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Abstract

This paper studies random choice rules over finite sets that obey regularity but po-

tentially fail to satisfy all of the Block-Marschak inequalities. Such random choice rules

can be represented by non-additive random utility functions: that is, by capacities on

the space of preferences. The higher-order Block-Marschak inequalities are shown to

be related to the degree of monotonicity that can be achieved by a capacity representa-

tion. These results help to decipher the Block-Marschak inequalities, and are applied

to study the relationship between random choice over finite sets and random choice

over lotteries.

∗I would like to thank Drew Fudenberg and Jerry Green for helpful discussions. Tomasz Strzalecki
suggested the line of research which led to this project and provided excellent advice. All remaining errors
are my own. This paper is based on a chapter of my dissertation at Harvard University.
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1 Introduction

A random choice rule (RCR) on a finite set can be represented by a random utility function

(RUF) if and only if its associated Block-Marshack polynomials are all nonnegative. These

inequalities can be quite complex: as the number of available alternatives grows both the set

of Block-Marshack inequalities and the individual polynomials themselves expand. Conse-

quently, for all but the smallest sets of alternatives the complete collection of Block-Marschak

inequalities is difficult to interpret.

The first goal of this paper is to “unravel” the Block-Marshack inequalities by progres-

sively relaxing them to study new representations that are more general than random utility.

Specifically, the representations will feature set functions on the space of preferences that

are capacities rather than probability measures.

One the simplest conditions to impose on a RCR is regularity, which demands that adding

alternatives to a choice set cannot increase the frequency with which existing alternatives are

chosen. Proposition 1 shows that a RCR satisfies regularity if and only if it can be represented

by a superadditive capacity on the space of preferences. The higher-level Block-Marschak

inequalities are then related to the degree of monotonicity that a capacity representation of

a RCR can satisfy.

These results promote a deeper understanding of the Block-Marschak inequalities. Tech-

nically, the Block-Marschak inequalities are shown to interact in somewhat-subtle ways with

the normalization equalities, which require that choice frequencies from any set sum to one.

A surprising consequence of the analysis is that the full set of Block-Marschak inequalities is

necessary (as well as sufficient) for a RCR to be represented by a belief function. Therefore,

there is no observable difference between representations featuring traditional probability

measures and those featuring belief functions.

Secondly, this paper examines the connection between random choice over finite sets

and random choice over lotteries. In the latter case, the necessary and sufficient conditions

for random utility maximization are—at least superficially—much simpler than the Block-

Marschak inequalities. Proposition 4 provides a formal sense in which the mixture continuity

axiom substitutes for the higher-order Block-Marschak inequalities for random choice over

lotteries.

The next section discusses related literature and provides the necessary background on

random choice. Proofs omitted from the main text may be found in the appendix.
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2 Background and Related Literature

Let X be a finite set of alternatives with |X| = N , and let D := 2X \{∅} denote the collection

of all nonempty subsets of X. A random choice rule (RCR) is a function ρ : D ×X → [0, 1]

with the property that for all D ∈ D, ∑
x∈D

ρD(x) = 1.

Here ρD(x) := ρ(D, x) is interpreted as the probability of choosing x from the set D. The

above equations are called the normalization equalities, and they guarantee that this inter-

pretation makes sense by requiring that choice frequencies for every menu sum to one.

LetR denote the set of complete, transitive, and antisymmetric relations onX. A random

utility function (RUF) is a probability measure µ ∈ ∆(R). A RUF is said to represent a

RCR if for all (D, x) ∈ D ×X,

ρD(x) = µ({R ∈ R | x is R-optimal in D}).

Block and Marschak (1960) introduced the following collection of polynomial inequalities,

now known as the Block-Marschak (BM) inequalities :∑
C:D⊆C

(−1)|C\D|ρC(x) ≥ 0 for all (D, x) ∈ D ×X with x ∈ D

and demonstrated that these inequalities are necessary for a RCR to be represented by

some RUF. Falmagne (1978) proved that the BM inequalities are also sufficient for the

existence of a random utility representation. This result was rediscovered and popularized

among economists by Barberá and Pattanaik (1986).

