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Chapter 23 
 

Leibniz and Optics 
 

Jeffrey K. McDonough 
 
 
Introduction 
 
Although often overlooked today, optics thrived in the early modern era as 
a science of first rank engaging many of the best minds of the period and 
producing some of its most dramatic scientific results.1  The present essay 
attempts to shed light on Leibniz’s efforts to contribute to the development 
of early modern optics by focusing on his derivations of the laws of 
reflection and refraction.2 The first three sections examine Leibniz’s 
attempts to derive the central laws of geometrical optics in works drawn 
from his early, middle, and later optical studies. 3  The fourth section briefly 
considers the broader significance of Leibniz’s sophisticated approach to 
the laws of optics.  Connections to more familiar themes from Leibniz’s 
philosophy are drawn along the way. 
 
1. Leges  Re f l ex ion is  e t  Re frac t ion i s  Demonstra tae , 1671* 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For general studies of seventeenth century optics, see Vasco Ronchi, The Nature of 
Light, trans. V. Barocas (Cambridge, MA: Harvard University Press, 1970); A. I. 
Sabra, Theories of Light from Descartes to Newton (New York: Cambridge University 
Press, 1981). 
2 This essay overlaps in parts with three longer and more detailed studies by the 
author:  Jeffrey K. McDonough, “Leibniz's Two Realms Revisited,” Noûs 42, no. 4 
(2008); Jeffrey K. McDonough, “Leibniz on Natural Teleology and the Laws of 
Optics,” Philosophy and Phenomenological Research 78, no. 3 (2009); Jeffrey K. 
McDonough, “Leibniz's Optics and Contingency in Nature,” Perspectives on Science 
18, no. 4 (2010). 
3 Many of Leibniz’s optical studies are catalogued in LH 37.2.  A collection of 
helpful, if not always reliable, transcriptions of Leibniz’s optical writings is available 
in Ernst Gerland, Leibnizens Nachgelassene Schriften Physikalischen, Mechanischen Und 
Technischen Inhalts (Leipzig: B. G. Teubner, 1906).  The definitive edition of 
Leibniz’s optical works will appear (primarily) in Series VIII of the Akademie 
edition of Leibniz’s writings, the first volume of which is now available and 
contains several intriguing early studies. 
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Leibniz’s earliest studies in optics take place against the background of his 
first systematic theory of the natural world as presented in his twin studies 
of 1671, the Theoria motus abstracti (TMA) and the Hypothesis physica nova 
(HPN, also known as the Theoria motus concreti) (A VI.ii.261-276, 221-257).  
The first of these works presents a rather surprising account of the 
fundamental or “private” laws of the natural world, according to which the 
motions of bodies are determined solely by their conatus with no role 
assigned to their respective sizes or masses.  The second work presents 
Leibniz’s attempt to reconcile these supposed fundamental laws of nature 
with the dictates of idealized experience, and in particular with the laws of 
impact then recently made public by Huygens and Wren.  Leibniz is explicit 
both in the HPN as well as in other early writings that the laws of optics are 
to be counted among the derived or “public” laws of nature (A.VI.ii.228-
231, 312).   

In the first of a series of three pieces dated by the Akademie 
editors to the same period as the TMA and HPN, Leibniz offers a succinct 
derivation of the law of reflection (A.IV.ii.309-10). Referring to Figure 1 
below, he proposes to let A be a body traveling along a straight line from 
point a striking the plane bc at point d.  

 

 
Figure 1 

 
Leibniz argues that at point d, the body A will “try to continue its motion 
with the same speed in the same direction from d to e” (A.VI.ii.309-310).  
He maintains, however, that the motion from d to e “can be understood to 
be composed from two conatus [one] from d to c and [one] from d to f, in 
such a way that the conatus towards c would be as much stronger than the 
conatus towards f as the straight line dc is greater than the straight line df” 
(A.VI.ii.310).  From this result, Leibniz is able to demonstrate the core 
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dictate of the law of reflection, namely, that the angle of incidence (adb) 
must be equal to the angle of reflection (hdc) (A.VI.ii.310). 

