding to a 10%, 30%, and 50% probability that the economy enters a crisis
in the next three years. The left-hand panel reports perceived crisis probabilities,
and the right-hand panel reports true crisis probabilities. Sentiment is reported in
standard deviation units.
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Sentiment has almost no impact on perceived crisis probabilities.19 Diagnostic

expectations of fundamentals are incorporated into prices, so intermediaries perceive

that crash risk is driven almost entirely by et. Perceived crash risk is high only near

the crisis region, and fragility is quickly attenuated as the financial sector strengthens

its capital capacity.

In the right-hand panel, the tilting of the contour lines highlights the buildup of

undetected systemic risk that is triggered by overoptimism. When It > 0, interme-

diaries borrow at elevated interest rates and pay inflated prices to purchase capital

and housing. As expectations disappoint, the feedback from behavioral frictions to

financial frictions causes intermediary balance sheets to deteriorate. Because this

heightened fragility is an endogenous consequence of overoptimistic beliefs, it is ne-

glected by intermediaries. Thus, diagnostic expectations allow the model to generate

periods in which actual crash risk is high and yet risk premia are low.

The reverse story explains why perceived crisis probabilities are too high when

It < 0. Excessive pessimism allows the intermediary sector to borrow at low interest

rates and purchase assets cheaply. When cash flows end up being larger than expected,

the feedback effect works in the opposite direction and intermediaries quickly rebuild

their capital capacity.

Figure 4 shows that when expectations are diagnostic, periods in which interme-

diary balance sheets appear to be strong can still be associated with heightened crisis

risk. For example, when I = 0 and the intermediary sector is at its median level

of capital capacity, the three-year crisis probability is roughly 10%. This probability

jumps to 30% when sentiment is elevated by 1.5 standard deviations. This result

aligns with Greenwood et al. (2020b), who estimate that the three-year probability of

a crisis reaches 40% when financial fragility is accompanied by elevated asset prices.

19Perceived crisis probabilities slope upward slightly. The reason is that a crisis is defined as
et < (1− λ)(pt + qt) (see equation (13)). Since the right-hand side of this inequality is increasing in
sentiment, a given level of et is closer to the crisis region when It is high.
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Behavioral Frictions Before Crises, Financial Frictions in Crises. Figure 5

explores the dynamic impact of behavioral and financial frictions around crises. Time

0 marks when the economy first enters a crisis. The blue curve plots the average

realized (delevered) risk premium earned by intermediaries. The orange curve plots

the average risk premium that intermediaries perceive they are demanding. Figure

5 reports the delevered risk premium to control for the variation in intermediary

leverage that occurs when the equity issuance constraint binds. For reference, the

horizontal line at 3.72% marks the unconditional mean realized risk premium.

Figure 5: Risk premia around crises. Crises occur at time 0. The blue line plots
the average realized risk premium earned by financial intermediaries around crises.
The orange line plots the average risk premium perceived by intermediaries. The
unconditional mean realized risk premium is 3.72%, as marked by the thin horizontal
line. This analysis is inspired by Krishnamurthy and Muir (2020).

Elevated sentiment creates excessively low risk premia during the crisis buildup,

consistent with the credit spread evidence of Krishnamurthy and Muir (2020). On av-

erage, realized risk premia are 15% below perceived risk premia at t = −5. Due to the

feedback from behavioral frictions to financial frictions, this overoptimism amplifies

financial fragility by triggering the depletion of intermediary capital capacity.

Figure 5 shows that sentiment-driven crises are generated by a persistently ele-
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vated level of sentiment, not a sudden and dramatic change of sentiment. In fact,

realized risk premia catch up to perceived risk premia approximately 1.5 years before

crises hit, a pattern also shown in Krishnamurthy and Muir (2020). More broadly,

this aligns with an emerging empirical finding that crises are the result of a slow-

building erosion of financial sector resilience rather than a sudden sentiment shock

(Baron et al., 2020).

The spike at t = 0 illustrates that both behavioral frictions and financial fric-

tions are needed to replicate the full path of risk premia around crises. Diagnostic

expectations produce low pre-crisis risk premia and neglected crash risk. However,

slow-moving sentiment alone cannot generate the spike in risk premia caused by the

binding constraint. Ex-ante behavioral frictions set the stage for crisis nonlinearities

driven by financial frictions.

The model’s post-crisis patterns reverse those of the pre-crisis period. The post-

crisis period is characterized by excessive pessimism. Risk premia therefore sit above

fundamentals in the aftermath of crises.20

5.2 Boom-Bust Investment Cycles

I now turn to studying sentiment-driven macroeconomic fluctuations. Diagnostic ex-

pectations affect investment rate it, which in turn controls the growth rate of output:

dYt
Yt

= (it − δ)dt+ σdZt.

Before proceeding, I emphasize that the calibration of ζ is important here. ζ

governs how diagnostic expectations are passed into asset prices versus the risk-free

rate. The baseline calibration sets ζ < 1. This means that qt is increasing in It.

Accordingly, it is also increasing in sentiment.

I use impulse-response functions to study the response of investment to economic

shocks. To capture periods of booms and malaise, I simulate the model at a monthly

frequency and feed in a three-year sequence of either positive or negative shocks.

These monthly shocks result in a one standard deviation cumulative shock over three

20See Muir (2017) for empirical evidence of high post-crisis risk premia.
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years.21 Shocks are turned off thereafter.

The investment IRFs are provided in Figure 6. The red curve plots the DEE and

the dashed black curve plots the REE. Both economies start in their stochastic steady

state at t = −3.22

Figure 6: Investment rate IRFs. Starting from the stochastic steady state at
t = −3, a sequence of positive/negative shocks is fed into the system until t = 0. The
solid red line plots the response of it in the DEE. The dashed black line plots the
response of it in the REE.

Comparing the DEE to the REE delineates the competing short- and long-run ef-

fects of sentiment. Diagnostic expectations promote boom-bust investment dynamics:

short-run momentum is amplified, followed by steeper reversals. In the case of posi-

tive shocks, the sentiment-driven boom begets its own financial-frictions-driven bust.

In the case of negative shocks, the sentiment-driven bust begets its own financial-

frictions-driven boom.

First consider investment dynamics in the REE. For positive shocks, the boom

from t = −3 to t = 0 increases et. This elevates capital price qt and investment rate

21The monthly shock is set to ± σ
√

3
12×3 . Summing gives a 3-year cumulative shock of ±σ

√
3.

22By turning shocks off from t = 0 onward, the IRFs in Figure 6 plot the investment response
under one specific sequence of shocks. An alternative is to calculate the expected future path of
investment: E0[iτ ]. In this nonlinear model these two alternatives are not equivalent. Appendix
Figure 9 plots the corresponding IRFs for E0[iτ ]. The expected future investment rate is calculated
using the Feynman-Kac formula.
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it. Since et and it are both above their steady-state levels when the shocks stop at

t = 0, they proceed to drift slowly back to the steady state. The opposite holds for

negative shocks.

Turning to the DEE, consider the boom-bust pattern of the positive shock case.

Positive shocks from t = −3 to t = 0 elevate It in addition to et. This causes a sharper

investment boom in the short run. However, the feedback from behavioral frictions to

financial frictions implies that excessive optimism decreases the subsequent returns

earned by intermediaries. Over time, this erodes intermediary balance sheets and

reduces long-run investment.

The negative shock case produces a bust-boom pattern in the DEE. Negative

shocks depress sentiment, which amplifies the short-run drop in investment. But, the

sentiment-driven bust also increases the future returns earned by intermediaries. As

sentiment recovers, the economy is left with a stronger financial sector that is able to

support higher levels of investment.23

Appendix Figure 7 studies the IRFs of an economy with diagnostic expectations

but without financial frictions. Alone, slow-moving diagnostic expectations do not

generate steep reversals in investment. The long-run reversals shown in Figure 6 rely

on the feedback from behavioral frictions to financial frictions.

Recent empirical evidence supports the pattern of boom-bust investment cycles.

Gulen et al. (2019) find that elevated credit-market sentiment in year t correlates with

a boom in corporate investment over the subsequent year, followed by a long-run con-

traction. López-Salido et al. (2017) estimate that elevated credit-market sentiment in

year t predicts lower GDP growth in year t+2. The long-run feedback from behavioral

frictions to financial frictions is also consistent with the observation of Greenwood et

al. (2019) that financial fragility arises at the end of economic expansions.

23Figure 6 shows a mildly asymmetric investment response to positive versus negative shocks.
Larger initial shocks produce larger asymmetries. This is illustrated in Appendix Figure 8, which
plots the IRFs that result after doubling the magnitude of the initial impulse.
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5.3 Financial Market Stability from Beliefs

This paper identifies a stabilizing role for beliefs. Under the baseline calibration,

financial crises are less likely to occur when expectations are diagnostic than when

expectations are rational.

Figure 7 shows this result visually. The red and dashed black curves (right axis)

plot the marginal CDF of state variable et in the DEE and the REE. The blue curve

(left axis) plots the CDF of the DEE divided by the CDF of the REE. The dotted

vertical line at e ≈ 0.4 marks the boundary of the crisis region. The blue curve

crosses 1 to the right of the crisis region. This indicates that the probability of being

in a crisis is lower in the DEE than the REE. The blue curve remains above 1 for

large values of e, indicating that the DEE also features fewer periods of pronounced

financial sector strength.

Figure 7: Financial market stability from beliefs. The solid red curve and the
dashed black curve (right axis) plot the marginal CDF of capital capacity (e) in the
DEE and the REE, respectively. The blue curve (left axis) divides the CDF of the
DEE by the CDF of the REE. The dotted vertical line at e ≈ 0.4 marks the boundary
of the crisis region.

The stabilizing effect of beliefs can be understood by superimposing the crisis like-

lihoods in Figure 4 onto the ergodic distribution in Figure 3. Figure 4 illustrates that
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the joint occurrence of financial distress and elevated sentiment is highly predictive

of future financial crises. But, the ergodic distribution shows that this part of the

state space is rarely encountered. Instead, financial distress typically coincides with

excessive pessimism. When sentiment is pessimistic, the long-run reversal effect of

diagnostic expectations protects intermediaries from financial crises.

Financial market stability may appear at odds with the earlier results of this

paper. For example, Section 5.2 documents that diagnostic expectations amplify

business cycles. The finding here is that diagnostic expectations stabilize financial

markets. These results are intimately linked: the way that the economy avoids a

financial crisis is by going through a sentiment-driven recession. In the case of negative

shocks, depressed sentiment amplifies the investment bust in the short run. However,

the long-run reversal effect means that depressed sentiment simultaneously reduces

systemic risk by increasing the subsequent returns earned by intermediaries.

This finding of financial market stability may also appear to contradict the earlier

result of sentiment-driven crises. Indeed, much of the empirical literature has found

that elevated sentiment is predictive of financial market downturns, and concluded

from this finding that extrapolative expectations promote financial instability. The

model shows that such a conclusion does not necessarily follow from the evidence of

sentiment-driven crises.

To reconcile sentiment-driven crises with financial market stability, note that the

former is a conditional prediction while the latter is an unconditional prediction. The

model’s conditional prediction is that systemic risk is amplified when financial distress

and elevated sentiment occur jointly. However, it is rare for the economy to reach

these fragile states. The model’s unconditional prediction is that beliefs can stabilize

the financial sector, because financial distress is strongly correlated with depressed

sentiment.

The goal of this section is not to assert that extrapolative expectations necessarily

create financial stability. Rather, this section shows that the stabilizing effect of
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extrapolation is a legitimate theoretical possibility, and one that the literature has

neglected to date. Though diagnostic expectations prevent financial crises under

the baseline calibration, this result can be overturned under alternate calibrations

in which the magnitude of perceptual error is increased. Robustness is explored in

Appendix B.6.

The identification of a stabilizing role for beliefs highlights a benefit of economic

models. The model can be used to compare outcomes from different data generating

processes (DEE versus REE). For the same reason, it is difficult to provide direct

empirical evidence on financial market stability from beliefs. Nonetheless, expecta-

tions data is consistent with the channel of unanticipated reversals in financial market

conditions. Bordalo et al. (2018a) analyze professional forecasts of the Baa-Treasury

credit spread, finding that periods of financial distress reverse faster than forecast-

ers expect. Similarly, Pflueger et al. (2019) document that market risk mean-reverts

faster than analysts, options prices, and loan officers expect.

6 Evaluating Diagnosticity: The Feedback Effect

The feedback from behavioral frictions to financial frictions is a key mechanism un-

derlying the model’s equilibrium dynamics. This section tests three predictions that

arise from this feedback. First, the feedback effect produces long-run reversals in

economic conditions. This implies that the economy exhibits less persistence under

diagnostic expectations than under rational expectations. Second, I use the model’s

prediction about how behavioral and financial frictions interact to identify a new fact

about which crises are preceded by frothy financial markets. Third, I apply the model

to the 2007-2008 Financial Crisis in order to assess the role of diagnostic expectations

in shaping the evolution of the crisis.

