
Appendix

Appendix Contents. Appendix A presents the continuous-time specification of di-

agnostic expectations used in this paper. Appendix B provides model details, proofs,

and additional results. Appendix C describes the equilibrium derivation, and Ap-

pendix D outlines the numerical methods used to solve the model. Appendix E gives

additional details and extensions to this paper’s model of diagnostic expectations,

including a discrete-time formulation.

A Diagnostic Expectations Appendix

A.1 Diagnostic Expectations in Continuous Time

This section provides a microfoundation for the reduced-form expectations process

outlined in Section 2.2. A goal for this paper’s model of diagnostic expectations

is to be a portable extension of existing models [“PEEMish”](Rabin, 2013). The

expectations model is designed such that rational models can be augmented with

diagnostic expectations using a single additional state variable.

Diagnostic expectations are applied to the log of the capital stock. Log capital

evolves according to dkt = (it− δ− σ2

2
)dt+σdZt. Diagnostic expectations are applied

to log capital for two reasons. Psychologically, it is consistent with Weber’s Law that

shocks are perceived as percentage changes rather than level changes. Mathematically,

working with log capital ensures that It is stationary because the diffusion coefficient

for log capital is constant.

Step 1: Defining the Background Context. Following the terminology of Bor-

dalo et al. (2018a, henceforth BGS), the first step is to define the “background con-

text” for capital. The background context is a counterfactual level of the log capital

stock. It forms the dynamic “reference class” used to characterize representativeness.

The background context reflects the absence of recent information. Equation (3)

introduces It ≡
∫ t

0
e−κ(t−s)σdZs as a measure of recent information. This implies the

following definition of the background context.
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Definition 3. Let G−t denote the background context of log capital at time t. G−t is

defined as follows:

G−t = kt − It.

Step 2: Modeling Expectations Given the Background Context. The next

step is to specify how agents form expectations. Because time is continuous, expec-

tations must be specified for future periods t + τ , for all τ > 0. The current period

is t. Let h(kt+τ |kt, et, It) denote the true distribution of log capital at time t + τ

conditional on state variables kt, et, and It. Let h(kt+τ |G−t , et, It) denote the true

distribution of log capital at time t + τ conditional on current state variables et and

It, but now using counterfactual log capital level G−t .

Let k′t+τ denote one possible realization of log capital at time t + τ . Following

BGS and Gennaioli and Shleifer (2010), the “representativeness” of future state k′t+τ

is given by the following likelihood ratio:

h(k′t+τ |kt, et, It)
h(k′t+τ |G−t , et, It)

. (25)

The most representative states are the ones exhibiting the largest increase in likelihood

based on recent information.

One difficulty with equation (25) is that little is known about distributions h(kt+τ |kt, et, It)

and h(kt+τ |G−t , et, It) because kt is an endogenous process.33 This difficulty is over-

come by using an instantaneous prediction horizon of τ = dt. Because kt is an

Itô Process it is instantaneously Gaussian. Taking τ → dt, h(k′t+τ |kt, et, It) =

N
(
kt +

[
i(et, It)− δ − σ2

2

]
dt, σ2dt

)
and h(k′t+τ |G−t , et, It) = N

(
G−t +

[
i(et, It)− δ − σ2

2

]
dt, σ2dt

)
.

I now define diagnostic expectations over prediction horizon τ = dt. The prediction

horizon will be extended iteratively in Step 3.

Diagnostic expectations overweight states that are representative of recent news.

33This is in contrast to BGS, where expectations are only specified for exogenous AR(N) processes.
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This is formalized by assuming that agents evaluate future levels of log capital ac-

cording to the distorted density:

hθt (k
′
t+dt|kt, et, It) = h(k′t+dt|kt, et, It) ·

[
h(k′t+dt|kt, et, It)
h(k′t+dt|G

−
t , et, It)

]θdt
1

Z
. (26)

Equation (26) modifies a similar formula in BGS. The key adjustment for continuous

time is that equation (26) defines expectations at t + dt, while the discrete-time

formulation of BGS defines expectations at t+1. In equation (26), the true conditional

probability h(k′t+dt|kt, et, It) is distorted by the representativeness term in brackets.

The extent to which representativeness distorts expectations is governed by pa-

rameter θ. θ is scaled by the prediction horizon dt because representativeness should

impose only an infinitesimal distortion on the perceived distribution of capital over

an infinitesimally short horizon. Otherwise, the agent would expect that kt jumps

discontinuously from t to t+ dt.

Using equation (26), the following proposition characterizes the perceived evolu-

tion of capital.

Proposition 3. A diagnostic agent perceives that capital evolves according to

d̂Kt

Kt

= (it − δ)dt+ θItdt+ σdZt. (27)

Proof. See Appendix B.5.

Judging by representativeness biases the perceived growth rate of capital by θIt.

Step 3: The Evolution of Beliefs. Step 1 defines the background context G−t

and Step 2 specifies diagnostic expectations of d̂Kt. This step models the dynam-

ics of expectations over longer horizons. Because capital is endogenous, only the

instantaneous distribution of kt is known. Future expectations are therefore defined

iteratively. In particular, repeated applications of the instantaneous Gaussian proper-

ties of kt can be used to define expectations of the economy at t+dt, then t+2dt, then
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t + 3dt, etc. This iterative procedure imposes that the law of iterated expectations

holds with respect to distorted expectations, consistent with the BGS model.

Diagnostic agents form expectations by simulating the economy forward state-

by-state. As the diagnostic agent simulates the economy forward from time t, the

internal representativeness parameter at simulated future time t+ τ is given by:

ISt+τ ≡
∫ t

0

e−κ(t+τ−s)σdZs, or equivalently (28)

= e−κτIt.

The superscript S, for simulated, is used to signify that ISt+τ is the agent’s unconscious

internal representativeness state as the agent forms expectations of the economy in

period t + τ . Information that was representative at time t decays at rate κ as the

perceived economy is simulated forward in time.

Let k′t+τ and e′t+τ denote one possible realization of log capital and capital capacity

at time t + τ . Using equation (28), the simulated background context at t + τ can

now be defined in an analogous fashion to Definition 3.

Definition 4. Let k′t+τ denote some simulated level of log capital at future time t+ τ .

Given k′t+τ , the simulated background context at time t+ τ is defined as follows:

G′−t+τ = k′t+τ − ISt+τ .

As above, the simulated future background context reflects the absence of recent

information.

Again proceeding in an analogous fashion to Step 2, at time t + τ the agent

iteratively forms expectations about t+ τ + dt according to:

hθt (k
′
t+τ+dt|k′t+τ , e′t+τ , ISt+τ ) = h(k′t+τ+dt|k′t+τ , e′t+τ , ISt+τ ) ·

[
h(k′t+τ+dt|k′t+τ , e′t+τ , ISt+τ )
h(k′t+τ+dt|G

′−
t+τ , e

′
t+τ , ISt+τ )

]θdt
1

Z
.

(29)
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It follows that the diagnostic agent perceives that capital evolves according to:

d̂K ′t+τ
K ′t+τ

= (it+τ − δ)dt+ θISt+τdt+ σdZt+τ . (30)

Future expectations in equation (30) should be contrasted with those of a rational

agent who correctly believes that capital evolves according to
dK′t+τ
K′t+τ

= (it+τ − δ)dt+

σdZt+τ . Since ISt+τ = e−κτIt, equation (30) specifies that the effect of diagnostic

expectations on the perceived growth rate of capital fades at rate κ as the agent

simulates the evolution of the economy further into the future (τ →∞). Diagnostic

expectations capture the overweighting of states that are representative of current

economic conditions. As the agent looks further temporally ahead, information that

is diagnostic of economic conditions at time t steadily dims.

It is worth noting that equation (30) only stipulates that the diagnostic agent’s

perception of kt+τ ’s drift converges to rationality as τ → ∞. Since the drift has a

cumulative effect on the level of kt+τ , diagnostic expectations of the level of kt+τ can

diverge increasingly from rational expectations as τ increases (e.g., Figure 1).

Summary. This completes the microfoundation of the reduced-form beliefs process

specified in Section 2.2. Extensions are given in Appendix E.2. Appendix E.1 dis-

cusses how the discrete-time analogue of this paper’s expectations model relates to

the original BGS model.

To summarize, expectations of the endogenous capital process are formed iter-

atively in order to make repeated use of the instantaneous Gaussian properties of

dkt+τ . Step 2 defines how It affects the expected evolution of the economy from t to

t+ dt. Step 3 then defines how ISt evolves as expectations are simulated forward. In

detail, Step 2 takes kt, et, It as given and provides a perceived mapping into k̂t+dt and

êt+dt given shock dZt. The hat-notation denotes that agents may not properly un-

derstand the evolution of these state variables. Step 3 takes It as given and provides

ISt+dt. Then, Step 2 is applied again (now taking k̂t+dt, êt+dt, and ISt+dt as given) to
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calculate k̂t+2dt and êt+2dt given shocks dZt and dZt+dt. Applying Step 3 again gives

ISt+2dt. This process is repeated to generate expectations at time t+ τ , for all τ > 0.