The following example partially enumerates the BM inequalities for a small set of alter-

natives.

Example 1. Let X = {x, y, z}. The BM inequalities are indexed by pairs (D, x) where

x ∈ D. With x as the selected alternative, there are four BM inequalities (similar inequalities

are required for y and z as the selected alternatives):

ρX(x) ≥ 0 (Take D = X)

ρx,y(x)− ρX(x) ≥ 0 (Take D = {x, y})

ρx,z(x)− ρX(x) ≥ 0 (Take D = {x, z})

1− ρx,y(x)− ρx,z(x) + ρX(x) ≥ 0 (Take D = {x})
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Note that first inequality (with D = X) holds trivially, since RCRs were defined to take

values in [0, 1]. The second and third inequalities are particular instances of regularity.

For example, the second inequality demands that adding z to {x, y} cannot increase the

probability of selecting x. It turns out that the final inequality is redundant: Lemma 3

shows that any BM inequality indexed by (x, {x}) is implied by other BM inequalities and

the normalization equalities. ♦

The BM inequalities above are written in the form of Fiorini (2004). In that paper,

Fiorini provides a novel proof that the BM inequalities are sufficient for a random utility

representation, utilizing the concept of Möbius inversion and tools from the theory of network

flows. Möbius inversion also plays a critical role in Gul and Pesendorfer (2013), which

characterizes random utility models that permit indifference.

Fishburn (1998) and more recently McFadden (2005) provide excellent overviews on the

theory of random utility maximization.

3 Capacity Representations

This section studies representations of RCRs that feature capacities on the space of prefer-

ences.

Definition 1. A capacity on a finite set S is a function ν : 2S → [0, 1] that satisfies ν(∅) = 0,

ν(S) = 1, and ν(E) ≤ ν(F ) whenever E ⊆ F .

Capacities are normalized set functions that are monotonic with respect to set inclusion,

but need not be additive.

Definition 2. A capacity ν on R represents a RCR ρ if

ρD(x) = ν({R ∈ R | x is R-optimal in D})

for all (D, x) ∈ D ×X.

The goal of this section is to characterize the existence of a capacity representation for a

RCR. An immediate necessary condition is that the RCR satisfy regularity, which demands

that adding elements to a choice set cannot increase the frequency with which existing

elements are selected. Formally,

Definition 3 (Regularity). A RCR ρ satisfies regularity if ρD(x) ≥ ρE(x) whenever D ⊆ E.
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Proposition 1 shows that regularity is also sufficient for the existence of a capacity rep-

resentation. Moreover, no additional conditions are required to ensure representation by a

superadditive capacity. Intuitively, this occurs because the normalization equalities impose

some additive structure on any RCR.

Proposition 1. Let ρ be a RCR on X. TFAE:

1. ρ satisfies regularity.

2. There exists a capacity ν on R that represents ρ.

3. There exists a superadditive capacity ν on R that represents ρ; i.e. ν satisfies

ν(A ∪B) ≥ ν(A) + ν(B)

whenever A, B ⊆ R are disjoint.

Clearly (3) ⇒ (2) ⇒ (1). So it suffices to show that (1) ⇒ (3); the proof of this fact

may be found in the appendix, along with a general extension theorem for superadditive

capacities. Demonstrating that (1)⇒ (2) illustrates the central idea.

Proof of (1)⇒ (2). Given is an RCR ρ satisfying regularity. For any pair (D, x) ∈ D ×X,

define the set of relations

N(D, x) := {R ∈ R | x is R-optimal in D}.