6.1 Prediction 1: Long-Run Reversals and Economic Persistence

I start by comparing the persistence of macro-financial processes in the model and

the data. Since the model’s calibration does not target measures of persistence ex-
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plicitly, an indicator of success is the extent to which the long-run reversals channel

of diagnostic expectations helps to align the model with empirical moments.

In the experiments below, the calibration of the REE is identical to the calibration

of the DEE, except for θ = 0. I choose not to recalibrate the REE in order to pinpoint

the effect of θ. Results are essentially unchanged if the REE is recalibrated (see

Appendix B.7).

The Persistence of Financial Fragility. I begin by comparing the persistence

of financial fragility in the DEE and the REE. The long-run reversal channel of diag-

nostic expectations means that intermediaries will recover from financial crises more

quickly under diagnostic expectations than under rational expectations. Since crises

are generated by a sequence of negative shocks, sentiment in the DEE is typically

overpessimistic following crises. Due to the feedback from behavioral frictions to fi-

nancial frictions, excessive pessimism stimulates intermediaries’ recovery from crises.

This crisis-recovery effect is shown in Table 2. Starting from the time that the

economy first enters a crisis, Table 2 lists the average number of years that it takes

for capital capacity et to recover to its Xth percentile.

et Percentile DEE REE
5 0.39 0.42
10 0.85 1.08
25 2.22 3.72
50 4.85 10.42
75 9.74 26.41

Table 2: Average crisis recovery time (in years). The DEE and the REE are
simulated at a monthly frequency. For both equilibria, this table lists the average time
(in years) that it takes for et to recover from a financial crisis to its Xth percentile.
Median recovery times are reported in Appendix Table 6.

Recovery is faster under diagnostic expectations than under rational expectations.

For example, in the DEE it takes an average of 4.9 years for intermediaries to recover

from a crisis to their median level of capitalization, compared to 10.4 years in the

REE. The relative difference in recovery times is larger for higher capital-capacity
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thresholds because the feedback from behavioral frictions to financial frictions is a

long-run effect that develops over time by increasing the drift of et.

Though there is no direct empirical counterpart to the analysis in Table 2, the data

is suggestive of recovery times that are more consistent with the DEE. In financial

markets, Krishnamurthy and Muir (2020) collect 150 years of credit spread data across

19 countries, and find that credit spreads recover to their mean value between 4 and

5 years after a financial crisis. Muir (2017) shows that the majority of stock-market

losses in financial crises are recovered within 5 years. For the broader macroeconomy,

Jordà et al. (2013) find in an international panel of 50 financial crises that real GDP

per capita recovers between 4 and 5 years after a financial crisis. Reinhart and Rogoff

(2014) study the recovery from 63 advanced economy financial crises, and calculate

an average trough to recovery time of 4.4 years.

Macro-Financial Autocorrelations. The model focuses on financial crises, and

abstracts from many macroeconomic considerations at the business cycle frequency.

With this caveat in mind, the long-run reversal property can also be examined for

broad macro-financial aggregates. I estimate the autocorrelation of the dividend-price

ratio and the investment-output ratio using the Jordà-Schularick-Taylor Macrohistory

Database over 17 developed countries from 1950 – 2016 (Jordà et al., 2019).24 Each

ratio is standardized at the country level and then pooled.

Figure 8 compares the estimated autocorrelation of the dividend-price ratio and

the investment-output ratio (blue) to the corresponding autocorrelation in the DEE

(red) and the REE (dashed black). The DEE is broadly consistent with the data,

particularly for longer horizons. This suggests that the long-run reversals produced

by the feedback from behavioral frictions to financial frictions improve the model’s

empirical fit. For robustness, Appendix Figure 10 plots these autocorrelations using

24These ratios are used because they are cointegrated. This helps to circumvent issues such as
unit roots in investment and dividends. The concept of dividend-price cointegration is standard in
financial economics. For the investment-output ratio, see Cochrane (1994). Post-WWII data is used
to account for structural changes to the finance system (Schularick and Taylor, 2012).
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just U.S. data. Bordalo et al. (2020) provide additional evidence of long-run reversals

in the dividend-price ratio, documenting that variation in the dividend-price ratio is

driven by long-term growth expectations that overreact to news.

Dividend-Price Ratio Investment-Output Ratio

Figure 8: Persistence: data and model. The left-hand panel plots the empirical
autocorrelation of the dividend-price ratio (blue) as well as the model-implied au-
tocorrelation in the DEE (red) and the REE (dashed black). The right-hand panel
conducts an equivalent analysis for the investment-output ratio. The 95% confidence
interval is calculated using Bartlett’s formula.

6.2 Prediction 2: Which Crises are Preceded by Overheating?

Some crises erupt following periods of relatively robust financial activity (e.g., the

2007-2008 Financial Crisis), while other crises emerge after prolonged periods of fi-

nancial distress (e.g., the 2011 Eurozone Crisis). The model with diagnostic expecta-

tions predicts that these two types of crises should have different levels of pre-crisis

froth in financial markets. In the model, the feedback from behavioral frictions to

financial frictions implies that the initial trigger of financial distress is often elevated

sentiment and financial market overheating. However, once financial distress has been

triggered, the economy can persist in this vulnerable state — sometimes leading to

residual crises — even after sentiment has subsided.

To formalize this “vulnerabilities-plus-triggers” framework (López-Salido et al.,

2017), I simulate the model and compare the path of sentiment prior to First Crises

versus Residual Crises. I define a Residual Crisis, or double-dip, as a crisis that
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was preceded by an earlier crisis within the past five years. All other crises are

First Crises.25 In the model, 57% of First Crises are preceded by elevated sentiment

(I > 0) in at least one of the three years preceding the crisis. Alternatively, only 11%

of Residual Crises are preceded by elevated sentiment.

I evaluate this prediction empirically using the Greenwood et al. (2020a, hence-

forth GHSS) dataset.26 GHSS compile annual data on credit and asset price growth

across 42 countries from 1950 – 2016, and define “R-zones” as years in which credit

growth is above its 80th percentile and asset price growth is above its 67th percentile.

Since credit growth is a well-known signal of financial fragility (e.g., Schularick and

Taylor, 2012), and R-zones feature rapid credit growth accompanied by elevated asset

prices, GHSS interpret R-zones as an indicator of overheating in financial markets.

Consistent with the results in Figure 4, GHSS find that R-zones are highly predictive

of financial crises over a three-year horizon.

The GHSS dataset contains 34 First Crises and 9 Residual Crises. 79% of First

Crises (27/34) are preceded by an R-zone in the prior three years, compared to only

11% of Residual Crises (1/9). Thus, the data is consistent with the model’s prediction

that First Crises are often preceded by frothy financial markets, while Residual Crises

are not. This finding also highlights the importance of developing models of financial

crises that include both behavioral and financial frictions. Behavioral frictions help

the model generate periods of pre-crisis froth, while slow-moving financial frictions

allow for prolonged periods of financial fragility and occasional residual crises.

25I use the following crisis definition in order to align my model with the Greenwood et al. (2020a)
dataset that I will analyze (details in the next paragraph). A crisis is defined as the equity issuance
constraint binding for two consecutive months, and a crisis persists until et recovers to its 20th

percentile. When I annualize the simulated data, this definition produces the same unconditional
crisis probability as in the Greenwood et al. (2020a) data (3.1%). 83% of crises are First Crises in
the model, compared to 79% in the data.

26I thank the authors for sharing their data to make this analysis possible.
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6.3 Prediction 3: Elevated Sentiment and the 2007-2008 Financial Crisis

This section applies the model to the 2007-2008 Financial Crisis in order to evaluate

the channels through which sentiment influenced the evolution of the crisis.

Measuring Sentiment in the Data. An open question in the diagnostic expec-

tations literature is how to measure sentiment in the data. Proposition 2 provides

a simple method. Sentiment can be constructed using forecast errors of economic

growth.

Proposition 2. Let σd̂Zt = dYt
Yt
− Êt dYtYt = −θItdt+σdZt denote the economic growth

forecast error at time t. Sentiment It can be rewritten in terms of forecast errors as

follows:

It =

∫ t

0

e(−κ+θ)(t−s)σd̂Zs. (24)

Proof. See Appendix B.5.

A feature of equation (24) is that it does not require parametric assumptions

about the data generating process for the economy. Given a calibration of κ and θ,

all that equation (24) requires is forecast errors of output growth.

Figure 9 uses the Survey of Professional Forecasters (SPF) to calculate sentiment

from 1970 through 2018.27 To initialize the calculation, I assume that sentiment equals

zero in January 1970. Since SPF forecasts are collected at a quarterly frequency,

Figure 9 is calculated using a discrete-time analogue of equation (24). Full details are

provided in Appendix A.2.

Sentiment in Figure 9 captures what Kindleberger (1978) refers to as “displace-

ment”: financial crises are preceded by large positive shocks to economic fundamen-

tals.28 Sentiment builds rapidly during the 1990s economic boom. Though sentiment

27Expectations data from macroeconomic professionals is most consistent with the model, since
sophisticated intermediaries are responsible for pricing risky assets.

28Cao and L’Huillier (2018) observe that the three deepest recessions in developed countries all
occurred roughly 10 years after periods of rapid technological innovation.
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Figure 9: SPF-measured sentiment. Sentiment It is measured using the median
SPF forecast error from 1970 through 2018 under the model’s baseline calibration.
Sentiment is reported in standard deviation units.

dips with the bursting of the dot-com bubble in the early 2000s, sentiment remains

elevated until the financial crisis.

Simulating the Financial Crisis. I now use the model to evaluate the effect

elevated sentiment on the 2007-2008 Financial Crisis. To simulate the model, I need

to choose a model initialization and a sequence of shocks. Typically, the modeler

chooses the path of shocks that best aligns their model with the data. This paper

takes a more restrictive approach by calculating shocks externally from SPF forecast

errors. That is, rather than asking whether any sequence of shocks can align the model

with the data, I ask whether a specific sequence of shocks — one that is consistent

with expectations — can align the model with the data.

Given the measure of sentiment in Figure 9, capital quality shocks can be backed

out of forecast errors: σdZt = σd̂Zt+θItdt. I use this procedure to calculate the shocks

implied by SPF data, and simulate the model conditional on these shocks. Under both

rational and diagnostic expectations, forecast errors place empirical bounds on what

can reasonably be considered a shock. This paper takes seriously the restrictions that

expectations data provide (Manski, 2004).

I consider two initializations. First, I start the model in 1992Q1, right as the U.S.
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is emerging from a minor financial crisis.29 This initialization takes a long-run view

of the 2007-2008 Financial Crisis in order to understand the full effect of the 1990s

IT boom on the subsequent crisis. I initialize et at the boundary of the crisis region,

and It at the 1992Q1 value shown in Figure 9.

The long-run simulation from 1992 through 2018 is shown in Appendix Figure 5.

I compare the simulation to the data using the He et al. (2017) Intermediary Capital

Ratio, which serves as an empirical counterpart to capital capacity et. In this single-

shock model with shocks taken externally from SPF forecast errors, the correlation

between et and the Intermediary Capital Ratio is 0.78 in the DEE. Using the same set

of shocks, the correlation is only 0.41 in the REE. The difference in fit is driven by a

divergence between the DEE and the REE over the mid-2000s. In the DEE, elevated

sentiment from the 1990s boom leads to an erosion of capital capacity prior to 2007.

In the REE, the financial sector remains well-capitalized throughout the mid-2000s

(further details below).

Though diagnostic expectations allow the model to qualitatively replicate the em-

pirical profile of intermediary capitalization over this boom-bust period, this long-run

simulation points to a failure of the model. Using the shocks implied by SPF forecast

errors, the model cannot jointly fit the 1990s boom and the 2007-2008 Financial Cri-

sis. Though the DEE comes much closer than the REE, neither produces a financial

crisis in 2008: the sequence of positive shocks realized throughout the 1990s places

the financial sector too far above the crisis region for the negative shocks in 2007 and

2008 to generate a full-blown crisis.

This formal failure is not surprising. This test tasks the model with replicating

almost 30 years of macro-financial dynamics using a single shock process that is cal-

culated externally from SPF forecast errors. The dot-com crash triggered significant

turmoil in financial markets, but had relatively muted effects on the real economy.

Because the model features only one shock process, it cannot capture such differenti-

29See, for example, the crisis dating of Romer and Romer (2017) and Baron et al. (2020).
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ation between financial markets and the real economy.30

In light of this failure, the second initialization starts at the trough of the tech

bubble’s collapse in 2002Q4. et is initialized to edistress (the 33rd percentile of et) in

order to capture the tightness of financial conditions at that time. The initialization

of et can be thought of as applying a single MIT shock to the financial sector in

order to capture the differential effect of the dot-com crash on financial markets. It
is initialized to the 2002Q4 value shown in Figure 9. Proceeding from this starting

point, again using the shocks calculated from the SPF, the results of the simulation

are plotted in Figure 10.