A similarly elegant derivation of the law of refraction, however, is 
conspicuously absent from the Leges Reflexionis et Refractiones.  In the first of 
the three pieces, Leibniz proposes to prove that “If the incident [ray] 
penetrates a resisting [medium] from a more resisting [medium] it is 
refracted from the perpendicular; if from a less resisting [medium], towards 
the perpendicular” (A.VI.ii.312).  The derivation that follows begins as one 
might expect, with Leibniz imagining, in reference to the Figure 1 above, 
that body A travels along the straight line hd striking the surface bdc.  
Having suggested that the impetus of the striking body will be diminished 
(or increased) in proportion to the resistance of the refracting medium, 
however, the proof quickly trails off.  In the second piece, Leibniz affirms 
proportionality between, on the one hand, the ratio of the sine of the angle 
of incidence and the sine of the angle of refraction to, on the other hand, 
the ratio of the resistances of the relevant mediums (A.VI.ii.313, 318).  
Having come that far, however, Leibniz’s derivation ultimately breaks off 
abruptly, literally in mid-sentence (A.VI.ii.320-322). The third piece takes up 
once again the topic of refraction, but makes no attempt to derive the law 
of refraction itself (A.VI.ii.322-323).   

It seems likely that Leibniz’s failure to produce an elegant 
derivation of the law of refraction in the Leges Reflexionis et Refractiones is due 
to his appreciation of the deep difficulties of constructing a proof within 
the confines of an austere mechanism.  It was well known, for example, that 
a ray of light traveling from one medium to another medium may be 
refracted either away from a perpendicular drawn at the point of impact 
(with the ray bending, as it were, in the counterclockwise direction) or 
towards such a perpendicular (with the ray bending, as it were, in the 
clockwise direction).  Strict mechanists, like Descartes, had a relatively easy 
time accounting for the case of refraction away from the perpendicular.  
For in that case, they could suppose that the direction of the refracted ray is 
determined crucially by the vertical tendency of the ray being reduced by 
the refracting medium.  The case of refraction towards the perpendicular, 
however, was thought to present a greater difficulty.  For in that case, it was 
harder to imagine a plausible mechanical cause for what, by parallel 
reasoning, would appear to be an increase in the vertical tendency of the ray 
as it entered into the refracting medium.   

In the Leges Reflexionis et Refractiones, Leibniz attempts to address this 
worry through the postulation of an “elastic force” (vi Elastica) (A.VI.ii.314).  
The rough idea is that the elastic force of a medium may lend an additional 
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downward tendency to a projectile or ray of light moving from one medium 
to another, and thereby act as the cause of the observed phenomenon of 
refraction towards the perpendicular.  Leibniz maintains that elastic forces 
are similarly necessary for explaining how the vertical component of the 
tendency of a ray of light may be reversed in cases of reflection, and he 
insists that in recognizing the elasticity of reflecting bodies he is able to 
explain what had been simply taken for granted by his predecessors 
(A.VI.iv.1404).  Because in his early writings Leibniz takes elastic forces 
themselves to be explained by his distinction between fundamental and 
derived laws of nature, he could see his earliest system of the world, as 
sketched in the TMA and HPN, as both lending support to, and in turn 
being supported by, his earliest accounts of the laws of reflection and 
refraction (A.VI.ii.228-231).4   

