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Abstract

This paper studies the consumption-saving decisions of present-biased consumers. Build-

ing on Harris and Laibson (2013), I show that continuous-time methods allow for

present bias to be tractably incorporated into incomplete markets models. First, I

solve a workhorse Aiyagari-Bewley-Huggett model with present-biased consumers. The

equilibrium with present bias features a larger mass of low-liquidity households and a

higher aggregate marginal propensity to consume (MPC), but also a thicker right tail

of high-wealth households. Second, I extend the model to include credit cards, illiquid

assets, and naivete. In this rich economic environment I present closed-form expres-

sions characterizing the effect of present bias on consumption, the demand for illiquid

assets, and welfare. This welfare analysis specifies the channels through which present

bias can matter for policy, and leads to what I call the present-bias dilemma: present

bias has large welfare costs, but individuals have little ability to alleviate these costs

without government intervention.

∗I would like to thank Hunt Allcott, John Campbell, Xavier Gabaix, Thomas Graeber, David Laibson,
Lu Liu, Omeed Maghzian, Benjamin Moll, Matthew Rabin, and Ludwig Straub for helpful comments.
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1 Introduction

There is widespread evidence that consumers exhibit “present bias” across a variety of

decision-making contexts. This evidence exists both in the lab (Ainslie, 1992; Frederick

et al., 2002; Cohen et al., 2020), and in field settings ranging from credit card usage (Meier

and Sprenger, 2010) to retirement savings decisions (Madrian and Shea, 2001) to labor effort

(DellaVigna and Paserman, 2005; Augenblick et al., 2015).

Despite the empirical evidence that consumers exhibit present bias, the modeling of

consumption-saving behavior has been slow to incorporate these insights. This is because

the literature is stuck at an impasse. On the one hand, in stylized “pencil-and-paper”

models in which the consumption function is linear in wealth (e.g., no income uncertainty

and no borrowing constraints), the consumption of present-biased agents is observationally

equivalent to the consumption of exponential agents (Laibson, 1996; Barro, 1999). On

the other hand, though present bias can produce a variety of behaviors in richer economic

environments that must be solved numerically, the equilibrium to these models is often

difficult to characterize in practice.1 Even when well-behaved numerical solutions do exist,

there is often little theoretical justification for the resulting economic dynamics.

The contribution of this paper is to show that continuous-time methods are a path

forward. By recasting present bias in continuous time, this paper develops both the analytical

and the numerical methods to tractably solve incomplete markets models with present-biased

consumers. I use these methods to present a set of new theoretical results characterizing the

consumption-saving behavior of present-biased agents.

The paper proceeds in two steps. First, I study present bias in the workhorse “Aiyagari-

Bewley-Huggett” incomplete markets model. The goal of this step is to build intuition for

present bias in the standard heterogeneous-agent model that economists are familiar with,

and to highlight the tractability gained by recasting present bias in continuous time. Second,

I extend the model to include features such as credit card debt, illiquid assets, and naivete.

1Present bias can generate strategic interactions between selves, making consumption-saving decisions
the equilibrium outcome of a dynamic intrapersonal game. These sorts of models often produce equilibrium
non-uniqueness and consumption pathologies (i.e., highly sensitive consumption functions that feature non-
monotonicities and downward discontinuities). Both of these issues have made models with present bias
difficult to solve in practice (Harris and Laibson, 2001, 2003; Krusell and Smith, 2003; Chatterjee and
Eyigungor, 2016; Cao and Werning, 2018; Laibson and Maxted, 2020).
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In this extended model, continuous-time methods allow me to derive closed-form solutions

characterizing the effect of present bias on consumption-saving decisions, the effect of present

bias on the demand for illiquid assets, and the welfare cost of present bias.

In discrete time, present-biased preferences are characterized by the quasi-hyperbolic dis-

count function: 1, βδ, βδ2, βδ3, ... . Short-run discount factor β creates a disproportionate

focus on the present period by driving a wedge between utility earned “now” and util-

ity earned “later.” Whenever β < 1, preferences are time inconsistent. In the context of

consumption-saving models, present bias implies that each self overconsumes relative to the

preferences of any other self.

The modeling of present bias also requires an assumption about the extent to which

agents are aware of their self-control problems (O’Donoghue and Rabin, 1999, 2001). “So-

phisticated” agents are fully aware of their dynamic inconsistency. “Partially naive” agents

underestimate the magnitude of their self-control problems, and instead expect (incorrectly)

that all future selves will discount according to the discount function: 1, βEδ, βEδ2, βEδ3, ...,

where βE ∈ (β, 1). In the limiting case of βE = 1, “fully naive” agents perceive that all

future selves will behave in a perfectly time-consistent manner. For all but full naivete,

present-biased agents disagree with the expected behavior of future selves. This dynamic

disagreement means that the behavior of present-biased agents is the equilibrium outcome of

a dynamic game played by different temporal selves of the consumer (Strotz, 1956; Laibson,

1997). For methodological purposes I begin by assuming that agents are “sophisticated”

(βE = β), but the model will later be generalized to allow for naivete.

Building on Harris and Laibson (2013), this paper studies present bias in the continuous-

time model that results when the length of each period is taken to zero. The continuous-time

specification of present bias is referred to as Instantaneous Gratification (IG), because each

self lives for a vanishingly short period of time and discounts all future selves discretely by

β. While the assumption that each self lives for a single instant is made for mathemati-

cal convenience, Laibson and Maxted (2020) show that IG preferences closely approximate

discrete-time models with period lengths that are psychologically appropriate.2

2As detailed in Section 2, laboratory studies find that the temporal division between “now” and “later”
is less than one week. However, discrete-time consumption-saving models typically use either quarterly or
annual time-steps that are inconsistent with the high frequency at which present bias operates.
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The first part of this paper presents a benchmark incomplete markets model similar to

Bewley (1986), Huggett (1993), and Aiyagari (1994) (see Section 3).3 I follow Achdou et

al. (2020) and set the model in continuous time. Incomplete markets models have proven

difficult to solve under present bias because the consumption decisions of present-biased

agents are themselves the equilibrium outcome of a dynamic intrapersonal game. The gen-

eral equilibrium to these models therefore takes the form of a nested equilibrium. The “inner

equilibrium” takes market prices as given and solves for the equilibrium to the consumer’s

intrapersonal game. The “outer equilibrium” finds the prices that clear markets when the

individual-level policy functions are aggregated. Extending an important insight of Achdou

et al. (2020), the benefit of continuous time is that the nested equilibrium can be character-

ized by a system of two coupled partial differential equations.

I numerically solve the workhorse Aiyagari-Bewley-Huggett model for exponential pref-

erences (β = 1) and for sophisticated present-biased preferences (β < 1). Both models are

calibrated to match the same average wealth level. Despite average wealth being held con-

stant, wealth inequality is strongly amplified in the present-biased calibration: poor agents

save less, while rich agents save more. The decreased saving of poor agents produces a larger

share of low-liquidity agents who struggle to maintain buffer stocks, and a higher aggregate

MPC. The increased saving of wealthy agents produces a wealth distribution with a thicker

right tail.

Relative to the β = 1 discount function, the calibrated β < 1 discount function features

less patience in the short run, but more patience in the long run. Which effect dominates

depends on whether the agent is poor or rich. To formalize this result, I present a gener-

alized Euler equation for IG agents. This equation shows that IG agents have an effective

discount rate that varies with their MPC. Intuitively, high MPCs discourage saving because

a marginal dollar of savings will be quickly (over)consumed by future selves.4 When markets

are incomplete, the consumption function is steeper for low-liquidity agents than for high-

liquidity agents. Accordingly, present-biased consumers will act relatively more impatiently

near the borrowing constraint, and relatively more patiently as they accumulate wealth.

3Seminal work also includes Imrohoroğlu (1989), Zeldes (1989), Deaton (1991), Carroll (1997), and Gour-
inchas and Parker (2002).

4This result is similar to the discrete-time Hyperbolic Euler Relation of Harris and Laibson (2001).
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The second part of this paper is conducted in partial equilibrium (see Sections 5 and

6). I leverage the tractability of IG preferences to develop a new set of theoretical results

characterizing the behavior of present-biased consumers. These results rely on two key

assumptions: (i) individuals have constant relative risk aversion (CRRA) utility; and (ii)

the borrowing limit never binds in equilibrium (e.g., it is the natural borrowing limit).

When these assumptions hold, I show that the IG agent’s intrapersonal equilibrium can be

characterized directly from the behavior of a standard exponential agent. This simple but

powerful observation allows for the relative effect of present bias to be expressed in closed

form, even in complex models that must be solved numerically.

Though the assumption of non-binding borrowing limits may seem strong, I first extend

the workhorse model so that it allows for arbitrarily onerous interest rates on borrowing (i.e.,

“soft borrowing constraints”). That is, the model allows for the interest rate on borrowing to

be larger than the interest rate on saving, and for the interest rate on borrowing to become

arbitrarily large as the agent borrows more. I show in this environment that β < 1 provides

a strong motive for consumers to accumulate high-interest debt.

Next, I extend the model to include an illiquid asset in addition to the liquid asset.

Asset illiquidity is an important feature of state of the art heterogeneous-agent models,

such as the HANK model of Kaplan et al. (2018), in order to generate “wealthy hand-to-

mouth” households. Asset illiquidity is also a central topic for research on present bias,

which argues that present-biased consumers seek out illiquid wealth as a commitment device

to increase saving and limit overconsumption (Strotz, 1956; Laibson, 1997; Angeletos et

al., 2001; Amador et al., 2006). This research has been influential in the policy sphere,

encouraging the use of illiquid accounts to increase retirement and rainy-day savings (see,

for example, the discussion of “life-cycle myopia” in Feldstein and Liebman, 2002).

In contrast to this research, I show in a general incomplete markets model that present

bias does not necessarily affect the demand for illiquid assets. Provided that the borrowing

constraint does not bind in equilibrium, present-biased consumers do not seek out illiquidity

because illiquid assets do not actually limit overconsumption. Intuitively, attempting to

reduce overconsumption by imposing asset illiquidity is like playing a game of Whack-a-

Mole. Since this is a two-asset model, the illiquid asset is never needed to fund current
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consumption. Instead, the agent can always increase their consumption by adjusting their

holdings of the liquid asset. Indeed, the existence of a liquid asset completely undoes any

commitment properties of the illiquid asset. Retirement systems around the world rely on

illiquidity to incentivize retirement savings (Beshears et al., 2015). The results in this paper

cast doubt on the benefits of such policies.

Third, I extend the model again to allow the consumer to be naive about their self-control

problems. The consumption choices of present-biased agents have only been characterized in

simple economic environments that can be solved by hand. An open question is how present

bias affects consumption-saving decisions in more realistic environments. In this general

model featuring stochastic income, flexible soft borrowing constraints, liquid and illiquid

assets, and potential naivete, the effect of present bias on consumption can be characterized

with a simple closed-form expression. Let β denote the agent’s true short-run discount

factor, let βE ∈ [β, 1] denote their perceived present bias, and let γ denote the coefficient

of relative risk aversion. If a standard exponential agent consumes č, a present-biased agent

will consume
(
βE

β

) 1
γ
(

γ
γ−(1−βE)

)
× č.

This simple consumption equation can also be used to characterize the effect of naivete

on consumption-saving decisions. If a sophisticated agent consumes c, a naive agent will

consume
(
βE

β

) 1
γ γ−(1−β)
γ−(1−βE)

× c. Note that this implies an observational equivalence between

sophisticates and naifs. A sophisticated agent with short-run discount factor β will con-

sume identically to a partially naive agent with perceived short-run discount factor βE and

true short-run discount factor β′ = βE
[
γ−(1−β)
γ−(1−βE)

]γ
. One takeaway from this observational

equivalence is that it will be difficult to identify sophistication versus naivete using data on

consumption choices. Equivalently, the assumption of sophistication versus naivete may not

be particularly important for the predictions of calibrated consumption-saving models.

Finally, I show that IG preferences allow for a closed-form characterization of the welfare

cost of present bias in this extended model with stochastic income, costly borrowing, assets of

varying liquidity, and possible naivete. I consider the following experiment in order to present

a welfare metric that applies in this general consumption-saving environment. Assume that

there exists a perfect commitment device that forces all future selves to behave with complete

self-control (β = 1), but this device costs a perpetual consumption tax of τ . Then, the welfare
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cost of present bias is equivalent to a perpetual consumption tax of τ = 1 −
(

αγ

1−γ+γα

) 1
1−γ

,

where α =
(
γ−(1−βE)

γ

)(
β
βE

) 1
γ
.

This welfare cost is large. Under a relatively conservative calibration with β = βE = 0.75

and γ = 2, the cost of present bias is equivalent to a perpetual 2% consumption tax. Under

full naivete (βE = 1), this cost rises to 2.4%. If β = 0.5 and βE = 1, as estimated in Laibson

et al. (2020a), the welfare cost of present bias is equivalent to a perpetual consumption tax

of 17.2%. These costs are at least an order of magnitude larger than back-of-the-envelope

estimates of the welfare cost of business cycles (Lucas, 1987), and sit at the upper end of

calculations in the literature (e.g., Storesletten et al., 2001; Krebs, 2007; Krusell et al., 2009).

From the perspective of an individual consumer, this welfare result leads to what I refer to

as the present-bias dilemma: though the welfare cost of present bias is large, it is also difficult

for an individual to reduce. One corollary of my welfare characterization is that self-imposed

financial commitment devices, such as penalty borrowing rates and asset illiquidity, improve

the welfare of an IG agent if and only if they also improve the welfare of a β = 1 agent.

This corollary provides an answer to an outstanding empirical puzzle that asks why present-

biased agents do not make commitments (e.g., Laibson, 2015): commitment devices may not

actually make the present-biased agent better off. Though self-imposed financial penalties

do improve incentives, they do not generate perfect commitment. The benefit of improved

incentives is always dominated by the added financial cost of the penalized behavior that

still does occur.

Crucially, government interventions differ from the sorts of financial commitments that

any individual can self-impose. Governments can not only impose corrective taxes (which

alone do not improve welfare), but can also redistribute revenues back to consumers. Unlike

financial penalties alone, the combination of penalties plus redistribution can be welfare-

improving. Since the welfare cost of present bias is both large and difficult for any individual

to mitigate, the present-bias dilemma provides an important justification for government

interventions that can alleviate present-bias internalities.

Related Literature. The methodological goal of this paper is to show that continuous-

time IG preferences are an effective tool for modeling present bias tractably. These methods
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are applied and further developed in Laibson, Maxted and Moll (2020b), who use (naive)

continuous-time IG preferences to model the consumption response of present-biased house-

holds to fiscal and monetary policy. That paper builds a two-asset model with liquid wealth

and illiquid home equity, and evaluates the impact of present bias on households’ consump-

tion and mortgage-refinancing decisions.

The IG model was first developed in Harris and Laibson (2013). Laibson and Maxted

(2020) show that discrete-time models with short period lengths (e.g., 1 week) are closely

approximated by IG models. Other papers studying present bias in continuous time include

Barro (1999), Luttmer and Mariotti (2003), and Cao and Werning (2016).

One reason that continuous-time IG preferences are useful is that discrete-time models

of present bias suffer from consumption pathologies and equilibrium non-uniqueness. These

equilibrium features make discrete-time models of present bias difficult to characterize. Har-

ris and Laibson (2001), Harris and Laibson (2003), Cao and Werning (2018), and Laibson

and Maxted (2020) discuss these issues in detail.

In the first step, this paper studies an Aiyagari-Bewley-Huggett model in continuous time,

building directly on Achdou et al. (2020). Maliar and Maliar (2006) solve a similar model

in discrete time but are forced to make smoothness assumptions, which are only valid for β

near 1, in order to solve the model. Such assumptions are not needed in continuous time.

Angeletos et al. (2001) and Laibson et al. (2020a) also study discrete-time consumption-

saving models with present-biased agents.

In the second step, I extend the model to include soft constraints and an illiquid asset,

similar to Kaplan et al. (2018). My theoretical results on high-interest borrowing add to

a large literature studying how present bias encourages short-term borrowing on unsecured

accounts such as credit cards (Ausubel, 1991; Laibson et al., 2003; Heidhues and Kőszegi,

2010; Meier and Sprenger, 2010; Gathergood, 2012; Kuchler and Pagel, 2020) and payday

loans (Skiba and Tobacman, 2018; Allcott et al., 2020). I also study the interaction of present

bias with asset illiquidity, building on papers such as Strotz (1956), Laibson (1997), Laibson

et al. (1998), Amador et al. (2006), Galperti (2015), Bond and Sigurdsson (2018), Moser and

Olea de Souza e Silva (2019), and Beshears et al. (2020).5

5See also Attanasio et al. (2020) and Kovacs and Moran (2020) for an analysis of temptation preferences.