The top panel of Figure 10 shows the time path of capital capacity et in the DEE

(red, left axis) and the REE (dashed black, left axis). The gray area marks the crisis

region. For comparison, the blue curve (right axis) plots the Intermediary Capital

Ratio of He et al. (2017).

The key result from the simulation is that only the DEE produces a financial

crisis. This is not to say that it is impossible to generate a financial crisis in the REE,

but, rather, that doing so requires large negative shocks that are inconsistent with

empirical forecast errors.31 This highlights the amplification of financial fragility that

elevated sentiment can produce. In particular, the divergence of the et profiles from

2002 through 2008 shows how a sentiment-driven crisis evolves. Realized shocks are

mild over this period, so capital capacity in the REE recovers quickly from initial

distress. In the DEE, elevated sentiment implies that balance-sheet vulnerability

persists throughout the mid-2000s. This leaves intermediaries exposed to the negative

shocks that hit in 2008.

The middle panel evaluates the model’s ability to replicate patterns in risk premia.

30Though sacrificing parsimony, this suggests that the model’s fit can be improved with additional
shocks that differentially affect the financial sector and the real economy.

31He and Krishnamurthy (2019) reach a similar conclusion when applying their rational model
to the 2007-2008 Financial Crisis, and show that “hidden leverage” is important for understanding
the crisis. The goal of my model with diagnostic expectations is to complement and build on this
conclusion by microfounding non-rational beliefs and systematizing the channels through which
sentiment can endogenously trigger neglected risk in financial markets.
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Capital Capacity

Risk Premia

Forecast Errors

Figure 10: Simulating the 2007-2008 Financial Crisis. The sequence of shocks
implied by SPF forecast errors is fed into the model from 2002Q4 through 2018Q4.
The top panel plots the path of capital capacity et in the DEE and the REE (left
axis), as well as the corresponding empirical measure from He et al. (2017) (right axis).
The middle panel plots the intermediary risk premium in the DEE and the REE (left
axis), and the Baa – 10-year Treasury spread (right axis). The bottom panel plots
the forecast error of the risk premium averaged over quarters t + 1 through t + 4 in
the DEE and the REE (left axis), and compares it to the credit spread forecast error
reported in Bordalo et al. (2018a) (right axis).
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This panel plots the realized risk premium earned by intermediaries in the DEE (red,

left axis) and the REE (dashed black, left axis), as well as the Baa – 10-year Treasury

spread for comparison (blue, right axis). The DEE broadly reproduces the path of risk

premia around the crisis. Pre-crisis risk premia are low. This is consistent with the

narrow spreads observed prior to the crisis, which many argue were due to neglected

risk (e.g., Gennaioli and Shleifer, 2018). Once the crisis hits, risk premia spike.

Because the crisis de-biases expectations, post-crisis risk premia remain persistently

higher than pre-crisis risk premia. Alternatively, because the REE never enters a

crisis, it exhibits almost no variation in risk premia over the simulated period.

The bottom panel assesses how these reversals in risk premia are reflected in

beliefs. The red and dashed black curves plot forecast errors in the DEE and the REE,

respectively (left axis). Specifically, this figure plots intermediary forecast errors of

the delevered risk premium averaged over quarters t+1 through t+4. The blue curve

(right axis) plots the corresponding forecast error of the Baa – Treasury spread, as

reported in Bordalo et al. (2018a).32 As in the data, the DEE generates large positive

forecast errors heading into the crisis, and large negative forecast errors exiting the

crisis. The REE produces only modest forecast errors, because risk premia exhibit

little variation away from the crisis region in the REE.

7 Conclusion

This paper develops a general equilibrium macroeconomic model that combines fric-

tions in financial intermediation with diagnostic expectations. The model examines

how the interplay of behavioral and financial frictions drives macro-financial dynam-

ics. When the financial sector is distressed, elevated sentiment amplifies systemic

risk and sets the stage for financial crises. For the broader macroeconomy, the con-

flicting short-run and long-run effect of diagnostic expectations generates endogenous

boom-bust patterns in investment and output growth. Even with this business cycle

32This data was kindly provided by the authors.
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amplification, the long-run reversal effect of diagnostic expectations can inhibit finan-

cial crises. Empirical tests support the feedback from behavioral frictions to financial

frictions as a channel that improves the model’s fit of macro-financial dynamics.

This paper takes a first step toward integrating diagnostic expectations into mod-

els of financial frictions, and there are many avenues which may be fruitful for future

research. First, the model lends itself to the study of policy interventions in finan-

cial markets with non-rational intermediaries. Second, the discussion in Section 6.3

suggests that extending this paper’s framework, either with additional shocks or ad-

ditional model features, may help to bring the model closer to the data. Third, it will

also be interesting to examine how a richer belief process, for example one containing

both a slow-moving and a high-frequency component, affects equilibrium dynamics.
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López-Salido, David, Jeremy C. Stein, and Egon Zakraǰsek, “Credit-Market
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Appendix

Appendix Contents. Appendix A presents the continuous-time specification of di-

agnostic expectations used in this paper. Appendix B provides model details, proofs,

and additional results. Appendix C describes the equilibrium derivation, and Ap-

pendix D outlines the numerical methods used to solve the model. Appendix E gives

additional details and extensions to this paper’s model of diagnostic expectations,

including a discrete-time formulation.

A Diagnostic Expectations Appendix

A.1 Diagnostic Expectations in Continuous Time

This section provides a microfoundation for the reduced-form expectations process

outlined in Section 2.2. A goal for this paper’s model of diagnostic expectations

is to be a portable extension of existing models [“PEEMish”](Rabin, 2013). The

expectations model is designed such that rational models can be augmented with

diagnostic expectations using a single additional state variable.

Diagnostic expectations are applied to the log of the capital stock. Log capital

evolves according to dkt = (it− δ− σ2

2
)dt+σdZt. Diagnostic expectations are applied

to log capital for two reasons. Psychologically, it is consistent with Weber’s Law that

shocks are perceived as percentage changes rather than level changes. Mathematically,

working with log capital ensures that It is stationary because the diffusion coefficient

for log capital is constant.

Step 1: Defining the Background Context. Following the terminology of Bor-

dalo et al. (2018a, henceforth BGS), the first step is to define the “background con-

text” for capital. The background context is a counterfactual level of the log capital

stock. It forms the dynamic “reference class” used to characterize representativeness.

The background context reflects the absence of recent information. Equation (3)

introduces It ≡
∫ t

0
e−κ(t−s)σdZs as a measure of recent information. This implies the

following definition of the background context.
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Definition 3. Let G−t denote the background context of log capital at time t. G−t is

defined as follows:

G−t = kt − It.

Step 2: Modeling Expectations Given the Background Context. The next

step is to specify how agents form expectations. Because time is continuous, expec-

tations must be specified for future periods t + τ , for all τ > 0. The current period

is t. Let h(kt+τ |kt, et, It) denote the true distribution of log capital at time t + τ

conditional on state variables kt, et, and It. Let h(kt+τ |G−t , et, It) denote the true

distribution of log capital at time t + τ conditional on current state variables et and

It, but now using counterfactual log capital level G−t .

Let k′t+τ denote one possible realization of log capital at time t + τ . Following

BGS and Gennaioli and Shleifer (2010), the “representativeness” of future state k′t+τ

is given by the following likelihood ratio:

h(k′t+τ |kt, et, It)
h(k′t+τ |G−t , et, It)

. (25)

The most representative states are the ones exhibiting the largest increase in likelihood

based on recent information.

One difficulty with equation (25) is that little is known about distributions h(kt+τ |kt, et, It)

and h(kt+τ |G−t , et, It) because kt is an endogenous process.33 This difficulty is over-

come by using an instantaneous prediction horizon of τ = dt. Because kt is an

Itô Process it is instantaneously Gaussian. Taking τ → dt, h(k′t+τ |kt, et, It) =

N
(
kt +

[
i(et, It)− δ − σ2

2

]
dt, σ2dt

)
and h(k′t+τ |G−t , et, It) = N

(
G−t +

[
i(et, It)− δ − σ2

2

]
dt, σ2dt

)
.

I now define diagnostic expectations over prediction horizon τ = dt. The prediction

horizon will be extended iteratively in Step 3.

Diagnostic expectations overweight states that are representative of recent news.

33This is in contrast to BGS, where expectations are only specified for exogenous AR(N) processes.
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This is formalized by assuming that agents evaluate future levels of log capital ac-

cording to the distorted density:

hθt (k
′
t+dt|kt, et, It) = h(k′t+dt|kt, et, It) ·

[
h(k′t+dt|kt, et, It)
h(k′t+dt|G

−
t , et, It)

]θdt
1

Z
. (26)

Equation (26) modifies a similar formula in BGS. The key adjustment for continuous

time is that equation (26) defines expectations at t + dt, while the discrete-time

formulation of BGS defines expectations at t+1. In equation (26), the true conditional

probability h(k′t+dt|kt, et, It) is distorted by the representativeness term in brackets.

The extent to which representativeness distorts expectations is governed by pa-

rameter θ. θ is scaled by the prediction horizon dt because representativeness should

impose only an infinitesimal distortion on the perceived distribution of capital over

an infinitesimally short horizon. Otherwise, the agent would expect that kt jumps

discontinuously from t to t+ dt.

Using equation (26), the following proposition characterizes the perceived evolu-

tion of capital.

Proposition 3. A diagnostic agent perceives that capital evolves according to

d̂Kt

Kt

= (it − δ)dt+ θItdt+ σdZt. (27)

Proof. See Appendix B.5.

Judging by representativeness biases the perceived growth rate of capital by θIt.

Step 3: The Evolution of Beliefs. Step 1 defines the background context G−t

and Step 2 specifies diagnostic expectations of d̂Kt. This step models the dynam-

ics of expectations over longer horizons. Because capital is endogenous, only the

instantaneous distribution of kt is known. Future expectations are therefore defined

iteratively. In particular, repeated applications of the instantaneous Gaussian proper-

ties of kt can be used to define expectations of the economy at t+dt, then t+2dt, then
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t + 3dt, etc. This iterative procedure imposes that the law of iterated expectations

holds with respect to distorted expectations, consistent with the BGS model.

Diagnostic agents form expectations by simulating the economy forward state-

by-state. As the diagnostic agent simulates the economy forward from time t, the

internal representativeness parameter at simulated future time t+ τ is given by:

ISt+τ ≡
∫ t

0

e−κ(t+τ−s)σdZs, or equivalently (28)

= e−κτIt.

The superscript S, for simulated, is used to signify that ISt+τ is the agent’s unconscious

internal representativeness state as the agent forms expectations of the economy in

period t + τ . Information that was representative at time t decays at rate κ as the

perceived economy is simulated forward in time.

Let k′t+τ and e′t+τ denote one possible realization of log capital and capital capacity

at time t + τ . Using equation (28), the simulated background context at t + τ can

now be defined in an analogous fashion to Definition 3.

Definition 4. Let k′t+τ denote some simulated level of log capital at future time t+ τ .

Given k′t+τ , the simulated background context at time t+ τ is defined as follows:

G′−t+τ = k′t+τ − ISt+τ .

As above, the simulated future background context reflects the absence of recent

information.

Again proceeding in an analogous fashion to Step 2, at time t + τ the agent

iteratively forms expectations about t+ τ + dt according to:

hθt (k
′
t+τ+dt|k′t+τ , e′t+τ , ISt+τ ) = h(k′t+τ+dt|k′t+τ , e′t+τ , ISt+τ ) ·

[
h(k′t+τ+dt|k′t+τ , e′t+τ , ISt+τ )
h(k′t+τ+dt|G

′−
t+τ , e

′
t+τ , ISt+τ )

]θdt
1

Z
.

(29)
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It follows that the diagnostic agent perceives that capital evolves according to:

d̂K ′t+τ
K ′t+τ

= (it+τ − δ)dt+ θISt+τdt+ σdZt+τ . (30)

Future expectations in equation (30) should be contrasted with those of a rational

agent who correctly believes that capital evolves according to
dK′t+τ
K′t+τ

= (it+τ − δ)dt+

σdZt+τ . Since ISt+τ = e−κτIt, equation (30) specifies that the effect of diagnostic

expectations on the perceived growth rate of capital fades at rate κ as the agent

simulates the evolution of the economy further into the future (τ →∞). Diagnostic

expectations capture the overweighting of states that are representative of current

economic conditions. As the agent looks further temporally ahead, information that

is diagnostic of economic conditions at time t steadily dims.

It is worth noting that equation (30) only stipulates that the diagnostic agent’s

perception of kt+τ ’s drift converges to rationality as τ → ∞. Since the drift has a

cumulative effect on the level of kt+τ , diagnostic expectations of the level of kt+τ can

diverge increasingly from rational expectations as τ increases (e.g., Figure 1).