 
2. Unicum Opt i cae ,  Catoptr i cae  e t  Dioptr i cae  Pr inc ip ium , 1682 
 
Although the Leges Reflexionis et Refractiones are dominated by a broadly 
mechanistic approach to the laws of optics, Leibniz’s writings from mid-
1670’s on also reveal a deep and abiding interest in a radically different 
approach to deriving the laws of reflection and refraction.  That approach is 
clearly on display in one of Leibniz’s most significant scientific writings, the 
Unicum Opticae, Catoptricae et Dioptricae Principium published in the 1682 
edition of the Acta Eruditorum (Dutens 3.145-150).  In it, Leibniz introduces 
as “the first principle” of optics, catoptrics and dioptrics the rule that “Light 
radiating from a point reaches an illuminated point by the easiest path,” and 
shows how this “unitary principle” may be used to derive both the laws of 
reflection and refraction.5   

In his derivation of the law of reflection, Leibniz argues, in 
reference to Figure 2 just below, that “in simple optics, the ray directed 
from the radiating point C to the illuminated point E arrives by the shortest 
direct path, in the same medium, that is, by the straight line CE”: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 For discussion of the place of elasticity in Leibniz’s early thought as well as in the 
problems discussed below, see Herbert Breger, “Elastizität Als Strukturprinzip Der 
Materie Bei Leibniz,” Studia Leibnitiana Sonderheft 13 (1982). 
5 Leibniz’s 1682 paper is also discussed in: Gerd Buchdahl, Metaphysics and the 
Philosophy of Science. The Classical Origins. Descartes to Kant (Oxford: Blackwell, 1969), 
425-34; Hartmut Hecht, “Dynamik Und Optik Bei Leibniz,” NTM International 
Journal of History and Ethics of Natural Sciences, Technology and Medicine 4, no. 1 (1996), 
83-102. 
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Figure 2 

 
The accompanying proof of the law of reflection is geometric and elegant.  
Leibniz reasons that, under the given conditions, “the whole path CE + ED 
becomes the least of all … if E is taken to be such that as a result the angles 
CEA and DEB are equal, as is evident from geometry” (Dutens 3.145).  In 
a related piece, however, Leibniz hints at a more tantalizing set of 
metaphysical or “architechtonic” considerations that almost certainly helped 
to motivate his approach to the laws of optics in the Unicum Opticae, 
Catoptricae et Dioptricae Principium.  In his Metaphysical Definitions and Reflections, 
he suggests that since nature always chooses the “optimal means … there 
ought to be a reason only for a long or short journey,” drawing, in effect, 
the conclusion that a ray of light reflected from C to D must pass through 
the point E on the grounds that (i) there would have to be a reason for its 
passing through any point, and (ii) there could be no reason for its passing 
through some point other than E (A.VI.iv.1405).   

Leibniz’s derivation of the law of refraction in the Unicum Opticae, 
Catoptricae et Dioptricae Principium is necessarily more involved than his 
derivation of the law of reflection.  Whereas the paths of reflected rays of 
light typically coincide with shortest reflected paths between two points, 
this evidently cannot be the case with refracted rays (since refracted rays 
typically follow bent, rather than straight, paths).  Leibniz’s solution to this 
difficulty is to suppose that a refracted ray must always follow the “easiest” 
path – rather than the shortest path – from one point to another, where the 
“ease” of a path is a measurable quantity that can be computed by 
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multiplying the distance of the path by its resistance.  With this strategy in 
mind, Leibniz argues, in essence, that the actual refracted path from C to T 
will be as CET provided that the quantity determined by the length of CE 
times the resistance of the medium IE plus the length of ET times the 
resistance of the medium EK is less than the quantity similarly determined 
from the sum of any other two paths CF and FT. 