Diagnostic agents make two mistakes when θ > 0. First, they hold incorrect beliefs

about the drift of capital. Second, they have incorrect expectations about their own

future expectations because they do not understand that they are diagnostic. A

comparison of equations (3) and (28) shows that diagnostic agents do not perceive

that future capital quality shocks will alter the bias of their future expectations.34

I end by discussing why this model of diagnostic expectations can serve as a

portable extension of existing rational models. First, equations (27) and (30) illus-

trate that state variable It alone is sufficient to characterize the state of expectations

relative to rationality. Second, the evolution of It is self-contained. It can be ex-

pressed in differential form as dIt = −κItdt+ σdZt. Thus, state variable It plus the

shock σdZt are sufficient to calculate dIt. It is these two attributes that make this

formulation of diagnostic expectations portable: It alone characterizes expectations

relative to rationality, and It is sufficient for its own evolution.

A.2 Diagnostic Expectations Calibration and Application

θ Calibration. The baseline calibration sets θ such that one standard deviation in

I corresponds to an output growth bias of 0.75 percentage points. The magnitude of

this bias aligns with the estimates in Bordalo et al. (2018a, henceforth BGS), Bordalo

et al. (2018b, BGMS), Bordalo et al. (2019b, BGLS), Bordalo et al. (2019a, BGST),

and d’Arienzo (2020).

Using data from 1968Q4 through 2016Q4, BGMS assume that the realized annual

growth rate of real GDP follows an AR(1) process: xt = ρxt−1 + ut. BGMS estimate

ρ = 0.87 and σu = 1.10. Let θD denote the representativeness parameter for the

discrete-time specification developed in BGS. The basic model of diagnostic expec-

tations applied to an AR(1) process predicts that in period t, the forecast of xt+1 is

34Put differently, the realized future information parameter It+τ is a random variable at time t
whereas ISt+τ is deterministic at time t.
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biased by θDρut (see BGS). Using the BGMS estimates of ρ and σu, a one standard

deviation output growth bias of 0.75 percentage points corresponds to θD = 0.78.35

This is consistent with the estimates of θD provided in BGS (θD = 0.91), BGMS

(estimates vary, with a single collective estimate of θD = 0.50), BGLS (θD = 0.90),

BGST (θD = 1.08), and d’Arienzo (2020) (two estimates: θD = 0.47 and θD = 0.70).

Calculating Sentiment with Expectations Data. This section details how to

construct an empirical measure of sentiment given a calibration of κ and θ. This

construction is used to calibrate κ. It is also used to calculate the empirical measure

of sentiment shown in Figure 9, and to calculate the SPF-implied shocks used in

Figure 10.

Sentiment is constructed using the median forecast of real GDP growth from the

Survey of Professional Forecasters (SPF).36 Let FESPF
t denote the SPF forecast error

in quarter t. I define the forecast error in quarter t as the realized GDP growth rate in

quarter t minus the median quarter t−2 forecast of the GDP growth rate in quarter t.

The forecast error is defined with a two-quarter lagged prediction to account for the

slow incorporation of shocks into GDP statistics (e.g., Lehman declared bankruptcy

in 2008Q3, but this was not reflected in U.S. GDP until 2008Q4).

Proposition 2 provides a method for calculating sentiment using subjective shocks

to economic growth. SPF forecast data is collected quarterly while equation (24) is

written in continuous time. Equation (24) can be discretized at a quarterly frequency

as follows:

It =
t−1∑
j=0

(
K +

θ

4

)j
FESPF

t−1−j, (31)

where K = e−κ/4. A derivation of equation (31) is provided below.

Equation (31) needs to be initialized with a “period 0.” I assume that sentiment

35Setting 0.75 = θ(0.87)(1.1) yields the desired result.
36Expert forecasts are used for consistency with the model, as discussed in footnote 27.
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is equal to 0 in 1970Q1. Starting from the initial condition, equation (31) provides a

method for constructing sentiment using quarterly SPF forecast errors. These forecast

errors, along with the measure of sentiment in Figure 9, are also used to calculate the

shocks used in Figure 10.

κ Calibration. Sentiment persistence parameter κ is calibrated to align the model-

implied correlation between et and It with the data. I’ve just outlined a technique for

calculating sentiment from SPF forecast data given a calibration of κ and θ. He et al.

(2017) provide an empirical measure corresponding to et over the period 1970Q1 to

2018Q3. For any given κ and θ, this means that I can calculate the correlation between

et and It in both the data and the model. This analysis is presented in Figure 1 below,

which suggests that sentiment should have a half-life of approximately 5 years.37

Figure 1: Calibration of κ. The red curve plots the correlation between et and It
in the model as a function of κ (taking θ as given from the diagnostic expectations
literature). The blue curve plots the empirical correlation between et (from He et al.
(2017)) and It (calculated from SPF forecast errors given κ and θ).

37As κ is varied, θ is always set to
(
√

2κ)0.0075

σ . This maintains the other calibration target that
one standard deviation in I corresponds to an output growth bias of 0.75 percentage points.
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Discretization of the Model: Derivation of Equation (31). I partially rewrite

the model in discrete time. The discrete-time model is written at a quarterly frequency

for consistency with SPF data. Subscript t’s denote model periods, such that period

t+ 1 occurs one quarter after period t.

Define the capital law of motion as Kt+1 = Kt exp(υt + σεt+1), where σεt are

quarterly capital quality shocks, υt captures investment and depreciation, and εt ∼

N (0, 1
4
). The capital law of motion can be approximated as follows:

Kt+1 −Kt

Kt

=
Yt+1 − Yt

Yt
≈ υt + σεt+1.

Next, I introduce the analogous discrete-time definition of sentiment:

It =
t−1∑
j=0

Kjσεt−j, (32)

where K = e−κ/4. Under diagnostic expectations, agents expect that output (or

capital) evolves approximately as follows:38

Êt
[
Yt+1 − Yt

Yt

]
≈ Et

[
Yt+1 − Yt

Yt

]
+
θIt
4
.

Analogous to equation (5), diagnostic expectations of GDP growth consist of a ra-

tional component plus a diagnostic wedge. The dt factor in equation (5) becomes 1
4

here since the model is discretized at a quarterly frequency.

38In logs, the law of motion for capital is kt+1 = kt + υt + σεt+1. Let G−t = kt − It. In discrete
time, equation (26) becomes:

hθt (k
′
t+1|kt, et, It) = h(k′t+1|kt, et, It) ·

[
h(k′t+1|kt, et, It)
h(k′t+1|G

−
t , et, It)

] θ
4

1

Z
.

The main difference relative to equation (26) is that the power term of θdt becomes θ
4 here,

since the model is specified at a quarterly frequency. Since kt+1|kt, et, It ∼ N
(
kt + υt,

σ2

4

)
and

kt+1|G−t , et, It ∼ N
(
G−t + υt,

σ2

4

)
, a similar argument to that of Appendix B.5 gives Êt [kt+1 − kt] =

υt + θIt
4 . This implies Êt

[
Yt+1−Yt

Yt

]
≈ Et

[
Yt+1−Yt

Yt

]
+ θIt

4 .
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At a quarterly frequency, subjective shocks are defined as

σε̂t+1 ≡
Yt+1 − Yt

Yt
− Êt

[
Yt+1 − Yt

Yt

]
.

Unlike objective shocks σεt, these subjective shocks are directly observable with ex-

pectations data. Using the above approximations:

σε̂t+1 ≈ σεt+1 −
θIt
4
.

Equation (32) can now be redefined in terms of subjective shocks. It follows from

equation (32) that It = KIt−1 + σεt. Plugging in the approximation of subjective

shocks gives

It ≈
(
K +

θ

4

)
It−1 + σε̂t.

Iterating backward and using the initial condition that I0 = 0 yields:

It ≈
t−1∑
j=0

(
K +

θ

4

)j
σε̂t−j.

Equation (31) is recovered by noting that σε̂t = FEt−1. This holds since σε̂t is the

forecast error realized from the start of period t− 1 to the start of period t.39

39In other words, σε̂t is the forecast error that is realized over quarter t− 1.
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B Model Details

B.1 Labor Income Microfoundation

The treatment here of Frankel (1962) follows from Aghion and Howitt (2008, Chap-

ter 2). Each individual producer faces decreasing returns to capital, but decreasing

returns at the producer level are offset at the aggregate level through knowledge

externalities.

At time t, there exists a measure Jt of intermediaries.40 Each intermediary j

operates Kj,t units of capital and hires Lj,t units of labor at time t. The intermediary

faces the production function:

Yj,t = ĀtK
ν
j,tL

1−ν
j,t , (33)

where Āt is an endogenous aggregate productivity level. Due to knowledge spillovers,

Āt depends on the total amount of capital in the economy:

Āt = A

(∫
j

Kj,tdj

)ς
. (34)

Parameter ς ∈ [0, 1] controls the level of knowledge externalities.