Summary. This completes the microfoundation of the reduced-form beliefs process

specified in Section 2.2. Extensions are given in Appendix E.2. Appendix E.1 dis-

cusses how the discrete-time analogue of this paper’s expectations model relates to

the original BGS model.

To summarize, expectations of the endogenous capital process are formed iter-

atively in order to make repeated use of the instantaneous Gaussian properties of

dkt+τ . Step 2 defines how It affects the expected evolution of the economy from t to

t+ dt. Step 3 then defines how ISt evolves as expectations are simulated forward. In

detail, Step 2 takes kt, et, It as given and provides a perceived mapping into k̂t+dt and

êt+dt given shock dZt. The hat-notation denotes that agents may not properly un-

derstand the evolution of these state variables. Step 3 takes It as given and provides

ISt+dt. Then, Step 2 is applied again (now taking k̂t+dt, êt+dt, and ISt+dt as given) to
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calculate k̂t+2dt and êt+2dt given shocks dZt and dZt+dt. Applying Step 3 again gives

ISt+2dt. This process is repeated to generate expectations at time t+ τ , for all τ > 0.

Diagnostic agents make two mistakes when θ > 0. First, they hold incorrect beliefs

about the drift of capital. Second, they have incorrect expectations about their own

future expectations because they do not understand that they are diagnostic. A

comparison of equations (3) and (28) shows that diagnostic agents do not perceive

that future capital quality shocks will alter the bias of their future expectations.34

I end by discussing why this model of diagnostic expectations can serve as a

portable extension of existing rational models. First, equations (27) and (30) illus-

trate that state variable It alone is sufficient to characterize the state of expectations

relative to rationality. Second, the evolution of It is self-contained. It can be ex-

pressed in differential form as dIt = −κItdt+ σdZt. Thus, state variable It plus the

shock σdZt are sufficient to calculate dIt. It is these two attributes that make this

formulation of diagnostic expectations portable: It alone characterizes expectations

relative to rationality, and It is sufficient for its own evolution.

A.2 Diagnostic Expectations Calibration and Application

θ Calibration. The baseline calibration sets θ such that one standard deviation in

I corresponds to an output growth bias of 0.75 percentage points. The magnitude of

this bias aligns with the estimates in Bordalo et al. (2018a, henceforth BGS), Bordalo

et al. (2018b, BGMS), Bordalo et al. (2019b, BGLS), Bordalo et al. (2019a, BGST),

and d’Arienzo (2020).

Using data from 1968Q4 through 2016Q4, BGMS assume that the realized annual

growth rate of real GDP follows an AR(1) process: xt = ρxt−1 + ut. BGMS estimate

ρ = 0.87 and σu = 1.10. Let θD denote the representativeness parameter for the

discrete-time specification developed in BGS. The basic model of diagnostic expec-

tations applied to an AR(1) process predicts that in period t, the forecast of xt+1 is

34Put differently, the realized future information parameter It+τ is a random variable at time t
whereas ISt+τ is deterministic at time t.
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biased by θDρut (see BGS). Using the BGMS estimates of ρ and σu, a one standard

deviation output growth bias of 0.75 percentage points corresponds to θD = 0.78.35

This is consistent with the estimates of θD provided in BGS (θD = 0.91), BGMS

(estimates vary, with a single collective estimate of θD = 0.50), BGLS (θD = 0.90),

BGST (θD = 1.08), and d’Arienzo (2020) (two estimates: θD = 0.47 and θD = 0.70).

Calculating Sentiment with Expectations Data. This section details how to

construct an empirical measure of sentiment given a calibration of κ and θ. This

construction is used to calibrate κ. It is also used to calculate the empirical measure

of sentiment shown in Figure 9, and to calculate the SPF-implied shocks used in

Figure 10.

Sentiment is constructed using the median forecast of real GDP growth from the

Survey of Professional Forecasters (SPF).36 Let FESPF
t denote the SPF forecast error

in quarter t. I define the forecast error in quarter t as the realized GDP growth rate in

quarter t minus the median quarter t−2 forecast of the GDP growth rate in quarter t.

The forecast error is defined with a two-quarter lagged prediction to account for the

slow incorporation of shocks into GDP statistics (e.g., Lehman declared bankruptcy

in 2008Q3, but this was not reflected in U.S. GDP until 2008Q4).

Proposition 2 provides a method for calculating sentiment using subjective shocks

to economic growth. SPF forecast data is collected quarterly while equation (24) is

written in continuous time. Equation (24) can be discretized at a quarterly frequency

as follows:

It =
t−1∑
j=0

(
K +

θ

4

)j
FESPF

t−1−j, (31)

where K = e−κ/4. A derivation of equation (31) is provided below.

Equation (31) needs to be initialized with a “period 0.” I assume that sentiment

35Setting 0.75 = θ(0.87)(1.1) yields the desired result.
36Expert forecasts are used for consistency with the model, as discussed in footnote 27.
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is equal to 0 in 1970Q1. Starting from the initial condition, equation (31) provides a

method for constructing sentiment using quarterly SPF forecast errors. These forecast

errors, along with the measure of sentiment in Figure 9, are also used to calculate the

shocks used in Figure 10.

κ Calibration. Sentiment persistence parameter κ is calibrated to align the model-

implied correlation between et and It with the data. I’ve just outlined a technique for

calculating sentiment from SPF forecast data given a calibration of κ and θ. He et al.

(2017) provide an empirical measure corresponding to et over the period 1970Q1 to

2018Q3. For any given κ and θ, this means that I can calculate the correlation between

et and It in both the data and the model. This analysis is presented in Figure 1 below,

which suggests that sentiment should have a half-life of approximately 5 years.37

Figure 1: Calibration of κ. The red curve plots the correlation between et and It
in the model as a function of κ (taking θ as given from the diagnostic expectations
literature). The blue curve plots the empirical correlation between et (from He et al.
(2017)) and It (calculated from SPF forecast errors given κ and θ).

37As κ is varied, θ is always set to
(
√

2κ)0.0075

σ . This maintains the other calibration target that
one standard deviation in I corresponds to an output growth bias of 0.75 percentage points.
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Discretization of the Model: Derivation of Equation (31). I partially rewrite

the model in discrete time. The discrete-time model is written at a quarterly frequency

for consistency with SPF data. Subscript t’s denote model periods, such that period

t+ 1 occurs one quarter after period t.

Define the capital law of motion as Kt+1 = Kt exp(υt + σεt+1), where σεt are

quarterly capital quality shocks, υt captures investment and depreciation, and εt ∼

N (0, 1
4
). The capital law of motion can be approximated as follows:

Kt+1 −Kt

Kt

=
Yt+1 − Yt

Yt
≈ υt + σεt+1.

Next, I introduce the analogous discrete-time definition of sentiment:

It =
t−1∑
j=0

Kjσεt−j, (32)

where K = e−κ/4. Under diagnostic expectations, agents expect that output (or

capital) evolves approximately as follows:38

Êt
[
Yt+1 − Yt

Yt

]
≈ Et

[
Yt+1 − Yt

Yt

]
+
θIt
4
.

Analogous to equation (5), diagnostic expectations of GDP growth consist of a ra-

tional component plus a diagnostic wedge. The dt factor in equation (5) becomes 1
4

here since the model is discretized at a quarterly frequency.

38In logs, the law of motion for capital is kt+1 = kt + υt + σεt+1. Let G−t = kt − It. In discrete
time, equation (26) becomes:

hθt (k
′
t+1|kt, et, It) = h(k′t+1|kt, et, It) ·

[
h(k′t+1|kt, et, It)
h(k′t+1|G

−
t , et, It)

] θ
4

1

Z
.

The main difference relative to equation (26) is that the power term of θdt becomes θ
4 here,

since the model is specified at a quarterly frequency. Since kt+1|kt, et, It ∼ N
(
kt + υt,

σ2

4

)
and

kt+1|G−t , et, It ∼ N
(
G−t + υt,

σ2

4

)
, a similar argument to that of Appendix B.5 gives Êt [kt+1 − kt] =

υt + θIt
4 . This implies Êt

[
Yt+1−Yt

Yt

]
≈ Et

[
Yt+1−Yt

Yt

]
+ θIt

4 .
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At a quarterly frequency, subjective shocks are defined as

σε̂t+1 ≡
Yt+1 − Yt

Yt
− Êt

[
Yt+1 − Yt

Yt

]
.

Unlike objective shocks σεt, these subjective shocks are directly observable with ex-

pectations data. Using the above approximations:

σε̂t+1 ≈ σεt+1 −
θIt
4
.

Equation (32) can now be redefined in terms of subjective shocks. It follows from

equation (32) that It = KIt−1 + σεt. Plugging in the approximation of subjective

shocks gives

It ≈
(
K +

θ

4

)
It−1 + σε̂t.

Iterating backward and using the initial condition that I0 = 0 yields:

It ≈
t−1∑
j=0

(
K +

θ

4

)j
σε̂t−j.

Equation (31) is recovered by noting that σε̂t = FEt−1. This holds since σε̂t is the

forecast error realized from the start of period t− 1 to the start of period t.39

39In other words, σε̂t is the forecast error that is realized over quarter t− 1.
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B Model Details

B.1 Labor Income Microfoundation

The treatment here of Frankel (1962) follows from Aghion and Howitt (2008, Chap-

ter 2). Each individual producer faces decreasing returns to capital, but decreasing

returns at the producer level are offset at the aggregate level through knowledge

externalities.

At time t, there exists a measure Jt of intermediaries.40 Each intermediary j

operates Kj,t units of capital and hires Lj,t units of labor at time t. The intermediary

faces the production function:

Yj,t = ĀtK
ν
j,tL

1−ν
j,t , (33)

where Āt is an endogenous aggregate productivity level. Due to knowledge spillovers,

Āt depends on the total amount of capital in the economy:

Āt = A

(∫
j

Kj,tdj

)ς
. (34)

Parameter ς ∈ [0, 1] controls the level of knowledge externalities.

Let Wt denote the wage rate. Intermediaries hire labor as follows:

Lj,t = argmax
`

ĀtK
ν
j,t`

1−ν −Wt`

The optimal labor choice is:

Lj,t = Kj,t

(
Āt(1− ν)

Wt

) 1
ν

. (35)

The next step is to impose market clearing. Specifically,
∫
j
Kj,tdj = Kt and

40In the model, there is always a unit measure of households. The size of the financial intermediary
sector varies over time due to banker entry and exit.
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∫
j
Lj,tdj = 1. Since all intermediaries are identical, Kj,t = Kt

Jt and Lj,t = 1
Jt . Imposing

market clearing gives:

Āt = AKς
t , and

Yt =

∫
j

Yj,tdj = AKς
t

∫
j

Kν
j,tL

1−ν
j,t dj

= AKς
t Jt
(
Kt

Jt

)ν (
1

Jt

)1−ν

= AKς+ν
t .

The following parameter restriction generates aggregate linearity:

ς + ν = 1. (36)

Assumption (36) recovers an “AK” economy with a linear aggregate production func-

tion Yt = AKt, exactly as in the main text.

The final step is to use the market clearing conditions to solve for the wage rate.

Plugging these into equation (35):

1

Jt
=
Kt

Jt

(
AKς

t (1− ν)

Wt

) 1
ν

Wt = AKς+ν
t (1− ν)

Wt = (1− ν)AKt, (37)

where the last line follows from (36). The knowledge externalities model built here

provides a simple microfoundation for equation (11) in the main text. The benefits

of introducing a labor income margin are discussed below.
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B.2 Quantitative Benefits of the Labor Income Margin

This model’s benchmark calibration sets A = 1
3

and ν = 0.41. The original HK model,

which does not feature labor income, sets A = 0.133.41 Since the average investment

rate is roughly 10%, A = 0.133 implies that investment typically accounts for more

than 2
3

of the economy’s output in the original HK model. Consumption accounts

for less than 1
3

of output. Though some parsimony of the original HK model is lost,

the benefit of introducing a simple labor income margin is that it allows for a more

realistic consumption-output share.

Generating a realistic consumption-output ratio yields two benefits. First, it al-

lows for a more standard calibration of EIS parameter ζ. In the HK model, con-

sumption accounts for only a small share of output. This implies that changes to the

investment rate will cause consumption growth to swing wildly. This is particularly

true in periods of financial distress, when the investment rate is sensitive to et. HK

calibrate ζ = 0.13 (EIS > 7) in order to prevent these swings in consumption from

generating excessive interest rate volatility.

Second, the labor income extension generates a more realistic ratio of housing

expenditures to total consumption. Recall that aggregate consumption is a Cobb-

Douglas aggregator over the output good and housing services: Ct = (cyt )
1−φ(cht )

φ.

Parameter φ governs the ratio of housing expenditures to total consumption. To

match the housing-wealth ratio of 45%, HK set φ = 0.6. This implies that housing

services compose 60% of expenditures.