In casting his proof in terms of “ease,” rather than speed, Leibniz 
hoped to resolve a dispute that had pit Descartes and his defenders against 
the great mathematician Pierre Fermat.  The nub of the dispute concerned 
the question of whether light travels faster in denser materials, such as 
water, or faster in rarer materials, such as air.  Fermat took the perhaps 
more intuitive view that light travels faster in rarer materials, and was thus 
able to argue that a ray of light, such as CET in the diagram above, may 
follow a quickest path by traveling a greater distance through air (IE) and a 
shorter distance in water (EK).  Cartesians objected.  On theoretical 
grounds, they argued that rays of light must travel faster in denser materials.  
Descartes, for example, suggests that air acts like a soft body absorbing the 
motion of a ray of light, while water acts more like a hard body that 
preserves (even while redirecting) a ray’s motion (AT VI 103/CSM 1:163).  
Cartesians consequently maintained that a path such as CET could not 
represent the quickest path from C to T and that Fermat’s principle must 
therefore be false.  By introducing the notion of “ease,” Leibniz hoped to 
strike a conciliatory middle position between these two opponents, one that 
would allow him to side with the letter of the Cartesian view that light 
travels faster in denser materials, while nonetheless preserving the spirit of 
Fermat’s position by insisting that CET is after all a minimal path with 
respect to ease if not with respect to speed. 

The technical innovation represented by Leibniz’s introduction of 
the quantity of “ease,” reflects a general conciliatory attitude on his part 
towards what may be thought of as mechanistic and optimality approaches 
to deriving the laws of optics.  Whereas Descartes, Fermat, and later 
Cartesians saw two irreconcilable methods for discovering the laws of 
optics, Leibniz saw two complementary routes to scientific discovery.  In 
keeping with this view, Leibniz affirms throughout his career that it must be 
possible to derive the laws of optics from broadly mechanistic 
considerations, and he manifestly believed that such a derivation was readily 
available in the case of the law of reflection.  He also insists, however, from 
at least the late 1670’s on, that the laws of optics may also be derived from 
considerations of optimality.  He thus insists throughout his mature career 
that “Both methods are good, [and that] both can be useful not only for 
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admiring the skill of the great workman but also for making useful 
discoveries …” (GP IV 447-448). 
 
3. Tentamen Anagog i cum.  Essay  Anagog i cum dans la  r e cher ché  des  
causes , 1696* 
 
For all the innovation it represents, Leibniz’s 1682 paper makes no 
significant advance on at least one difficulty that had separated proponents 
of mechanistic and optimality approaches to the laws of optics.  That 
difficulty is perhaps most apparent in cases of reflection involving concave 
mirrors: in reflecting off of a concave mirror, a ray of light may travel along 
a path that is in fact longer, slower, and “harder” than other merely possible 
paths that would involve the ray’s reflecting off one of the mirror’s 
“upturned” sides.  Fermat and Leibniz had maintained that in such cases a 
ray of light should be viewed as being optimized with respect to a tangent 
drawn at the point of reflection, and even in later writings Leibniz 
continues to insist that “Order demands that curved lines and surfaces be 
treated as composed of straight lines and planes, [so that] … a ray is 
determined by the plane on which it falls, which is considered as forming 
the curved surface at that point” (GP VII 274/L 479).  Opponents of the 
optimization approach to the laws of optics, however, understandably 
demurred.  They saw such appeals to tangent planes as an ad hoc response 
to a family of clear counterexamples to the proposal that rays of light always 
follow optimal paths regardless of whether those paths are taken to be 
shortest, quickest, or easiest paths.   

Leibniz’s derivations of the laws of optics in the Tentamen 
Anagogicum address this technical problem head on and in the process 
display the full sophistication of his mature work in optics.  The proofs may 
be thought of as being developed in three steps.6  In the first step, Leibniz 
considers, with respect to Figure 3 below, “a curve AB, concave or convex, 
and an axis ST to which the ordinates of the curve are referred:” 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 For discussion of Leibniz’s proofs in the Tentamen Anagogicum, see also: François 
Duchesneau, Leibniz et la Méthode de la Science (Paris: Presses universitaires de France, 
1993) 284-310. 
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Figure 3 

 
Stating the problem in terms of finding the point C which is unique with 
respect to its ordinate (i.e. y-axis) value, Leibniz characterizes C as the only 
point on AB that does not have a corresponding point of the same ordinate 
value a finite distance away, i.e. as the only point on AB whose “twin” with 
respect to ST would have to be “infinitely close.”  As Leibniz shows, it is 
therefore possible to find C by taking the derivative of an equation 
describing the line AB and setting it equal to zero.  With good justification, 
Leibniz maintains that this now standard operation for determining local 
maxima and minima greatly simplifies the calculations employed in his 
derivations of the laws of reflection and refraction. 