8



I then generalize the model to allow for naivete. Seminal work on naivete includes Akerlof

(1991) and O’Donoghue and Rabin (1999, 2001). Naivete has been shown to have large effects

on contract-choice decisions (DellaVigna and Malmendier, 2004, 2006; Gabaix and Laibson,

2006; Heidhues and Kőszegi, 2010). However, little is known about the effect of naivete on

consumption decisions. One exception is Tobacman (2007), who derives an Euler equation

for naive consumers under the assumption that the consumption function is differentiable.

Finally, I use IG preferences to characterize the welfare cost of present bias. For a dis-

cussion of welfare in models with time-inconsistent preferences, see Bernheim and Rangel

(2009) and Bernheim and Taubinsky (2018). This analysis also relates to the more gen-

eral literature studying present-biased agents’ demand for commitment. For overviews, see

DellaVigna (2009), Bryan et al. (2010), Laibson (2015), Bernheim and Taubinsky (2018),

and Carrera et al. (2020). Corrective taxation of behavioral agents is studied in papers such

as Gruber and Köszegi (2001), O’Donoghue and Rabin (2006), Mullainathan et al. (2011),

Allcott et al. (2019), Farhi and Gabaix (2020), and Lockwood (Forthcoming).

2 Instantaneous Gratification: A Summary

I begin by summarizing the model of Instantaneous Gratification (IG) time preferences. In

discrete time, the quasi-hyperbolic discount function is given by: 1, βδ, βδ2, βδ3, ... . This

discount function captures “present bias,” because the current self discounts the utility of

all future selves by β. IG preferences are the continuous-time limit of this discount function,

where each self lives for a vanishingly short length of time. The IG specification of present

bias was first presented in Harris and Laibson (2013).

Let the current period be denoted t. Taking the limit of the discrete-time discount

function, IG time preferences are given by the following discount function D(s) for s ≥ t:

D(s) =

1 if s = t

βe−ρ(s−t) if s > t

. (1)

Parameter ρ is the exponential discount rate. Parameter β ≤ 1 is the short-run discount
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factor, which drives a wedge between utility earned “now” and utility earned “later.” When

β < 1, discount function D(s) features a discontinuity at s = t. This is because the current

self lives for only a single instant, and discounts all future selves by β. For reference, Figure

1 plots D(s) for two calibrations. The black curve plots a standard exponential discount

function with β = 1 and ρ = 3.5%. The red curve plots an IG discount function with

β = 0.75 and ρ = 2.5%. These are the two time-preference calibrations that I will study

numerically in the Aiyagari-Bewley-Huggett model of Section 3.3.

Figure 1: Discount function D(s). The red curve plots an IG discount function with
β = 0.75 and ρ = 2.5%. The black curve plots a standard exponential discount function
with β = 1 and ρ = 3.5%. When β < 1 the IG discount function features a discontinuity
between “now” and “later.”

As discussed in Laibson and Maxted (2020), IG preferences should be thought of as a

mathematically tractable limit case, not as a psychologically realistic model of the discount

function. The temporal division between “now” and “later” is certainly longer than a single

instant dt. However, this temporal division is also unlikely to extend to the quarterly or

annual horizon that discrete-time models typically use. Augenblick (2018) estimates that the

division between“now” and “later” is approximately 2 hours. Augenblick and Rabin (2019)

find that essentially all discounting occurs within one week. Using fMRI data, McClure

et al. (2007) estimate that food rewards are discounted by 50% over a one-hour horizon.6

6See also DellaVigna (2018) for a discussion.
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Laibson and Maxted (2020) show that IG models provide a close approximation to discrete-

time consumption-saving models with time-steps that are psychologically appropriate (i.e.,

each period lasts for one week or less). This paper takes as given the validity of the IG

approximation, and uses IG preferences to tractably incorporate present bias into incomplete

markets models.7

An important property of the IG discount function is that discounting at short horizons

is relatively sensitive to β, while discounting at long horizons is relatively sensitive to ρ. For

all s ≥ t:

∂ ln(D(s))

∂(− ln(β))
= −1, and

∂ ln(D(s))

∂ρ
= −s.

Thus, the elasticity of D(s) with respect to short-run discount rate − ln(β) is constant, while

the elasticity of D(s) with respect to long-run discount rate ρ is increasing in horizon s.

Intrapersonal Equilibrium. IG preferences are time inconsistent when β < 1. As long as

the agent is at least partially aware of their self-control problems (βE < 1), each self disagrees

with the perceived consumption choices of future selves. This means that consumption is

modeled as a dynamic intrapersonal game played by different “selves” of the same consumer

(Strotz, 1956; Pollak, 1968; Laibson, 1997).

Present bias complicates the general equilibrium analysis of consumption-saving models

because each consumer’s policy functions are the result of an intrapersonal game for which an

equilibrium needs to be derived. Taking prices as given, the equilibrium of this intrapersonal

game will be referred to as an intrapersonal equilibrium. In general equilibrium, the policy

functions that are produced from consumers’ intrapersonal equilibria must also clear markets

at the aggregate level.

I follow Harris and Laibson (2013) in studying stationary Markov-perfect equilibria to

7This discussion suggests that one could also study present bias in discrete time, but with short (e.g.
daily) period lengths. There are two drawbacks to this approach relative to continuous time. First, discrete-
time models with short time-steps can be very slow to solve numerically, whereas continuous-time numerical
methods are fast (Achdou et al., 2020). Second, the discrete-time specification cannot be easily characterized
analytically, while this paper uses IG preferences to prove a new set of theoretical results about present bias.
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the intrapersonal game (Maskin and Tirole, 2001).8 For the models analyzed in this paper,

a critical property of IG preferences is that the intrapersonal equilibrium is unique under

this refinement. The intrapersonal equilibrium satisfies a partial differential equation, and

well-developed numerical methods exist for characterizing this equilibrium (see Appendix A).

This is in contrast to discrete time, where equilibria may not be unique and the equilibrium

identified by numerical methods often contains pathological properties.9

For expositional purposes this paper adopts the baseline assumption that the agent is

sophisticated about their present bias (βE = β). The assumption of sophistication is gen-

eralized in Section 5.3 to allow for naivete. Economists have differing views on the extent

to which agents are aware of their self-control problems (see e.g. DellaVigna (2018) for a

discussion). A prevailing consensus is that partial naivete is most likely, with the degree of

naivete being higher in novel environments and lower in recurrent situations (Allcott et al.,

2020). I do not take a strong stand on this issue. For all levels of naivete, this paper pro-

vides a general method for solving models with present-biased agents that is analytically and

numerically tractable, robust to consumption pathologies, and features a unique equilibrium.

3 The Benchmark Aiyagari-Bewley-Huggett Model

The first step of this paper is to embed IG preferences into the workhorse “Aiyagari-Bewley-

Huggett” heterogeneous-agent model. I use the continuous-time specification of Achdou et

al. (2020). The Aiyagari-Bewley-Huggett model is the standard heterogeneous-agent model

that macroeconomists are familiar with. Though stylized, the model serves as an important

building-block for a wide range of quantitative applications.10

I study an endowment economy in which a continuum of agents have heterogeneous

income and wealth profiles. Consumers are able to self-insure against income fluctuations

by accumulating a buffer-stock of savings. At the aggregate level there exists an exogenous

8The weaker subgame-perfect refinement introduces a variety of interesting equilibria (Laibson, 1994;
Bernheim et al., 2015). Though the restriction to Markov-perfect equilibria is strong, an analysis of other
equilibrium refinements is beyond the scope of this paper.

9See Harris and Laibson (2001, 2003), Krusell and Smith (2003), and Cao and Werning (2016) for dis-
cussions of equilibrium pathologies and non-uniqueness. Laibson and Maxted (2020) provide a summary.

10See Heathcote et al. (2009), Guvenen (2011), Quadrini and Ŕıos-Rull (2015), Krueger et al. (2016),
De Nardi and Fella (2017), Benhabib and Bisin (2018), and Kaplan and Violante (2018) for surveys.
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supply B of bonds. Interest rate r is determined in general equilibrium to equate the supply

of savings with B.

When β < 1, the solution to this model takes the form of a nested equilibrium. There is

a sequence of two equilibria that must be solved jointly: (i) the intrapersonal equilibrium of

the IG agent, taking prices as given; and (ii) the general equilibrium, in which the individual-

level policy functions are aggregated and markets clear. In continuous time, the joint solution

to these equilibria takes the form of two coupled PDEs.

3.1 Consumer Problem (Intrapersonal Equilibrium)

Budgets. Let at denote an individual’s wealth at time t. at evolves as follows:

dat = (yt + rat − ct)dt. (2)

yt is a stochastic endowment income process and ct is consumption. yt follows a two-state

Poisson process yt ∈ {y1, y2}, with 0 < y1 < y2. The income process jumps from state y1 to

y2 with intensity λ1, and from y2 to y1 with intensity λ2.11

Wealth is subject to the borrowing limit

at ≥ a, (3)

where a ∈ [−y1

r
, 0].12 When β < 1 the equilibrium is sensitive to whether or not this limit

binds in equilibrium. Binding constraints shorten the consumer’s effective horizon. As will

be detailed below, this interacts with present bias to decrease the savings rate near a.

11The two-state Poisson process is chosen for simplicity. My results can be extended to more general
income processes.

12The natural borrowing limit is −y1r . This is the maximum amount that the agent can borrow such that
their income is always sufficient to cover their debt service payments.
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Utility and Value. Individuals accrue CRRA utility over consumption:

u(c) =


c1−γ−1

1−γ if γ 6= 1

ln(c) if γ = 1

. (4)

Consumers have sophisticated Instantaneous Gratification (IG) time preferences. Under IG

time preferences, the continuation-value function is standard:

vt = Et
[∫ ∞

t

e−ρ(s−t)u(cs)ds

]
. (5)

The current-value function is given by

wt = βvt. (6)

The current self discounts the utility of all future selves by β. In continuous time, the current

self lives for just a single instant. The utility accrued by the current self therefore has no

measurable impact on the overall value function, so wt = βvt.
13

Throughout this paper, I impose the restriction that γ > 1 − β. This ensures that the

consumer’s desire to smooth consumption (γ) is greater than their time-inconsistency (1−β).

Intrapersonal Equilibrium. A stationary Markov-perfect equilibrium to the IG agent’s

intrapersonal problem is characterized by the following differential equation and optimality

condition on a ∈ [a,∞) and j ∈ {1, 2}:14

ρvj(a) = u(cj(a)) + v′j(a)(yj + ra− cj(a)) + λj(v−j(a)− vj(a)), (7)

u′(cj(a)) =

βv
′
j(a) if a > a

max{βv′j(a), u′(yj + ra)} if a = a

. (8)

Equation (7) defines the continuation-value function v of the IG agent. It says that the

13Heuristically, wt is given by wt = u(ct)dt+ βEt
[∫∞
t+dt

e−ρ(s−t)u(cs)ds
]
.

14Under certain calibrations v will have a convex kink. Viscosity solutions are therefore used.
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instantaneous change in value due to discounting (ρv) must equal the current utility flow

(u(c)) plus the expected instantaneous change in the value function (Edv/dt).15

Equation (8) defines the IG agent’s consumption choice. In continuous time, consumption

is unconstrained for all a > a.16 Whenever consumption is unconstrained, the IG agent sets

the marginal utility of consumption equal to the marginal value of current wealth: u′(cj(a)) =

w′j(a) = βv′j(a). At the borrowing constraint, the optimality condition is refined to ensure

that cj(a) ≤ yj + ra. If βv′j(a) ≥ u′(yj + ra) the agent will choose to set cj(a) ≤ yj + ra.

Otherwise, consumption is constrained to yj + ra.

Equations (7) and (8) look similar to the HJB equation that would arise for a standard

exponential agent with β = 1. As in Achdou et al. (2020), the HJB equation of a β = 1

agent is given by:

ρvj(a) = max
c

u(c) + v′j(a)(yj + ra− c) + λj(v−j(a)− vj(a)).

Present bias alters the consumption optimality condition (equation (8)). The IG agent sets

u′(cj(a)) = βv′j(a) as opposed to u′(cj(a)) = v′j(a). In both cases, the current self sets

the marginal utility of consumption equal to the marginal value of current wealth. However,

under IG preferences the marginal value of wealth is discounted by β. This is because wealth

is consumed by future selves.

An important property of IG preferences is that the value function v is unique. This is

in contrast to discrete time, where non-uniqueness is known to exist in some deterministic

models (Krusell and Smith, 2003; Cao and Werning, 2016), and uniqueness in stochastic

models can only be proven for β close to 1 (Harris and Laibson, 2003).

Proposition 1. The value function vj(a) of the IG agent’s intrapersonal game is unique.

Proof. See Appendix C. The proof relies on methods that are presented in Section 4.

15See Laibson and Maxted (2020) for a derivation of (7) as the limit of a discrete-time model.
16For all a > a, the agent can adopt an arbitrarily high consumption rate without violating the borrowing

constraint, so long as this rate of consumption persists for a short enough period of time.
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3.2 General Equilibrium

To solve for a general equilibrium to this heterogeneous-agent model, the intrapersonal equi-

librium of IG agents is aggregated and bond market clearing is imposed. To close the model

as simply as possible, I assume that there is an exogenous supply of safe debt B ∈ (a,∞)

that households can hold (Huggett, 1993). It is well known that the model can be closed in

alternate ways (e.g., Aiyagari, 1994). This paper focuses on the demand side of the economy,

where present-biased preferences interact with incomplete markets. Simplicity is preferred

on the supply side for expositional clarity.

Let gj(a, t) denote the distribution of wealth and income at time t, such that
∫∞
a
g1(a, t)da+∫∞

a
g2(a, t)da = 1. Since this is an endowment economy with exogenous income, the one price

that must be pinned down in general equilibrium is the interest rate r. Given r, the con-

sumer’s intrapersonal equilibrium is described by equations (7) and (8). The resulting policy

functions give rise to a Kolmogorov Forward (KF) equation that characterizes the evolution

of the aggregate wealth distribution. In a stationary equilibrium the distribution of wealth

is constant:

0 = − ∂

∂a
[sj(a)gj(a)]− λjgj(a) + λ−jg−j(a), (9)

where sj(a) is the savings policy function sj(a) = yj +ra− cj(a). Equations (7) and (8), plus

KF equation (9), define a steady state aggregate savings function:

S(r) =

∫ ∞
a

ag1(a)da+

∫ ∞
a

ag2(a)da. (10)

The bond market clears when when S(r) = B.

The action in this model occurs on the demand side of the economy, where consumers are

heterogeneous. Present bias adds an additional layer of complexity by making the individ-

ual’s problem itself a dynamic game. The benefit of the continuous-time approach taken in

this paper is that the intrapersonal equilibrium can be characterized by a partial differential

equation (equation (7)). Following Achdou et al. (2020), a general equilibrium can then be

found by coupling the KF equation in (9) with the IG agent’s intrapersonal equilibrium. Us-
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ing this simple approach, this paper is among the first to solve a general equilibrium model

where consumers have present bias and policy functions are non-linear.17

3.3 Model Solution: Present Bias and Consumption-Saving Deci-

sions in Equilibrium

I now solve this workhorse model numerically to compare the equilibrium of an economy

with IG consumers (β < 1) to an economy with exponential consumers (β = 1). After-

wards, I provide a set of propositions that formalize equilibrium properties of this workhorse

heterogeneous-agent model.

Stylized Calibration. I calibrate the economy to roughly reflect the problem of a typical

American household. Average income is normalized to one. I set y1 = 0.74 and y2 = 1.26,

with a job switching rate of λ1 = λ2 = 0.19. This calibration is a two-state discretization of

the income process used in Guerrieri and Lorenzoni (2017).18

Borrowing constraint a = −1
3
, which corresponds to the average credit limit reported

in the 2016 Survey of Consumer Finances (Laibson et al., 2020b). I set the coefficient of

relative risk aversion γ = 2. The exogenous supply of bonds is calibrated to B = 3 in order

to capture the ratio of wealth to income in the United States (Kaplan et al., 2018).

I target a steady-state interest rate to 3%.19 The discount function is calibrated internally

to produce this interest rate in equilibrium. In the exponential model with β = 1, r = 3%

is produced by ρ = 3.5%. In the IG calibration I set β = 0.75. The calibration of β = 0.75

is a conservative choice in the lifecycle literature, and the results that follow become more

17One relevant paper in discrete time is Maliar and Maliar (2006). In order to solve the model numerically
the authors assume that the consumption function is continuous and differentiable. However, consumption
pathologies are known to arise in these sorts of discrete-time models (Harris and Laibson, 2001, 2003; Laibson
and Maxted, 2020). By using IG preferences, no such approximations are needed here.

18Guerrieri and Lorenzoni (2017) assume that log-income follows an AR(1) at a quarterly frequency:

log(yt+1) = ρ
(

log(yt)− σ2

2

)
+ σεt+1. Using the estimates of Floden and Lindé (2001), this process is

calibrated with persistence ρ = 0.967 and variance σ2 = 0.017. I convert this quarterly AR(1) into an
Ornstein-Uhlenbeck process, and then discretize the Ornstein-Uhlenbeck process into two states using finite-
difference methods. I set the income states to ±1 standard deviation. With only two income states, the
non-linearity created by exponentiating log-income is lost.