Let Wt denote the wage rate. Intermediaries hire labor as follows:

Lj,t = argmax
`

ĀtK
ν
j,t`

1−ν −Wt`

The optimal labor choice is:

Lj,t = Kj,t

(
Āt(1− ν)

Wt

) 1
ν

. (35)

The next step is to impose market clearing. Specifically,
∫
j
Kj,tdj = Kt and

40In the model, there is always a unit measure of households. The size of the financial intermediary
sector varies over time due to banker entry and exit.
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∫
j
Lj,tdj = 1. Since all intermediaries are identical, Kj,t = Kt

Jt and Lj,t = 1
Jt . Imposing

market clearing gives:

Āt = AKς
t , and

Yt =

∫
j

Yj,tdj = AKς
t

∫
j

Kν
j,tL

1−ν
j,t dj

= AKς
t Jt
(
Kt

Jt

)ν (
1

Jt

)1−ν

= AKς+ν
t .

The following parameter restriction generates aggregate linearity:

ς + ν = 1. (36)

Assumption (36) recovers an “AK” economy with a linear aggregate production func-

tion Yt = AKt, exactly as in the main text.

The final step is to use the market clearing conditions to solve for the wage rate.

Plugging these into equation (35):

1

Jt
=
Kt

Jt

(
AKς

t (1− ν)

Wt

) 1
ν

Wt = AKς+ν
t (1− ν)

Wt = (1− ν)AKt, (37)

where the last line follows from (36). The knowledge externalities model built here

provides a simple microfoundation for equation (11) in the main text. The benefits

of introducing a labor income margin are discussed below.
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B.2 Quantitative Benefits of the Labor Income Margin

This model’s benchmark calibration sets A = 1
3

and ν = 0.41. The original HK model,

which does not feature labor income, sets A = 0.133.41 Since the average investment

rate is roughly 10%, A = 0.133 implies that investment typically accounts for more

than 2
3

of the economy’s output in the original HK model. Consumption accounts

for less than 1
3

of output. Though some parsimony of the original HK model is lost,

the benefit of introducing a simple labor income margin is that it allows for a more

realistic consumption-output share.

Generating a realistic consumption-output ratio yields two benefits. First, it al-

lows for a more standard calibration of EIS parameter ζ. In the HK model, con-

sumption accounts for only a small share of output. This implies that changes to the

investment rate will cause consumption growth to swing wildly. This is particularly

true in periods of financial distress, when the investment rate is sensitive to et. HK

calibrate ζ = 0.13 (EIS > 7) in order to prevent these swings in consumption from

generating excessive interest rate volatility.

Second, the labor income extension generates a more realistic ratio of housing

expenditures to total consumption. Recall that aggregate consumption is a Cobb-

Douglas aggregator over the output good and housing services: Ct = (cyt )
1−φ(cht )

φ.

Parameter φ governs the ratio of housing expenditures to total consumption. To

match the housing-wealth ratio of 45%, HK set φ = 0.6. This implies that housing

services compose 60% of expenditures.

In order to match the same housing-wealth ratio of 45% in this paper, I calibrate

φ = 0.2.42 In addition to matching the housing-wealth ratio, φ = 0.2 is also consistent

with the ratio of housing expenditures to total consumption observed empirically.43

41The labor income channel in this model can be shut down by setting ν = 1.
42Matching the same housing-wealth ratio requires the equilibrium value of rental payments (Dt)

to remain similar to the original HK model. Due to the labor income extension, my model features
a larger share of output goods relative to housing services (i.e., A ↑). From equation (10), more
output goods implies that a lower calibration of φ is needed in order to maintain Dt.

43For example, Table 2.4.5 of the 2019 NIPA reports total PCE of $14563 (billion). Housing and
utilities account for $2670 (billion). The housing share of total consumption is 18%. This share is
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B.3 Why Two Assets

At first glance it is puzzling that the model includes two assets, Kt and H, since these

assets are perfectly conditionally correlated. The model attempts to jointly match

key macroeconomic and financial market data. As a macroeconomic model it aims

to generate empirically-plausible levels of investment volatility. As a finance model,

enough asset price volatility is needed to produce quantitatively significant nonlin-

earities during periods of financial distress. These two goals present a well-known

problem. Market values of capital are much more volatile than investment, both

across firms and over time. In a standard q-theory model where investment is closely

linked with asset prices, these two facts can only be reconciled with unreasonably

high adjustment costs (e.g., Campbell, 2017, Ch. 7).

By introducing two assets, HK circumvent this issue. The two leftmost panels of

Figure 2 show that pt is more sensitive to et than qt. This is because the supply of

houses is fixed while Kt is procyclical.44 Investment it is a function of qt, so the lower

variance of qt allows for the model to match empirical investment volatility under

reasonable adjustment costs. Since the intermediary holds both types of assets, the

additional volatility provided by pt generates an intermediary pricing kernel that is

volatile enough to produce significant nonlinearities in financial intermediation. As

Section 3.2 highlights, the two-asset model does a good job of matching empirical

investment volatility as well as the overall risk-return profile of intermediary equity.

stable over time (Davis and Van Nieuwerburgh, 2015).
44In particular, recall that Pt is the present-discounted value of perceived future rental payments.

When et is low, investment rate it is also expected to be low for a long period of time. This implies
that the expected growth rate of output — and therefore rental payments — is expected to be low,
too. Through this investment channel, the growth rate of rental payments is highly correlated with
et. Hence, housing price pt is sensitive to et.
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B.4 Boundary Conditions

Boundary conditions are needed to solve for price functions q(e, I) and p(e, I). As

e→∞ the equity issuance constraint ceases to affect the equilibrium price and policy

functions. This implies lim
e→∞

qe(e, I) = lim
e→∞

pe(e, I) = 0.

A lower reflecting boundary is imposed by assuming entry into the intermediary

sector deep in crisis times (term dψt in equation (8)). There exists an exogenous

minimum reputation level e such that new intermediaries enter the economy whenever

et hits e.45 Entry is costly because new intermediaries must acquire the skills to

operate capital. Specifically, the economy must destroy β > 0 units of capital in

order for entry to increase aggregate reputation Et by one unit.46 The assumption

of a reflecting barrier at e implies that prices q and P must have a zero derivative

with respect to e at e. If this were not the case, an arbitrageur could bet on a

unidirectional change in asset prices at the reflecting barrier. This implies qe(e, I) = 0

and pe(e, I) = p(e,I)β
1+eβ

.

To derive the lower boundary condition for p, start at the boundary with an

aggregate reputation of E = eK. Consider a further shock to reputation of z which

sends reputation to E − z < eK. After this shock, the reflecting boundary implies

that capital will immediately be converted into reputation to restore e. Specifically,

let x denote the amount of new reputation required to restore e. x is given by:47

x =
z

1 + eβ
.

Shock z requires the destruction of βx capital to restore reputation to e.

This capital destruction equation can be used to derive the boundary condition

for price function P . The condition that Pe(e, I) = 0 implies that p = P
K

will have

45Loosely, this captures (unmodeled) government intervention deep in crises.
46Equations (2) and (4) are altered at e to include this form of capital destruction.
47x is defined implicitly by e = E−z+x

K−βx . The numerator of this equation is the level of initial
reputation minus the shock and plus x of new reputation. The denominator is the initial level of
capital minus the βx of capital destroyed to produce x reputation. Capital will be destroyed until e
(the minimum level of e = E/K) is restored.
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a non-zero slope at e.48 Consider the above reputation shock of z. Immediately

after this shock, the price of housing is P = p
(
e− z

K
, I ′
)
K. This must equal the

price of housing immediately after capital is spent to rebuild reputation, given by

P = p (e, I ′) (K − βx). In the continuous-time limit with arbitrarily small shocks,

p
(
e− z

K
, I ′
)
K can be rewritten as p(e, I ′)K − pe (e, I ′) z. Combining:

p(e, I ′)K − pe (e, I ′) z = p(e, I ′)
(
K − β z

1 + eβ

)
pe(e, I ′) =

p(e, I ′)β
1 + eβ

.

This gives the boundary condition for p at e. Details on how the boundary conditions

are imposed numerically are provided in Appendix D.

48This is due to capital destruction, which makes the denominator of P
K change at the entry

boundary.
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B.5 Proofs

Proof of Proposition 2. By definition, It ≡
∫ t

0
e−κ(t−s)σdZs. Subjective shocks

are defined as σd̂Zt = −θItdt + σdZt. The law of motion for It is given by dIt =

−κItdt+ σdZt. Plugging in the definition of subjective shocks gives

dIt = (−κ+ θ)Itdt+ σd̂Zt.

Let f(It, t) = Ite(κ−θ)t. Using Itô’s lemma:

df(It, t) = e(κ−θ)t (dIt) + (κ− θ)Ite(κ−θ)tdt

= e(κ−θ)t
(

(−κ+ θ)Itdt+ σd̂Zt

)
+ (κ− θ)Ite(κ−θ)tdt

= e(κ−θ)tσd̂Zt.

Given an initial condition of f(I0, 0) = 0, we get:

f(It, t) =

∫ t

0

df(Is, s)

Ite(κ−θ)t =

∫ t

0

e(κ−θ)sσd̂Zs

It =

∫ t

0

e(−κ+θ)(t−s)σd̂Zs.