In order to match the same housing-wealth ratio of 45% in this paper, I calibrate

φ = 0.2.42 In addition to matching the housing-wealth ratio, φ = 0.2 is also consistent

with the ratio of housing expenditures to total consumption observed empirically.43

41The labor income channel in this model can be shut down by setting ν = 1.
42Matching the same housing-wealth ratio requires the equilibrium value of rental payments (Dt)

to remain similar to the original HK model. Due to the labor income extension, my model features
a larger share of output goods relative to housing services (i.e., A ↑). From equation (10), more
output goods implies that a lower calibration of φ is needed in order to maintain Dt.

43For example, Table 2.4.5 of the 2019 NIPA reports total PCE of $14563 (billion). Housing and
utilities account for $2670 (billion). The housing share of total consumption is 18%. This share is
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B.3 Why Two Assets

At first glance it is puzzling that the model includes two assets, Kt and H, since these

assets are perfectly conditionally correlated. The model attempts to jointly match

key macroeconomic and financial market data. As a macroeconomic model it aims

to generate empirically-plausible levels of investment volatility. As a finance model,

enough asset price volatility is needed to produce quantitatively significant nonlin-

earities during periods of financial distress. These two goals present a well-known

problem. Market values of capital are much more volatile than investment, both

across firms and over time. In a standard q-theory model where investment is closely

linked with asset prices, these two facts can only be reconciled with unreasonably

high adjustment costs (e.g., Campbell, 2017, Ch. 7).

By introducing two assets, HK circumvent this issue. The two leftmost panels of

Figure 2 show that pt is more sensitive to et than qt. This is because the supply of

houses is fixed while Kt is procyclical.44 Investment it is a function of qt, so the lower

variance of qt allows for the model to match empirical investment volatility under

reasonable adjustment costs. Since the intermediary holds both types of assets, the

additional volatility provided by pt generates an intermediary pricing kernel that is

volatile enough to produce significant nonlinearities in financial intermediation. As

Section 3.2 highlights, the two-asset model does a good job of matching empirical

investment volatility as well as the overall risk-return profile of intermediary equity.

stable over time (Davis and Van Nieuwerburgh, 2015).
44In particular, recall that Pt is the present-discounted value of perceived future rental payments.

When et is low, investment rate it is also expected to be low for a long period of time. This implies
that the expected growth rate of output — and therefore rental payments — is expected to be low,
too. Through this investment channel, the growth rate of rental payments is highly correlated with
et. Hence, housing price pt is sensitive to et.
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B.4 Boundary Conditions

Boundary conditions are needed to solve for price functions q(e, I) and p(e, I). As

e→∞ the equity issuance constraint ceases to affect the equilibrium price and policy

functions. This implies lim
e→∞

qe(e, I) = lim
e→∞

pe(e, I) = 0.

A lower reflecting boundary is imposed by assuming entry into the intermediary

sector deep in crisis times (term dψt in equation (8)). There exists an exogenous

minimum reputation level e such that new intermediaries enter the economy whenever

et hits e.45 Entry is costly because new intermediaries must acquire the skills to

operate capital. Specifically, the economy must destroy β > 0 units of capital in

order for entry to increase aggregate reputation Et by one unit.46 The assumption

of a reflecting barrier at e implies that prices q and P must have a zero derivative

with respect to e at e. If this were not the case, an arbitrageur could bet on a

unidirectional change in asset prices at the reflecting barrier. This implies qe(e, I) = 0

and pe(e, I) = p(e,I)β
1+eβ

.

To derive the lower boundary condition for p, start at the boundary with an

aggregate reputation of E = eK. Consider a further shock to reputation of z which

sends reputation to E − z < eK. After this shock, the reflecting boundary implies

that capital will immediately be converted into reputation to restore e. Specifically,

let x denote the amount of new reputation required to restore e. x is given by:47

x =
z

1 + eβ
.

Shock z requires the destruction of βx capital to restore reputation to e.

This capital destruction equation can be used to derive the boundary condition

for price function P . The condition that Pe(e, I) = 0 implies that p = P
K

will have

45Loosely, this captures (unmodeled) government intervention deep in crises.
46Equations (2) and (4) are altered at e to include this form of capital destruction.
47x is defined implicitly by e = E−z+x

K−βx . The numerator of this equation is the level of initial
reputation minus the shock and plus x of new reputation. The denominator is the initial level of
capital minus the βx of capital destroyed to produce x reputation. Capital will be destroyed until e
(the minimum level of e = E/K) is restored.
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a non-zero slope at e.48 Consider the above reputation shock of z. Immediately

after this shock, the price of housing is P = p
(
e− z

K
, I ′
)
K. This must equal the

price of housing immediately after capital is spent to rebuild reputation, given by

P = p (e, I ′) (K − βx). In the continuous-time limit with arbitrarily small shocks,

p
(
e− z

K
, I ′
)
K can be rewritten as p(e, I ′)K − pe (e, I ′) z. Combining:

p(e, I ′)K − pe (e, I ′) z = p(e, I ′)
(
K − β z

1 + eβ

)
pe(e, I ′) =

p(e, I ′)β
1 + eβ

.

This gives the boundary condition for p at e. Details on how the boundary conditions

are imposed numerically are provided in Appendix D.

48This is due to capital destruction, which makes the denominator of P
K change at the entry

boundary.
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B.5 Proofs

Proof of Proposition 2. By definition, It ≡
∫ t

0
e−κ(t−s)σdZs. Subjective shocks

are defined as σd̂Zt = −θItdt + σdZt. The law of motion for It is given by dIt =

−κItdt+ σdZt. Plugging in the definition of subjective shocks gives

dIt = (−κ+ θ)Itdt+ σd̂Zt.

Let f(It, t) = Ite(κ−θ)t. Using Itô’s lemma:

df(It, t) = e(κ−θ)t (dIt) + (κ− θ)Ite(κ−θ)tdt

= e(κ−θ)t
(

(−κ+ θ)Itdt+ σd̂Zt

)
+ (κ− θ)Ite(κ−θ)tdt

= e(κ−θ)tσd̂Zt.

Given an initial condition of f(I0, 0) = 0, we get:

f(It, t) =

∫ t

0

df(Is, s)

Ite(κ−θ)t =

∫ t

0

e(κ−θ)sσd̂Zs

It =

∫ t

0

e(−κ+θ)(t−s)σd̂Zs.

This completes the proof.
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Proof of Proposition 3 (in Appendix A.1). Consider the evolution of log capital

kt over a horizon of τ > 0, holding investment fixed at ī = it. With fixed investment:

kt+τ = kt +

∫ t+τ

t

(̄i− δ − σ2

2
)ds+

∫ t+τ

t

σdZs

= kt + τ (̄i− δ − σ2

2
) + σ(Zt+τ − Zt).

Since {Zt} is a standard Brownian motion, kt+τ ∼ N
(
kt + τ (̄i− δ − σ2

2
), σ2τ

)
.

For the arbitrary prediction horizon of τ , one can rewrite equation (26) as:

hθt (k
′
t+τ |kt, et, It) = h(k′t+τ |kt, et, It) ·

[
h(k′t+τ |kt, et, It)
h(k′t+τ |G−t , et, It)

]θτ
1

Z
.

Given a fixed investment level of ī, this implies:

hθt (k
′
t+τ |kt, et, It) = N

(
kt + τ (̄i− δ − σ2

2
) + θ(kt −G−t )τ, σ2τ

)
.

The Bordalo et al. (2018a) Appendix provides algebraic details for this step. Equiv-

alently, the agent perceives that

k̂t+τ − kt =

∫ t+τ

t

(̄i− δ − σ2

2
)ds+

∫ t+τ

t

θ(kt −G−t )ds+

∫ t+τ

t

σdZs.

In the limit as τ → dt:

d̂kt = (it − δ −
σ2

2
)dt+ θ(kt −G−t )dt+ σdZt.

Definition 3 gives It = kt −G−t . Applying Itô’s lemma to Kt = exp(kt) yields:

d̂Kt

Kt

= (it − δ)dt+ θItdt+ σdZt.

This completes the proof.
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B.6 Robustness

This section examines robustness to behavioral parameters θ and κ, and the EIS

parameter ζ. The baseline calibration sets θ × SD(I) = 0.75%, the half-life of I to

5 years, and ζ = 2
3

(EIS = 1.5). I analyze the following six parameter perturbations:

(i) θ×SD(I) = 1.5%, (ii) θ×SD(I) = 0.75%
2

, (iii) sentiment half-life of 20 years, (iv)

sentiment half-life of 1 year, (v) ζ = 1, and (vi) ζ = 1
2
.

For perturbations to θ and ζ, all other parameters are kept at their baseline

calibration in Table 1. For perturbations to the persistence of sentiment (κ), I change

θ accordingly to ensure that θ × SD(I) remains equal to 0.75%. This isolates the

effect of persistence.
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Sentiment-Driven Financial Crises.

(a) θ × SD(I) = 1.5% (b) θ × SD(I) = 0.75
2 %

(c) Half-life = 20 (d) Half-life = 1

(e) ζ = 1 (f) ζ = 1
2

Figure 2: Crisis hitting probabilities. See Figure 4 for a description. In order
from left-to-right, top-to-bottom: θ× SD(I) = 1.5%, θ× SD(I) = 0.75

2
%, half-life =

20, half-life = 1, ζ = 1, ζ = 1
2
.
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Boom-Bust Investment Cycles.

(a) θ × SD(I) = 1.5% (b) θ × SD(I) = 0.75
2 %

(c) Half-life = 20 (d) Half-life = 1

(e) ζ = 1 (f) ζ = 1
2

Figure 3: Investment rate IRFs. See Figure 6 for a description. In order from
left-to-right, top-to-bottom: θ × SD(I) = 1.5%, θ × SD(I) = 0.75

2
%, half-life = 20,

half-life = 1, ζ = 1, ζ = 1
2
.

71



Financial Market Stability from Beliefs. Appendix Table 3 lists crisis proba-

bilities for the DEE and the REE across the six alternate calibrations.

DEE Prob(Crisis) REE Prob(Crisis) DEE Prob(Crisis)
REE Prob(Crisis)

Baseline 3.22 % 3.83 % 0.84
θ × SD(I) = 1.5% 6.33 % 3.83 % 1.65

θ × SD(I) = 0.75%
2

3.10 % 3.83 % 0.81
Half-life = 20 4.71 % 3.83 % 1.23
Half-life = 1 2.74 % 3.83 % 0.72
ζ = 1 2.80 % 5.28 % 0.53
ζ = 1

2
3.43 % 2.80 % 1.23

Table 3: Financial market stability from beliefs: robustness.

First, Appendix Table 3 evaluates the effect of doubling and halving θ. The dou-

bling of θ makes diagnostic expectations destabilizing relative to rationality. With

higher θ, intermediaries make larger asset pricing mistakes. This puts downward

pressure on et when It is high, and vice-versa. Overall, the doubling of θ reduces

the correlation between et and It to 0.2. This makes it more likely that the economy

enters the part of the state space where sentiment is elevated and the financial sector

is distressed. This increases the probability of crises in the DEE. Alternatively, diag-

nostic expectations become more stabilizing when θ is halved. Lowering θ increases

the correlation between et and It to 0.9. This makes it even less likely for the economy

to enter states where the financial sector is distressed and yet It > 0.49

The persistence of sentiment also matters for the effect of diagnostic expectations

on financial crises. Crises become more likely to occur as the persistence of sentiment

increases. Again, this effect operates through the correlation between et and It.

When sentiment has a half-life of 1 year, the correlation is 0.75. This drops to 0.1

for a half-life of 20 years. Decreasing κ reduces the correlation between et and It by

making sentiment load less and less on the most recent shocks.

Finally, Appendix Table 3 evaluates the effect of ζ on financial crises. ζ is the

49Though not illustrated in Appendix Table 3, the relationship between θ and the probability of
crises is non-monotonic. As θ → 0, the probability of a crisis in the DEE converges from below to
the probability of a crisis in the REE.
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inverse of the EIS. Unlike perturbations to the behavioral parameters, perturbations

to ζ affect both the REE and the DEE. Lowering ζ decreases the probability of

crises in the REE. This result mirrors the “volatility paradox” of Brunnermeier and

Sannikov (2014). Lowering ζ increases asset price volatility, so intermediaries demand

higher risk premia.50 In equilibrium, this decreases the probability of crises.

ζ works in the opposite direction in the DEE. Under diagnostic expectations,

lower ζ increases the probability of crises. In the DEE, asset prices become increas-

ingly sensitive to It as ζ decreases.51 However, diagnostic agents do not anticipate

this sentiment-driven price volatility and therefore they do not demand a higher risk

premium as compensation. Since lowering ζ increases asset price volatility without

increasing the corresponding risk premium, this additional (uncompensated) risk in-

creases the probability of financial crises.

50Lowering ζ decreases the sensitivity of the risk-free rate to variation in et. This means that asset
prices must fluctuate instead. For example, consider a decline in et which causes intermediaries to
demand a higher risk premium. This can be realized either through a decline in the risk-free rate rt
or a decline in asset prices. Thus, variation in rt can insulate asset prices from variation in et.