19A downside of this simple model is that all wealth is risk free. A 3% interest rate is somewhere between
the return on risk-free assets and the return on risky assets.
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stark as β decreases.20 Given β = 0.75, ρ = 2.5% produces a 3% steady-state interest rate.

To solve this model numerically I build on the finite difference methods presented in

Achdou et al. (2020). Barles and Souganidis (1991) prove that a finite difference scheme

converges to the unique viscosity solution of an HJB equation whenever three conditions are

met: (i) monotonicity, (ii) stability, and (iii) consistency. For β < 1, a finite difference scheme

cannot be applied directly to equations (7) and (8) because the monotonicity property is not

satisfied. This paper develops novel numerical methods for reestablishing a convergent finite

difference scheme when β < 1. Details are given in Appendix A.

Consumption and Saving. The top panel of Figure 2 plots the consumption function

for the β = 0.75 calibration and the β = 1 calibration. The β = 1 consumption function is

standard (see Achdou et al. (2020) for details). For β = 0.75, consumption is well-behaved

in that it does not suffer from pathologies on the interior of the wealth space (Laibson and

Maxted, 2020). However, the consumption function features a discontinuity at a = a when

y = y1.21 This consumption discontinuity is produced by the corresponding discontinuity in

discount function D(s). Consider the self in control an instant before the constraint binds.

This self does not want to smooth consumption with the next self (for whom the constraint

will bind), since the self in control discounts the utility of the next self by β.

The bottom panel of Figure 2 plots the corresponding savings function sj(a) = yj + ra−

cj(a) for both calibrations. Near a the IG agent has a lower savings rate than the exponential

agent. This pattern reverses as a increases. In short, the IG agent saves less when poor but

saves more when wealthy. Relative to the β = 1 agent, the IG agent has both an incentive

for lower saving (β < 1) and an incentive for higher saving (a lower value of ρ). When the

consumption function is non-linear, the relative impact of β versus ρ varies over the state

space. Near a, β < 1 dominates and the IG agent saves less than the exponential agent.

Since the relative impact of β versus ρ must exactly offset in general equilibrium (so that

S(r) = B), away from a the low value of ρ dominates and the IG agent saves more than the

20For example, Angeletos et al. (2001) set β = 0.7, arguing that this is consistent with laboratory experi-
ments. Laibson et al. (2020a) estimate β = 0.5 in a structural lifecycle model. Allcott et al. (2020) estimate
β = 0.75 on a sample of payday loan users.

21These sorts of predictable consumption discontinuities are observed empirically, and are a challenge for
rational models to match (e.g., Mastrobuoni and Weinberg, 2009; Ganong and Noel, 2019).
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exponential agent.

Figure 2: Equilibrium Consumption-Saving Decisions. This figure plots the consump-
tion function (top) and the savings function (bottom) for the β = 0.75 calibration and the
β = 1 calibration.

There are two reasons why the relative effect of β < 1 matters more for low levels

of wealth. First, present bias creates a disagreement between successive selves that is in-

creasing in the slope of the consumption function (i.e., the instantaneous MPC). Since the

consumption function is concave, the slope of the consumption function is highest near a.

This decreases the savings rate near a. Second, in the case where the borrowing constraint

binds, time inconsistency interacts with the consumer’s effective planning horizon to lower
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the savings rate near a.22,23

The intuition for both effects is as follows. Sophisticated present bias means that the

current self distrusts the consumption decisions of future selves. This has offsetting effects on

the current self’s incentive to save. On the one hand, the current self knows that wealth will

be spent imprudently in the future. This decreases the savings rate of self t. On the other

hand, because self t knows that future selves will not save enough, self t has an incentive to

set aside wealth today in order to buffer against future overconsumption. This increases the

savings rate of self t. The relative strength of the second effect depends on both the MPC

of future selves and the effective planning horizon. If future selves adopt a high MPC then

marginal savings by self t will be quickly consumed, reducing self t’s ability to compensate

for the overconsumption of future selves. Similarly, binding borrowing constraints shorten

the consumer’s effective planning horizon by limiting self t’s ability to pass wealth far into

the future (because any marginal savings will be fully consumed in finite time). This again

reduces the incentive to save.

This MPC-dependent savings incentive is formalized in Corollary 3 below, which presents

a generalized Euler equation for IG agents. This is the continuous-time analogue to the Hy-

perbolic Euler Relation presented in Harris and Laibson (2001). Proposition 4 characterizes

the interaction between present bias and the planning horizon near a, which is responsible

for the consumption discontinuity at a.

Distributions. Figure 3 plots the stationary distribution of consumers in the two calibra-

tions. By bond market clearing (with B = 3), the aggregate wealth level is constant across

the two calibrations. However, the underlying distribution of wealth differs considerably.

Relative to β = 1, the β = 0.75 calibration features both a larger share of agents near a and

a thicker right tail. This is consistent with the savings functions shown in Figure 2. Near

a the IG agent has difficulty generating precautionary savings. However, the lower long-run

22The effective planning horizon can be defined as the minimum length of time over which an additional ε
of wealth given at time t will alter the equilibrium path of wealth. The effective planning horizon becomes
arbitrarily short as the agent nears a, because any marginal saving by self t only affects the equilibrium path
of wealth until the constraint a is hit. Alternatively, the effective planning horizon becomes arbitrarily long
as a→∞ (or by calibrating a ≤ −y1r ).

23Note that the borrowing constraint will not necessarily bind in equilibrium (e.g., a = −y1
r ). When the

constraint does not bind, this second effect disappears.
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discount rate of the IG agent means that the IG agent also adopts a higher savings rate as

a increases. This generates the thicker right tail observed in Figure 3.

Figure 3: The Distribution of Wealth. This figure shows the stationary wealth distribu-
tion for the β = 0.75 calibration and the β = 1 calibration.

Quantifying these differences, Table 1 compares various measures of wealth inequality

across the two calibrations. Wealth inequality is much higher for the β = 0.75 economy. The

maximum wealth level attained in the β = 0.75 economy is twice as large as the maximum

wealth level attained in the β = 1 economy.24 The β = 0.75 economy also features more

wealth in the top 0.1%, 1%, 5%, and 10%. However, the β = 0.75 economy produces almost

four times as many agents constrained at a.25 As shown in Panel C of the table, all of

these differences in wealth inequality arise even under the restriction that aggregate wealth

is constant across the two calibrations.

One way to contextualize the results in Table 1 is to note that present bias generates

similar effects on the wealth distribution as heterogeneous time preferences.26 While mod-

24For further intuition, Remark 7 presents a closed-form approximation for the maximum wealth level. It
is a known feature of these models that they feature a bounded wealth distribution (Achdou et al., 2020).

25Gross and Souleles (2002) estimate that changes to credit limits increase borrowing by 10-14%. Among
new credit card applicants, Agarwal et al. (2018) document that credit limit increases generate additional
borrowing for the majority of households. Both of these findings are consistent with the existence of a mass
of agents who are close to liquidity constraints.

26Heterogenous time preferences are a tool that has frequently been employed in macroeconomic models
to generate realistic wealth distributions (e.g., Campbell and Mankiw, 1989; Krusell and Smith, 1998).
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β = 1 β = 0.75
Panel A: Upper Wealth Moments

Maximum Wealth (amax) 71.2 154.4
Average Wealth | Top 0.1 % 14.7 21.9
Average Wealth | Top 1 % 11.7 16.7
Average Wealth | Top 5 % 9.3 12.5
Average Wealth | Top 10 % 8.1 10.6

Panel B: Lower Wealth Moments
Share a < 0 8.0% 18.0%
Share a = a 3.2% 11.9%
Average Wealth | Bottom 50 % 1.1 0.5

Panel C: Aggregate Wealth Moments
Standard Deviation a 3.8 4.5
Mean a 3.0 3.0
Median a 2.6 2.0

Table 1: Wealth Distribution Moments. This table characterizes the wealth distribution
for the β = 0.75 calibration and the β = 1 calibration.

els with heterogeneous time preferences impose preference heterogeneity across individuals,

present bias instead generates effective time-preference heterogeneity within individuals that

varies with wealth. Near a the IG agent acts impatiently. This produces a large mass of

constrained agents. IG preferences simultaneously generate a long right tail in the wealth

distribution, since the IG agent acts more patiently as their wealth increases. It is well-

known that heterogeneous-agent models of the type solved here produce counterfactually

low levels of wealth inequality when β = 1 (Carroll, 1997; Quadrini et al., 1997; Quadrini,

1999). While this numerical example is far too stylized to make any quantitative claims,

present bias moves these models in the right direction.27

The Marginal Propensity to Consume (MPC). Uninsurable income shocks generate

state-dependent MPCs. To study consumers’ MPCs in this model, I follow Achdou et al.

(2020) who define the MPC as follows:

Definition 2 (Achdou et al. (2020) Definition 1). The Marginal Propensity to Consume

27Mian et al. (2020) document that wealthy households have higher savings rates than poor households,
and Fagereng et al. (2019) find that (net) savings rates are approximately constant in wealth. Though the
IG model cannot replicate these facts, the IG model performs better than the exponential model because
the savings rate declines more slowly in wealth for the IG calibration.

22



over a period τ is given by

MPCj,τ (a) = C ′j,τ (a), where (11)

Cj,τ (a) = Et
[∫ t+τ

t

cj(as)ds | at = a, yt = yj

]
. (12)

In equation (11) the MPC is defined over a discrete unit of time τ . While one could also

study the instantaneous MPC of c′j(a), the cumulative MPC is more empirically relevant

because consumption is typically observed at a quarterly and/or annual horizon. The MPC

can be computed numerically using the Feynman-Kac formula.

Figure 4 plots the quarterly MPC in the two calibrations. Near a the MPC is larger for

the IG agent because the IG agent lacks the self-control to smooth consumption into the

borrowing limit. Away from a the MPC is smaller for the IG agent. Here the lower value of

ρ dominates, and the IG agent adopts a higher savings rate than the exponential agent.

Figure 4: MPCs. This figure plots quarterly MPCs for the β = 0.75 calibration and the
β = 1 calibration.

The MPC analysis in Figure 4 does not account for the distribution of agents across

the high- and low-MPC parts of the state space. In particular, there is more mass near

a in the β = 0.75 calibration than in the β = 1 calibration. In the β = 0.75 calibration,

the average MPC is 24.6% for low-income agents, and 0.9% for high-income agents. In the
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β = 1 calibration, the average MPC is 4.5% for low-income agents, and 1.2% for high-income

agents. Though this example is stylized, the stark difference in MPCs for low- versus high-

income agents when β = 0.75 suggests that fiscal stimulus targeted to low-income households

will be particularly effective when consumers are present-biased. A more complete analysis

of the effects of present bias on fiscal policy is presented in Laibson et al. (2020b).

3.4 Theoretical Properties

I now characterize consumption-saving properties of the model’s equilibrium. While the

results in this section are specific to the economic environment modeled above, they can

typically be generalized. Unless given in the main text, all proofs are provided in Appendix

C. Note that these proofs rely on methods that are not presented until Section 4.

Wealth-Dependent Discounting: An Euler Equation. Equipped with Proposition 1,

the following corollary characterizes the continuous-time Euler equation for the IG consumer.

Corollary 3. Whenever cj(a) is locally differentiable in a, consumption satisfies the following

Euler equation:

Et (du′(cj(at))/dt)

u′(cj(at))
=
[
ρ+ (1− β)c′j(at)

]
− r. (13)

The lefthand side of equation (13) is the growth rate of marginal utility. When β = 1,

the growth rate of marginal utility equals ρ− r. When β < 1, dynamic inconsistency means

that the IG agent also cares about the extent to which the next self will consume out of a

marginal dollar of savings, as captured by the instantaneous MPC of c′j(at). This dynamic

disagreement creates a time-varying effective discount rate of ρ+ (1− β)c′j(at).

Corollary 3 highlights why present bias is not observationally equivalent to exponential

discounting when the consumption function is non-linear. The term (1−β)c′j(at) is a measure

of the consumer’s relative time-inconsistency. If consumption is linear then c′j(at) is constant.

If consumption is non-linear then the consumer’s self-control varies over the state space. In

particular, present-biased consumers will act more impatiently near the borrowing constraint,
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because the high MPC of future selves lowers the current self’s willingness to save.28

Corollary 3 is the continuous-time equivalent of the discrete-time Hyperbolic Euler Re-

lation derived in Harris and Laibson (2001). The benefit of continuous time is tractability.

In discrete time, consumption pathologies force Harris and Laibson (2001) to use bounded-

variation calculus to characterize the Hyperbolic Euler Relation. Continuous-time methods

provide a much simpler equation.

Consumption Behavior of the Poor. Present bias interacts with the consumer’s effec-

tive horizon. This makes consumption sensitive to whether or not the borrowing constraint

binds in equilibrium. In particular, a binding constraint will produce a consumption discon-

tinuity at a, as is formalized in the following proposition.

Proposition 4. Let cj(a+) = lim
a→+a

cj(a). If β < 1 and a binds for income state j then there

is a discontinuity in consumption at a, such that cj(a+) > cj(a). Specifically, cj(a) = yj +ra

while cj(a+) is defined implicitly by

u′(cj(a+)) = β
u(cj(a+))− u(yj + ra)

cj(a+)− (yj + ra)
. (14)

Proposition 4 formalizes the discontinuity in c1(a) seen in Figure 2. The IG agent does

not smooth consumption into the constraint. Instead, the IG agent chooses a high level

of consumption until the instant that the constraint binds, at which point consumption

drops discretely. The following perturbation argument, first provided in Harris and Laibson

(2004), provides the intuition for equation (14). Consider the self who lives one instant

before the borrowing constraint binds. That self can cut consumption by da at a utility cost

of u′(cj(a+))da. This allows future selves to consume at rate cj(a+) rather than yj + ra

for a timespan of dt = da
cj(a+)−(yj+ra)

. The current self values this additional consumption

at β (u(cj(a+))− u(yj + ra)) dt. The current self must be indifferent to this perturbation

in equilibrium, implying u′(cj(a+))da = β (u(cj(a+))− u(yj + ra)) dt. Plugging in for dt

yields equation (14).

28This result has some conceptual similarities to the temptation model of Banerjee and Mullainathan
(2010) in that differences in patience are the endogenous outcome of differences in wealth (contrary to the
typical intuition that differences in wealth are the endogenous outcome of differences in patience).
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Consumption Behavior of the Wealthy. The sole source of uncertainty in this model

is income risk. Because income risk does not scale with wealth, income risk ceases to affect

consumption-saving decisions in the limit as a → ∞. Under exponential discounting, con-

sumption and savings are asymptotically linear in a (Achdou et al., 2020). This linearity

property also applies to IG agents.29

Proposition 5. Consumption and saving are asymptotically linear in a. Specifically,

lim
a→∞

cj(a) =
ρ− (1− γ)r

γ − (1− β)
a (15)

lim
a→∞

sj(a) =
rβ − ρ

γ − (1− β)
a (16)

An interesting corollary is that when β < 1 the elasticity of intertemporal substitution

(EIS) is no longer given by 1
γ
.

Corollary 6. In the limit as a→∞, the EIS is given by:

EIS = lim
a→∞

d
[
Et dct/dtct

]
dr

=
β

γ − (1− β)
.

A discrete-time version of this result is given in Laibson (1998). With IG preferences,

the EIS is less than 1
γ

when γ > 1, and the EIS is greater than 1
γ

when γ < 1. The intuition

for this result is similar to the Euler equation in Corollary 3. The Euler equation shows that

the IG agent chooses their consumption profile for strategic reasons in addition to standard

consumption-smoothing considerations. The EIS determines the sensitivity of the IG agent’s

current consumption to these strategic motives. When γ < 1 the IG agent responds more

than the standard exponential agent to interest rate changes. The reverse is true for γ > 1.

Proposition 5 also allows for an approximation of the maximum level of wealth that can

be attained in this model (see Table 1). Note that this result is an approximation because,

for finite wealth, the extent to which consumption can be approximated by a linear function

is calibration-dependent.

29These asymptotic consumption functions highlight that the consumption of present-biased agents is
observationally equivalent to the consumption of exponential agents when the consumption function is linear
in wealth (Laibson, 1996; Barro, 1999). As the numerical results in Section 3.3 clearly illustrate, however,
this observational equivalence does not hold over the entire state space when income is stochastic.
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Remark 7. The maximum level of wealth can be approximated as follows:

amax ≈
κ(ȳ/r)− y2

r − κ
,

where κ = ρ−(1−γ)r
γ−(1−β)

is the consumption rate in equation (15) and ȳ = λ2y1+λ1y2

λ1+λ2
denotes

average income.