This completes the proof.
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Proof of Proposition 3 (in Appendix A.1). Consider the evolution of log capital

kt over a horizon of τ > 0, holding investment fixed at ī = it. With fixed investment:

kt+τ = kt +

∫ t+τ

t

(̄i− δ − σ2

2
)ds+

∫ t+τ

t

σdZs

= kt + τ (̄i− δ − σ2

2
) + σ(Zt+τ − Zt).

Since {Zt} is a standard Brownian motion, kt+τ ∼ N
(
kt + τ (̄i− δ − σ2

2
), σ2τ

)
.

For the arbitrary prediction horizon of τ , one can rewrite equation (26) as:

hθt (k
′
t+τ |kt, et, It) = h(k′t+τ |kt, et, It) ·

[
h(k′t+τ |kt, et, It)
h(k′t+τ |G−t , et, It)

]θτ
1

Z
.

Given a fixed investment level of ī, this implies:

hθt (k
′
t+τ |kt, et, It) = N

(
kt + τ (̄i− δ − σ2

2
) + θ(kt −G−t )τ, σ2τ

)
.

The Bordalo et al. (2018a) Appendix provides algebraic details for this step. Equiv-

alently, the agent perceives that

k̂t+τ − kt =

∫ t+τ

t

(̄i− δ − σ2

2
)ds+

∫ t+τ

t

θ(kt −G−t )ds+

∫ t+τ

t

σdZs.

In the limit as τ → dt:

d̂kt = (it − δ −
σ2

2
)dt+ θ(kt −G−t )dt+ σdZt.

Definition 3 gives It = kt −G−t . Applying Itô’s lemma to Kt = exp(kt) yields:

d̂Kt

Kt

= (it − δ)dt+ θItdt+ σdZt.

This completes the proof.

68



B.6 Robustness

This section examines robustness to behavioral parameters θ and κ, and the EIS

parameter ζ. The baseline calibration sets θ × SD(I) = 0.75%, the half-life of I to

5 years, and ζ = 2
3

(EIS = 1.5). I analyze the following six parameter perturbations:

(i) θ×SD(I) = 1.5%, (ii) θ×SD(I) = 0.75%
2

, (iii) sentiment half-life of 20 years, (iv)

sentiment half-life of 1 year, (v) ζ = 1, and (vi) ζ = 1
2
.

For perturbations to θ and ζ, all other parameters are kept at their baseline

calibration in Table 1. For perturbations to the persistence of sentiment (κ), I change

θ accordingly to ensure that θ × SD(I) remains equal to 0.75%. This isolates the

effect of persistence.
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Sentiment-Driven Financial Crises.

(a) θ × SD(I) = 1.5% (b) θ × SD(I) = 0.75
2 %

(c) Half-life = 20 (d) Half-life = 1

(e) ζ = 1 (f) ζ = 1
2

Figure 2: Crisis hitting probabilities. See Figure 4 for a description. In order
from left-to-right, top-to-bottom: θ× SD(I) = 1.5%, θ× SD(I) = 0.75

2
%, half-life =

20, half-life = 1, ζ = 1, ζ = 1
2
.
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Boom-Bust Investment Cycles.

(a) θ × SD(I) = 1.5% (b) θ × SD(I) = 0.75
2 %

(c) Half-life = 20 (d) Half-life = 1

(e) ζ = 1 (f) ζ = 1
2

Figure 3: Investment rate IRFs. See Figure 6 for a description. In order from
left-to-right, top-to-bottom: θ × SD(I) = 1.5%, θ × SD(I) = 0.75

2
%, half-life = 20,

half-life = 1, ζ = 1, ζ = 1
2
.
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Financial Market Stability from Beliefs. Appendix Table 3 lists crisis proba-

bilities for the DEE and the REE across the six alternate calibrations.

DEE Prob(Crisis) REE Prob(Crisis) DEE Prob(Crisis)
REE Prob(Crisis)

Baseline 3.22 % 3.83 % 0.84
θ × SD(I) = 1.5% 6.33 % 3.83 % 1.65

θ × SD(I) = 0.75%
2

3.10 % 3.83 % 0.81
Half-life = 20 4.71 % 3.83 % 1.23
Half-life = 1 2.74 % 3.83 % 0.72
ζ = 1 2.80 % 5.28 % 0.53
ζ = 1

2
3.43 % 2.80 % 1.23

Table 3: Financial market stability from beliefs: robustness.

First, Appendix Table 3 evaluates the effect of doubling and halving θ. The dou-

bling of θ makes diagnostic expectations destabilizing relative to rationality. With

higher θ, intermediaries make larger asset pricing mistakes. This puts downward

pressure on et when It is high, and vice-versa. Overall, the doubling of θ reduces

the correlation between et and It to 0.2. This makes it more likely that the economy

enters the part of the state space where sentiment is elevated and the financial sector

is distressed. This increases the probability of crises in the DEE. Alternatively, diag-

nostic expectations become more stabilizing when θ is halved. Lowering θ increases

the correlation between et and It to 0.9. This makes it even less likely for the economy

to enter states where the financial sector is distressed and yet It > 0.49

The persistence of sentiment also matters for the effect of diagnostic expectations

on financial crises. Crises become more likely to occur as the persistence of sentiment

increases. Again, this effect operates through the correlation between et and It.

When sentiment has a half-life of 1 year, the correlation is 0.75. This drops to 0.1

for a half-life of 20 years. Decreasing κ reduces the correlation between et and It by

making sentiment load less and less on the most recent shocks.

Finally, Appendix Table 3 evaluates the effect of ζ on financial crises. ζ is the

49Though not illustrated in Appendix Table 3, the relationship between θ and the probability of
crises is non-monotonic. As θ → 0, the probability of a crisis in the DEE converges from below to
the probability of a crisis in the REE.
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inverse of the EIS. Unlike perturbations to the behavioral parameters, perturbations

to ζ affect both the REE and the DEE. Lowering ζ decreases the probability of

crises in the REE. This result mirrors the “volatility paradox” of Brunnermeier and

Sannikov (2014). Lowering ζ increases asset price volatility, so intermediaries demand

higher risk premia.50 In equilibrium, this decreases the probability of crises.

ζ works in the opposite direction in the DEE. Under diagnostic expectations,

lower ζ increases the probability of crises. In the DEE, asset prices become increas-

ingly sensitive to It as ζ decreases.51 However, diagnostic agents do not anticipate

this sentiment-driven price volatility and therefore they do not demand a higher risk

premium as compensation. Since lowering ζ increases asset price volatility without

increasing the corresponding risk premium, this additional (uncompensated) risk in-

creases the probability of financial crises.

50Lowering ζ decreases the sensitivity of the risk-free rate to variation in et. This means that asset
prices must fluctuate instead. For example, consider a decline in et which causes intermediaries to
demand a higher risk premium. This can be realized either through a decline in the risk-free rate rt
or a decline in asset prices. Thus, variation in rt can insulate asset prices from variation in et.

51As ζ decreases the interest rate rt becomes less sensitive to changes in expected consumption
growth. Consider an increase in sentiment. This increases perceived future cash flows. If rt is
insensitive to variation in It then this increase in perceived cash flows will be passed through to
higher asset prices qt and Pt. Thus, lowering ζ creates larger asset price variation in It.
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B.7 Empirical Tests in the Recalibrated REE

In Section 6.1 the calibration of the REE is identical to the calibration of the DEE,

except for θ = 0. Here, I recalibrate the REE in accordance with Table 1. The

analysis of Section 6.1 is repeated using the recalibrated REE.

Updated REE Calibration. Table 4 presents the updated calibration of the REE.

Four parameters are changed from the main text: η, e, β, and φ. Bank exit rate η is

updated to re-establish a crisis probability of 3%. Lower entry barrier e is changed to

maintain a maximum Sharpe ratio of 6.5. Entry cost β is updated to maintain land

price growth volatility of roughly 11.9%. φ is updated to maintain a housing-wealth

ratio of 45%.

Parameter Choice Target
Updated Parameters
η Bank Exit Rate 0.139 Prob(Crisis)
e Lower Entry Barrier 0.112 Max I = 0 Sharpe Ratio
β Entry Cost 4.5 Land Price Volatility
φ Housing Expenditure Share 0.204 Housing-Wealth Ratio

Unconditional Simulated Moments REE (New) REE (Old)
Mean

(
Investment

Capital

)
10.04% 9.93%

Mean
(

Consumption
Output

)
69.88% 70.43%

Mean(Realized Sharpe Ratio) 0.54 0.52
Mean(Realized Intermediary Risk Premium) 15.93% 14.63%
Probability of Crisis 3.05% 3.83%
Volatility(Land Price Growth) 11.64% 10.08
Volatility(Interest Rate) 0.46% 0.41%

Non-Distress Simulated Moments
Volatility(Investment Growth) 3.49% 3.98%
Volatility(Consumption Growth) 2.75% 2.57%
Volatility(Output Growth) 2.97% 2.98%

Mean
(

Housing Wealth
Total Wealth

)
44.60% 46.79%

Table 4: REE updated calibration. See Table 1 for a description. Column REE
(New) lists the simulated moments in the recalibrated REE. Column REE (Old) lists
the simulated moments for the REE calibration used in the main text.
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Persistence in the Recalibrated REE. Appendix Table 5 uses the recalibrated

REE to reproduce Table 2 of the main text. The recalibrated REE features a slightly

lower persistence of financial distress, but results are similar.

et Percentile REE (New) REE (Old)
5 0.46 0.42
10 1.13 1.08
25 3.74 3.72
50 10.11 10.42
75 24.84 26.41

Table 5: Average crisis recovery time (in years). See Table 2 for a description.
This table compares the persistence of financial fragility in the two REE calibrations.