In the second step, Leibniz shows how the law of reflection may be 
derived from the principle that “a ray is directed in the most determined or 
unique path, even in relation to curves” (GP VII 274/L 479).  In reference 
once again to Figure 3 above, Leibniz considers a ray of light traveling 
between the fixed points F and G being reflected off a mirror ACB, which 
might be planar, concave, or convex.  Tacitly assuming that the medium 
through which the light travels is everywhere the same, Leibniz reduces the 
problem of finding the path unique with respect to “ease” to the problem 
of finding the point C such that the path FCG is unique with respect to its 
length.  Using the technique set out in the first step, and elementary 
trigonometry, Leibniz is able to show that for such a path the angle of 
incidence FCA must be equal to the angle of reflection GCB.  Because his 
derivation is fully applicable to standard cases involving concave and 
convex mirrors, Leibniz could see his derivation of the law of reflection in 
the Tentamen Anagogicum as a response to the family of counterexamples 
highlighted just above.    

In the third step, Leibniz uses essentially the same strategy in order 
to derive the law of refraction.   In reference to Figure 4 below, Leibniz 
considers a refracting surface ACB which, again, might be planar, concave, 
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or convex, and lets F and G represent illuminating and absorption points 
for a ray of light (so that the refracted ray of light is represented by FCG):  

 
Figure 4  

 
Here once again Leibniz reduces the problem of finding the path unique 
with respect to ease to the problem of finding the point C such that the 
path FCG is unique with respect to its length.  Employing the same 
technique as above and using elementary trigonometry, Leibniz is able to 
show in this case that (a) that the ratio of the sine of incidence to the sine of 
refraction is inversely proportional to the ratio of incident velocity to the 
refractive velocity, and (b) that the ratio between the sine of the angle at 
which a ray of light strikes a refractive surface and the sine of the angle at 
which the ray is refracted is a constant determined by the mediums involved.  
Here as well, since Leibniz’s proof is fully applicable to standard cases 
involving concave and convex surfaces, he could see his derivation of the 
law of refraction as a response to standard counter examples that had been 
raised against Fermat’s approach.   
 In the Tentamen Anagogicum, Leibniz explicitly ties his optimization 
approach to the laws of optics to his defense of divine teleology.  Going in 
one direction, he maintains that the laws of optics lend support to the belief 
in a providential creator.  The laws of optics, he suggests, cannot plausibly 
be viewed as being either absolutely necessary or wholly contingent.  He 
concludes that they must therefore “originate in the wisdom of their Author 
or in the principle of greatest perfection, which has led to their choice” (GP 
VII.272/L 478).  Going in the other direction, he maintains that his 
optimization approach to the laws of optics shows how reflection on God’s 
ends can yield tangible advancements in the study of nature.  Indeed, he 
goes so far as to suggest the law of refraction must have first been 
discovered by considering final causes, and that Descartes, the first to 
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publish the law of refraction, must therefore have appropriated his results 
from the work of Willebrord Snell and his disciples while living in Holland 
(GP VII.274/L 480). Although the charge of plagiarism may well have been 
unfair to Descartes, the laws of optics nonetheless arguably provide Leibniz 
with his best example of how he sees the laws of nature as supporting his 
commitment to the providential design of the world as well as his best 
response to Descartes’s proposal to “banish from our philosophy the 
search for final causes” (AT VIIA:15/CSM 1:202).7  
 