51As ζ decreases the interest rate rt becomes less sensitive to changes in expected consumption
growth. Consider an increase in sentiment. This increases perceived future cash flows. If rt is
insensitive to variation in It then this increase in perceived cash flows will be passed through to
higher asset prices qt and Pt. Thus, lowering ζ creates larger asset price variation in It.
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B.7 Empirical Tests in the Recalibrated REE

In Section 6.1 the calibration of the REE is identical to the calibration of the DEE,

except for θ = 0. Here, I recalibrate the REE in accordance with Table 1. The

analysis of Section 6.1 is repeated using the recalibrated REE.

Updated REE Calibration. Table 4 presents the updated calibration of the REE.

Four parameters are changed from the main text: η, e, β, and φ. Bank exit rate η is

updated to re-establish a crisis probability of 3%. Lower entry barrier e is changed to

maintain a maximum Sharpe ratio of 6.5. Entry cost β is updated to maintain land

price growth volatility of roughly 11.9%. φ is updated to maintain a housing-wealth

ratio of 45%.

Parameter Choice Target
Updated Parameters
η Bank Exit Rate 0.139 Prob(Crisis)
e Lower Entry Barrier 0.112 Max I = 0 Sharpe Ratio
β Entry Cost 4.5 Land Price Volatility
φ Housing Expenditure Share 0.204 Housing-Wealth Ratio

Unconditional Simulated Moments REE (New) REE (Old)
Mean

(
Investment

Capital

)
10.04% 9.93%

Mean
(

Consumption
Output

)
69.88% 70.43%

Mean(Realized Sharpe Ratio) 0.54 0.52
Mean(Realized Intermediary Risk Premium) 15.93% 14.63%
Probability of Crisis 3.05% 3.83%
Volatility(Land Price Growth) 11.64% 10.08
Volatility(Interest Rate) 0.46% 0.41%

Non-Distress Simulated Moments
Volatility(Investment Growth) 3.49% 3.98%
Volatility(Consumption Growth) 2.75% 2.57%
Volatility(Output Growth) 2.97% 2.98%

Mean
(

Housing Wealth
Total Wealth

)
44.60% 46.79%

Table 4: REE updated calibration. See Table 1 for a description. Column REE
(New) lists the simulated moments in the recalibrated REE. Column REE (Old) lists
the simulated moments for the REE calibration used in the main text.
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Persistence in the Recalibrated REE. Appendix Table 5 uses the recalibrated

REE to reproduce Table 2 of the main text. The recalibrated REE features a slightly

lower persistence of financial distress, but results are similar.

et Percentile REE (New) REE (Old)
5 0.46 0.42
10 1.13 1.08
25 3.74 3.72
50 10.11 10.42
75 24.84 26.41

Table 5: Average crisis recovery time (in years). See Table 2 for a description.
This table compares the persistence of financial fragility in the two REE calibrations.

Appendix Figure 4 uses the recalibrated REE to reproduce Figure 8 of the main

text. Autocorrelations in the recalibrated REE are presented with solid black lines.

The two calibrations produce very similar results.

Dividend-Price Ratio Investment-Output Ratio

Figure 4: Persistence: data and model. See Figure 8 for a description. This figure
compares the persistence of macro-financial aggregates in the two REE calibrations.
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B.8 Simulating the 2007-2008 Financial Crisis: Additional Analysis

Sentiment

Capital Capacity

Figure 5: A long-run analysis of the 2007-2008 Financial Crisis. See Section
6.3 for a description. For reference, the top panel shows the path of sentiment from
1992 through 2018. The bottom panel plots the path of capital capacity et in the
DEE and the REE (left axis), as well as the corresponding empirical measure from
He et al. (2017) (right axis). The red star marks the et initialization of the second
simulation, as shown in Figure 10 of the main text.
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B.9 Additional Tables and Figures

Figure 6: Price and policy functions. See Figure 2 for a description. This chart
also contains information about delevered risk premia, asset volatilities (σk and σh),
and interest rate rt.
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Figure 7: Investment rate IRFs. See Figure 6 for a description. This figure also
includes the investment IRFs of an economy with diagnostic expectations but no
financial frictions (dotted gray curve). Sentiment produces short-run momentum,
but there is no feedback from behavioral frictions to financial frictions to generate
sharp reversals thereafter.

Figure 8: Investment rate IRFs: 2SD shock. See Figure 6 for a description.
This figure replicates the investment rate IRF analysis, but doubles the size of the
initial impulse. Due to the model’s nonlinearity, the larger shock sequence produces
a starker asymmetry between the positive and negative shock cases.
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Figure 9: Investment rate IRFs: E0[iτ ]. The baseline analysis in Figure 6 sets
shocks to 0 for all τ ≥ 0 (shown here with transparent lines for reference). This
figure instead plots the expected future investment rate E0[iτ ]. Because this model is
nonlinear, these two approaches are not equivalent. In particular, nonlinear financial
frictions mean that the long-run expected investment rate, limτ→∞ E0[iτ ], is less than
the investment rate in the stochastic steady state. The expected investment rate is
calculated using the Feynman-Kac formula (see Appendix D.3 for numerical details).

et Percentile DEE REE
5 0.25 0.25
10 0.67 0.83
25 1.83 2.83
50 4.00 8.08
75 8.17 20.08

Table 6: Median crisis recovery time (in years). See Table 2 for a description.
This table lists the median time (in years) that it takes for et to recover from a
financial crisis to its Xth percentile.
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Investment-Output Ratio Dividend-Price Ratio

Figure 10: Persistence: data and model. This figure replicates Figure 8 using
only U.S. data from 1950 – 2016.
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C Equilibrium Solution Details

Here I detail how to solve for a Diagnostic Expectations Equilibrium (DEE) that is

Markov in state variables et, It, and Kt. Brunnermeier and Sannikov (2016) provide

an excellent treatment of the techniques used here.

C.1 The Diagnostic Expectations Equilibrium

I postulate that agents perceive that qt and pt evolve as follows:

d̂qt
qt

= µ̂qtdt+ σ̂qt dZt (38)

d̂pt
pt

= µ̂ptdt+ σ̂pt dZt. (39)

Using these postulated price processes, the perceived laws of motion for the three

state variables are:

d̂Kt

Kt

= (it − δ)dt+ θItdt+ σdZt (40)

d̂et
et

=
(
rt + αht π̂

h
t + αkt π̂

k
t

)
dt− (it − δ + θIt)dt+ (σ2 − σ(αht σ̂

h
t + αkt σ̂

k
t ))dt

− ηdt+ dψt + (αht σ̂
h
t + αkt σ̂

k
t − σ)dZt (41)

dISt
It

= −κdt (42)

Equations (40) and (42) were derived in Appendix A. Equation (41) can be derived

using Itô’s lemma to expand et = Et
Kt

under the perceived processes d̂Et
Et = d̂R̃t −

ηdt+ dψt and d̂Kt
Kt

= (it − δ)dt+ θItdt+ σdZt. For simplicity, I rewrite the perceived

evolution of et as:

d̂et
et

= µ̂etdt+ σ̂etdZt.
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Price Processes. Let q(e, I) and p(e, I) denote the two price functions. Applying

Itô’s lemma using the perceived laws of motion for the two state variables gives:

µ̂qt =
qe(et, It)

qt
etµ̂et −

qI(et, It)
qt

κIt +
1

2

qee(et, It)
qt

(etσ̂et )
2 (43)

σ̂qt =
qe(et, It)

qt
etσ̂et (44)

µ̂pt =
pe(et, It)

pt
etµ̂et −

pI(et, It)
pt

κIt +
1

2

pee(et, It)
pt

(etσ̂et )
2 (45)

σ̂pt =
pe(et, It)

pt
etσ̂et (46)

These formulas will prove useful throughout. Equations (43) and (45) are second-

order PDEs for the price functions, which I will solve numerically. To do so, I need

to pin down µ̂qt , µ̂
p
t , µ̂

e
t , and σ̂et , leaving only the price functions undetermined. This

is where I now turn.

Market Clearing and Returns. From goods market clearing equation (21):

Yt = Cy
t + Φ(it, Kt)

A =
Cy
t

Kt

+ it +
ξ

2
(it − δ)2

=
1− φ
φ

Dt

Kt

+ it +
ξ

2
(it − δ)2, using (10) and Ch

t = 1

Dt

Kt

=
φ

1− φ

[
A− it −

ξ

2
(it − δ)2

]
.

Since equation (12) gives it = δ + qt−1
ξ

, this pins down Dt
Kt

as a function of qt.

Dt is the dividend paid on housing, and this expression can now be plugged into
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housing returns as follows:

d̂Rh
t =

d̂Pt +Dtdt

Pt

=
d̂(ptKt)

ptKt

+
Dt

ptKt

dt

=
d̂(ptKt)

ptKt

+

φ
1−φ

[
A− it − ξ

2
(it − δ)2

]
pt

dt.

Applying Itô’s Lemma to the first term:

d̂Rh
t =

[
µ̂pt + it − δ + θIt + σσ̂pt +

φ

1− φ
A− it − ξ

2
(it − δ)2

pt

]
dt+ (σ + σ̂pt )dZt

= (π̂ht + rt)dt+ σ̂ht dZt.

Equation (17) gives a similar process for capital returns. Repeating (17) here:

d̂Rk
t =

(
νA

qt
+ µ̂qt − δ + θIt + σσ̂qt

)
dt+ (σ + σ̂qt )dZt

= (π̂kt + rt)dt+ σ̂kt dZt.

The final return process to derive is the risk-free interest rate rt. Starting again

from market clearing:

Cy
t = Yt − Φ(it, Kt)

= Yt − itKt −
ξ

2
(it − δ)2Kt

=

(
A− δ − qt − 1

ξ
− (qt − 1)2

2ξ

)
Kt, using (12).
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Now deriving the perceived evolution of Cy
t using Itô’s Lemma:

d̂Cy
t =

(
A− δ − qt − 1

ξ
− (qt − 1)2

2ξ

)
Kt((it − δ + θIt)dt+ σdZt)

− qtd̂qt
ξ

Kt −
Kt

2ξ
(qtσ̂

q
t )

2dt− q2
t

ξ
Ktσσ̂

q
t dt

d̂Cy
t

Cy
t

= (it − δ + θIt)dt−
1
ξ
q2
t (µ̂

q
t + 1

2
σ̂qt

2
+ σσ̂qt )

A− δ − qt−1
ξ
− (qt−1)2

2ξ

dt+

σ − 1
ξ
q2
t σ̂

q
t

A− δ − qt−1
ξ
− (qt−1)2

2ξ

 dZt

Plugging this into the interest rate formula (14):

rt = ρ+ ζ

it − δ + θIt −
1
ξ
q2
t (µ̂

q
t + 1

2
σ̂qt

2
+ σσ̂qt )

A− δ − qt−1
ξ
− (qt−1)2

2ξ

− ζ(ζ + 1)

2

σ − 1
ξ
q2
t σ̂

q
t

A− δ − qt−1
ξ
− (qt−1)2

2ξ

2

(47)

Intermediary Optimality. From equation (41), it is the case that αkt σ̂
k
t +αht σ̂

h
t =

σ̂et + σ. Using this in equation (20) gives:

π̂ht

σ̂ht
=
π̂kt

σ̂kt
= γ(σ̂et + σ).