Appendix Figure 4 uses the recalibrated REE to reproduce Figure 8 of the main

text. Autocorrelations in the recalibrated REE are presented with solid black lines.

The two calibrations produce very similar results.

Dividend-Price Ratio Investment-Output Ratio

Figure 4: Persistence: data and model. See Figure 8 for a description. This figure
compares the persistence of macro-financial aggregates in the two REE calibrations.
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B.8 Simulating the 2007-2008 Financial Crisis: Additional Analysis

Sentiment

Capital Capacity

Figure 5: A long-run analysis of the 2007-2008 Financial Crisis. See Section
6.3 for a description. For reference, the top panel shows the path of sentiment from
1992 through 2018. The bottom panel plots the path of capital capacity et in the
DEE and the REE (left axis), as well as the corresponding empirical measure from
He et al. (2017) (right axis). The red star marks the et initialization of the second
simulation, as shown in Figure 10 of the main text.
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B.9 Additional Tables and Figures

Figure 6: Price and policy functions. See Figure 2 for a description. This chart
also contains information about delevered risk premia, asset volatilities (σk and σh),
and interest rate rt.
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Figure 7: Investment rate IRFs. See Figure 6 for a description. This figure also
includes the investment IRFs of an economy with diagnostic expectations but no
financial frictions (dotted gray curve). Sentiment produces short-run momentum,
but there is no feedback from behavioral frictions to financial frictions to generate
sharp reversals thereafter.

Figure 8: Investment rate IRFs: 2SD shock. See Figure 6 for a description.
This figure replicates the investment rate IRF analysis, but doubles the size of the
initial impulse. Due to the model’s nonlinearity, the larger shock sequence produces
a starker asymmetry between the positive and negative shock cases.
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Figure 9: Investment rate IRFs: E0[iτ ]. The baseline analysis in Figure 6 sets
shocks to 0 for all τ ≥ 0 (shown here with transparent lines for reference). This
figure instead plots the expected future investment rate E0[iτ ]. Because this model is
nonlinear, these two approaches are not equivalent. In particular, nonlinear financial
frictions mean that the long-run expected investment rate, limτ→∞ E0[iτ ], is less than
the investment rate in the stochastic steady state. The expected investment rate is
calculated using the Feynman-Kac formula (see Appendix D.3 for numerical details).

et Percentile DEE REE
5 0.25 0.25
10 0.67 0.83
25 1.83 2.83
50 4.00 8.08
75 8.17 20.08

Table 6: Median crisis recovery time (in years). See Table 2 for a description.
This table lists the median time (in years) that it takes for et to recover from a
financial crisis to its Xth percentile.

79



Investment-Output Ratio Dividend-Price Ratio

Figure 10: Persistence: data and model. This figure replicates Figure 8 using
only U.S. data from 1950 – 2016.
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C Equilibrium Solution Details

Here I detail how to solve for a Diagnostic Expectations Equilibrium (DEE) that is

Markov in state variables et, It, and Kt. Brunnermeier and Sannikov (2016) provide

an excellent treatment of the techniques used here.

C.1 The Diagnostic Expectations Equilibrium

I postulate that agents perceive that qt and pt evolve as follows:

d̂qt
qt

= µ̂qtdt+ σ̂qt dZt (38)

d̂pt
pt

= µ̂ptdt+ σ̂pt dZt. (39)

Using these postulated price processes, the perceived laws of motion for the three

state variables are:

d̂Kt

Kt

= (it − δ)dt+ θItdt+ σdZt (40)

d̂et
et

=
(
rt + αht π̂

h
t + αkt π̂

k
t

)
dt− (it − δ + θIt)dt+ (σ2 − σ(αht σ̂

h
t + αkt σ̂

k
t ))dt

− ηdt+ dψt + (αht σ̂
h
t + αkt σ̂

k
t − σ)dZt (41)

dISt
It

= −κdt (42)

Equations (40) and (42) were derived in Appendix A. Equation (41) can be derived

using Itô’s lemma to expand et = Et
Kt

under the perceived processes d̂Et
Et = d̂R̃t −

ηdt+ dψt and d̂Kt
Kt

= (it − δ)dt+ θItdt+ σdZt. For simplicity, I rewrite the perceived

evolution of et as:

d̂et
et

= µ̂etdt+ σ̂etdZt.
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Price Processes. Let q(e, I) and p(e, I) denote the two price functions. Applying

Itô’s lemma using the perceived laws of motion for the two state variables gives:

µ̂qt =
qe(et, It)

qt
etµ̂et −

qI(et, It)
qt

κIt +
1

2

qee(et, It)
qt

(etσ̂et )
2 (43)

σ̂qt =
qe(et, It)

qt
etσ̂et (44)

µ̂pt =
pe(et, It)

pt
etµ̂et −

pI(et, It)
pt

κIt +
1

2

pee(et, It)
pt

(etσ̂et )
2 (45)

σ̂pt =
pe(et, It)

pt
etσ̂et (46)

These formulas will prove useful throughout. Equations (43) and (45) are second-

order PDEs for the price functions, which I will solve numerically. To do so, I need

to pin down µ̂qt , µ̂
p
t , µ̂

e
t , and σ̂et , leaving only the price functions undetermined. This

is where I now turn.

Market Clearing and Returns. From goods market clearing equation (21):

Yt = Cy
t + Φ(it, Kt)

A =
Cy
t

Kt

+ it +
ξ

2
(it − δ)2

=
1− φ
φ

Dt

Kt

+ it +
ξ

2
(it − δ)2, using (10) and Ch

t = 1

Dt

Kt

=
φ

1− φ

[
A− it −

ξ

2
(it − δ)2

]
.

Since equation (12) gives it = δ + qt−1
ξ

, this pins down Dt
Kt

as a function of qt.

Dt is the dividend paid on housing, and this expression can now be plugged into
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housing returns as follows:

d̂Rh
t =

d̂Pt +Dtdt

Pt

=
d̂(ptKt)

ptKt

+
Dt

ptKt

dt

=
d̂(ptKt)

ptKt

+

φ
1−φ

[
A− it − ξ

2
(it − δ)2

]
pt

dt.

Applying Itô’s Lemma to the first term:

d̂Rh
t =

[
µ̂pt + it − δ + θIt + σσ̂pt +

φ

1− φ
A− it − ξ

2
(it − δ)2

pt

]
dt+ (σ + σ̂pt )dZt

= (π̂ht + rt)dt+ σ̂ht dZt.

Equation (17) gives a similar process for capital returns. Repeating (17) here:

d̂Rk
t =

(
νA

qt
+ µ̂qt − δ + θIt + σσ̂qt

)
dt+ (σ + σ̂qt )dZt

= (π̂kt + rt)dt+ σ̂kt dZt.

The final return process to derive is the risk-free interest rate rt. Starting again

from market clearing:

Cy
t = Yt − Φ(it, Kt)

= Yt − itKt −
ξ

2
(it − δ)2Kt

=

(
A− δ − qt − 1

ξ
− (qt − 1)2

2ξ

)
Kt, using (12).
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Now deriving the perceived evolution of Cy
t using Itô’s Lemma:

d̂Cy
t =

(
A− δ − qt − 1

ξ
− (qt − 1)2

2ξ

)
Kt((it − δ + θIt)dt+ σdZt)

− qtd̂qt
ξ

Kt −
Kt

2ξ
(qtσ̂

q
t )

2dt− q2
t

ξ
Ktσσ̂

q
t dt

d̂Cy
t

Cy
t

= (it − δ + θIt)dt−
1
ξ
q2
t (µ̂

q
t + 1

2
σ̂qt

2
+ σσ̂qt )

A− δ − qt−1
ξ
− (qt−1)2

2ξ

dt+

σ − 1
ξ
q2
t σ̂

q
t

A− δ − qt−1
ξ
− (qt−1)2

2ξ

 dZt

Plugging this into the interest rate formula (14):

rt = ρ+ ζ

it − δ + θIt −
1
ξ
q2
t (µ̂

q
t + 1

2
σ̂qt

2
+ σσ̂qt )

A− δ − qt−1
ξ
− (qt−1)2

2ξ

− ζ(ζ + 1)

2

σ − 1
ξ
q2
t σ̂

q
t

A− δ − qt−1
ξ
− (qt−1)2

2ξ

2

(47)

Intermediary Optimality. From equation (41), it is the case that αkt σ̂
k
t +αht σ̂

h
t =

σ̂et + σ. Using this in equation (20) gives:

π̂ht

σ̂ht
=
π̂kt

σ̂kt
= γ(σ̂et + σ).