Next, let A ⊆ 2R be all subsets A of R that can be written in the form A = N(D, x) for

some (D, x) ∈ D ×X. On A, define a set function ν̂ : A → [0, 1] by

ν̂(A) = ρD(x)

where (D, x) is the unique pair in D×X that defines the set A. Observe that ν̂ is monotonic

on A since ρ satisfies regularity.

Set ν̂(∅) = 0 and ν̂(R) = 1. All that remains is to extend ν̂ to a capacity on R. A

natural approach is to define

ν(E) := max{ν̂(A) | A ⊆ E, A ∈ A ∪ {∅} ∪ {R}}

for each E ⊆ R. As shown in Proposition 2.4 of (Denneberg, 1994), this extension procedure

creates a capacity that represents ρ. �
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Loosely, the set A contains subsets of R whose ν-value is directly constrained by the

data. So the question becomes “when can one create a set function on R that respects ρ

on A and also satisfies some desirable properties both on and off of A?” For the case of

capacities, the desired property is monotonicity, and the answer to the preceding question is

“whenever ρ is regular.”

The set A is a strict subset of 2R, and it is easy to see that capacity representations of

a RCR are not unique. The construction above identified the minimal capacity that can

represent a regular random choice rule. To find the maximal capacity, set

ν(E) := inf{ν̂(A) | A ⊇ E, A ∈ A ∪ {∅} ∪ {R}}

in the final step of the above proof (see the discussion on page 21 of (Denneberg, 1994)).

In the case of traditional RUFs, the set function representing ρ is a probability measure

on R. Unfortunately, the collection A is not an algebra,1 so traditional extension theorems

cannot be used and the proof strategy above fails. A RUF µ must of course be additive, so the

behavior of µ is constrained even off the set A. Nevertheless, whenever N ≥ 4 random utility

representations are not unique. This issue is discussed extensively in McClellon (2015).

Traditional RUFs have been interpreted in two ways. First, a RUF µ can be taken to

represent a distribution of preferences for a single agent; in this case ρ arises from repeated

samples of an individual’s choice behavior at different points in time. Proposition 1 shows

that an individual who is observed to choose stochastically and satisfies regularity can be

modeled as if she has random preferences captured by a capacity.

Alternatively, µ could represent the distribution of individuals’ preferences across a soci-

ety, where each individual has deterministic preferences and ρ summarizes choice behavior

across the population. This interpretation implicitly assumes that an additive distribution

of preferences exists, so it is unclear how to apply Proposition 1 in this setting.

Under a third, novel interpretation ρ captures the predictions on an expert regarding

the choice behavior of either an individual or a population.2 In this case, µ represents the

expert’s uncertainty regarding the true distribution of preferences. Under Proposition 1,

if an expert’s predictions satisfy regularity then they can modeled as arising from non-

additive beliefs about the likelihood of particular preferences being realized. Formalizing

this idea by constructing scoring rules for stochastic predictions is the subject of on-going

work, complicated by the fact that proper scoring rules for capacities do not exist (as shown

by Chambers (2008)).

1Although A is not an algebra, it has an interesting structure: A is a collection of partitions of R. This
structure could potentially be exploited to deliver new characterizations for random utility models.

2I thank Tomasz Strzalecki for suggesting this interpretation.

6



4 Unraveling the BM Inequalities

4.1 Supermodularity

Proposition 1 shows that regularity alone suffices to guarantee the existence of a super-

additive capacity representation for a RCR. The remaining higher-order BM inequalities

must therefore facilitate the move from superadditivity to full additivity. First, consider

strengthening superadditivity to supermodularity.

Definition 4. A capacity ν on a set S satisfies supermodularity (also called 2-monotonicity

or convexity) if

ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B)

for all A, B ⊆ S.

In general, the capacities constructed in the proof of Proposition 1 are not supermodular.

The following example illustrates how the BM inequalities interact with supermodularity.