Recall σ̂kt = σ + σ̂qt and σ̂ht = σ + σ̂pt . Combining the banker’s optimality condition

with the perceived return on capital:

γ(σ̂et + σ) =
π̂kt

σ̂kt

=

(
νA
qt

+ µ̂qt − δ + θIt + σσ̂qt

)
− rt

σ + σ̂qt

=

(
νA
qt

+ µ̂qt − δ + θIt + σ qe(et,It)
qt

etσ̂et

)
− rt

σ + qe(et,It)
qt

etσ̂et
, using equation (44)

γ(σ̂et + σ)

(
σ +

qe(et, It)
qt

etσ̂et

)
=

(
νA

qt
+ µ̂qt − δ + θIt + σ

qe(et, It)
qt

etσ̂et

)
− rt (48)
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Proceeding similarly for housing returns:

γ(σ̂et + σ) =
π̂ht

σ̂ht

=
µ̂pt + it − δ + θIt + σσ̂pt + Dt

ptKt
− rt

σ + σ̂pt

=
µ̂pt + it − δ + θIt + σ pe(et,It)

pt
etσ̂et + Dt

ptKt
− rt

σ + pe(et,It)
pt

etσ̂et
, using (46)

γ(σ̂et + σ)

(
σ +

pe(et, It)
pt

etσ̂et

)
= µ̂pt + it − δ + θIt + σ

pe(et, It)
pt

etσ̂et +
Dt

ptKt

− rt

(49)

Pinning down σ̂et . Equations (48) and (49) express µ̂qt and µ̂pt in terms of prices,

state variables, and σ̂et . The final step is to pin down σ̂et :

σ̂et = αht σ̂
h
t + αkt σ̂

k
t − σ

= αht (σ + σ̂pt ) + αkt (σ + σ̂qt )− σ

=
Kt

Et

[
pt(σ + σ̂pt ) + qt(σ + σ̂qt )

]
− σ, using (22) and (23)

=
Kt

Et

[
pt(σ +

pe(et, It)
pt

etσ̂et ) + qt(σ +
qe(et, It)

qt
etσ̂et )

]
− σ

=
Kt

Et

[
(pt + qt −

Et
Kt

)σ + (pe(et, It) + qe(et, It))etσ̂et
]

etσ̂et

(
1

et
− Kt

Et
(pe(et, It) + qe(et, It))

)
=
Kt

Et
(pt + qt −

Et
Kt

)σ

etσ̂et =
Kt

Et

(pt + qt − Et
Kt

)σ
1
et
− Kt

Et
pe(et, It)− Kt

Et
qe(et, It)

etσ̂et =
(pt + qt − Et

Kt
)σ

Et
Kt

1
et
− pe(et, It)− qe(et, It)

. (50)

Recall that Et = min{Et, (1 − λ)(qtKt + ptKt)}, or equivalently Et
Kt

= min{et, (1 −

λ)(qt + pt)}. Thus, equation (50) expresses σ̂et in terms of the two price functions and

the two state variables et and It.
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Solving for Prices. I can now solve for price functions q(e, I) and p(e, I). Specif-

ically, they are given by the following system of second-order PDEs:

qtµ̂
q
t = qe(et, It)etµ̂et − qI(et, It)κIt +

1

2
qee(et, It)(etσ̂et )2

ptµ̂
p
t = pe(et, It)etµ̂et − pI(et, It)κIt +

1

2
pee(et, It)(etσ̂et )2

All terms in this system of second-order PDEs have now been expressed in terms of

state variables et and It, exogenous parameters, and price functions. Specifically, r,

µ̂qt , and µ̂pt are given by equations (47), (48) and (49). µ̂et is given by (41), noting that

d̂R̃t is itself a function of prices r, µ̂qt , µ̂
p
t , σ̂

q
t and σ̂pt . Equations (44) and (46) give

σ̂qt and σ̂pt in terms of the price functions and σ̂et . Equation (50) closes the loop by

solving for σ̂et in terms of the two price functions.

This system of PDEs is solved numerically. Details are in Appendix D.

C.2 True Laws of Motion

As with the perceived laws of motion, I begin by postulating that qt and pt truly

evolve according to:

dqt
qt

= µqtdt+ σqt dZt (51)

dpt
pt

= µptdt+ σpt dZt. (52)

The true evolution of the three state variables is:

dKt

Kt

= (it − δ)dt+ σdZt, (53)

det
et

= (rt + αht π
h
t + αkt π

k
t )dt− (it − δ)dt+ (σ2 − σ(αht σ

h
t + αkt σ

k
t ))dt

− ηdt+ dψt + (αht σ
h
t + αkt σ

k
t − σ)dZt (54)

dIt = −κItdt+ σdZt (55)
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As above, equation (54) can be derived using Itô’s lemma to expand et = Et
Kt

under

the true processes dEt
Et = dR̃t − ηdt+ dψt and dKt

Kt
= (it − δ)dt+ σdZt. For simplicity,

I rewrite the true evolution of et as:

det
et

= µetdt+ σetdZt.

Price Processes. The methods developed above show how to solve for price func-

tions q(e, I) and p(e, I). Applying Itô’s lemma to these price functions using the true

laws of motion for the two state variables gives:

µqt =
qe(et, It)

qt
etµ

e
t −

qI(et, It)
qt

κIt +
qeI(et, It)

qt
σ(etσ

e
t ) +

1

2

qee(et, It)
qt

(etσ
e
t )

2 +
1

2

qII(et, It)
qt

σ2

(56)

σqt =
qe(et, It)

qt
etσ

e
t +

qI(et, It)
qt

σ (57)

µpt =
pe(et, It)

pt
etµ

e
t −

pI(et, It)
pt

κIt +
peI(et, It)

pt
σ(etσ

e
t ) +

1

2

pee(et, It)
pt

(etσ
e
t )

2 +
1

2

pII(et, It)
pt

σ2

(58)

σpt =
pe(et, It)

pt
etσ

e
t +

pI(et, It)
pt

σ (59)

Market Clearing and Returns. Following similar steps as above, the true housing

return process is given by:

dRh
t =

dPt +Dtdt

Pt

=
d(ptKt)

ptKt

+
Dt

ptKt

dt

=

[
µpt + it − δ + σσpt +

φ

1− φ
A− it − ξ

2
(it − δ)2

pt

]
dt+ (σ + σpt )dZt

= (πht + rt)dt+ σht dZt.
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The true process for capital returns is given by:

dRk
t =

(
νA

qt
+ µqt − δ + σσqt

)
dt+ (σ + σqt )dZt

= (πkt + rt)dt+ σkt dZt

Pinning down σet . Solving for the true volatility of et:

σet = αht σ
h
t + αkt σ

k
t − σ

= αht (σ + σpt ) + αkt (σ + σqt )− σ

=
Kt

Et
[pt(σ + σpt ) + qt(σ + σqt )]− σ, using (22) and (23)

=
Kt

Et

[
pt(σ +

pe(et, It)
pt

etσ
e
t +

pI(et, It)
pt

σ) + qt(σ +
qe(et, It)

qt
etσ

e
t +

qI(et, It)
qt

σ)

]
− σ

=
Kt

Et

[
(pt + qt + pI(et, It) + qI(et, It)−

Et
Kt

)σ + (pe(et, It) + qe(et, It))etσet
]

etσ
e
t

[
1

et
−Kt

Et
pe(et, It)−

Kt

Et
qe(et, It)

]
=
Kt

Et
(pt + qt + pI(et, It) + qI(et, It)−

Et
Kt

)σ

etσ
e
t =

Kt

Et

(pt + qt + pI(et, It) + qI(et, It)− Et
Kt

)σ
1
et
− Kt

Et
pe(et, It)− Kt

Et
qe(et, It)

etσ
e
t =

(pt + qt + pI(et, It) + qI(et, It)− Et
Kt

)σ
Et
Kt

1
et
− pe(et, It)− qe(et, It)

. (60)

C.3 Verifying “Equity Member” Portfolio Choice

The main text assumes that the “equity member” will invest the maximal amount

into the equity of the financial sector. This assumption must be verified ex-post given

the resulting equilibrium.

The household maximizes the value function in equation (9), where Ct = (cyt )
1−φ(cht )

φ =

(cyt )
1−φ, since ch = 1 in equilibrium. From (9), the household accrues utility flow

(cyt )(1−φ)(1−γh)

1−γh
. Multiplying the utility function by 1

1−φ (a positive affine transforma-

tion) shows that in equilibrium the household can be represented with power utility

preferences, using relative risk aversion coefficient ζ = 1 − (1 − φ)(1 − γh). Market
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clearing gives cyt = AKt − Φ(it, Kt) =
(
A− δ − qt−1

ξ
− (qt−1)2

2ξ

)
Kt.

Let a be an arbitrary asset with perceived mean return µ̂a and volatility σ̂a. In

equilibrium, CRRA utility implies:

µ̂a − rt
σ̂a

= ζσ̂cyt ,

where σ̂cyt is the perceived volatility of
dcyt
cyt

(a formula is provided in Appendix C).

Thus, the household demands a perceived Sharpe ratio of ζσ̂cyt . Note that this equa-

tion need not hold with equality when there are portfolio restrictions placed on the

household.

An investment in intermediary equity earns a perceived risk premium of αkπ̂k +

αhπ̂h, with a perceived risk of αkσ̂k + αhσ̂h. From equation (20), intermediaries

demand a risk premium of:

π̂kt = γ(αkt σ̂
k
t + αht σ̂

h
t )σ̂kt

π̂ht = γ(αkt σ̂
k
t + αht σ̂

h
t )σ̂ht

For the portfolio as a whole, this implies:

αkπ̂k + αhπ̂h = γ(αkt σ̂
k
t + αht σ̂

h
t )2.

The equity member will invest all wealth in intermediary equity whenever the

perceived Sharpe ratio on this investment is weakly greater than ζσ̂cyt :

γ(αkt σ̂
k
t + αht σ̂

h
t )2

αkt σ̂
k
t + αht σ̂

h
t

> ζσ̂cyt , or equivalently

γ(αkt σ̂
k
t + αht σ̂

h
t ) > ζσ̂cyt .

This condition is verified numerically over the entire state space.
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D Numerical Methods

Before outlining the numerical methods, additional notation is required. The state

variables {e, I} can be represented as a two-dimensional Itô process, denoted S.

Agents perceive that S evolves according to:

d̂St =

 d̂et
dISt

 =

 etµ̂et
−κIt

 dt+

etσ̂et
0

 dZt, (61)

where Zt is a one-dimensional Brownian motion. The true evolution of S is:

dSt =

det
dIt

 =

 etµet
−κIt

 dt+

etσet
σ

 dZt. (62)

The evolution of d̂St and dSt is subject to a reflecting barrier in the e dimension at e.

To simplify notation, let A denote the infinitesimal generator of St. Let Â denote

the infinitesimal generator of Ŝt.

D.1 Solving for Price Functions

As shown in Appendix C, price functions q(e, I) and p(e, I) compose a system of

second-order PDEs:

qtµ̂
q
t = qe(et, It)etµ̂et − qI(et, It)κIt +

1

2
qee(et, It)(etσ̂et )2 (63)

= Âqt

ptµ̂
p
t = pe(et, It)etµ̂et − pI(et, It)κIt +

1

2
pee(et, It)(etσ̂et )2 (64)

= Âpt

In order to solve for these price functions I employ finite-difference methods. The

numerical methods appendix of Achdou et al. (2017) provides an excellent reference.

I assume knowledge of these methods here.
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Algorithm. I solve for price functions using two nested while-loops. In the outer

loop, I iterate over lower boundary e. In the inner loop, I take e as given and iterate

over price functions p and q until convergence. Details for the inner loop are provided

below. The outer loop continues to iterate over e until the resulting Sharpe ratio at

e = e, I = 0 is close to the calibration target in Table 1.

I create a discretized grid over state variables e and I.52 Let subscript i denote

the gridpoints in the e-dimension, and let subscript j denote the gridpoints in the

I-dimension. The algorithm is as follows. Let n = 1, 2, ... track the current loop

iteration.

1. Guess price functions q0
i,j and p0

i,j at each grid point {i, j}.

2. Solve for µ̂qi,j, µ̂
p
i,j, µ̂

e
i,j, and σ̂ei,j using the previous iteration’s price functions of

qn−1
i,j and pn−1

i,j (or the initial guess). To do so, use equation (50) to solve for

σ̂ei,j, (48) to solve for µ̂qi,j, (49) to solve for µ̂pi,j, and (41) to solve for µ̂ei,j. Next,

construct the discretized infinitesimal generator, denoted Ân−1, using µ̂ei,j and

σ̂ei,j .53 Note that Â features a reflecting barrier at e.54

3. Use an implicit scheme to solve for price functions qni,j and pni,j:

qni,j − qn−1
i,j

∆
+µ̂qi,j q

n
i,j = Ân−1qni,j, which implies

qni,j =

(
1

∆
I + diag(µ̂qi,j)− Ân−1

)−1

(
1

∆
qn−1
i,j )

52The grid over e is non-uniform.
53“n−1” notation is used because Â is constructed using the price functions from iteration n−1.
54Implementation details are in Achdou et al. (2017).
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Similarly,55

pni,j =

(
1

∆
I + diag(µ̂pi,j)− Ân−1

)−1

(
1

∆
pn−1
i,j )

These equations define qni,j and pni,j as functions of information from iteration

n−1. Parameter ∆ is the step size, and governs how quickly the price functions

are updated. Convergence is not guaranteed, so ∆ should not be set too large.

4. If price functions have converged within a pre-specified tolerance, stop. If not,

go to step 2 and repeat.

Once the algorithm has converged, I use the final values of qi,j and pi,j to solve

for the realized evolution of state variables et and It. The realized evolution of price

functions pt and qt can also be derived (similar to step 2).

D.2 Kolmogorov Equations

Kolmogorov Forward Equation. Readers should refer to the numerical appendix

of Achdou et al. (2017) for details. Let gt(e, I) denote a probability density function

over e and I. The Kolmogorov forward equation (KF) gives ∂
∂t
gt. A stationary

distribution is a distribution ḡ that solves ∂
∂t
ḡ = 0.

A benefit of finite-difference methods is that the KF equation comes “for free.” Let

gti,j denote a discretized distribution over e and I at time t. The perceived evolution

of gti,j is given by:

gt+∆t
i,j − gti,j

∆t
= (Â)Tgt+∆t

i,j =⇒ gt+∆t =
(
I−∆t(Â)T

)−1

gti,j.