4. Optics and Optimal Form 
 

Leibniz’s sophisticated derivations of the laws of reflection and 
refraction take on a broader significance when viewed against the backdrop 
of his general interest in what he terms the “method of optimal forms” 
(Methode de Formis Optimis)” (GP 7:272/L 478).  In the simplest of terms, an 
optimal form is a structure that admits of a locally unique minimum or 
maximum value, and which may therefore, at least in principle, be treated 
using the same mathematical techniques that Leibniz helped to pioneer in 
his sophisticated derivations of the laws of optics.8  While it had long been 
recognized that natural phenomena often appear to instantiate optimal 
forms, the development of the calculus, as well as a growing appreciation of 
the limitations of strict Cartesian mechanism, led in Leibniz’s time to an 
increased interest in a handful of special problems involving optimal form.  
A brief survey of three of those problems may help to give a sense of the 
larger implications of Leibniz’s sophisticated approach to the laws of optics.      
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 For discussion of the connection between Leibniz’s optics and teleology see: 
François Duchesneau, “Hypothèses et Finalité Dans La Science Leibnizienne,” 
Studia Leibnitiana 12 (1980); George Gale, “Did Leibniz Have a Practical 
Philosophy of Science?  Or, Does ‘Least-Work’ Work?,” in Akten Des Ii. 
Internationalen Leibniz-Kongress, Studia Leibnitiana, Supplementa 13 (Wiesbaden: F. 
Steiner Verlag, 1974); George Gale, “Leibniz’ Force: Where Physics and 
Metaphysics Collide,” in Studia Leibnitiana, Sonderheft 13 (Stuttgart: F. Steiner Verlag, 
1984); David Hirschmann, “The Kingdom of Wisdom and the Kingdom of Power 
in Leibniz,” Proceedings of the Aristotelian Society 88 (1988). 
8 For discussion of the notion of optimal form and its history, see: Don S. Lemons, 
Perfect Form: Variational Principles, Methods, and Applications in Elementary Physics 
(Princeton, NJ: Princeton University Press, 1997); Robert Woodhouse, A Treatise on 
Isoperimetrical Problems, and the Calculus of Variations (New York: Chelsea Publishing 
Company, 1810); Wolfgang Yourgrau and Stanley Mandelstam, Variational Principles 
in Dynamics and Quantum Theory, Third ed. (London: Sir Isaac Pitman and Sons, 
1968). 
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A first special problem is treated in Leibniz’s “Demonstrationes Novae 
de Resistentia Solidorum” (New Proofs Concerning the Resistance of Solids) published 
in the July 1684 edition of the Acta eruditorum (Dutens 3.161-166).  It 
concerns a difficulty introduced by Galileo, namely, the problem of 
determining the resistance of solid beams to bending under the force of 
applied weights. Drawing on Hooke’s spring law, as well as on Marriotte’s 
assertion that all bodies are flexible to some degree, Leibniz argues that 
Galileo’s proposed formula for the resistance of a beam should be replaced 
by a new formula that crucially takes into account variations in resistance 
over the cross-section of a beam as well as over its length.9  In doing so, he 
helps to show how weighted beams may be viewed as instances of optimal 
form.  Just as rays of light may be viewed as minimizing speed, distance or 
ease so bending beams may be viewed as minimizing overall stress energy.10  
With his “Demonstrationes Novae de Resistentia Solidorum,” Leibniz not only 
made an important advance with respect to the first of Galileo’s “two new 
sciences,” he also showed in convincing fashion how attention to optimal 
form may bear fruit well outside the domain of optics. 