Example 2. Let ρ be a RCR on X = {x, y, z, w}. The BM inequality indexed by ({x, y}, x)

states that

ρ{x,y}(x)− ρ{x,y,z}(x)− ρ{x,y,w}(x) + ρX(x) ≥ 0.

The supplement to Gul and Pesendorfer (2006) interprets this inequality as demanding that

the effect on the choice frequency of x from adding z to the set {x, y} is at least as great as

the effect from adding z to the larger set {x, y, w}.
Suppose ρ is represented by a capacity ν. Let

E := N({x, y}, x), A := N({x, y, z}, x), and B := N({x, y, w}, x).

If the above BM inequality is violated, then

ν(A ∪B) + ν(A ∩B) ≤ ν(E) + ν(A ∩B) < ν(A) + ν(B),

which shows that ν cannot be supermodular. ♦

The following proposition identifies the reason behind the choice of ({x, y}, x) as the

indexing pair for the BM inequality in the previous example: namely, in that example the

set {x, y} has two fewer elements than the complete set of alternatives.

Proposition 2. Let ρ be a RCR on X and let (D, x) ∈ D×X with x ∈ D. If |D| = N − 2,

the BM inequality indexed by (D, x) is a necessary condition for ρ to be represented by a

supermodular capacity.
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I conjecture but have been unable to prove that the following condition (which generalizes

the BM inequalities indexed by sets with N − 2 elements) is both necessary and sufficient

for a regular RCR to be represented by a supermodular capacity:

ρD(x)− ρD∪B(x)− ρD∪C(x) + ρD∪C∪B(x) ≥ 0 for all B, C, D ⊆ X.

Chateauneuf and Jaffray (1989) provide a characterization of supermodular capacities in

terms of Möbius inversion that could prove useful in establishing this characterization.

Before moving on, note that the difference between supermodular and submodular rep-

resentations is flimsier than one might expect given that the BM inequalities related to

supermodularity are only required to hold in one direction.

Lemma 1. Let A be defined as in the proof of Proposition 1. A RCR ρ can be represented

by a supermodular capacity ν that satisfies ν(A) = 1 − ν(Ac) for all A ∈ A iff it can be

represented by a submodular capacity ν ′ that satisfies ν ′(A) = 1− ν ′(Ac) for all A ∈ A.

Proof. Let ν be a supermodular representation for ρ satisfying the condition of the proposi-

tion. By Proposition 2.3 of Denneberg (1994), the set function η defined by η(E) = 1−ν(E)

for all E ∈ 2R is a submodular capacity. Since ν and η agree on A, η also represents ρ. The

same construction works in the opposite direction after replacing ν with ν ′. �

4.2 K-Monotonicity

The BM inequalities indexed by (D, x) become increasingly cumbersome as the cardinality of

D decreases. To understand how these inequalities affect capacity representations of a RCR,

consider the following generalization of supermodularity based upon the inclusion-exclusion

principle:

Definition 5. A capacity ν is called K-monotonic (or monotone of order K) if

ν

( K⋃
k=1

Ak

)
≥

∑
∅6=I⊆{1,...,K}

(−1)|I|+1 ν

(⋂
k∈I

Ak

)

for any (A1, . . . , AK) with Ak ⊆ S for all k.

This definition is best illustrated by considering the case of three sets, A1, A2, and A3.

The inclusion-exclusion principle demands that

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|+ |A1 ∩ A2 ∩ A3|.
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Loosely, a 3-monotonic capacity needs to be respect this equality by assigning A1 ∪A2 ∪A3

“enough” measure relative to its underlying component sets.

The following result shows that violations of higher-order BM inequalities limit the order

of monotonicity that a capacity representation of a RCR can satisfy.

Proposition 3. Let ρ be a RCR on X and let (D, x) ∈ D×X with x ∈ D. If |D| = N −K,

the BM inequality indexed by (D, x) is a necessary condition for ρ to be represented by a

K-monotonic capacity.