55Footnote 13 of the numerical appendix of Achdou et al. (2017) shows that a reflecting barrier
imposes that the derivative at the reflecting barrier is 0. This is correct for q, as qe(e, I) = 0.

However, this is not correct for p, since pe(e, I) = p(e,I)β
1+eβ (see Appendix B.4 for details). In the

numerical solution for p, discretized matrix Â is amended to ensure that pn1,j = pn2,j −
pn−1
1,j β

1+eβ ×∆e,

where ∆e denotes the grid increment in the e-dimension.
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The true evolution of gti,j is given by:

gt+∆t
i,j − gti,j

∆t
= (A)Tgt+∆t

i,j =⇒ gt+∆t =
(
I−∆t(A)T

)−1
gti,j.

Kolmogorov Backward Equation. The Kolmogorov backward equation (KB) is

used to derive the hitting probabilities in Figure 4.

Let ēcrisis(I) denote the upper boundary of the crisis region for sentiment level I.

For s ∈ [0, T ], let f(es, Is, s) denote the true probability that the economy currently

at {es, Is} enters the crisis region between time s and T . Similarly, let f̂(es, Is, s)

denote the perceived probability. The goal is to solve for f(e, I, 0) and f̂(e, I, 0).

Conditional probability function f(e, I, s) is the solution to:

0 =
∂f(e, I, s)

∂s
+Af(e, I, s), subject to boundary conditions

(i) f(e, I, s) = 1 if e ≤ ēcrisis(I), and

(ii) f(e, I, T ) = 0 if e > ēcrisis(I)

This result is stated without proof. Informally, the differential equation 0 = ∂f(e,I,s)
∂s

+

Af(e, I, s) arises from applying Itô’s lemma to f(e, I, s) and setting the drift of the

resulting expression equal to 0. The drift is set to 0 in the non-crisis region due to

the law of iterated expectations: f(es, Is, s) = Es[f(es+dt, Is+dt, s+ dt)] and therefore

Es[df(es, Is, s)] = 0. The first boundary condition sets f equal to 1 whenever the

crisis region is hit. The second boundary condition is a terminal condition which

assigns f(e, I, T ) = 0 if the crisis region is not hit at terminal period T . f is solved

backwards from this terminal condition.
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Using the perceived generator Â, function f̂(e, I, s) is the solution to:

0 =
∂f̂(e, I, s)

∂s
+ Âf̂(e, I, s), subject to boundary conditions

(i) f̂(e, I, s) = 1 if e ≤ ēcrisis(I), and

(ii) f̂(e, I, T ) = 0 if e > ēcrisis(I)

Numerically, the discretized versions of both A and Â were already generated

when solving for price functions. Finite-difference methods can then be used to solve

backward for f and f̂ starting from the terminal condition.

D.3 Feynman-Kac Equation

The Feynman-Kac equation is used to calculate the expected investment rate profile

in Appendix Figure 9. A straightforward application of the formula implies that the

conditional expectation:

u(e, I, 0) = E [i(eτ , Iτ ) | e0 = e, I0 = I]

satisfies a partial differential equation:

0 =
∂u(e, I, s)

∂s
+Au(e, I, s),

subject to the terminal condition that u(e, I, τ) = i(e, I).

Numerically, the discretized version of A was already generated when solving for

price functions. Finite-difference methods can then be used to solve backward for

u(e, I, 0) starting from the terminal condition.
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E Diagnostic Expectations: Additional Details

E.1 Expectations of an AR(1): Comparison to Bordalo et al. (2018a)

Here I show how the discrete-time analogue of this paper’s formulation of diagnostic

expectations relates to the model of Bordalo et al. (2018a) when applied to exogenous

AR(1) processes. Following the notation of BGS, let ωt be an AR(1) process ωt =

bωt−1 + εt, where εt ∼ N (0, σ2).

Discrete-Time Setup. In discrete time, information measure It is given by:

It =
∞∑
j=0

Kjεt−j,

where K is the discount factor governing the speed of information decay.56 The

background context is:

G−t = ωt − It.

As the agent simulates the economy forward from period t:

ISt+τ =
∞∑
j=0

Kj+τεt−j.

Analogous to the continuous-time formulation, for any future value ω′t+τ the simulated

future background context is:

G′−t+τ = ω′t+τ − ISt+τ .
56If the discrete-time model is written with a period frequency of ∆ years, then K = e−κ∆.
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Expectations of ωt+τ . In this discrete-time framework, I start by expressing ωt in

changes:

ωt − ωt−1 = (b− 1)ωt−1 + εt.

One can think of the “drift” of ωt as (b − 1)ωt. For any It, the diagnostic agent

perceives that

hθ(ωt+1|ωt) = N (ωt + (b− 1)ωt + θ(ωt −G−t ), σ2)

= N (bωt + θIt, σ2)

= N (bωt + θ

(
∞∑
j=0

Kjεt−j

)
, σ2)

Simulating forward, for any ω′t+τ the perceived evolution from t+ τ to t+ τ + 1 is:

hθ(ωt+τ+1|ω′t+τ ) = N (ω′t+τ + (b− 1)ω′t+τ + θ(ω′t+τ −G′−t+τ ), σ2)

= N (bω′t+τ + θISt+τ , σ2)

= N (bω′t+τ + θ

(
∞∑
j=0

Kj+τεt−j

)
, σ2).
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Generally, in this AR(1) context the diagnostic agent will have the following percep-

tions about the distribution of ωt+τ :

hθ(ωt+1|ωt) ∼ N
(
bωt + θIt, σ2

)
hθ(ωt+2|ωt) ∼ N

(
b2ωt + bθIt +KθIt, σ2 + b2σ2

)
...

hθ(ωt+τ |ωt) ∼ N

(
bτωt + θIt

(
τ−1∑
i=0

biKτ−1−i

)
, σ2

τ−1∑
i=0

b2i

)
, or equivalently

hθ(ωt+τ |ωt) ∼ N

(
bτωt + θIt

(
bτ −Kτ

b−K

)
, σ2

τ−1∑
i=0

b2i

)

BGS Equivalence. To reproduce the AR(1) framework of BGS, take K → 0. In

the limit, G−t = ωt − εt = bωt−1. In other words, background context G−t does not

incorporate the most recent shock, but fully incorporates all shocks of further lags.

Looking forward, G′−t+τ = ω′t+τ for all τ ≥ 1.

Consider this paper’s iterative framework for defining expectations. From t to

t + 1, expectations are biased by θ(ωt − G−t ) = θεt. While there is no further bias

from t + 1 onward in the perceived drift of ωt+τ , the perceived level of ωt+τ will still

be biased.

In more detail, at time t the agent believes that the distribution at time t + 1

is N (bωt + θεt, σ
2). Because there is no additional bias in the perceived drift, the

distribution at time t+ 2 is N (b (bωt + θεt) , σ
2 + b2σ2), the distribution at time t+ 3

is N (b2 (bωt + θεt) , σ
2 + b2σ2 + b4σ2), etc. Using the formula above as K → 0, the

distribution at time t+ τ is N (bτωt + bτ−1θεt, σ
2
∑τ−1

i=0 b
2i). This is almost identical

to BGS, with the one difference being that parameter θ here is their parameter θ/b.

Moving from Discrete to Continuous Time. To pass from discrete to continu-

ous time, one needs to set K > 0. When K → 0 only the most recent shock matters.

But, the concept of “only the most recent shock” varies with the length of the period.
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This is especially important when passing to continuous time, where the most recent

shock is an instantaneous Brownian increment. Thus, in this paper I instead adopt a

sentiment function It that is based on multiple lags of past shocks (i.e., K > 0).

E.2 Extensions of the Baseline Model

Objective versus Subjective Shocks. Information measure It ≡
∫ t

0
e−κ(t−s)σdZs

is based on objective shocks, σdZt. This choice is consistent with BGS, who argue that

overreaction to objective news is more consistent with the psychology of diagnostic

expectations.

However, it also tractable to define It based on subjective capital quality shocks.

An agent with a bias of θIt will perceive a subjective shock at time t of σd̂Zt =

−θItdt+ σdZt. In this case, one can define the new information measure as

It =

∫ t

0

e−κ(t−s)σd̂Zs.

This measure of subjective new information evolves according to:

dIt = −κItdt+ σd̂Zt

= −(κ+ θ)Itdt+ σdZt. (65)

Note that the baseline measure of information in equation (3) evolves according to

dIt = −κItdt+ σdZt. Comparing this to equation (65), It decays more quickly when

defined in terms of subjective shocks. This is because an overoptimistic agent will

interpret incoming shocks with a negative bias (and vice-versa for an overpessimistic

agent), leading to a faster unwinding of sentiment.

Multiple Frequencies of Extrapolation. The main text assumes that sentiment

evolves at a single frequency, with shocks fading from It at rate κ. However, it is likely

more psychologically realistic to have sentiment operate over multiple frequencies.

The empirical literature on extrapolative expectations has documented extrapolation

98



over a variety of horizons. At a low frequency, Malmendier and Nagel (2011) find that

long-term risk attitudes are shaped by lifetime macroeconomic experiences. Alter-

natively, Greenwood and Shleifer (2014) find that stock market expectations depend

strongly on returns experienced in the past quarter.

The expectations model can be modified to capture multiple frequencies of extrap-

olation. For illustration, consider an agent whose sentiment is a function of a slow-

moving component and a fast-moving component. The agent has a low-frequency

measure of new information:

ILt =

∫ t

0

e−κ
L(t−s)σdZs,

and a high-frequency measure of new information:

IHt =

∫ t

0

e−κ
H(t−s)σdZs,

with κL < κH . The overall measure of new information can be defined as:

It = θLILt + θHIHt .

Parameters θL and θH determine the relative strength of low-frequency and high-

frequency sentiment.

The downside of including multiple sentiment frequencies is that each frequency

requires its own state variable. The main text uses a single frequency for parsimony.
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E.3 Properties of Sentiment It

Sentiment parameter It is an Ornstein-Uhlenbeck (OU) process. This section sketches

some useful mathematical properties of OU processes. A textbook treatment is pro-

vided by Karatzas and Shreve (1998).

Conditional and Unconditional Distributions. Repeating equation (3), “re-

cent information” parameter It is defined as:

It =

∫ t

0

e−κ(t−s)σdZs.

The conditional distribution of It+τ given It is characterized as follows:

It+τ =

∫ t+τ

0

e−κ(t+τ−s)σdZs

= e−κτIt +

∫ t+τ

t

e−κ(t+τ−s)σdZs.

Since {Zt} is a standard Brownian motion with independent Gaussian increments,

It+τ |It is itself Gaussian. The conditional mean of It+τ is e−κτIt. By Itô isometry,

the conditional variance of It+τ is σ2

2κ
(1− e−2κτ ).

The unconditional distribution of the OU process is obtained by taking τ → ∞.

The unconditional distribution of I is Gaussian with mean 0 and variance σ2

2κ
.

Distribution of First Hitting Times. The first hitting time of a stochastic pro-

cess is defined as the time at which a stochastic process first crosses some threshold.

The distribution of first hitting times for an OU process can be characterized analyt-

ically in the special case where the threshold is the OU process’ mean. So, from any

initial level of sentiment It, the time t+ τ at which the OU process first returns to 0

has a known distribution, with a density given by:

h(τ |It) =
|It|
σ
√

2π

(
κ

sinh(κτ)

) 3
2

exp

(
− κI2

t e
−κτ

2σ2 sinh(κτ)
+
κτ

2

)
. (66)
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This is stated without proof, and details are provided in Alili et al. (2005).

Importance of κ for Sentiment Persistence. Let ISDt = It(
σ√
2κ

) denote sentiment

normalized by its unconditional standard deviation. Upon normalizing It by its

standard deviation, volatility parameter σ drops out of the equation for both the

conditional distribution of ISDt+τ and the distribution of first hitting times. These

distributions become a function of only the persistence parameter κ. This shows that

κ is the critical parameter governing the persistence of sentiment.

In detail, the conditional distribution of ISDt+τ given ISDt is Gaussian with mean

e−κτISDt and variance (1− e−2κτ ). Similarly, equation (66) can be rewritten as:

h(τ |ISDt ) =
κ|ISDt |
2
√
π

(
1

sinh(κτ)

) 3
2

exp

(
−(ISDt )2e−κτ

4 sinh(κτ)
+
κτ

2

)
. (67)

Equation (67) shows that the distribution of first hitting times for ISDt depends only

on the initial level of ISDt and κ, but is independent of σ.
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Ornstein-Uhlenbeck Figures: Baseline Calibration.

Figure 11: Conditional CDF. CDF of ISDt+τ |ISDt ∈ {0SD,±1.5SD} for τ ∈ {1, 5}.

Figure 12: 1st hitting times. Hitting time CDF for It ∈ {±1SD,±2SD,±3SD}.
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