The intuition for Remark 7 is straightforward. Using equation (15), a wealthy, high-

income, agent will save approximately s2(a) = y2 + ra − κ
(
a+ ȳ

r

)
. Setting s2(a) = 0 and

rearranging yields the desired result.

4 Tractability in Continuous Time: The û Agent

The reason that IG preferences are tractable is that the problem of the dynamically inconsis-

tent IG agent can be recast as a dynamically consistent optimization problem. Specifically,

the value function of the IG agent is equivalent to the value function of an agent who dis-

counts exponentially (β = 1), but has a modified utility function denoted û. This result was

first presented in Harris and Laibson (2013), and it is used extensively in this paper.

The û construction is critical because the intrapersonal equilibrium of the IG agent can

be characterized analytically from the û agent. Thus, one does not need to solve directly for

the equilibrium of the IG agent. Instead, one can solve for the policy and value functions of

the dynamically consistent û agent. The IG agent’s intrapersonal equilibrium can then be

recovered directly from the û agent.

Developing this insight one step further, most of the theoretical results presented in Sec-

tion 5 exploit the following observation: if the borrowing limit does not bind in equilibrium

then the û utility function is a positive affine transformation of CRRA utility. Accordingly,

if the borrowing limit does not bind in equilibrium then the û agent’s policy functions are

identical to those of a standard exponential agent with CRRA utility. When this is the

case, the IG agent’s equilibrium can be recovered from that of a standard exponential agent.

This property is critical for my results. It means that the behavior of the IG agent can be

analytically characterized relative to an equivalent agent with β = 1, even in complex models
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that must be solved numerically.

The remainder of this section formalizes this discussion.

Constructing Two Additional Agents. I now introduce two new types of agents. These

two new agents will aid in characterizing the equilibrium of the IG agent.

Definition 8 (û Agent). The first agent is referred to as a “û agent.” The û agent discounts

exponentially (β = 1) and has a modified utility function, denoted û (defined below). The

value and policy functions of the û agent will be denoted with a hat (e.g., v̂j(a) and ĉj(a)).

The û agent is reverse-engineered so that the continuation-value function of the û agent

is equivalent to the continuation-value function of the IG agent. The purpose of the û agent

is to allow the IG problem to be recast as a dynamically consistent optimization problem.

Definition 9 (Standard Exponential Agent). The second agent is referred to as a “standard

exponential agent.” The standard exponential agent discounts exponentially (β = 1) and has

standard CRRA utility u(c). The value and policy functions of the standard exponential

agent will be denoted with an upside-down hat (e.g., v̌j(a) and čj(a))

The standard exponential agent has the utility function and time preferences that economists

typically work with. The standard exponential agent will provide a useful point of compari-

son for understanding the non-standard IG and û agents.

The û Construction. Define

ψ =
γ − (1− β)

γ
. (17)

Note that ψ ∈ (0, 1].30 Next, define

û+(ĉ) =
ψ

β
u

(
1

ψ
ĉ

)
+
ψ − 1

β
. (18)

û+(ĉ) is a positive affine transformation of utility function u(c), and is constructed so that

û+(ĉ) < u(ĉ) for all ĉ > 0.

30This follows from the parameter restrictions of β ∈ (0, 1] and γ > 1− β.
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The complete û utility function depends on whether or not the borrowing constraint

binds. û is defined as follows:

ûj(ĉ, a) =



û+(ĉ) if a > a

û+(ĉ) if a = a and ĉ ≤ ψ(yj + ra)

−∞ if a = a and ĉ ∈ (ψ(yj + ra), yj + ra)

u(ĉ) if a = a and ĉ ≥ yj + ra

. (19)

The û utility function can be split into two sub-cases: a case where the borrowing constraint

does not bind, and a case where it does. When the constraint does not bind (the first

two lines), utility is given by the û+(ĉ) function.31 The constraint binds when a = a and

ĉ = yj + ra (the fourth line). In this case the û utility function is equal to the standard

CRRA utility function u(c). Since u(ĉ) > û+(ĉ), the û agent can obtain a “utility boost” at

a = a by setting ĉ = yj + ra.

The û agent earns −∞ utility whenever a = a and ĉ ∈ (ψ(yj + ra), yj + ra). This is an

off-equilibrium condition that forces the û agent to make a choice at a. The û agent can

either set ĉj(a) ≤ ψ(yj+ra) or ĉj(a) = yj+ra. The former choice yields utility û+ but allows

the agent to save away from the constraint. The latter choice earns the “utility boost,” but

requires the agent to remain at a.

Utility function û is reverse-engineered to ensure that the value function of the û agent,

denoted v̂j(a), is equivalent to the continuation-value function vj(a) of the IG agent. To

understand how the construction of û produces this value function equivalence, consider first

the case where the û agent is unconstrained (either a > a or ĉj(a) ≤ ψ(yj + ra)). Since

the û agent is dynamically consistent while the IG agent is not, the û agent’s utility must

be adjusted downward to ensure that v̂j(a) = vj(a). This is why û+(x) < u(x). Next,

consider the case where the û agent is constrained. The û agent’s utility no longer needs

to be adjusted downward, because the û agent remains constrained at a. In this case,

ûj(yj + ra, a) = u(yj + ra).

31In continuous time, the constraint will never bind when a > a. Additionally, when a = a the constraint
will not bind whenever ĉ < yj + ra.
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Recovering the IG Equilibrium from the û Agent. The following propositions for-

malize the tractability that the reverse-engineered û agent provides.

Proposition 10. Let v̂j(a) denote the value function of the û agent:

v̂j(a) = max
{ĉs}

Et
∫ ∞
t

e−ρ(s−t)ûj(ĉs, as)ds.

vj(a) is the continuation-value function of the IG agent if and only if vj(a) is the value

function of the û agent.

Proposition 10 shows that the optimization problem of the dynamically inconsistent IG

agent can be recast as a dynamically consistent optimization problem. This property is used

to prove the uniqueness of the IG agent’s value function (Proposition 1).

The IG agent’s consumption can also be characterized relative to the û agent.

Proposition 11. At all points where vj(a) is locally differentiable in a, the IG agent’s

consumption function can be characterized relative to û agent.

1. For a > a:

cj(a) =
1

ψ
ĉj(a) (20)

2. For a = a:

cj(a) =


1
ψ
ĉj(a) if ĉj(a) ≤ ψ(yj + ra)

ĉj(a) if ĉj(a) = yj + ra

(21)

For all a > a, equation (20) shows that the IG agent’s consumption function is simply a

scaled-up version of the û agent’s consumption.

Understanding the û Agent. Propositions (10) and (11) show that the IG agent’s be-

havior can be related to the behavior of the time-consistent û agent. But, the û agent is a

reverse-engineered apparatus with a non-standard utility function. Accordingly, the key to
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understanding the û agent is to note when the û agent does, and does not, behave identically

to the standard exponential agent.

Remark 12. If the borrowing constraint never binds for any income state j (e.g., a = −y1

r
)

then the û agent behaves identically to the standard exponential agent. In other words,

ĉj(a) = čj(a). This is due to the fact that û+(ĉ) is a positive affine transformation of u(c).

When the constraint never binds then ûj(ĉ, a) = û+(ĉ) for all (a, j).

When the borrowing constraint does bind for some income state j, the û agent no longer

behaves identically to the standard exponential agent. This is because the û agent receives a

“utility boost” at the constraint. This utility boost will cause the û agent to consume more

than the standard exponential agent near a.

The first part of Remark 12 is critical for the results presented in Section 5 below. It

implies that the intrapersonal equilibrium of the IG agent can be characterized directly from

the policy functions of a standard exponential agent whenever the borrowing constraint does

not bind in equilibrium.

5 Examining Present Bias in an Extended Model: High-

Interest Borrowing, Illiquid Assets, and Naivete

Section 3 studies a benchmark heterogeneous-agent model with present-biased consumers.

The purpose of Section 3 is to illustrate the effect of present bias in a workhorse incomplete

markets model that is well-understood by economists. I now present three extensions to

the demand side of the economy. First, I introduce a flexible “soft borrowing constraint.”

Second, I introduce an illiquid asset. Third, I allow for the agent to have incorrect beliefs

about their self-control problems (i.e., naivete). All extensions in this section are presented

cumulatively.

This section is conducted in partial equilibrium. I maintain the assumption throughout

that the consumer is a price-taker with prices exogenously specified.
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5.1 Extension 1: Soft Borrowing Constraints

To begin, I extend the benchmark model with a wealth-varying interest rate, denoted ς(a).

ς(a) is defined as follows:

ς(a) =

r if a ≥ 0

Γ(a) if a < 0

. (22)

Function Γ(a) is defined on a ≤ 0, and is subject to the restrictions that Γ(a) is continuously

differentiable, Γ′(a) ≤ 0, and Γ(0) ≥ r. The natural borrowing limit is defined implicitly by

a = −y1

ς(a)
.

Interest rate ς(a) generalizes the benchmark model in Section 3.1.32 The benchmark

model features a constant interest rate, but this is inconsistent with the data. For example,

Zinman (2015) estimates that 75% of households face a borrowing cost that exceeds the

risk-free rate. Γ(a) allows for a wedge between the interest rate on borrowing versus saving,

and allows for the interest rate to continue rising as the agent’s debt level increases.

When Γ(0) > r, equation (22) introduces what is known as a “soft borrowing constraint.”

The soft constraint discourages borrowing by setting a higher interest rate for borrowing

than for saving. This is in contrast to a hard borrowing constraint, such as a ≥ a, which

completely excludes any borrowing beyond a.

For the theoretical results in this section I will often assume that the borrowing constraint

does not bind in equilibrium (e.g., a is the natural borrowing limit). The elimination of hard

borrowing limits is not particularly restrictive given the general specification of interest

rates in equation (22). Γ(a) can become arbitrarily large as a becomes more negative. Little

realism is likely to be lost by eliminating hard borrowing constraints and replacing them with

arbitrarily large borrowing rates. Indeed, the latter assumption is realistic — particularly

given recent financial innovations — so long as the consumer always has a credit card, payday

lender, pawn shop, or loan shark that they can use to borrow an additional dollar.

32The original model with a constant interest rate is recovered by setting Γ(a) = r for all a < 0.

32



Present Bias and High-Interest Borrowing. When β = 1, soft constraints can gen-

erate a build-up of agents with exactly zero liquid wealth (e.g., Kaplan and Violante, 2014;

Kaplan et al., 2018; Achdou et al., 2020). When β < 1, soft constraints no longer prevent

borrowing. To show this result in a simple environment, I assume here that income is deter-

ministic, with yt = y > 0 for all t. I also assume that borrowing is allowed up to the natural

borrowing limit.

Proposition 13. Assume income is deterministic, with y > 0. Assume a is the natural

borrowing limit. Set r < ρ
β

so that the IG agent dissaves for a > 0. Regardless of Γ(a), the

IG agent chooses to accumulate debt at a = 0 by setting s(0) < 0.

Proposition 13 provides the stark result that the agent will always choose to borrow some

amount when β < 1, regardless of how large the interest rate on borrowing is. This is not

to say that the IG agent will borrow a lot, but they will accumulate some debt regardless

of the interest rate on borrowing. Intuitively, debt service payments of ς(a)a are not very

onerous when debt levels are small. At a = 0, the IG agent is always willing to accumulate

some amount of debt for future selves to service.33

Proposition 13 shows that present bias can produce the high-interest borrowing that

is observed empirically (e.g., Laibson et al., 2003; Zinman, 2015). It is consistent with a

wide range of empirical and structural research documenting that present-biased households

are more likely to borrow in the form of costly unsecured debt, such as credit cards and

payday loans (e.g., Laibson et al., 2003; Meier and Sprenger, 2010; Skiba and Tobacman,

2018; Allcott et al., 2020; Kuchler and Pagel, 2020). Proposition 13 also provides theoretical

justification for the use of credit card borrowing data to identify β in structural models

(Laibson et al., 2020a,b).

33More formally, this proof uses Proposition 16 below, which implies that the sophisticated IG agent always
consumes 1

ψ times the standard exponential agent, where 1
ψ > 1 when β < 1. For example, if the standard

exponential agent sets č(0) = y, the IG agent sets c(0) = 1
ψy > y. This also implies that for a given interest

rate schedule the amount borrowed is continuous in β, with the amount borrowed converging to 0 as β → 1.
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5.2 Extension 2: Liquid and Illiquid Assets

I now extend the model again to feature two assets: a liquid asset and an illiquid asset.

Illiquid assets — such as houses, 401(k) and IRA savings, and social security claims — are

an important source of wealth accumulation for most American households (Angeletos et

al., 2001; Campbell, 2006). State of the art incomplete market models often feature both a

liquid asset and an illiquid asset in order to generate a mass of wealthy hand-to-mouth agents

(Kaplan and Violante, 2014; Kaplan et al., 2018). Two-asset models of this type are also

an important area of research on present bias. Starting from the seminal papers of Strotz

(1956) and Laibson (1997), much this literature argues that present-biased agents seek out

illiquid assets as a commitment against overconsumption (Laibson et al., 1998; Amador et

al., 2006; Beshears et al., 2020). This research has also been influential in the policy arena,

leading to policy proposals aimed at encouraging savings through the use of illiquid assets.

In contrast to this research, this section presents an irrelevance result showing that present

bias does not necessarily affect the demand for illiquid assets. Under IG preferences, the

policy functions of IG agents can be compared directly to the policy functions of agents

without present bias (see Section 4). I use this property to evaluate the effect of β < 1 on

the demand for illiquid assets.

The extended model with an illiquid asset is similar to the household side of the HANK

model of Kaplan et al. (2018). I continue to denote liquid wealth by at. Households can

also hold wealth in an illiquid asset ζt. The illiquid asset has return rζ and volatility σζ .34

Contributions to and withdrawals from ζ are subject to a transaction cost.

I continue to assume a two-state income process for simplicity. The model and theoretical

results can be extended to arbitrary Poisson income processes. In this extended model, the

dynamic budget constraint becomes:

dat = (yt + ς(at)at − dt − χ(dt, ζt)− ct)dt (23)

dζt
ζt

=

(
rζ +

dt
ζt

)
dt+ σζdZt, (24)

34rζ and σζ can be time varying. Because this requires additional state variables, it is suppressed for
notational simplicity.
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subject to the restrictions that at ≥ a and ζt ≥ 0. dt is the household’s rate of deposits (or

withdrawals) into the illiquid asset, and Zt is a standard Brownian motion. Deposits are

subject to a transaction cost of χ(dt, ζt).

I assume that transaction cost function χ(d, ζ) is everywhere differentiable with χ(0, ζ) =

0, χ(d, ζ) ≥ 0, and ∂2χ(d,ζ)
∂d2 > 0.35 Two relevant benchmarks are: (i) perfect liquidity, with

no transaction costs on asset ζ; and (ii) a 401(k)/IRA plan, with no cost to contributions

and a constant 10% penalty on withdrawals. While these two benchmarks do not satisfy the

restrictions on χ, they can be approximated arbitrary closely by allowable functions (i.e.,

they are limit points).

The borrowing constraint is more tricky in this model with liquid and illiquid assets. A

simple way to deal with the constraint is to assume that the agent is not allowed to deposit

nor withdraw from the illiquid account at a. This is a minimal restriction, because an agent

with liquid wealth of at = a can choose to set ct = yt + ς(a)a− ε for a single instant in order

to move away from a and regain access to the illiquid asset.

The agent’s problem now features two choice variables: deposit rate dj(a, ζ) and con-

sumption rate cj(a, ζ). The IG agent’s intrapersonal equilibrium is given by the following

Bellman equation:

ρvj(a, ζ) = u(cj(a, ζ)) +
∂vj(a, ζ)

∂a
(yj + ς(a)a− dj(a, ζ)− χ(dj(a, ζ), ζ)− cj(a, ζ))

+
∂vj(a, ζ)

∂ζ

(
ζrζ + dj(a, ζ)

)
+ λj(v−j(a, ζ)− vj(a, ζ)) +

1

2

∂2vj(a, ζ)

∂ζ2
(ζσζ)

2
,

(25)

subject to the first-order conditions

u′(cj(a, ζ)) =

β
∂vj(a,ζ)

∂a
if a > a

max{β ∂vj(a,ζ)
∂a

, u′ (yj + ς(a)a)} if a = a

, (26)

χd(dj(a, ζ), ζ) =


∂vj(a,ζ)

∂ζ
∂vj(a,ζ)

∂a

− 1 if a > a

0 if a = a

. (27)

35Convexity prevents ζt from ever “jumping.” Results are unchanged if χ(d, ζ) features a kink at d = 0,
which would produce an inaction region. See Kaplan et al. (2018) for details.
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Equation (25) is similar to equation (7), but augmented to include the illiquid asset. Equation

(26) is a slight extension of equation (8).