Recall σ̂kt = σ + σ̂qt and σ̂ht = σ + σ̂pt . Combining the banker’s optimality condition

with the perceived return on capital:

γ(σ̂et + σ) =
π̂kt

σ̂kt

=

(
νA
qt

+ µ̂qt − δ + θIt + σσ̂qt

)
− rt

σ + σ̂qt

=

(
νA
qt

+ µ̂qt − δ + θIt + σ qe(et,It)
qt

etσ̂et

)
− rt

σ + qe(et,It)
qt

etσ̂et
, using equation (44)

γ(σ̂et + σ)

(
σ +

qe(et, It)
qt

etσ̂et

)
=

(
νA

qt
+ µ̂qt − δ + θIt + σ

qe(et, It)
qt

etσ̂et

)
− rt (48)
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Proceeding similarly for housing returns:

γ(σ̂et + σ) =
π̂ht

σ̂ht

=
µ̂pt + it − δ + θIt + σσ̂pt + Dt

ptKt
− rt

σ + σ̂pt

=
µ̂pt + it − δ + θIt + σ pe(et,It)

pt
etσ̂et + Dt

ptKt
− rt

σ + pe(et,It)
pt

etσ̂et
, using (46)

γ(σ̂et + σ)

(
σ +

pe(et, It)
pt

etσ̂et

)
= µ̂pt + it − δ + θIt + σ

pe(et, It)
pt

etσ̂et +
Dt

ptKt

− rt

(49)

Pinning down σ̂et . Equations (48) and (49) express µ̂qt and µ̂pt in terms of prices,

state variables, and σ̂et . The final step is to pin down σ̂et :

σ̂et = αht σ̂
h
t + αkt σ̂

k
t − σ

= αht (σ + σ̂pt ) + αkt (σ + σ̂qt )− σ

=
Kt

Et

[
pt(σ + σ̂pt ) + qt(σ + σ̂qt )

]
− σ, using (22) and (23)

=
Kt

Et

[
pt(σ +

pe(et, It)
pt

etσ̂et ) + qt(σ +
qe(et, It)

qt
etσ̂et )

]
− σ

=
Kt

Et

[
(pt + qt −

Et
Kt

)σ + (pe(et, It) + qe(et, It))etσ̂et
]

etσ̂et

(
1

et
− Kt

Et
(pe(et, It) + qe(et, It))

)
=
Kt

Et
(pt + qt −

Et
Kt

)σ

etσ̂et =
Kt

Et

(pt + qt − Et
Kt

)σ
1
et
− Kt

Et
pe(et, It)− Kt

Et
qe(et, It)

etσ̂et =
(pt + qt − Et

Kt
)σ

Et
Kt

1
et
− pe(et, It)− qe(et, It)

. (50)

Recall that Et = min{Et, (1 − λ)(qtKt + ptKt)}, or equivalently Et
Kt

= min{et, (1 −

λ)(qt + pt)}. Thus, equation (50) expresses σ̂et in terms of the two price functions and

the two state variables et and It.
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Solving for Prices. I can now solve for price functions q(e, I) and p(e, I). Specif-

ically, they are given by the following system of second-order PDEs:

qtµ̂
q
t = qe(et, It)etµ̂et − qI(et, It)κIt +

1

2
qee(et, It)(etσ̂et )2

ptµ̂
p
t = pe(et, It)etµ̂et − pI(et, It)κIt +

1

2
pee(et, It)(etσ̂et )2

All terms in this system of second-order PDEs have now been expressed in terms of

state variables et and It, exogenous parameters, and price functions. Specifically, r,

µ̂qt , and µ̂pt are given by equations (47), (48) and (49). µ̂et is given by (41), noting that

d̂R̃t is itself a function of prices r, µ̂qt , µ̂
p
t , σ̂

q
t and σ̂pt . Equations (44) and (46) give

σ̂qt and σ̂pt in terms of the price functions and σ̂et . Equation (50) closes the loop by

solving for σ̂et in terms of the two price functions.

This system of PDEs is solved numerically. Details are in Appendix D.

C.2 True Laws of Motion

As with the perceived laws of motion, I begin by postulating that qt and pt truly

evolve according to:

dqt
qt

= µqtdt+ σqt dZt (51)

dpt
pt

= µptdt+ σpt dZt. (52)

The true evolution of the three state variables is:

dKt

Kt

= (it − δ)dt+ σdZt, (53)

det
et

= (rt + αht π
h
t + αkt π

k
t )dt− (it − δ)dt+ (σ2 − σ(αht σ

h
t + αkt σ

k
t ))dt

− ηdt+ dψt + (αht σ
h
t + αkt σ

k
t − σ)dZt (54)

dIt = −κItdt+ σdZt (55)
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As above, equation (54) can be derived using Itô’s lemma to expand et = Et
Kt

under

the true processes dEt
Et = dR̃t − ηdt+ dψt and dKt

Kt
= (it − δ)dt+ σdZt. For simplicity,

I rewrite the true evolution of et as:

det
et

= µetdt+ σetdZt.

Price Processes. The methods developed above show how to solve for price func-

tions q(e, I) and p(e, I). Applying Itô’s lemma to these price functions using the true

laws of motion for the two state variables gives:

µqt =
qe(et, It)

qt
etµ

e
t −

qI(et, It)
qt

κIt +
qeI(et, It)

qt
σ(etσ

e
t ) +

1

2

qee(et, It)
qt

(etσ
e
t )

2 +
1

2

qII(et, It)
qt

σ2

(56)

σqt =
qe(et, It)

qt
etσ

e
t +

qI(et, It)
qt

σ (57)

µpt =
pe(et, It)

pt
etµ

e
t −

pI(et, It)
pt

κIt +
peI(et, It)

pt
σ(etσ

e
t ) +

1

2

pee(et, It)
pt

(etσ
e
t )

2 +
1

2

pII(et, It)
pt

σ2

(58)

σpt =
pe(et, It)

pt
etσ

e
t +

pI(et, It)
pt

σ (59)

Market Clearing and Returns. Following similar steps as above, the true housing

return process is given by:

dRh
t =

dPt +Dtdt

Pt

=
d(ptKt)

ptKt

+
Dt

ptKt

dt

=

[
µpt + it − δ + σσpt +

φ

1− φ
A− it − ξ

2
(it − δ)2

pt

]
dt+ (σ + σpt )dZt

= (πht + rt)dt+ σht dZt.
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The true process for capital returns is given by:

dRk
t =

(
νA

qt
+ µqt − δ + σσqt

)
dt+ (σ + σqt )dZt

= (πkt + rt)dt+ σkt dZt

Pinning down σet . Solving for the true volatility of et:

σet = αht σ
h
t + αkt σ

k
t − σ

= αht (σ + σpt ) + αkt (σ + σqt )− σ

=
Kt

Et
[pt(σ + σpt ) + qt(σ + σqt )]− σ, using (22) and (23)

=
Kt

Et

[
pt(σ +

pe(et, It)
pt

etσ
e
t +

pI(et, It)
pt

σ) + qt(σ +
qe(et, It)

qt
etσ

e
t +

qI(et, It)
qt

σ)

]
− σ

=
Kt

Et

[
(pt + qt + pI(et, It) + qI(et, It)−

Et
Kt

)σ + (pe(et, It) + qe(et, It))etσet
]

etσ
e
t

[
1

et
−Kt

Et
pe(et, It)−

Kt

Et
qe(et, It)

]
=
Kt

Et
(pt + qt + pI(et, It) + qI(et, It)−

Et
Kt

)σ

etσ
e
t =

Kt

Et

(pt + qt + pI(et, It) + qI(et, It)− Et
Kt

)σ
1
et
− Kt

Et
pe(et, It)− Kt

Et
qe(et, It)

etσ
e
t =

(pt + qt + pI(et, It) + qI(et, It)− Et
Kt

)σ
Et
Kt

1
et
− pe(et, It)− qe(et, It)

. (60)

C.3 Verifying “Equity Member” Portfolio Choice

The main text assumes that the “equity member” will invest the maximal amount

into the equity of the financial sector. This assumption must be verified ex-post given

the resulting equilibrium.

The household maximizes the value function in equation (9), where Ct = (cyt )
1−φ(cht )

φ =

(cyt )
1−φ, since ch = 1 in equilibrium. From (9), the household accrues utility flow

(cyt )(1−φ)(1−γh)

1−γh
. Multiplying the utility function by 1

1−φ (a positive affine transforma-

tion) shows that in equilibrium the household can be represented with power utility

preferences, using relative risk aversion coefficient ζ = 1 − (1 − φ)(1 − γh). Market
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clearing gives cyt = AKt − Φ(it, Kt) =
(
A− δ − qt−1

ξ
− (qt−1)2

2ξ

)
Kt.

Let a be an arbitrary asset with perceived mean return µ̂a and volatility σ̂a. In

equilibrium, CRRA utility implies:

µ̂a − rt
σ̂a

= ζσ̂cyt ,

where σ̂cyt is the perceived volatility of
dcyt
cyt

(a formula is provided in Appendix C).

Thus, the household demands a perceived Sharpe ratio of ζσ̂cyt . Note that this equa-

tion need not hold with equality when there are portfolio restrictions placed on the

household.