A second special problem was introduced by James Bernoulli in the 
1690 May edition of the Acta eruditorum, when he challenged his fellow 
mathematicians and natural philosophers to “find the curve assumed by a 
loose string hung freely from two fixed points … [assuming] the string is a 
line which is easily flexible in all parts.”  At the close of the contest, three 
correct solutions had been received: one from Johann Bernouli, James’s 
younger brother and perpetual rival, one from Huygens, who coined the 
term “catenary” to name the resulting curves, and one from Leibniz, who 
reportedly replied with a solution on the day he received the challenge.  The 
solutions collectively showed that catenaries, like rays of light and bending 
beams, may also be treated as instances of optimal form.  Just as rays of 
light take optimal paths, and bent beams assume optimal configurations, so 
hanging chains take on an optimal shape that, in Leibniz’s terms, maximizes 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 More specifically, he argues that, with respect to a cubical beam, the Galilean 
formula Pb = 1/2 Pt should be replaced by the formula Pb = 1/3Pt, where Pb is the 
breaking force in bending by terminal load, and Pt is the breaking force in tension. 
For an historical and technical discussion, see C. Truesdell, The Rational Mechanics of 
Flexible or Elastic Bodies, 1638-1788, vol. 11, pt. 2, Leonhardi Euleri Opera Omnia 
(Turici: Orell Füssli, 1960) 38-42, 59-64. 
10 On this point, see especially, Mark Wilson, “From the Bending of Beams to the 
Problem of Free Will,” A Priori 4 (2010). See also, Hartmut Hecht, Mathematik und 
Naturwissenschaften im Paradigma der Metaphysik (Stuttgart: B.G. Teubner 
Verlagsgesellschaft, 1992) 100-04. 
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descent, or, in modern parlance, minimizes potential energy. As is made 
especially clear in a letter he wrote to Huygens, dated 14 September 1694, 
Leibniz’s efforts to respond to Bernoulli’s challenge served to show once 
again that the notion of an optimal form, championed in his optical studies, 
can be utilized to make novel discoveries well outside the domain of 
optics.11 

A third special problem was introduced in the1696 June edition of 
the Acta eruditorum, when Johann Bernoulli dared “the most acute 
mathematicians flourishing in the whole world,” to find the path of quickest 
descent between two points in the vertical plane for a freely falling body.  
Taking advantage of his calculus, Leibniz was again able to solve the 
problem of the brachistochrone, as it came to be called, on the day he 
received it.  Of the four other solutions submitted – one from each of the 
Bernoulli brothers, one from Newton, and one from L’Hopital, two merit 
special mention.  Johann Bernoulli’s solution was remarkable for showing 
how the quickest path of descent could be found by treating a descending 
body as a ray of light passing through increasingly dense media so that the 
path of quickest descent could be found by exploiting the already known 
the laws of refraction.  James Bernoulli’s solution, although perhaps less 
imaginative, was equally remarkable. It highlighted the fact that any portion 
of a path of quickest descent must itself be a path of quickest descent, and 
that consequently any larger path can be thought of as a path that is such 
that any of its sub-paths is unique with respect to quickest descent.  This 
important property of optimal forms, noted explicitly by Leibniz in his 
Tentamen Anagogicum, would prove to be crucial to the later development of 
what has become known as the calculus of variations proper (GP 7: 272/L 
478).  