Equation (27) defines the asset allocation decision of dj(a, ζ). For a > a the IG agent

chooses dj(a, ζ) to equate the marginal value of illiquid wealth to the marginal value of

liquid wealth, adjusted for transaction costs:
∂wj(a,ζ)

∂ζ
=

∂wj(a,ζ)

∂a
(1 + χd(dj(a, ζ), ζ)). Since

wj(a, ζ) = βvj(a, ζ), the multiplicative β term cancels from each side. Rearranging gives the

top row of equation (27). The bottom row of equation (27) imposes the restriction that the

agent cannot adjust ζt when at = a.

Comparing the consumption decision (equation (26)) to the asset allocation decision

(equation (27)), the key difference between the two decisions is that the β discount factor

only has a direct effect on the consumption decision. Intuitively, β does not directly impact

the asset allocation decision because this decision only affects the consumption of future

selves. Independent of the current self’s asset allocation decision, the current (instantaneous)

self always has enough liquid wealth to fund current consumption whenever a ≥ a.

Demand for Illiquid Assets: Irrelevance of β. This extension with durables continues

to feature a unique value function. Additionally, when the liquidity constraint does not bind

in equilibrium then present bias has no effect on the demand for illiquid assets. This is

formalized below.

Proposition 14. The IG agent’s intrapersonal equilibrium has a unique value function.

When a is the natural borrowing limit, asset allocation policy function dj(a, ζ) is independent

of β.

This irrelevance result arises in this class of two-asset models because the liquid asset

eliminates any commitment properties of the illiquid asset. The agent never needs the illiquid

asset in order to finance current consumption — they can always adjust their holdings of

the liquid asset instead. Since the illiquid asset cannot be used to limit overconsumption, β

has no effect on the policy function dj(a, ζ).

Proposition 14 presents a general model in which present bias does not affect the demand

for illiquid assets. This finding is consistent with the emerging empirical evidence that illiquid

retirement-savings plans are not particularly effective savings devices. For example, Argento
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et al. (2015) find that 30-40% of deposits into retirement accounts subsequently leak out

before retirement.36 Media coverage of the “retirement crisis” paints a similar picture of the

inadequacy of retirement savings.

From a positive perspective, Proposition 14 speaks to a puzzle that asks why present-

biased agents don’t use commitment devices (Laibson, 2015; Bernheim and Taubinsky, 2018).

This literature has concluded that commitment is often hampered by an important tradeoff

between commitment and flexibility (Amador et al., 2006; Laibson, 2015; Carrera et al.,

2020). Proposition 14 suggests a complementary explanation: it is hard to design devices

that can even generate commitment in the first place. In this model, asset illiquidity provides

no commitment properties because the agent has another margin (the liquid asset) that they

can adjust in order to overconsume. Extending this intuition more generally, designing

commitment devices is like playing a game of Whack-a-Mole. There are always margins that

can be adjusted to bring utility forward in time, ranging from the consumption of unhealthy

food to decreasing exercise to staying up too late. Unless a commitment device can block

all of these sources of temptation, there is no reason for the agent to choose a commitment

device that serves only to limit flexibility.

Proposition 14 also has normative implications. Illiquid retirement accounts are used

worldwide to promote retirement savings (Beshears et al., 2015). Though cast in a stylized

environment, Proposition 14 provides a crisp result highlighting the ineffectiveness of policies

utilizing asset illiquidity to promote the savings of present-biased consumers.37 Whack-a-

Mole style interventions will not produce useful commitment devices, so long as the consumer

can adjust on some other margin in order to bring utility forward in time. Additional details

on welfare are discussed in Section 5.4.

Three caveats to Proposition 14 are necessary. First, though Proposition 14 allows for a

flexible soft borrowing constraint it does still rely on the assumption that there are no hard

borrowing constraints. Alternatively, models showing that present-biased agents demand

illiquid assets also feature hard borrowing constraints. This difference highlights that com-

36See also Choukhmane (2019), who documents that workers who are automatically enrolled in their
employer’s retirement savings plan adopt lower savings rates later in life.

37Proposition 14 says nothing about whether or not present-biased agents will save more when assets are
illiquid. It only says that β does not have an independent effect on the asset allocation decision.
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mitment does not come from the illiquid asset per se, but rather from the hard borrowing

constraint on the liquid asset.38 Proposition 14 may also break down under less restrictive

equilibrium refinements. For example, non-Markov equilibria may feature “pseudo hard con-

straints” such as mental accounts (Thaler, 1985) and personal rules (Ainslie, 1992; Bernheim

et al., 2015), which can reintroduce the types of notches in the consumer’s budget constraint

that interact with present bias to produce non-irrelevance. Olafsson and Pagel (2018) provide

empirical evidence of this sort of behavior.

Second, the illiquid asset modeled in this section is best thought of as an illiquid financial

asset, such as a defined-contribution pension. My results emphasize the inability for financial

illiquidity to reduce overconsumption. Durables like houses and automobiles are another class

of illiquid assets. Unlike financial assets, durables also provide direct consumption utility.

The extent to which Proposition 14 holds with durables depends on how durables enter into

the consumer’s utility function.39

Third, Proposition 14 assumes a constant value of long-run discount rate ρ. As shown in

Section 3.3, models that are calibrated to match observables will typically feature a lower ρ

value when β < 1.40 A lower calibration of ρ can certainly increase the agent’s demand for

illiquid assets. However, this should be recognized as an indirect effect of present bias.

5.3 Extension 3: Naivete

To this point I have assumed that the agent is fully aware of their present bias. This section

generalizes the model to allow for naivete, where the agent is either partially or fully unaware

of their future self-control problems (O’Donoghue and Rabin, 1999, 2001).

As above, let β denote the agent’s true short-run discount factor. To extend the model

to naivete, let βE denote the short-run discount factor that the current self expects all future

selves to have. Sophistication is defined as βE = β, partial naivete is defined as βE ∈ (β, 1),

and full naivete is defined as βE = 1. The agent’s expected continuation-value function

38Hard constraints prevent constrained agents from freely financing consumption with the liquid asset (see
equation (8)). In models with hard borrowing constraints, present-biased agents may seek to hold wealth in
illiquid assets in order to put future selves at the constraint, thereby restricting future selves’ consumption.

39Proposition 14 continues to hold under the assumption that ζ is a durable that enters utility separably.
40See also Laibson et al. (2020a) and Laibson et al. (2020b) for richer models that produce a similar result.

38



becomes:

vEj (a, ζ) = Et
[∫ ∞

t

e−ρ(s−t)u(cEs )ds

]
,

where cE denotes the consumption rate that the agent would adopt if they were sophisticated

with short-run discount factor βE. The perceived current-value function is given by:

wEj (a, ζ) = βvEj (a, ζ).

Note that the wedge between “now” and “later” is still given by true short-run discount

factor β.

The intrapersonal equilibrium of Section 5.2 can be generalized to allow for naivete.

Under naivete, the IG agent’s expected continuation-value function vE is given by:

ρvEj (a, ζ) = u(cEj (a, ζ)) +
∂vEj (a, ζ)

∂a
(yj + ς(a)a− dEj (a, ζ)− χ(dEj (a, ζ), ζ)− cEj (a, ζ))

+
∂vEj (a, ζ)

∂ζ

(
ζrζ + dEj (a, ζ)

)
+ λj(v

E
−j(a, ζ)− vEj (a, ζ)) +

1

2

∂2vEj (a, ζ)

∂ζ2
(ζσζ)

2
,

(28)

subject to the first-order conditions

u′(cEj (a, ζ)) =

β
E ∂vEj (a,ζ)

∂a
if a > a

max{βE ∂vEj (a,ζ)

∂a
, u′ (yj + ς(a)a)} if a = a

, (29)

χd(d
E
j (a, ζ), ζ) =


∂vEj (a,ζ)

∂ζ

∂vE
j

(a,ζ)

∂a

− 1 if a > a

0 if a = a

. (30)

Equations (28) – (30) are identical to (25) – (27) except that the true short-run discount

factor β is replaced by the perceived discount factor βE. This implies that the perceived

continuation-value function vEj (a, ζ) is still unique under naivete:

Corollary 15. The expected value function vEj (a, ζ) is unique.

Proof. Uniqueness of vE follows directly from Proposition 14.
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Because the naive agent does not necessarily behave according to their expectations,

equations (28) – (30) only pin down the expected continuation-value function vEt . The

actual consumption and asset allocation decisions of the naive agent are given by:

u′(cj(a, ζ)) =

β
∂vEj (a,ζ)

∂a
if a > a

max{β ∂v
E
j (a,ζ)

∂a
, u′ (yj + ς(a)a)} if a = a

, (31)

χd(dj(a, ζ), ζ) =


∂vEj (a,ζ)

∂ζ

∂vE
j

(a,ζ)

∂a

− 1 if a > a

0 if a = a

. (32)

Comparing the agent’s actual behavior to their perceived behavior, naivete only creates in-

correct expectations about the consumption decision. The actual consumption decision in

(31) is determined with the true short-run discount factor β, while the perceived consump-

tion decision in (29) depends on βE. Alternatively, the actual asset allocation decision is

equivalent to the perceived asset allocation decision because the asset allocation decision

only affects the consumption of future selves.

The Consumption of Present-Biased Consumers. The extended model now allows

for stochastic income, soft borrowing constraints, liquid and illiquid wealth, and naivete. In

this rich model, IG preferences can be used to provide a simple closed-form expression that

characterizes the effect of present bias on consumption-saving decisions.

Proposition 16. Let β denote the agent’s true short-run discount factor, and let βE ∈ [β, 1]

denote the agent’s perceived short-run discount factor. Let ψE = γ−(1−βE)
γ

. Assume that a

is the natural borrowing limit. Relative to a standard exponential agent, the consumption of

the potentially naive IG agent is given by:

cj(a, ζ) =

(
βE

β

) 1
γ 1

ψE
× čj(a, ζ). (33)

Equation (33) simplifies even further in two special cases of particular interest. Under

sophistication, the IG agent consumes 1
ψ

more than the standard exponential agent. Under

full naivete, the IG agent consumes β−
1
γ more than the standard exponential agent.
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Proposition 16 can also be used to compare the consumption of sophisticates versus naifs,

even in this complex economic environment that cannot be solved in closed form. Again,

the critical assumption is that the borrowing constraint a does not bind in equilibrium.

Corollary 17. Assume that a is the natural borrowing limit. If a sophisticate with βE = β

consumes c, a naif with βE ∈ (β, 1] will consume
(
βE

β

) 1
γ γ−(1−β)
γ−(1−βE)

× c. Consumption is

increasing in naivete when γ > 1 and decreasing in naivete when γ < 1.

Proof. The standard exponential agent’s consumption function of čj(a, ζ) is independent of

β and βE. This corollary then follows from equation (33).

In simple environments featuring linear consumption functions, it is known that so-

phisticates and naifs adopt the same equilibrium consumption function when γ = 1 (e.g.,

Tobacman, 2007). Corollary 17 shows that this result continues to hold in more general

consumption-saving models, so long as a does not bind in equilibrium. Intuitively, naivete

introduces two offsetting effects. One the one hand, the naif is more willing to save because

the naif trusts the consumption decisions of future selves. On the other hand, the naif is

less willing to save because they believe that their future selves will save more on their own.

These two effects exactly offset when γ = 1.

Taking this equivalence between sophisticates and naifs one step further, Proposition 16

also implies that there is also an observational equivalence between sophisticates and naifs.

Corollary 18. Assume that a is the natural borrowing limit. A sophisticated agent with

short-run discount factor β will consume identically to a naive agent with a perceived short-

run discount factor of βE ∈ [β, 1] and a true short-run discount factor of β′ = βE
[
γ−(1−β)
γ−(1−βE)

]γ
.

Proof. Again, since the standard exponential agent’s consumption function of čj(a, ζ) is

independent of β and βE, this corollary follows from equation (33).

A takeaway from Corollary 18 is that sophistication versus naivete cannot be easily iden-

tified from consumption choices. Though Corollary 18 does not hold in models featuring

binding constraints, differences in consumption that are driven by binding constraints are

likely not the central predictions that form the basis of robust identification. The consump-

tion of sophisticates may also differ from naifs in discrete-time models with large time-steps,
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but one should be cautious about using time-steps that are psychologically inappropriate.

Additionally, Proposition 14 above (and Corollary 21 below) shows that researchers may also

struggle to use demand for commitment to identify naivete. Instead, it is more likely that

identification can be found by evaluating data on procrastination (O’Donoghue and Rabin,

1999), contract choice (DellaVigna and Malmendier, 2004; Gabaix and Laibson, 2006; Hei-

dhues and Kőszegi, 2010), and the accuracy of household budgeting plans (Augenblick and

Rabin, 2019; Allcott et al., 2020; Kuchler and Pagel, 2020), as these sorts of decisions follow

directly from agents’ misperception of their future actions.

Euler Equation. For intuition on the effect of naivete, Appendix D solves the Aiyagari-

Bewley-Huggett model of Section 3.3 under the assumption of complete naivete. Results are

qualitatively similar. The case with naivete produces slightly less overconsumption near a,

because naivete eliminates the interaction between present bias and finite planning horizons.

For additional intuition, in the benchmark model of Section 3.1 the Euler equation of

Corollary 3 can be extended to the case of naivete (see Tobacman (2007) for a discrete-time

analysis, and Laibson et al. (2020b) for an application of this result).

Corollary 19. At all points where cj(a) is locally differentiable in a, the consumption func-

tion cj(a) satisfies the following Euler equation:

Et (du′(cj(at))/dt)

u′(cj(at))
=

[
ρ+

∂cj(at)

∂a

(
(1− βE)

(
β

βE

) 1
γ

+ γ

(
1−

(
β

βE

) 1
γ

))]
− r. (34)

Corollary 19 simplifies in three special cases: complete sophistication (βE = β), complete

naivete (βE = 1), and log utility (γ = 1). With complete sophistication or γ = 1, the Euler

equation in (13) is recovered. With complete naivete, the Euler equation is:

Et (du′(cj(at))/dt)

u′(cj(at))
=
[
ρ+ γ (1− β)

1
γ c′j(at)

]
− r

As in the case with sophistication, the effective discount rate in brackets varies with the

instantaneous MPC of the naive IG agent. Under naivete, overconsumption has a larger

effect on the growth rate of marginal utility when consumption itself is sensitive to at (i.e.,
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c′j(at) is large). In the case of partial naivete, the Euler equation reflects both sophistication-

driven and naivete-driven motives for a state-dependent effective discount rate.

5.4 Putting It All Together: Present Bias and Welfare

Welfare analyses can be difficult in models with dynamically inconsistent preferences because

these preferences do not typically feature a single welfare criterion. In models with present

bias, the common approach is to adopt the “long-run” view in which policymakers seek to

maximize the continuation-value function vt. However, this approach ignores the preferences

of each individual self. This may be unsatisfactory if, for example, the current self is better

able to evaluate their immediate preferences than a distant self (Bernheim and Rangel, 2009;

Bernheim and Taubinsky, 2018).

Unlike discrete-time models with large time-steps, continuous-time IG preferences feature

a single welfare criterion (Harris and Laibson, 2013). This is an important, though relatively

unrecognized, feature of IG preferences. This property arises because each self lives for only

an instant, and therefore composes a non-measurable part of the overall value function. More

formally, the current self wants to adopt policies that maximize current-value function wt.

Since wt = βvt, any policy that maximizes vt will also maximize wt.
41 This single welfare

criterion property, combined with the modeling tractability provided by IG preferences,

means that IG preferences are well suited for the analysis of policy in complex economic

environments.

Building on this insight, I show that IG preferences allow for a simple characterization of

the welfare cost of present bias. I present this welfare result in the context of the two-asset

model with naivete of Section 5.3. However, this welfare characterization will continue to

hold in more general environments, as long as a does not bind in equilibrium.

In order to present a welfare metric that applies in the general consumption-saving en-

vironment that I am studying, I consider the following experiment. Assume that there

41Though the single welfare criterion property only holds exactly in continuous time, it is robust to discrete
time with psychologically appropriate time-steps. For example, consider a discrete-time model where each
self lives for one day. Let δ = exp

( −ρ
365

)
. Assume that each self consumes a constant amount, c̄, in each

period. Then, the current-value function is w = u(c̄)+β δu(c̄)
1−δ . Each one-day self composes a share 1

1+β δ
1−δ

of

the total current-value function. Under the calibration in Section 3.3 (ρ = 2.5% and β = 0.75), this means
that the current self composes only 0.009% of the total value function.
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exists a perfect commitment device that forces all future selves to behave as if β = 1. This

commitment device comes at the cost of a perpetual consumption tax of τ . The following

Proposition characterizes the welfare loss of present bias in terms of consumption tax τ .

Proposition 20. Assume a is the natural borrowing limit. Let α = ψE
(

β
βE

) 1
γ

. The welfare

cost of present bias is equivalent to a perpetual consumption tax of:42

τ = 1−
(

αγ

1− γ + γα

) 1
1−γ

. (35)

τ is decreasing in β, and τ is increasing in βE if and only if γ > 1.