An investment in intermediary equity earns a perceived risk premium of αkπ̂k +

αhπ̂h, with a perceived risk of αkσ̂k + αhσ̂h. From equation (20), intermediaries

demand a risk premium of:

π̂kt = γ(αkt σ̂
k
t + αht σ̂

h
t )σ̂kt

π̂ht = γ(αkt σ̂
k
t + αht σ̂

h
t )σ̂ht

For the portfolio as a whole, this implies:

αkπ̂k + αhπ̂h = γ(αkt σ̂
k
t + αht σ̂

h
t )2.

The equity member will invest all wealth in intermediary equity whenever the

perceived Sharpe ratio on this investment is weakly greater than ζσ̂cyt :

γ(αkt σ̂
k
t + αht σ̂

h
t )2

αkt σ̂
k
t + αht σ̂

h
t

> ζσ̂cyt , or equivalently

γ(αkt σ̂
k
t + αht σ̂

h
t ) > ζσ̂cyt .

This condition is verified numerically over the entire state space.
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D Numerical Methods

Before outlining the numerical methods, additional notation is required. The state

variables {e, I} can be represented as a two-dimensional Itô process, denoted S.

Agents perceive that S evolves according to:

d̂St =

 d̂et
dISt

 =

 etµ̂et
−κIt

 dt+

etσ̂et
0

 dZt, (61)

where Zt is a one-dimensional Brownian motion. The true evolution of S is:

dSt =

det
dIt

 =

 etµet
−κIt

 dt+

etσet
σ

 dZt. (62)

The evolution of d̂St and dSt is subject to a reflecting barrier in the e dimension at e.

To simplify notation, let A denote the infinitesimal generator of St. Let Â denote

the infinitesimal generator of Ŝt.

D.1 Solving for Price Functions

As shown in Appendix C, price functions q(e, I) and p(e, I) compose a system of

second-order PDEs:

qtµ̂
q
t = qe(et, It)etµ̂et − qI(et, It)κIt +

1

2
qee(et, It)(etσ̂et )2 (63)

= Âqt

ptµ̂
p
t = pe(et, It)etµ̂et − pI(et, It)κIt +

1

2
pee(et, It)(etσ̂et )2 (64)

= Âpt

In order to solve for these price functions I employ finite-difference methods. The

numerical methods appendix of Achdou et al. (2017) provides an excellent reference.

I assume knowledge of these methods here.
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Algorithm. I solve for price functions using two nested while-loops. In the outer

loop, I iterate over lower boundary e. In the inner loop, I take e as given and iterate

over price functions p and q until convergence. Details for the inner loop are provided

below. The outer loop continues to iterate over e until the resulting Sharpe ratio at

e = e, I = 0 is close to the calibration target in Table 1.

I create a discretized grid over state variables e and I.52 Let subscript i denote

the gridpoints in the e-dimension, and let subscript j denote the gridpoints in the

I-dimension. The algorithm is as follows. Let n = 1, 2, ... track the current loop

iteration.

1. Guess price functions q0
i,j and p0

i,j at each grid point {i, j}.

2. Solve for µ̂qi,j, µ̂
p
i,j, µ̂

e
i,j, and σ̂ei,j using the previous iteration’s price functions of

qn−1
i,j and pn−1

i,j (or the initial guess). To do so, use equation (50) to solve for

σ̂ei,j, (48) to solve for µ̂qi,j, (49) to solve for µ̂pi,j, and (41) to solve for µ̂ei,j. Next,

construct the discretized infinitesimal generator, denoted Ân−1, using µ̂ei,j and

σ̂ei,j .53 Note that Â features a reflecting barrier at e.54

3. Use an implicit scheme to solve for price functions qni,j and pni,j:

qni,j − qn−1
i,j

∆
+µ̂qi,j q

n
i,j = Ân−1qni,j, which implies

qni,j =

(
1

∆
I + diag(µ̂qi,j)− Ân−1

)−1

(
1

∆
qn−1
i,j )

52The grid over e is non-uniform.
53“n−1” notation is used because Â is constructed using the price functions from iteration n−1.
54Implementation details are in Achdou et al. (2017).
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Similarly,55

pni,j =

(
1

∆
I + diag(µ̂pi,j)− Ân−1

)−1

(
1

∆
pn−1
i,j )

These equations define qni,j and pni,j as functions of information from iteration

n−1. Parameter ∆ is the step size, and governs how quickly the price functions

are updated. Convergence is not guaranteed, so ∆ should not be set too large.

4. If price functions have converged within a pre-specified tolerance, stop. If not,

go to step 2 and repeat.

Once the algorithm has converged, I use the final values of qi,j and pi,j to solve

for the realized evolution of state variables et and It. The realized evolution of price

functions pt and qt can also be derived (similar to step 2).

D.2 Kolmogorov Equations

Kolmogorov Forward Equation. Readers should refer to the numerical appendix

of Achdou et al. (2017) for details. Let gt(e, I) denote a probability density function

over e and I. The Kolmogorov forward equation (KF) gives ∂
∂t
gt. A stationary

distribution is a distribution ḡ that solves ∂
∂t
ḡ = 0.

A benefit of finite-difference methods is that the KF equation comes “for free.” Let

gti,j denote a discretized distribution over e and I at time t. The perceived evolution

of gti,j is given by:

gt+∆t
i,j − gti,j

∆t
= (Â)Tgt+∆t

i,j =⇒ gt+∆t =
(
I−∆t(Â)T

)−1

gti,j.

55Footnote 13 of the numerical appendix of Achdou et al. (2017) shows that a reflecting barrier
imposes that the derivative at the reflecting barrier is 0. This is correct for q, as qe(e, I) = 0.

However, this is not correct for p, since pe(e, I) = p(e,I)β
1+eβ (see Appendix B.4 for details). In the

numerical solution for p, discretized matrix Â is amended to ensure that pn1,j = pn2,j −
pn−1
1,j β

1+eβ ×∆e,

where ∆e denotes the grid increment in the e-dimension.
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The true evolution of gti,j is given by:

gt+∆t
i,j − gti,j

∆t
= (A)Tgt+∆t

i,j =⇒ gt+∆t =
(
I−∆t(A)T

)−1
gti,j.

Kolmogorov Backward Equation. The Kolmogorov backward equation (KB) is

used to derive the hitting probabilities in Figure 4.

Let ēcrisis(I) denote the upper boundary of the crisis region for sentiment level I.

For s ∈ [0, T ], let f(es, Is, s) denote the true probability that the economy currently

at {es, Is} enters the crisis region between time s and T . Similarly, let f̂(es, Is, s)

denote the perceived probability. The goal is to solve for f(e, I, 0) and f̂(e, I, 0).

Conditional probability function f(e, I, s) is the solution to:

0 =
∂f(e, I, s)

∂s
+Af(e, I, s), subject to boundary conditions

(i) f(e, I, s) = 1 if e ≤ ēcrisis(I), and

(ii) f(e, I, T ) = 0 if e > ēcrisis(I)

This result is stated without proof. Informally, the differential equation 0 = ∂f(e,I,s)
∂s

+

Af(e, I, s) arises from applying Itô’s lemma to f(e, I, s) and setting the drift of the

resulting expression equal to 0. The drift is set to 0 in the non-crisis region due to

the law of iterated expectations: f(es, Is, s) = Es[f(es+dt, Is+dt, s+ dt)] and therefore

Es[df(es, Is, s)] = 0. The first boundary condition sets f equal to 1 whenever the

crisis region is hit. The second boundary condition is a terminal condition which

assigns f(e, I, T ) = 0 if the crisis region is not hit at terminal period T . f is solved

backwards from this terminal condition.
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Using the perceived generator Â, function f̂(e, I, s) is the solution to:

0 =
∂f̂(e, I, s)

∂s
+ Âf̂(e, I, s), subject to boundary conditions

(i) f̂(e, I, s) = 1 if e ≤ ēcrisis(I), and

(ii) f̂(e, I, T ) = 0 if e > ēcrisis(I)

Numerically, the discretized versions of both A and Â were already generated

when solving for price functions. Finite-difference methods can then be used to solve

backward for f and f̂ starting from the terminal condition.

D.3 Feynman-Kac Equation

The Feynman-Kac equation is used to calculate the expected investment rate profile

in Appendix Figure 9. A straightforward application of the formula implies that the

conditional expectation:

u(e, I, 0) = E [i(eτ , Iτ ) | e0 = e, I0 = I]

satisfies a partial differential equation:

0 =
∂u(e, I, s)

∂s
+Au(e, I, s),

subject to the terminal condition that u(e, I, τ) = i(e, I).

Numerically, the discretized version of A was already generated when solving for

price functions. Finite-difference methods can then be used to solve backward for

u(e, I, 0) starting from the terminal condition.
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E Diagnostic Expectations: Additional Details

E.1 Expectations of an AR(1): Comparison to Bordalo et al. (2018a)

Here I show how the discrete-time analogue of this paper’s formulation of diagnostic

expectations relates to the model of Bordalo et al. (2018a) when applied to exogenous

AR(1) processes. Following the notation of BGS, let ωt be an AR(1) process ωt =

bωt−1 + εt, where εt ∼ N (0, σ2).