Lemma 3 in the Appendix demonstrates that the BM inequalities indexed by ({x}, x) are

irrelevant in that they are implied by the remaining BM inequalities and the normalization

equalities. Therefore, in light of the preceding results, establishing that a RCR ρ can be

represented by an (N − 2)-monotonic capacity is equivalent to showing that all the BM

inequalities hold, and thus that ρ can be represented by a standard RUF.

Corollary 1. A RCR ρ can be represented by a RUF if and only it can be represented by a

capacity of order N − 2.

Capacities that are K-monotonic for any K are called belief functions. Introduced by

Dempster (1967) and Shafer (1976), belief functions are used in statistics and other areas as

a method for aggregating evidence to produce a “degree of belief” in some uncertain event.

Belief functions need not be additive and thus strictly generalize probability measures.

By Corollary 1, a RCR can be represented by a belief function if and only if it can be

represented by a RUF. So demanding that a capacity representation for a RCR satisfy addi-

tivity as opposed to merely K-monotonicity for all K has no empirical content. Intuitively,

this surprising fact illustrates the somewhat subtle interaction between the BM inequalities

and the normalization equalities. By themselves, the normalization equalities add a signifi-

cant amount of additivity to a RCR. The set A constructed in Section 3 consists of several

partitions of the set R, and the normalization equalities ensure that the set function ν̂ forms

a probability measure when restricted to each of these partitions individually. This struc-

ture serves implicitly to negate the difference between representations based on probability

measures and those based on belief functions.

5 Connection to Random Choice over Lotteries

Continue to let X represent a finite set of alternatives. Gul and Pesendorfer (2006) study

random choice over ∆(X), the set of lotteries on X. Let D denote the set of all nonempty,

finite subsets of ∆(X) and let ∆(∆(X)) denote the set of all simple probability measures
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on ∆(X). A random choice rule (RCR) is function ρ : D → ∆(∆(X)), where ρD(p) denotes

the probability that a lottery p is chosen from D. The normalization equalities require that

ρD(D) :=
∑

p∈D ρ
D(p) = 1 for all D.

In the context of random choice over lotteries, a RUF is a (finitely-additive) measure µ

on the set of expected utility functions over ∆(X).3 Gul and Pesendorfer (2006) prove that

the following list of (paraphrased) axioms are necessary and sufficient for the existence of a

random expected utility representation:

GP1 Regularity: if p ∈ D ⊂ D′, then ρD
′
(p) ≤ ρD(p).

GP2 Linearity: ρλD+(1−λ){q}(λp+ (1− λ){q}) = ρD(p).

GP3 Mixture continuity: ρλD+(1−λ)D′
is continuous in λ.

GP4 Extremeness: ρD(ext(D)) = 1.

In the supplement to their paper, Gul and Pesendorfer show that any RCR on X that

satisfies the BM inequalities can be extended to a RCR on ∆(X) in such a way that choice

over degenerate lotteries agrees with the original RCR and all of GP1–4 are satisfied.

GP1–4 appear to be simple axioms. Regularity is interpreted exactly as it is for ran-

dom choice on finite sets. Linearity and mixture continuity are stochastic versions of the

corresponding axioms from the standard theory of expected utility. And extremeness is

a technical axiom that intuitively holds because any expected utility preference has linear

indifference curves.

Nevertheless, the preceding result provides a sense in which GP1–4 encompass the BM

inequalities, which are much harder to interpret. While it is not surprising that more elegant

results can be obtained when using ∆(X) instead of X as a domain, a question still arises:

is it possible to identify which axiom(s) from GP1–4 are serving to replace the higher-order

BM inequalities? The following proposition provides an answer.