Proposition 20 is powerful because it is very general. It holds in the benchmark model

of Section 3.1, the model with soft constraints as in equation (22), the model with illiquid

assets of Section 5.2, and across varying levels of naivete. It will also hold for richer income

processes than the two-state process I assume here. As long as a does not bind in equilibrium,

the welfare cost of present bias can be represented as a consumption tax of size τ .

The fact that such a simple formula characterizes the welfare cost of present bias across

a general class of models may seem surprising. IG preferences make this welfare charac-

terization possible. The proof relies on the fact that the value function of the IG agent

can always be recast as the value function of an exponential agent with a modified utility

function. When the agent is sophisticated, the modified utility function is denoted û (see

Section 4). The proof of Proposition 20 generalizes the modified utility function to allow for

naivete, denoted ˆ̂u (see Appendix C). When a does not bind, the proof boils down to finding

the value of τ such that ˆ̂u(x) = u((1− τ)x).43

Discussion. The first takeaway from Proposition 20 is that present bias can be very costly.

For example, the calibration in Section 3 features β = βE = 0.75 and γ = 2. The welfare

42When γ = 1, the tax is given by τ = 1− exp( β−1
β )

β .
43It is worth noting that τ is only defined when 1 − γ + γα > 0. This is not necessarily the case under

naivete when γ > 1 and α is low. In these cases, the naif behaves so poorly that their realized value function
goes to −∞. Intuitively, the naif always thinks that they are only overconsuming for a single instant. When
this mistake is made repeatedly, it can lead to a realized value function that is undefined (though at each
point in time, the naif perceives that their value function is finite). The condition that 1− γ + γα > 0 can
be thought of as a bound on the level of naivete that is theoretically admissible.
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cost of present bias is equivalent to a 2% consumption tax. For β = 0.5 and βE = 1, as

estimated in Laibson et al. (2020a), the welfare cost of present bias is equivalent to a 17.2%

consumption tax. These costs are at least an order of magnitude larger than benchmark

estimates of the welfare cost of business cycles (Lucas, 1987).

One caveat to these large welfare costs is that τ gives the realized cost of present bias.

If the agent is naive, they may not perceive such a large welfare cost. A naif perceives that

the welfare cost of their present bias is equivalent to a tax of τE = 1−
(

(ψE)γ

βE

) 1
1−γ

.44

The second takeaway from Proposition 20 is that the welfare cost of present bias depends

only on β, βE, and γ. The welfare cost of present bias is decreasing in β, which is straight-

forward. The welfare cost is worse under naivete when γ > 1, and worse under sophistication

when γ < 1. This follows from Corollary 17: overconsumption is exacerbated by naivete

when γ > 1, and is reduced by naivete when γ < 1.

Another way to look at this second takeaway is to consider what the welfare cost of

present bias does not depend on. The welfare cost of present bias is independent of liquid

wealth a, illiquid wealth ζ, income state j, and market price parameters yj, r, Γ, χ, rζ , and

σζ . Though these variables certainly affect the agent’s welfare, they do not independently

affect the relative welfare cost of present bias.

This intuition yields the following Proposition, which is a key policy implication of this

welfare analysis.

Proposition 21. Assume a is the natural borrowing limit. A policy intervention that alters

the income process, interest rates, and/or transaction costs improves the welfare of the IG

agent if and only if it improves the welfare of the standard exponential agent.

Proof. The proof of Proposition 21 follows directly from the proof of Proposition 20, which

shows that the IG agent’s value function is a positive affine transformation of the standard

exponential agent’s value function.

From the perspective of an individual IG consumer, Proposition 21 implies that com-

mitment devices, such as penalty borrowing rates and asset illiquidity, will not alleviate the

44This is the maximum tax that a sophisticate with discount factor βE would accept.
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negative effects of present bias. To the extent that such devices are undesirable for a time-

consistent agent, they will also make the IG agent worse off. This forms the basis of the

present-bias dilemma, which is presented in Section 6 below.

From the perspective of a policymaker, Proposition 21 is an irrelevance result: the policy-

maker does not need to consider present bias when determining whether or not a given policy

is welfare improving. Instead, where present bias matters is in determining whether or not a

given policy is feasible (i.e., whether it obeys a budget constraint). For example, consider a

large interest rate subsidy on savings that is financed by a small consumption tax. Though

such a policy may be welfare improving regardless of β and βE, the revenue collected by the

consumption tax may only be sufficient to cover the cost of the interest rate subsidy in an

economy populated by present-biased consumers. This is because present-biased agents will

not take full advantage of the policy, underusing the interest rate subsidy and overpaying

the consumption tax. Appendix B provides a toy model.

6 The Present-Bias Dilemma

Propositions 20 and 21 show that the present-biased agent faces a critical dilemma. On

the one hand, present bias can be enormously costly. On the other hand, the agent cannot

use commitment devices in the form of financial penalties to curtail their present bias. The

welfare cost of present bias depends only on β, βE, and γ. Financial commitment devices,

such as self-imposed asset illiquidity or penalty borrowing rates, are unable to reduce this

welfare cost. Instead, as Proposition 21 highlights, these sorts of self-imposed commitments

only make the IG agent worse off (because they make the standard exponential agent worse

off).

Similar to Proposition 14, Proposition 21 relates to the puzzle of why present-biased

agents don’t use commitment devices. As Proposition 21 shows, commitment in the form

of financial penalties does not improve the welfare of the IG agent. Such commitment

devices only benefit the IG agent if they benefit the standard exponential agent, and a time-

consistent agent will never choose to self-impose financial costs. For intuition, consider a

penalty interest rate on borrowing. Though this will reduce borrowing, the borrowing that
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still occurs becomes more costly.45

I propose two potential solutions to this present-bias dilemma. First, consumers may

have access to non-financial commitment devices. The literature on self-control has found

a variety of non-financial “nudges” that help to reduce present bias, ranging from explicit

planning (Beshears et al., 2016) to reminders (Karlan et al., 2016).46 A theoretical analysis

of these sorts of non-financial commitment devices is beyond the scope of this paper, and is

an important area for future research.

Second, the present-bias dilemma is about the inability for any individual agent to self-

impose financial commitments that alleviate their present bias. Government interventions

are fundamentally different from what a consumer can self-impose. That is, the government

has the ability not only to implement financial disincentives in the form of taxes, but also

to redistribute tax revenue back to consumers. To show this point, Appendix B presents a

simple “Eat-the-Pie” model to capture how the combination of taxes plus redistribution in

the form of a savings subsidy can improve the welfare of present-biased agents. Such penalty-

plus-redistribution policies could also be implemented by private institutions in addition to

the government, as it is the pooling of consumers that is essential.47 Finally, it’s worth

noting that the logic of the model suggests that comprehensive policies that incentivize a

focus on the future, such as a savings subsidy, are likely to be more effective than tailored

Whack-a-Mole style interventions that the IG agent can circumvent.

Because present bias is highly costly but also difficult for the individual consumer to

correct, the present-bias dilemma highlights an important role for the government and/or

private institutions in alleviating present bias. The analytical and numerical methods devel-

oped in this paper will be useful for quantitative models that evaluate the effectiveness of

various policy interventions.

45Proposition 16 shows that the IG agent always consumes (β
E

β )
1
γ 1
ψE

times the standard exponential agent.
Thus, financial penalties do not affect the relative overconsumption of the IG agent.

46See Bernheim and Taubinsky (2018) for a review. See also Laibson (2018) for a related discussion of
paternalistic policies employed by private institutions.

47See Laibson (1997) for a discussion of why this may be difficult for the private sector to implement.
Additionally, political economy considerations are beyond the scope of this paper, but are important for
understanding the extent to which governments can respond to the present bias of their constituents. Present
focus can also arise in policymakers’ decisions. For a small set of examples, see Persson and Svensson (1989),
Alesina and Tabellini (1990), Aguiar and Amador (2011), Halac and Yared (2014), and Jackson and Yariv
(2014).
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7 Conclusion

This paper presents a new set of continuous-time methods for modeling the consumption-

saving decisions of consumers with present bias. The first part of this paper uses these

methods to solve a workhorse Aiyagari-Bewley-Huggett incomplete markets model. The

second part analytically characterizes the effect of present bias on consumption and saving

decisions, and provides a closed-form expression for the welfare cost of present bias.

The IG methods that I present in this paper open many avenues for future research. For

macroeconomists, understanding the general equilibrium effects of present bias in state of

the art heterogeneous-agent models is an important next step. The IG toolbox may also

be useful in structural behavioral economics, allowing for the estimation of present-biased

time preferences across heterogeneous consumers using field data and rich structural models

(DellaVigna, 2018).

The key partial equilibrium result of this paper is the present-bias dilemma: present bias

has large welfare costs, but agents cannot use self-imposed financial commitments such as

illiquid savings accounts to improve their welfare. For behavioral economists, it is essential to

continue developing non-financial commitment devices that can improve agents’ self-control.

For public economists, an analysis of the sorts of government interventions that can alleviate

present bias, particularly in an economy populated by agents with heterogeneous preferences,

is likely to prove fruitful.
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, Debraj Ray, and Şevin Yeltekin, “Poverty and Self-Control,” Econometrica, 2015,

83 (5), 1877–1911.

Beshears, John, James J. Choi, Christopher Clayton, Christopher Harris, David

Laibson, and Brigitte C. Madrian, “Optimal Illiquidity,” NBER w27459, 2020.

50



, , Joshua Hurwitz, David Laibson, and Brigitte C. Madrian, “Liquidity in

Retirement Savings Systems: An International Comparison,” American Economic Review,

2015, 105 (5), 420–25.

, Katherine L. Milkman, and Joshua Schwartzstein, “Beyond Beta-Delta: The

Emerging Economics of Personal Plans,” American Economic Review, 2016, 106 (5), 430–

34.

Bewley, Truman, “Stationary Monetary Equilibrium with a Continuum of Independently

Fluctuating Consumers,” Contributions to Mathematical Economics in Honor of Gérard

Debreu, 1986, 79.

Bond, Philip and Gustav Sigurdsson, “Commitment Contracts,” The Review of Eco-

nomic Studies, 2018, 85 (1), 194–222.

Bryan, Gharad, Dean Karlan, and Scott Nelson, “Commitment Devices,” Annual

Review Economics, 2010, 2 (1), 671–698.

Campbell, John Y., “Household Finance,” The Journal of Finance, 2006, 61 (4), 1553–

1604.

and N. Gregory Mankiw, “Consumption, Income, and Interest Rates: Reinterpreting

the Time Series Evidence,” NBER Macroeconomics Annual, 1989, 4, 185–216.

Cao, Dan and Iván Werning, “Dynamic Savings Choices with Disagreements,” NBER

w22007, 2016.

and , “Saving and Dissaving with Hyperbolic Discounting,” Econometrica, 2018, 86

(3), 805–857.

Carrera, Mariana, Heather Royer, Mark Stehr, Justin Sydnor, and Dmitry

Taubinsky, “Who Chooses Commitment? Evidence and Welfare Implications,” Mimeo,

2020.

Carroll, Christopher D., “Buffer-Stock Saving and the Life Cycle/Permanent Income

Hypothesis,” The Quarterly Journal of Economics, 1997, 112 (1), 1–55.

51



Chatterjee, Satyajit and Burcu Eyigungor, “Continuous Markov Equilibria with Quasi-

Geometric Discounting,” Journal of Economic Theory, 2016, 163, 467–494.

Choukhmane, Taha, “Default Options and Retirement Saving Dynamics,” Mimeo, 2019.

Cohen, Jonathan, Keith Marzilli Ericson, David Laibson, and John Myles White,

“Measuring Time Preferences,” Journal of Economic Literature, 2020, 58 (2), 299–347.

Deaton, Angus, “Saving and Liquidity Constraints,” Econometrica, 1991, 59 (5), 1221–

1248.

DellaVigna, Stefano, “Psychology and Economics: Evidence from the Field,” Journal of

Economic Literature, 2009, 47 (2), 315–72.

, “Structural Behavioral Economics,” in “Handbook of Behavioral Economics: Applica-

tions and Foundations 1,” Vol. 1, Elsevier, 2018, pp. 613–723.

and M. Daniele Paserman, “Job Search and Impatience,” Journal of Labor Economics,

2005, 23 (3), 527–588.

and Ulrike Malmendier, “Contract Design and Self-Control: Theory and Evidence,”

The Quarterly Journal of Economics, 2004, 119 (2), 353–402.

and , “Paying Not to Go to the Gym,” American Economic Review, 2006, 96 (3),

694–719.

Fagereng, Andreas, Martin Blomhoff Holm, Benjamin Moll, and Gisle Natvik,

“Saving Behavior Across the Wealth Distribution: The Importance of Capital Gains,”

NBER 26588, 2019.

Farhi, Emmanuel and Xavier Gabaix, “Optimal Taxation with Behavioral Agents,”

American Economic Review, 2020, 110 (1), 298–336.

Feldstein, Martin and Jeffrey B. Liebman, “Social Security,” Handbook of Public Eco-

nomics, 2002, 4, 2245–2324.

52
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APPENDIX

A Numerical Methods Theory

This paper uses finite difference methods to solve for the equilibrium of the IG agent (equa-

tions (7) – (8)). This section follows Achdou et al. (2020), who provide an excellent set of

resources on these methods. I assume knowledge of finite difference methods here.

Barles and Souganidis (1991) show that a finite difference scheme converges to the unique

viscosity solution of an HJB equation as long as certain conditions hold. As detailed below,

these conditions do not necessarily hold when β < 1. This failure means that one cannot

directly solve the Bellman of the IG agent. The key algorithmic insight of this paper is that

the following two-step approach can be used to solve for the IG agent’s equilibrium. First,

solve the HJB equation of the dynamically consistent û agent. Second, compute the IG

agent’s equilibrium directly from the û agent using Propositions 10 and 11.

Failure of Monotonicity. Here I present a brief description of the problem: the Bellman

equation of the IG agent fails to satisfy a monotonicity property. I follow Tourin (2013)’s

treatment of Barles and Souganidis (1991). For simplicity, I assume here that income is

deterministic, with yt = y.

Let G denote the discretized grid over wealth a on which v(a) is solved numerically.

Assume this grid is uniformly spaced, and let ∆a denote the size of the grid increment. At

each gridpoint g ∈ G, define:

Sg = γvg − u(cg)−
vg+1 − vg

∆a

(y + rag − cg)+ − vg − vg−1

∆a

(y + rag − cg)−.

vg, vg+1, and vg−1 represent the value function at gridpoints g, g+ 1, and g− 1, respectively.

ag is the wealth value at gridpoint g, and cg is the consumption choice at gridpoint g.

For monotoncity to hold, Sg must be weakly decreasing in vg, vg+1, and vg−1. To show

that monotonicity fails when β < 1, assume that y+ rag − cg < 0. In this case, cg is defined
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implicitly by u′(cg) = β vg−vg−1

∆a
. Consider an increase in vg−1:

∂Sg
∂vg−1

= −u′(cg)
∂cg
∂vg−1

+
1

∆a

(y + rag − cg)− +
vg − vg−1

∆a

∂cg
∂vg−1

= (1− β)
vg − vg−1

∆a

∂cg
∂vg−1

+
1

∆a

(y + rag − cg)−,

where the last line uses the property that u′(cg) = β vg−vg−1

∆a
.

If β = 1 then monotonicity holds: ∂Sg
∂vg−1

< 0 since the first term drops out, and y+ rag−

cg < 0 by assumption.

If β < 1 then monotonicity may not hold. Since ∂cg
∂vg−1

> 0 the term (1−β)vg−vg−1

∆a

∂cg
∂vg−1

> 0

whenever β < 1. Now, it is possible for ∂Sg
∂vg−1

> 0, in which case monotonicity does not hold.

The above algebra points to the difficulty of using finite difference methods to solve for

the Bellman of the IG agent. Since this difficulty only arises when β < 1, finite difference

methods can still be used to solve for the equilibrium of the û agent. Given a solution to

the û agent, the equilibrium of the IG agent can then be backed out: Proposition 10 implies

that vj(a) = v̂j(a), and Proposition 11 defines cj(a) given ĉj(a).
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B Present Bias and Policy: A Simple Example

This section provides a simple example to show how government intervention can improve

the equilibrium of an economy with present-biased agents.48 I study a simple “Eat-the-Pie”

model of consumption-saving behavior. I assume that there is a single representative agent

with initial wealth a0. The model is deterministic, with yt ≡ ȳ. The borrowing limit is set

to the natural borrowing constraint of a = −ȳ
r

.

In this simple model, Proposition 5 implies that the IG agent consumes c(a) = ρ−(1−γ)r
γ−(1−β)

(a+

ȳ
r
). However, the first-best consumption level is č(a) = ρ−(1−γ)r

γ
(a+ ȳ

r
).49

For simplicity, I assume that ρ = r, γ = 1, and a0 > 0. With these three assumptions,

the first-best consumption level is č(a0) = ra0 + ȳ and the first-best savings level is š(a0) = 0.