Special problems such as those involving bending beams, the 
catenary and the brachistochrone set the stage for later developments that 
further extended the spirit of Leibniz’s approach to the laws of reflection 
and refraction.  Spurred by Leibniz’s treatment of bending beams, James 
Bernoulli, for example, would take up in greater detail problems of “elastica” 
and produce the first general equations in the theory of elasticity.12  
Prompted by the debate treated in Leibniz’s 1682 paper, Maupertuis would 
develop his famous, general “principle of least action,” according to which 
“in all the changes that take place in the universe, the sum of the products 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Christiaan Huygens, Oeuvres complètes de Huygens, vol. 10 (La Haye, M. Niijhoff, 
1888), 679.  See also GM VII 370-372.   
12 C. Truesdell, The Rational Mechanics of Flexible or Elastic Bodies, 63, 88-109. 
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of each body multiplied by the distance it moves and by the speed with 
which it moves is the least possible.”13 Such results would later be refined 
and extended by the next half-generation of natural philosophers resulting 
in the full flourishing of what would become known as the rational 
mechanics of the eighteenth century.  Thus, Euler, for example, would offer 
systematic treatments of the special problems discussed just above in the 
process of drawing out the full implications of Newton’s second law and 
arriving at his definitive statement of the principle of linear motion.14  
Lagrange would pick up the intellectual thread present in the notion of an 
optimal form and produce the first general variational method for dynamics, 
publishing his results in his Mechique Analytic in 1811.15 In light of these 
developments, one might reasonably conclude that, although in surveys of 
the history and philosophy of science, Leibniz is most often associated with 
his role in the vis viva controversy and his exchange of letters with Samuel 
Clark, his most enduring scientific legacy might well be his influence on the 
development of modern rational mechanics, whose founding proponents 
were, in effect, drawing out and extending many of the implications already 
present in his relatively accessible optical studies.  
 
Conclusion 
 
Although necessarily incomplete, even the brief discussion offered here of 
Leibniz’s derivations of the laws of optics should be sufficient to suggest 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 P. Maupertuis, Oeuvres De Maupertuis (Lyons: Jean-Marie Bruyset, 1698-1759), IV 
20, II 274. For related discussion, see: François Duchesneau, “L’Épistémologie De 
Maupertuis Entre Leibniz Et Newton. Physique Et Physiologie,” Revue de synthèse 
113-114 (1984): 7-36; Martial Gueroult, Leibniz, Dynamique Et Métaphysique, Suivi 
D'une Note Sur Le Principe De La Moindre Action Chez Maupertuis (Paris: Aubier-
Montaigne, 1967); Hartmut Hecht, “La Quantité De La Force Et Quantité D'action. 
Dynamique Et Métaphysicque Chez Leibniz Et Maupertuis,” in La Notion De 
Nature Chez Leibniz. Studia Leibnitiana, Sonderheft 24, ed. Martine de Gaudemar 
(Stuttgart: Franz Steiner Verlag, 1995); Hartmut Hecht, “Leibniz’ Concept of 
Possible Worlds and the Analysis of Motion in Eighteenth Century Physics,” in 
Between Leibniz, Newton, and Kant, ed. W. Lefevre (Dordrecht, the Netherlands: 
Kluwer Academic Publishers, 2001). 
14 See Leonhardi Euleri, “Décuverte D’un Nouveau Principe De Mécanique,” 
Mémoires de l’académie des sciences de Berlin 6 (1752) 185-217. Reprinted in Leonhardi 
Euleri, Opera Omnia, series 2, vol. 5, ed. Joachim Otto Fleckenstein (Turici: Orell 
Füssli, 1957), 81-108.   
15 C. Truesdell, “A Program toward Rediscovering the Rational Mechanics of the 
Age of Reason,” Archive for history of exact sciences 1 (1960): 33. 
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three general conclusions:  First, Leibniz’s interest in optics spanned the 
entire breadth of his career, running from studies concurrent with his 
earliest systematic treatments of physics, to mature studies as represented 
most famously by his Tentamon Anagogicum.  Second, within that long span, 
Leibniz continued work on and refine his earlier efforts, at first more 
radically when his views on the physical world shifted dramatically around 
the time of his years in Paris, and then more cautiously as his physical and 
metaphysical views continued to ferment.  Third, Leibniz’s thinking about 
optics intertwines in interesting and often surprising ways with other 
threads associated with his thought, from the nature of material bodies and 
divine choice to the implications of his calculus and related scientific 
techniques.  One may reasonably hope that more of Leibniz’s interests in 
the study of optics and optical phenomena, as well as their broader 
implications for his wide ranging pursuits, will come to light as the 
Akademie editors continue their important task of bringing his scientific, 
medical and technical writings to print. 
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