Proposition 4. Let ρ be a RCR on X. If ρ satisfies regularity, then it can be extended to a

RCR on ∆(X) in such a way that

1. Choice over degenerate lotteries agrees with the original RCR; and

2. GP1, GP2, and GP4 are satisfied.

In words, a RCR on X that satisfies only regularity—and potentially none of the higher-

order BM inequalities—can be extended to a RCR on ∆(X) that satisfies all of the Gul and

3See Gul and Pesendorfer (2006) for the precise definition of a RUF.
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Pesendorfer (2006) axioms except for mixture continuity. In this sense, mixture continuity

serves to replace all the power of the BM inequalities beyond the simple property of regularity.

The proof of Proposition 4 invokes Proposition 1 to obtain a capacity representation for

ρ, and in turn uses this representation to extend ρ to ∆(X):

Proof. Let ρ be a RCR on X and let ν be a capacity representation for ρ, which exists by

Proposition 1. For each R ∈ R, let uR be any expected utility function that agrees with R

when restricted to degenerate lotteries. Define a RCR ρ̂ on ∆(X) by

ρD(p) := ν({R ∈ R | p is uR-dominant in D})

if p is an extreme point of D and ρD(p) = 0 otherwise, with ties over extreme lotteries

broken uniformly. By construction ρ̂ satisfies extremeness. It satisfies regularity because ν

is monotonic. Finally, for any R ∈ R, any p, q ∈ ∆(X), and any D ⊆ ∆(X), p is uR-optimal

in D iff λp+ (1− λ)q is uR-optimal in λD + (1− λ){q}. Therefore ρ̂ is linear. �
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editors, Handbook of Utility Theory, pages 272–311.

Gul, F. and Pesendorfer, W. (2006). Random Expected Utility. Econometrica, 74(1):121–

146.

Gul, F. and Pesendorfer, W. (2013). Random Utility Maximization with Indifference. Work-

ing Paper, pages 1–25.

McClellon, M. (2015). Unique Random Utility Representations. Working Paper.

McFadden, D. L. (2005). Revealed stochastic preference: a synthesis. Economic Theory,

26(2):245–264.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.

A Proof of Proposition 1

To complete the proof of this proposition, it remains to show that (1) ⇒ (3). Let ρ be a

RCR satisfying regularity. As in the main text, let A ⊆ 2R denote the collection of sets

whose measure is “identified” by ρ:

A := {A ⊆ R | A = N(D, x) for some (D, x) ∈ D ×X}.

and again define a monotonic set function ν̂ : A → [0, 1] by ν̂(A) = ρD(x).

Next, extend ν̂ to a set function ν on 2R using the formula

ν(E) := max
k∑
i=1

ν̂(Ai)

where the maximum is taken over all collections of disjoint sets A1, . . . , Ak in A that satisfy⋃k
i=1Ai ⊆ E. (Set ν(∅) = 0.)

It is straightforward to verify that ν is monotonic with respect to set inclusion on A′.
However, it remains to be verified that ν agrees with ν̂ on A and that ν(R) = 1. The first

claim holds because based on the structure of A, the only collection of disjoint sets in A
whose union is contained in a set B ∈ A is the degenerate collection {B}.
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For the second claim, note that ν(R) ≥ 1 by the normalization equalities. Therefore, it

suffices to show that
∑k

i=1 ν(Ai) ≤ 1 for any collection A1, . . . , Ak of disjoint sets in A. Let

N(Di, xi) define each set Ai. Then

k∑
i=1

ν(Ai) =
k∑
i=1

ρDi(xi).

In order for {N(Di, xi)}ki=1 to be pairwise disjoint, x1, . . . , xk must be distinct elements of

X and each set Di must contain all of these elements. By regularity and the normalization

equality for {x1, . . . , xk},

k∑
i=1

ρDi(xi) ≤
k∑
i=1

ρ{x1,...,xk}(xi) = 1.

Finally, let E and F ⊆ R be disjoint. By the definition of ν,

ν(E) =
I∑
i=1

ν̂(Ai) and ν(F ) =
J∑
j=1

ν̂(Bj)

for some disjoint collections of sets {A1, . . . , AI} and {B1, . . . , BJ} in A. Because E∩F = ∅,
the collection {A1, . . . , AI , B1, . . . , BJ} is disjoint. Furthermore, the union of this set is

contained in E ∪ F . It follows that ν is superadditive.