In other words, it is optimal for the agent to consume the annuity value of their wealth plus

their deterministic income flow.

I now introduce a social planner to improve the consumption-saving decisions of the

representative IG agent. This social planner is allowed to use a combination of interest

rate subsidies and consumption taxes, subject to a balanced-budget constraint. Interest rate

subsidies encourage saving, while consumption taxes are a means of financing these subsidies.

Denote the consumption tax by φt, and the subsidized interest rate by rst . The social

planner runs a balanced budget for all t, so the interest rate subsidy of (rst − r)at must equal

the total tax revenue collected at each point in time.

With the introduction of consumption taxes, I will now use ct to denote gross consump-

tion expenditures at time t. However, the agent only gets to consume share 1− φt of gross

expenditures, with the rest going to taxes.

The social planner can recover the first-best equilibrium using a constant consumption

tax and interest rate subsidy. To implement the first-best equilibrium, the planner needs to

48I thank David Laibson for suggesting this example. A similar result is presented in Laibson (1998).
49As discussed in Section 5.4, IG preferences feature a single welfare criterion even though they are time-

inconsistent.
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choose rs and φ such that:

(1− φ)
ra0 + rȳ

rs

β
= ra0 + ȳ (36)

φ
ra0 + rȳ

rs

β
= (rs − r)a0 (37)

Under the simple calibration studied here, the IG agent will choose a gross consumption

expenditure of c(a) =
ra+ rȳ

rs

β
.50 However, actual consumption is only (1 − φ)c(a). Equation

(36) imposes that realized consumption is at its first-best level: (1 − φ)c(a0) = ra0 + ȳ.

Equation (37) is the balanced-budget condition. It says that tax revenues of φc(a0) must

equal the interest rate subsidy of (rs − r)a0.

One can show that the following set of policy tools produces the first-best equilibrium:

rs =
r

β

φ =
ra0(1− β)

ra0 + βȳ

For example, consider the calibration β = 0.75, r = 3%, ȳ = 1, and a0 = 3. The optimal

consumption tax is φ = 2.67% and the optimal subsidized interest rate is rs = 4%.

Welfare and Implementability when β = 1. Proposition 21 highlights the channels

through which present bias can matter for policymakers: present bias does not matter for

determining whether a policy is welfare-improving, but does matter for determining whether

a policy is feasible. This toy model can be used to formalize this discussion.

Proposition 21 implies that this interest rate subsidy plus consumption tax policy will

be welfare-improving for the β = 1 agent. However, this policy is not implementable in

an economy populated by a representative β = 1 agent. At time 0, the β = 1 agent will

consume r(a0 + ȳ
rs

), which will be too low to generate the requisite taxes needed to support

the interest rate subsidy of (rs − r)a0.

50This consumption function uses the property that a constant consumption tax does not change the gross
expenditure of the IG agent. This property is derived formally in the proof of Proposition 20.
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C Proofs

Throughout this appendix, it is assumed that the reader understands the construction of

the û agent. Details of the û construction are given in Section 4, and in Harris and Laibson

(2013).

C.1 Proof of Proposition 1

The proof of Proposition 1 relies on Proposition 10.

Lemma 22. The value function of the û agent, denoted v̂j(a), is unique.

Proof. See Harris and Laibson (2013) for full details. Intuitively, the û agent is an exponential

discounter who optimally choses consumption to maximize v̂j(a). Since there is only one

maximal value function, v̂j(a) must be unique.

The proof of Proposition 1 follows immediately from Lemma 22 and Proposition 10. In

particular, Lemma 22 says v̂ is unique, and Proposition 10 says v = v̂. Hence, v is unique.

C.2 Proof of Corollary 3

This proof extends the β = 1 case of Achdou et al. (2020). A similar result is given in Harris

and Laibson (2004). Taking a derivative of (7) with respect to a and applying the first-order

condition (8) gives

[
(ρ− r) + (1− β)c′j(a)

]
u′(cj(a)) = u′′(cj(a))c′j(a)sj(a) + λj(u

′(c−j(a))− u′(cj(a))).

Applying Ito’s Lemma to u′(cj(at)) gives Etdu′(cj(at)) = u′′(cj(at))c
′
j(at)dat+λj(u

′(c−j(a))−

u′(cj(a)))dt. Since dat = sj(at)dt, we have Etdu′(cj(at)) = u′′(cj(a))c′j(a)sj(a)dt+λj(u
′(c−j(a))−

u′(cj(a)))dt. Rearranging gives (13).
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C.3 Proof of Proposition 4

For full details, see Theorem 21 of Harris and Laibson (2004). The value function for the IG

agent is given by (see equation (7)):

ρvj(a) = u(cj(a)) + v′j(a)(yj + ra− cj(a)) + λj(v−j(a)− vj(a)).

If the constraint binds at a for income state j, then cj(a) = yj + ra. Thus,

ρvj(a) = u(yj + ra) + λj(v−j(a)− vj(a)).

Since the value function is continuous, ρvj(a) = lima→+a ρvj(a). Therefore:

u(yj + ra) + λj(v−j(a)− vj(a)) = lim
a→+a

[
u(cj(a)) + v′j(a)(yj + ra− cj(a)) + λj(v−j(a)− vj(a))

]
,

or simply

u(yj + ra) = lim
a→+a

[
u(cj(a)) + v′j(a)(yj + ra− cj(a))

]
.

Using equation (8) gives

u(yj + ra) = lim
a→+a

[
u(cj(a)) +

1

β
u′(cj(a))(yj + ra− cj(a))

]
.

This equation can be rearranged to yield:

lim
a→+a

u′(cj(a)) = β
lima→+a u(cj(a))− u(yj + ra)

lima→+a cj(a)− (yj + ra)
.

C.4 Proof of Proposition 5

The proof of Achdou et al. (2020)’s Proposition 2 applies to the û agent, giving

lim
a→∞

ĉj(a) =
ρ− (1− γ)r

γ
a.
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Since the IG agent sets cj(a) = 1
ψ
ĉj(a) (see Proposition 11), this gives

lim
a→∞

cj(a) =
1

ψ

ρ− (1− γ)r

γ

=
ρ− (1− γ)r

γ − (1− β)
a

The proof for lim
s→∞

sj(a) is similar.

C.5 Proof of Corollary 6

Using Itô’s Lemma, Et dcj(at)/dtcj(at)
=

c′j(a)sj(a)+λj(c−j(at)−cj(at))
cj(a)

. Equations (15) and (16) give

lim
a→∞

Et dcj(at)/dtcj(at)
= rβ−ρ

γ−(1−β)
. Taking a derivative with respect to r completes the proof.

C.6 Proof of Proposition 10

In this section I prove value function equivalence between the IG agent and the û agent.

This proof is similar to Harris and Laibson (2013) and Laibson and Maxted (2020), and is

included for complete detail.

Remark 23. Most of the complexity in this proof arises in allowing for a to bind. The proof

simplifies when a is the natural borrowing limit.

The û Agent’s HJBVI. To begin, I express the û agent’s value function recursively. In the

model of Section 3.1, v̂j(a) is a viscosity solution to the following Hamilton-Jacobi-Bellman

Variational Inequality (HJBVI):51

0 = min

{
ρv̂j(a)−max

ĉ
û+(ĉ) + v̂′j(a)(yj + ra− ĉ) + λj(v̂−j(a)− v̂j(a)), v̂j(a)− v̂∗j

}
, (38)

51For details on HJBVIs, and for additional economic applications, see the Stopping Time Problems at
https://benjaminmoll.com/codes/.
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where v̂∗j =
u(yj+ra)+λj v̂−j(a)

ρ+λj
.52 Additionally, HJBVI equation (38) is subject to the following

boundary condition at a:

0 ≤
[
v̂′j(a)− ∂û+(ψ(yj + ra))

∂ĉ

] (
v̂j(a)− v̂∗j

)
. (39)

This boundary condition is a shorthand way to restrict the consumption decision of the

û agent at the borrowing limit a. In particular, it ensures that the û agent either sets

ĉj(a) ≤ ψ(yj + ra) or else sets ĉj(a) = yj + ra (details below).

The “variational inequality” structure of equation (38) captures the option value that is

inherent in the û utility function. The left branch of equation (38) is the standard HJB of an

exponential discounter with utility function û+. The right branch of equation (38) captures

the agent’s ability to “stop.” Stopping yields the value v̂∗j =
u(yj+ra)+λj v̂−j(a)

ρ+λj
. This stopping

condition can be thought of as giving the û agent the option to trade away all wealth above

a in exchange for a utility flow of u(yj + ra) that persists until the agent’s income state

changes.53

For a > a it will always be optimal to select the left branch of equation (38) (i.e., do not

“stop”). When a > a the û agent can always choose ĉ such that û+(ĉ) = u(yj + ra), and

this utility flow is attained without trading away all wealth above a.

For a = a, the û agent faces a choice. If the agent chooses the left branch of equation (38)

then the lower utility function û+ is obtained. But, the benefit of choosing the left branch

is that ĉj(a) ≤ ψ(yj + ra) and therefore wealth is accumulated since ŝj(a) > 0. If the agent

chooses the right branch of equation (38) at a = a then the agent earns a larger utility flow

of u(yj + ra), but remains stuck at wealth level a. Thus, equation (38) captures the tradeoff

that the û agent faces at a = a.

The boundary condition in equation (39) is a way to restrict the behavior of the û

agent at a. The û agent must choose either to “continue” by setting ĉj(a) ≤ ψ(yj + ra),

or else to “stop.” Stopping implies v̂j(a) = v̂∗j , in which case equation (39) holds. If the

agent chooses to continue, meaning that v̂j(a) ≥ v̂∗j , boundary condition (39) imposes that

52This implicitly assumes that a > −y1
r . If a = −y1

r then v̂∗j = −∞. In this case, v̂∗j is never chosen.
53If the agent chooses this alternate “stopping” option, their value function is given by ρv̂j(a) = u(yj +

ra) + λj(v̂−j(a)− v̂j(a)). Solving for v̂j(a) gives the formula for v̂∗j .
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v̂′j(a) ≥ ∂û+(ψ(yj+ra))

∂ĉ
. Since the û agent sets

∂û+(ĉj(a))

∂ĉ
= v̂′j(a) in the continuation region, this

lower bound on v̂′j(a) ensures that ĉj(a) ≤ ψ(yj + ra).

Proof Intuition. The intuition for this proof is as follows. Assume that vj(a) = v̂j(a) and

a > a. Then, differential equations (7) and (38) can be combined to yield:

u(cj(a))− v′j(a)cj(a) = û+(ĉj(a))− v̂′j(a)ĉj(a).

Utility function û is reverse-engineered so that this condition holds.

The IG Agent: A Modified Bellman Equation. Following Theorem 2 of Harris and

Laibson (2013), let f+(α) be the unique value of c satisfying u′(c) = α. Let h+(α) =

u(f+(βα)) − αf+(βα). Since u′(cj(a)) = βv′j(a) for a > a, it is the case that h+(v′j(a)) =

u(f+(βv′j(a)))− v′j(a)f+(βv′j(a)) = u(cj(a))− v′j(a)cj(a).

Next, let f
j
(α) be the unique value of c satisfying u′(c) = max{u′(yj + ra), α}. Let

hj(α) = u(f
j
(βα))− αf

j
(βα).

Define:

hj(α, a) =

h
+(α) if a > a

hj(α) if a = a

.

Function h can be used to rewrite equation the Bellman equation of the IG agent (equations

(7) and (8)) as follows:

ρvj(a) = v′j(a)(yj + ra) + λj(v−j(a)− vj(a)) + hj(v
′
j(a), a). (40)

The û Agent: A Modified Bellman Equation. At a = a, the û agent faces a choice to

“continue” or to “stop”. Continuing attains utility function û+ with consumption ĉj(a) ≤

ψ(yj + ra). Stopping attains utility function u with consumption ĉj(a) = yj + ra.

Lemma 24. The û agent will choose to continue at a when v̂′j(a) > 1
β
(yj + ra)−γ. The û

agent will choose to stop when v̂′j(a) < 1
β
(yj + ra)−γ.

Proof. If the û agent chooses to continue at a then the û agent sets
∂û+(ĉj(a))

∂ĉ
= v̂′j(a). This
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implies ĉj(a) = ψ(βv̂′j(a))−
1
γ . This consumption choice yields a value at a of

ρv̂j(a) = û+(ĉj(a)) +
ψγ

β
ĉj(a)−γ(yj + ra− ĉj(a)) + λj(v̂−j(a)− v̂j(a)). (41)

If the û agent chooses to stop, the value at a is given by

ρv̂j(a) = u(yj + ra) + λj(v̂−j(a)− v̂j(a)). (42)

Comparing (41) and (42), one can show that the û agent is indifferent between the two

choices when v̂′j(a) = 1
β
(yj + ra)−γ (which implies ĉj(a) = ψ(yj + ra)). The û agent chooses

value function (41) when v̂′j(a) > 1
β
(yj + ra)−γ, and value function (42) when v̂′j(a) <

1
β
(yj + ra)−γ.

Using Lemma 24, I now proceed as in the IG case. For the û-agent, let f̂+(α) be the unique

value of ĉ satisfying ∂û+(ĉ)
ĉ

= α. Let ĥ+(α) = û+(f̂+(α)) − αf̂+(α). Since the û agent sets

∂û+(ĉj(a))

∂ĉ
= v̂′j(a) for a > a, it is the case that ĥ+(v̂′j(a)) = û+(f̂+(v̂′j(a)))− v̂′j(a)f̂+(v̂′j(a)) =

û+
j (ĉj(a))− v̂′j(a)ĉj(a).

Next, let f̂
j
(α) be the unique value of ĉ satisfying:

ĉ =

ψ(βα)−
1
γ if α ≥ 1

β
(yj + ra)−γ

yj + ra otherwise

.

Let ĥj(α) = ûj(f̂ j(α), a)− αf̂
j
(α).

Define:

ĥj(α, a) =

ĥ
+(α) if a > a

ĥj(α) if a = a

.

Using Lemma 24, function ĥ can be used to rewrite the Bellman equation of the û agent

(equation (38)) as follows:

ρv̂j(a) = v̂′j(a)(yj + ra) + λj(v̂−j(a)− v̂j(a)) + ĥj(v̂
′
j(a), a) (43)
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From inspection, we can see that equations (40) and (43) are identical if and only if hj and

ĥj are the same. This can be confirmed directly.

C.7 Proof of Proposition 11

For a > a, equation (8) specifies that the IG agent sets u′(cj(a)) = βv′j(a). The û agent sets

∂û+(ĉj(a))

∂ĉ
= v̂′j(a). Imposing the value function equivalence that vj(a) = v̂j(a) (Proposition

10) gives:

∂u(cj(a))

∂c
= β

∂û+(ĉj(a))

∂ĉ
.

This implies

cj(a) =
1

ψ
ĉj(a).

For a = a, consider first the case where ĉj(a) ≤ ψ(yj + ra). If the û agent sets ĉj(a) ≤

ψ(yj + ra) then this implies that v̂′j(a) ≥ ∂û+(ψ(yj+ra))

∂ĉ
= 1

β
(yj + ra)−γ. Since vj(a) = v̂j(a)

by value function equivalence (Proposition 10), this also means that βv′j(a) ≥ (yj + ra)−γ.

In this case, equation (8) specifies that the IG agent sets u′(cj(a)) = βv′j(a). The argument

that was just used for a > a continues to hold here.

Next, consider the case where ĉj(a) = yj + ra. If the û agent sets ĉj(a) = yj + ra then it

must be that v̂′j(a) ≤ 1
β
(yj + ra)−γ (Lemma 24). By optimality condition (8), the IG agent

also sets cj(a) = yj + ra.

C.8 Proof of Proposition 13

This proof uses the property that the û agent behaves identically to a standard exponential

agent when a is the natural borrowing limit (Remark 12).

First consider the case where r ≤ ρ. The Euler equation of the standard exponential

agent implies that č(a) ≥ y+ ra for all a ≥ 0 (see Achdou et al. (2020)). Since the IG agent

sets c(a) = 1
ψ
ĉ(a) = 1

ψ
č(a), the IG agent strictly dissaves for all a ≥ 0 when r ≤ ρ.

Next consider the case where r ∈ (ρ, ρ
β
). The standard exponential agent consumes
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according to č(a) = ρ−(1−γ)r
γ

(a + y
r
) for a ≥ 0 (see e.g. Fagereng et al. (2019) for a proof).

The IG agent therefore sets c(a) = 1
ψ
č(a) = ρ−(1−γ)r

γ−(1−β)
(a + y

r
) for a ≥ 0. One can show that

s(a) = y + ra− c(a) < 0 whenever r < ρ
β
. Thus, the IG agent strictly dissaves for all a ≥ 0

when r ∈ (ρ, ρ
β
).

In both cases the IG agent strictly dissaves for all a ≥ 0. This means that the IG agent

dissaves at a = 0, completing the proof that s(0) < 0 whenever r < ρ
β
. This holds regardless

of how large Γ(0) is.