Discrete-Time Setup. In discrete time, information measure It is given by:

It =
∞∑
j=0

Kjεt−j,

where K is the discount factor governing the speed of information decay.56 The

background context is:

G−t = ωt − It.

As the agent simulates the economy forward from period t:

ISt+τ =
∞∑
j=0

Kj+τεt−j.

Analogous to the continuous-time formulation, for any future value ω′t+τ the simulated

future background context is:

G′−t+τ = ω′t+τ − ISt+τ .
56If the discrete-time model is written with a period frequency of ∆ years, then K = e−κ∆.
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Expectations of ωt+τ . In this discrete-time framework, I start by expressing ωt in

changes:

ωt − ωt−1 = (b− 1)ωt−1 + εt.

One can think of the “drift” of ωt as (b − 1)ωt. For any It, the diagnostic agent

perceives that

hθ(ωt+1|ωt) = N (ωt + (b− 1)ωt + θ(ωt −G−t ), σ2)

= N (bωt + θIt, σ2)

= N (bωt + θ

(
∞∑
j=0

Kjεt−j

)
, σ2)

Simulating forward, for any ω′t+τ the perceived evolution from t+ τ to t+ τ + 1 is:

hθ(ωt+τ+1|ω′t+τ ) = N (ω′t+τ + (b− 1)ω′t+τ + θ(ω′t+τ −G′−t+τ ), σ2)

= N (bω′t+τ + θISt+τ , σ2)

= N (bω′t+τ + θ

(
∞∑
j=0

Kj+τεt−j

)
, σ2).

96



Generally, in this AR(1) context the diagnostic agent will have the following percep-

tions about the distribution of ωt+τ :

hθ(ωt+1|ωt) ∼ N
(
bωt + θIt, σ2

)
hθ(ωt+2|ωt) ∼ N

(
b2ωt + bθIt +KθIt, σ2 + b2σ2

)
...

hθ(ωt+τ |ωt) ∼ N

(
bτωt + θIt

(
τ−1∑
i=0

biKτ−1−i

)
, σ2

τ−1∑
i=0

b2i

)
, or equivalently

hθ(ωt+τ |ωt) ∼ N

(
bτωt + θIt

(
bτ −Kτ

b−K

)
, σ2

τ−1∑
i=0

b2i

)

BGS Equivalence. To reproduce the AR(1) framework of BGS, take K → 0. In

the limit, G−t = ωt − εt = bωt−1. In other words, background context G−t does not

incorporate the most recent shock, but fully incorporates all shocks of further lags.

Looking forward, G′−t+τ = ω′t+τ for all τ ≥ 1.

Consider this paper’s iterative framework for defining expectations. From t to

t + 1, expectations are biased by θ(ωt − G−t ) = θεt. While there is no further bias

from t + 1 onward in the perceived drift of ωt+τ , the perceived level of ωt+τ will still

be biased.

In more detail, at time t the agent believes that the distribution at time t + 1

is N (bωt + θεt, σ
2). Because there is no additional bias in the perceived drift, the

distribution at time t+ 2 is N (b (bωt + θεt) , σ
2 + b2σ2), the distribution at time t+ 3

is N (b2 (bωt + θεt) , σ
2 + b2σ2 + b4σ2), etc. Using the formula above as K → 0, the

distribution at time t+ τ is N (bτωt + bτ−1θεt, σ
2
∑τ−1

i=0 b
2i). This is almost identical

to BGS, with the one difference being that parameter θ here is their parameter θ/b.

Moving from Discrete to Continuous Time. To pass from discrete to continu-

ous time, one needs to set K > 0. When K → 0 only the most recent shock matters.

But, the concept of “only the most recent shock” varies with the length of the period.
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This is especially important when passing to continuous time, where the most recent

shock is an instantaneous Brownian increment. Thus, in this paper I instead adopt a

sentiment function It that is based on multiple lags of past shocks (i.e., K > 0).

E.2 Extensions of the Baseline Model

Objective versus Subjective Shocks. Information measure It ≡
∫ t

0
e−κ(t−s)σdZs

is based on objective shocks, σdZt. This choice is consistent with BGS, who argue that

overreaction to objective news is more consistent with the psychology of diagnostic

expectations.

However, it also tractable to define It based on subjective capital quality shocks.

An agent with a bias of θIt will perceive a subjective shock at time t of σd̂Zt =

−θItdt+ σdZt. In this case, one can define the new information measure as

It =

∫ t

0

e−κ(t−s)σd̂Zs.

This measure of subjective new information evolves according to:

dIt = −κItdt+ σd̂Zt

= −(κ+ θ)Itdt+ σdZt. (65)

Note that the baseline measure of information in equation (3) evolves according to

dIt = −κItdt+ σdZt. Comparing this to equation (65), It decays more quickly when

defined in terms of subjective shocks. This is because an overoptimistic agent will

interpret incoming shocks with a negative bias (and vice-versa for an overpessimistic

agent), leading to a faster unwinding of sentiment.

Multiple Frequencies of Extrapolation. The main text assumes that sentiment

evolves at a single frequency, with shocks fading from It at rate κ. However, it is likely

more psychologically realistic to have sentiment operate over multiple frequencies.

The empirical literature on extrapolative expectations has documented extrapolation
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over a variety of horizons. At a low frequency, Malmendier and Nagel (2011) find that

long-term risk attitudes are shaped by lifetime macroeconomic experiences. Alter-

natively, Greenwood and Shleifer (2014) find that stock market expectations depend

strongly on returns experienced in the past quarter.

The expectations model can be modified to capture multiple frequencies of extrap-

olation. For illustration, consider an agent whose sentiment is a function of a slow-

moving component and a fast-moving component. The agent has a low-frequency

measure of new information:

ILt =

∫ t

0

e−κ
L(t−s)σdZs,

and a high-frequency measure of new information:

IHt =

∫ t

0

e−κ
H(t−s)σdZs,

with κL < κH . The overall measure of new information can be defined as:

It = θLILt + θHIHt .

Parameters θL and θH determine the relative strength of low-frequency and high-

frequency sentiment.

The downside of including multiple sentiment frequencies is that each frequency

requires its own state variable. The main text uses a single frequency for parsimony.
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E.3 Properties of Sentiment It

Sentiment parameter It is an Ornstein-Uhlenbeck (OU) process. This section sketches

some useful mathematical properties of OU processes. A textbook treatment is pro-

vided by Karatzas and Shreve (1998).

Conditional and Unconditional Distributions. Repeating equation (3), “re-

cent information” parameter It is defined as:

It =

∫ t

0

e−κ(t−s)σdZs.

The conditional distribution of It+τ given It is characterized as follows:

It+τ =

∫ t+τ

0

e−κ(t+τ−s)σdZs

= e−κτIt +

∫ t+τ

t

e−κ(t+τ−s)σdZs.

Since {Zt} is a standard Brownian motion with independent Gaussian increments,

It+τ |It is itself Gaussian. The conditional mean of It+τ is e−κτIt. By Itô isometry,

the conditional variance of It+τ is σ2

2κ
(1− e−2κτ ).

The unconditional distribution of the OU process is obtained by taking τ → ∞.

The unconditional distribution of I is Gaussian with mean 0 and variance σ2

2κ
.

Distribution of First Hitting Times. The first hitting time of a stochastic pro-

cess is defined as the time at which a stochastic process first crosses some threshold.

The distribution of first hitting times for an OU process can be characterized analyt-

ically in the special case where the threshold is the OU process’ mean. So, from any

initial level of sentiment It, the time t+ τ at which the OU process first returns to 0

has a known distribution, with a density given by:

h(τ |It) =
|It|
σ
√

2π

(
κ

sinh(κτ)

) 3
2

exp

(
− κI2

t e
−κτ

2σ2 sinh(κτ)
+
κτ

2

)
. (66)
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This is stated without proof, and details are provided in Alili et al. (2005).

Importance of κ for Sentiment Persistence. Let ISDt = It(
σ√
2κ

) denote sentiment

normalized by its unconditional standard deviation. Upon normalizing It by its

standard deviation, volatility parameter σ drops out of the equation for both the

conditional distribution of ISDt+τ and the distribution of first hitting times. These

distributions become a function of only the persistence parameter κ. This shows that

κ is the critical parameter governing the persistence of sentiment.

In detail, the conditional distribution of ISDt+τ given ISDt is Gaussian with mean

e−κτISDt and variance (1− e−2κτ ). Similarly, equation (66) can be rewritten as:

h(τ |ISDt ) =
κ|ISDt |
2
√
π

(
1

sinh(κτ)

) 3
2

exp

(
−(ISDt )2e−κτ

4 sinh(κτ)
+
κτ

2

)
. (67)

Equation (67) shows that the distribution of first hitting times for ISDt depends only

on the initial level of ISDt and κ, but is independent of σ.
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Ornstein-Uhlenbeck Figures: Baseline Calibration.

Figure 11: Conditional CDF. CDF of ISDt+τ |ISDt ∈ {0SD,±1.5SD} for τ ∈ {1, 5}.

Figure 12: 1st hitting times. Hitting time CDF for It ∈ {±1SD,±2SD,±3SD}.
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