B An Extension Theorem for Superadditive Capacities

Let S be an arbitrary set and let A ⊆ 2S with ∅, S ∈ A. The following simple extension

theorem is based on the proof of Proposition 1.

Lemma 2. Let ν̂ be a set function mapping A to [0, 1] satisfying ν̂(∅) = 0 and ν̂(S) = 1.

Suppose that ν̂ is monotonic and strongly superadditive on A; that is

ν̂(A) ≥
k∑
i=1

ν̂(Ai)

whenever A1, . . . , Ak are disjoint and contained in A. Then ν̂ can be extended to a superad-

ditive capacity ν on 2S.

Proof. Define

ν(E) := sup
k∑
i=1

ν̂(Ai)
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where the supremum is taken over all collections of disjoint sets A1, . . . , Ak in A. Since ν̂ is

strongly superadditive, ν is well-defined. Clearly ν is monotonic, and it is superadditive by

the same logic as in the proof of Proposition 1 above. �

C Proof of Proposition 3

Let (D, x) ∈ D ×X with x ∈ D and |D| = N −K. The BM inequality indexed by (D, x)

states that ∑
C:D⊆C

(−1)|C\D|ρC(x) ≥ 0.

DenoteX\D as {y1, . . . , yK}. For each i = 1, . . . K, defineDi := D∪{yi} and Ai := N(Di, x).

Suppose that ν is a capacity representation for ρ. Then

ν

( K⋃
i=1

Ai

)
≤ ν(N(D, x)) = ρD(x),

and ∑
∅6=I⊆1,...,K

(−1)|I|+1ν

(⋂
k∈I

Ak

)
=
∑

C:D(C

(−1)|C\D|+1ρC(x).

If the BM inequality indexed by (D, x) is violated, it follows from these two equations that

ν

( K⋃
i=1

Ai

)
<

∑
∅6=I⊆1,...,K

(−1)|I|+1ν

(⋂
k∈I

Ak

)

showing that ν is not K-monotonic. Note that Proposition 2 is a special case of Proposition 3

with K = 2.

D Proof of Corollary 1

Let BM(ρ,D, x) denote the BM inequality associated with ρ indexed by (D, x) ∈ D×X. The

following lemma demonstrates that the BM inequalities indexed by ({x}, x) are redundant.

Lemma 3. For any RCR ρ, if BM(ρ,D, x) ≥ 0 for all pairs (D, x) with |D| = 2, then

BM(ρ, {x}, x) ≥ 0.

Proof. Using the normalization equalities, the definition of the BM inequalities, and a fact

14



about binomial sums

BM(ρ, {x}, x) :=
∑
U :x∈U

(−1)|U |−1ρU(x)

= 1 +
∑

y∈S\{x}

BM(ρ, {x, y}, y) +
N−1∑
i=1

(−1)i
(
N − 1

i

)
=

∑
y∈S\{x}

BM(ρ, {x, y}, y). �

Suppose that a RCR can be represented by a capacity ν that is monotonic of order N−2.

By Proposition 3, this implies that all of the BM inequalities indexed by pairs (D, x) with

|D| ≥ 2 must hold. In light of the preceding lemma, in fact all the BM inequalities must

hold, and the RCR can be represented by a RUF. The reverse direction is trivial since a

probability measure is K-monotonic for any K.

15


	Introduction
	Background and Related Literature
	Capacity Representations
	Unraveling the BM Inequalities
	Supermodularity
	K-Monotonicity

	Connection to Random Choice over Lotteries
	Proof of Proposition 1
	An Extension Theorem for Superadditive Capacities
	Proof of Proposition 3
	Proof of Corollary 1