Note that this proof does not rely on some sort of consumption discontinuity at a = 0.

The consumption function c(a) is continuous at a = 0. To show this, recall that the IG

agent’s value function is given by

ρv(a) = u(c(a)) + v′(a)(ς(a)a+ y − c(a)).

The IG agent sets u′(c(a)) = βv′(a). Therefore

ρv(a) = u(c(a)) +
c(a)−γ

β
(ς(a)a+ y − c(a)).

Since v(a) is continuous and ς(a)a is continuous, c(a) is also continuous at a = 0.

C.9 Proof of Proposition 14

Value Function Uniqueness. I first prove that the IG agent’s intrapersonal game fea-

tures a unique value function.

Lemma 25. For the two-asset model described in Section 5.2, the value function of the û

agent, denoted v̂j(a, ζ), is equivalent to the value function vj(a, ζ) of the IG agent.

Proof. In this extended model, v̂j(a, ζ) is a viscosity solution to the following Hamilton-

Jacobi-Bellman Variational Inequality (HJBVI):

0 = min

{
v̂j(a, ζ)− v̂∗j (ζ), ρv̂j(a, ζ)−max

ĉ,d̂
û+(ĉ) +

∂v̂j(a, ζ)

∂a
(yj + ς(a)a− d̂− χ(d̂, ζ)− ĉ)

+
∂v̂j(a, ζ)

∂ζ
(ζrζ + d̂) + λj(v̂−j(a, ζ)− v̂j(a, ζ)) +

1

2

∂2v̂j(a, ζ)

∂ζ2
(ζσζ)2

}
, (44)

71



where v̂∗j (ζ) =
u(yj+ra)+λj v̂−j(a,ζ)

ρ+λj
.54 HJBVI equation (44) is subject to the following boundary

condition at a:

0 ≤
[
v̂′j(a, ζ)− ∂û+(ψ(yj + ra))

∂ĉ

] [
v̂j(a, ζ)− v̂∗j (ζ)

]
. (45)

Given this setup, the proof of value function equivalence is the same as Proposition 10.

Asset allocation choice dj(a, ζ) adds no additional difficulty because the û agent and the IG

agent both utilize the same first-order condition to choose dj(a, ζ).

Given Lemma 25, the proof of value function uniqueness is the same as Proposition 1.

Independence of Asset Allocation Decision and β. When a is the natural borrowing

limit, the proof that dj(a, ζ) is independent of β is as follows. By Lemma 25, vj(a, ζ) =

v̂j(a, ζ). Given value function equivalence, equation (27) implies that the IG agent chooses

the same illiquid asset policy function as the û agent: dj(a, ζ) = d̂j(a, ζ). When a is the

natural borrowing limit the û agent behaves identically to a standard exponential agent

(Remark 12). Thus, dj(a, ζ) = d̂j(a, ζ) = ďj(a, ζ).

C.10 Proof of Proposition 16

The (potentially naive) IG agent sets u′(cj(a, ζ)) = β
∂vEj (a,ζ)

∂a
. By Lemma 25, one can

construct a û agent using βE such that v̂j(a, ζ) = vEj (a, ζ). This û agent chooses con-

sumption such that
∂û+(ĉj(a,ζ))

∂ĉ
=

∂v̂j(a,ζ)

∂a
. This implies that

∂v̂j(a,ζ)

∂a
= (ψE)γ

βE
ĉj(a, ζ)−γ, where

ψE = γ−(1−βE)
γ

.

Using the value function equivalence property that v̂j(a, ζ) = vEj (a, ζ):

u′(cj(a, ζ)) = β
(ψE)γ

βE
ĉj(a, ζ)−γ.

Rearranging gives

cj(a, ζ) =

(
βE

β

) 1
γ 1

ψE
× ĉj(a, ζ).

54This implicitly assumes that a > −y1
r . If a = −y1

r then v̂∗j (a) = −∞. In this case, v̂∗j is never chosen.
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To complete the proof, note that the û agent behaves identically to a standard exponential

agent when a does not bind (Remark 12). This implies that the û agent sets ĉj(a, ζ) = čj(a, ζ)

regardless of β and βE. Therefore cj(a, ζ) =
(
βE

β

) 1
γ 1
ψE
× čj(a, ζ), as desired.

To see when consumption is increasing in naivete, consider:

∂cj(a, ζ)

∂βE
∝ 1

γ

(
βE

β

) 1−γ
γ 1

β

1

ψE
−
(
βE

β

) 1
γ 1

ψE
1

γ − (1− βE)

∝ 1

βE
− 1

ψE

For βE < 1, one can show that ψE > βE when γ > 1, and ψE < βE when γ < 1. Thus,

consumption is increasing in naivete when γ > 1, and decreasing in naivete when γ < 1.

C.11 Proof of Corollary 19

In the model of Section 3, the expected continuation-value function vEj (a) is characterized

as follows:

ρvEj (a) = u(cEj (a)) +
∂vEj (a)

∂a
(yj + ra− cEj (a)) + λj(v

E
−j(a)− vEj (a)), (46)

u′(cEj (a)) =

β
E ∂vEj (a)

∂a
if a > a

max{βE ∂vEj (a)

∂a
, u′(yj + ra)} if a = a

. (47)

Equations (46) – (47) are identical to (7) – (8) except that the true short-run discount factor

β is replaced by the perceived discount factor βE. The agent’s actual consumption decision

is given by:

u′(cj(a)) =

β
∂vEj (a)

∂a
if a > a

max{β ∂v
E
j (a)

∂a
, u′(yj + ra)} if a = a

.

Let sEj (a) = yj + ra − cEj (a) denote the perceived savings rate. Taking a derivative of

73



(46) with respect to a and applying the first-order condition u′(cEj (a)) = βE
∂vEj (a)

∂a
gives

[
(ρ− r) +

(
1− βE

) ∂cEj (a)

∂a

]
∂vEj (a)

∂a
=
∂2vEj (a)

∂a2
sEj (a) + λj

(
∂vE−j(a)

∂a
−
∂vEj (a)

∂a

)
.

Multiplying through by β and using the property that u′(cj(a)) = β
∂vEj (a)

∂a
gives:

[
(ρ− r) +

(
1− βE

) ∂cEj (a)

∂a

]
u′(cj(a)) = u′′(cj(a))

∂cj(a)

∂a
sEj (a) + λj (u′(c−j(a))− u′(cj(a))) .

Applying Ito’s Lemma gives Etdu′(cj(at)) = u′′(cj(at))c
′
j(at)sj(at)+λj(u

′(c−j(a))−u′(cj(a)))dt:

[
(ρ− r) +

(
1− βE

) ∂cEj (a)

∂a

]
u′(cj(a)) = Et[du′(cj(at))/dt] + u′′(cj(a))

∂cj(a)

∂a
(sEj (a)− sj(a))

= Et[du′(cj(at))/dt] + u′′(cj(a))
∂cj(a)

∂a
(cj(a)− cEj (a)).

The first-order conditions of u′(cEj (a)) = βE
∂vEj (a)

∂a
and u′(cj(a)) = β

∂vEj (a)

∂a
imply that cEj (a) =(

β
βE

) 1
γ
cj(a). Thus,

[
(ρ− r) +

(
1− βE

)( β

βE

) 1
γ ∂cj(a)

∂a

]
u′(cj(a)) = Et[du′(cj(at))/dt] + u′′(cj(a))

∂cj(a)

∂a
cj(a)

(
1−

(
β

βE

) 1
γ

)
.

Dividing through by marginal utility and using the property that γ = −cu′′(c)
u′(c)

:

[
(ρ− r) +

(
1− βE

)( β

βE

) 1
γ ∂cj(a)

∂a

]
=

Et[du′(cj(at))/dt]
u′(cj(a))

− γ ∂cj(a)

∂a

(
1−

(
β

βE

) 1
γ

)
.

Rearranging yields the desired result.

C.12 Proof of Proposition 20

Step 1: Value Function Equivalence for the Naive Agent (γ 6= 1). Recall that the

û utility function is constructed so that the value function of the sophisticated IG agent is

equivalent to the value function of an exponential agent with utility function û. The first
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step of this proof generalizes this construction to allow for naivete. I construct a utility

function, denoted ˆ̂u, such that the realized value function of the (potentially naive) IG is

equivalent to the value function of an exponential agent with utility function ˆ̂u. I refer to

this agent as the ˆ̂u agent.

Note that when βE 6= β the realized value function of the naive IG agent does not equal

the naif’s expected value function. As given in the main text, the expected continuation-

value function is vEt = Et
[∫∞
t
e−ρ(s−t)u(cEs )ds

]
. However, the realized value function is

vRt = Et
[∫ ∞

t

e−ρ(s−t)u(cs)ds

]
.

vR is based on the naif’s realized consumption, while vE is based on their perceived con-

sumption.

Let ˆ̂u(c) = xc1−γ−1
1−γ . This is a positive affine transformation of CRRA utility function u(c)

whenever x > 0. When this is the case, the ˆ̂u agent will behave identically to a standard

exponential agent. Thus, I will use čj(a, ζ) to refer to the consumption of the ˆ̂u agent.

In order to generate value function equivalence between the (possibly naive) IG agent

and the ˆ̂u agent, I construct ˆ̂u so that the following condition holds for all a > a:

u(cj(a, ζ))−
∂vRj (a, ζ)

∂a
cj(a, ζ) = ˆ̂u(čj(a, ζ))−

∂vRj (a, ζ)

∂a
čj(a, ζ). (48)

This condition ensures that vRj (a, ζ) = ˆ̂vj(a, ζ) whenever a does not bind in equilibrium. See

the proof of Proposition 10 for details.

I want to solve for x such that equation (48) holds. From Proposition 16, note that

čj(a, ζ) = αcj(a, ζ), where α = ψE
(

β
βE

) 1
γ
. Additionally, the ˆ̂u agent sets čj(a, ζ) such that

xčj(a, ζ)−γ =
∂vRj (a,ζ)

∂a
. Using these properties in equation (48) gives:

cj(a, ζ)1−γ

1− γ
− xα−γcj(a, ζ)1−γ =

x(αcj(a, ζ))1−γ

1− γ
− x(αcj(a, ζ))1−γ.
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This can be rearranged to yield:

x =
αγ

1− γ + αγ
.

Note that x = ψγ

β
in the case of sophistication (βE = β), in which case ˆ̂u(c) = û(c).

Step 2: The Effect of a Consumption Tax. I now introduce a constant perpetual

consumption tax of τ ∈ [0, 1). Given consumption tax τ ∈ [0, 1), let čj(a, ζ) denote the

gross consumption expenditure rate of the standard exponential agent.55 Here I show that a

consumption tax of τ does not affect the exponential agent’s gross consumption expenditure.

With no tax, the standard exponential agent chooses consumption to maximize v̌:

v̌j(a, ζ) = max
č

Et
[∫ ∞

t

e−ρ(s−t)u(čs)ds

]
.

With a consumption tax, the standard exponential agent chooses consumption to maximize:

v̌j(a, ζ; τ) = max
č

Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
.

Note that u((1−τ)c) is a positive affine transformation of u(c). Thus, policy function čj(a, ζ)

is unaffected by consumption tax τ . The only effect of the tax is that for τ > 0, čj(a, ζ)

denotes gross consumption expenditure. The agent only gets to consume (1−τ)čj(a, ζ), with

the rest going to taxes.

Step 3: The Welfare Effect of Present Bias (γ 6= 1). Since ˆ̂u is a positive affine trans-

formation of u, the ˆ̂u agent behaves identically to a standard exponential agent. Additionally,

value function equivalence implies that the realized value function of the IG agent equals the

value function of the ˆ̂u agent whenever a does not bind in equilibrium: vRj (a, ζ) = ˆ̂vj(a, ζ).

This was shown in Step 1 of this proof.

The final step is to derive the consumption tax τ that equates the realized value function

of the IG agent (vRj (a, ζ)) with the value function of a standard exponential agent facing a

55In other words, the agent spends č to consume (1− τ)č.
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consumption tax (v̌j(a, ζ; τ)). Using value function equivalence, the realized value function

of the IG agent is:

vRj (a, ζ) = ˆ̂vj(a, ζ) = Et
[∫ ∞

t

e−ρ(s−t) ˆ̂u(ˆ̂cs)ds

]
. (49)

The value function of a standard exponential agent facing a consumption tax is:

v̌j(a, ζ; τ) = Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
. (50)

The key to this proof is to note that ˆ̂cj(a, ζ) = čj(a, ζ). Therefore the consumption

path in the integral of equation (49) is identical to the gross consumption expenditure path

in equation (50) (this hold state by state, so it also holds in expectation). Thus, setting

equation (49) equal to equation (50) is as simple as finding the value of τ such that:

ˆ̂u(c) = u((1− τ)c).

This implies that x = (1− τ)1−γ. Rearranging gives

τ = 1−
(

αγ

1− γ + γα

) 1
1−γ

.

Special Case: γ = 1. In the special case of γ = 1 the naif and the sophisticate behave

identically (Proposition 16). The realized value function vRj (a, ζ) is therefore independent of

βE. So, I calculate the γ = 1 case under the assumption of sophistication, βE = β.

I again derive the consumption tax τ that equates the realized value function of the IG

agent (vRj (a, ζ)) with the value function of a standard exponential agent facing a consumption

tax (v̌j(a, ζ; τ)). Using value function equivalence, the realized value function of the IG agent

is:

vRj (a, ζ) = v̂j(a, ζ) = Et
[∫ ∞

t

e−ρ(s−t)û(ĉs)ds

]
. (51)
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The value function of a standard exponential agent facing a consumption tax is:

v̌j(a, ζ; τ) = Et
[∫ ∞

t

e−ρ(s−t)u((1− τ)čs)ds

]
. (52)

Since ĉj(a, ζ) = čj(a, ζ), the consumption path in the integral of equation (51) is identical

to the gross consumption expenditure path in equation (52). As above, I need to find the

value of τ such that:

û(c) = u((1− τ)c).

When γ = 1 this implies that − ln(β) + β−1
β

= ln(1− τ). Rearranging gives

τ = 1−
exp

(
β−1
β

)
β

.

The Effect of β and βE. First, I show that τ is decreasing in α. The derivative

∂τ

∂α
=
−1

1− γ

(
αγ

1− γ + γα

) γ
1−γ
(

γαγ−1

1− γ + γα
− γαγ

(1− γ + γα)2

)

implies that

sgn

(
∂τ

∂α

)
= sgn(γ − 1)× sgn

(
1− α

1− γ + γα

)
, or equivalently

sgn

(
∂τ

∂α

)
= sgn(γ − 1)sgn(1− γ).

Thus, τ is always decreasing in α.

The derivative of α with respect to β is:

∂α

∂β
=

ψE

γβE

(
β

βE

) 1−γ
γ

> 0.

As stated in the main text, this implies that ∂τ
∂β
< 0.
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The derivative of α with respect to βE is:

∂α

∂βE
=

1

γ

(
β

βE

) 1
γ

− 1

γ

(
β

βE

) 1
γ ψE

βE
.

So, ∂α
∂β

> 0 when βE > ψE, and ∂α
∂β

< 0 when βE < ψE. Since βE > ψE when γ < 1 (and

vice versa), this implies that α is increasing in βE when γ < 1, and decreasing in βE when

γ > 1. This also implies that ∂τ
∂βE

< 0 when γ < 1, and ∂τ
∂βE

> 0 when γ > 1. As stated in

the main text, naivete increases the welfare cost of present bias when γ > 1.

C.13 Proof of Proposition 21

This follows from the proof of Proposition 20, which shows that the realized continuation-

value function of the IG agent is a positive affine transformation of the value function for the

standard exponential agent. Accordingly, improving the (realized) welfare of the IG agent

is equivalent to improving the welfare of the standard exponential agent.
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D Model Solution with Naivete

This section replicates the numerical example of Section 3.3 under the assumption of complete

naivete. To generate an equilibrium interest rate of 3%, I set β = 0.75, βE = 1, and

ρ = 2.45%. The calibration is otherwise identical to Section 3.3.

Overall the results are qualitatively similar. The biggest difference between the consump-

tion of the naif and the sophisticate occurs near a. Though the naif still overconsumes near

the borrowing constraint, Figure 5 illustrates that the naif overconsumes by less than the

sophisticate. As described in the main text, when the consumer is sophisticated their present

bias interacts with the effective planning horizon to increase consumption near a. This effect

does not arise under naivete because the naif trusts all future selves.

Figure 5: Equilibrium Consumption-Saving Decisions. The figure plots the equilib-
rium consumption function for the βE = β calibration (sophistication) and the βE = 1
calibration (naivete).
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Figure 6: The Distribution of Wealth. This figure shows the stationary wealth distribu-
tion for the βE = β calibration and the βE = 1 calibration.

Figure 7: MPCs. This figure plots quarterly MPCs for the βE = β calibration and the
βE = 1 calibration.
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