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Abstract

Estimates of HIV prevalence are important for policy in order to establish the health status

of a country’s population and to evaluate the effectiveness of population-based interventions

and campaigns. However, participation rates in testing for surveillance conducted as part of

household surveys, on which many of these estimates are based, can be low. HIV positive in-

dividuals may be less likely to participate because they fear disclosure, in which case estimates

obtained using conventional approaches to deal with missing data, such as imputation-based

methods, will be biased. We develop a Heckman-type simultaneous equation approach which

accounts for non-ignorable selection, but unlike previous implementations, allows for spatial

dependence and does not impose a homogeneous selection process on all respondents. In ad-

dition, our framework addresses the issue of separation, where for instance some factors are

severely unbalanced and highly predictive of the response, which would ordinarily prevent

model convergence. Estimation is carried out within a penalized likelihood framework where

smoothing is achieved using a parametrization of the smoothing criterion which makes esti-

mation more stable and efficient. We provide the software for straightforward implementation

of the proposed approach, and apply our methodology to estimating national and sub-national

HIV prevalence in Swaziland, Zimbabwe and Zambia.
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1 Missing data in HIV research

Interventions targeted to control the HIV epidemic, improve population health, and reduce HIV-

related health disparities, are often motivated by prevalence data obtained from HIV testing (Beyrer

et al., 1999; De Cock et al., 2006). In many countries, estimates of HIV prevalence obtained from

home-based testing during nationally representative household surveys are now considered the

gold standard (Boerma et al., 2003). However, these data can be affected by non-participation

because some of those who are eligible opt out of HIV testing. In general, the treatment of miss-

ing information in survey data has the potential to have a substantial impact on both the model’s

parameter estimates and the resulting policy recommendations (Nicoletti, 2006). Because we can-

not observe the true outcome for those who do not participate, and because of the role these data

have in informing policy, modeling non-participation in testing and developing a framework for ac-

counting for missing data in a manner which imposes as few assumptions as possible is particularly

relevant for the field of HIV research.

Non-participation can occur through a variety of mechanisms, including directly declining to test

for HIV when a respondent is approached to test after their interview, or being an eligible respon-

dent for HIV testing but not being present when the interviewers seek to contact the person for

interview (Marston et al., 2008). Even if, ex ante, the eligible population for the survey is a ran-

dom sample, ex post the surveyed group who consent to HIV testing may not be representative of

the population of interest. Selection bias can occur if HIV prevalence among those who participate

in testing differs from those who do not. In many contexts the extent of non-participation is sub-

stantial; for example, 37% of eligible male respondents failed to participate in testing in the 2004

Malawi Demographic and Health Survey (Hogan et al., 2012).

There are several options for dealing with missingness caused by non-participation (Donders et al.,

2006). Standard approaches include multiple imputation, inverse probability re-weighting and
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propensity score methods, which all require that missing data are missing at random. However,

due to stigma, HIV positive individuals may be less likely to participate in testing because they fear

disclosure of their status. Longitudinal evidence from demographic surveillance sites supports the

hypothesis that HIV positive individuals are less likely to consent to test (Arpino et al., 2014; Floyd

et al., 2013; Reniers & Eaton, 2009; Bärnighausen et al., 2012; Obare, 2010). Participation in test-

ing is also lower in communities with higher knowledge of HIV status (Reniers & Eaton, 2009).

If data are missing because HIV positive individuals are more likely to decline to test (conditional

on observed characteristics), then the assumption of missing at random is violated and hence con-

ventional methods, including imputation or analysis based only on non-missing observations, will

generate biased results (e.g., Heckman, 1990; Puhani, 2000; Vella, 1998; Janssens et al., 2014). In

addition, because imputation-based models do not acknowledge that there is uncertainty surround-

ing the relationship between participation in testing and HIV status, confidence intervals based on

this approach are likely to be too narrow when non-participation is common (Hogan et al., 2012).

1.1 Towards a more flexible framework for estimating HIV prevalence

Although the simultaneous equation modeling approach, such as that proposed by Heckman (1979),

has the advantage of not requiring the assumption of missing at random, previous techniques im-

plementing this model are limited by a number of methodological drawbacks. This article makes

four methodological contributions to the literature, and for each of these we outline the relevant

problem and illustrate how our framework is designed to correct for the issue.

First, we introduce a linear predictor equation for the parameter modeling the association between

consent to HIV testing and HIV status; this allows us to capture potential heterogeneity in the

selection process. Moreover, we include spatial information in the model to reflect the manner

in which HIV is spread through social interaction (Klovdahl, 1985) using a Markov random field
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approach (Rue & Held, 2005). To the best of our knowledge, this is the first time that spatial in-

formation and heterogeneity in the selection process have been incorporated into Heckman-type

models. In this way, we are able to provide better calibrated region-specific HIV prevalence esti-

mates. Networks and proximity propagate the transmission and spread of infectious disease, and

therefore HIV status and other outcomes which are determined by proximal interaction will be

affected by geographic clustering (Tanser et al., 2009), with likely spill-over effects and spatial

dependence among communities (e.g., Larmarange & Bendaud, 2014; Aral et al., 2005). Also,

there may be some groups among the population for whom the stigma associated with being HIV

positive is particularly strong, hence inducing more selection bias. The association between the

decision to consent to HIV testing and HIV status may vary between these communities as a result

(e.g., Kranzer et al., 2008). Therefore, as well as being inefficient, the imposition of a common

selection process across all sub-groups could bias sub-national HIV prevalence estimates. The best

that could be done with previous implementations is to stratify according to the group of interest,

however given the resulting inefficiency and that sample sizes can be low across groups, this is not

a realistic solution. Our proposal has potentially important applications beyond HIV research and

will likely be of interest in situations in which there is spatial dependence and missing data.

Second, we extend the selection framework to allow for the utilization of ridge penalties to deal

with problematic parameters (associated with categorical regressors, for instance) which would

ordinarily lead to convergence failure. It is known that, with binary responses, the problem of

separation, where for instance some factor variables are severely unbalanced and highly predictive

of the response, often prevents algorithms from converging (e.g., Heinze & Schemper, 2002). In

practice, the bivariate probit models which have been used to implement selection models when

the outcome is binary are not very stable and fail to converge relatively frequently (Butler, 1996;

Clark & Houle, 2014). Therefore, there is a danger that such models are only applied in cases

with specific data configurations. In our case study, we apply a ridge penalty on the parameters of
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the selection variable, interviewer identity. As we describe further in the next section, the selection

variable can be thought of as an instrumental variable in that it predicts participation but is assumed

not to predict directly the outcome of interest (Madden, 2008). In all three countries considered

in our analysis, we were unable to implement the traditional selection model. The interviewers

in these surveys are often matched to participants on the basis of some group-level characteris-

tics (e.g., language). Moreover, some interviewers obtain participation in testing from all their

interviewees, while for some other interviewers all their interviewees may decline to participate.

This means that some interviewer effects will not be estimable due to lack of within-interviewer

variation in testing participation. Solutions involving pooling very successful interviewers with

very unsuccessful interviewers, dropping problematic interviewers, or estimating interviewer per-

suasiveness in a two-stage process are clearly not desirable (McGovern et al., 2015a). To the best

of our knowledge, there is no alternative implementation of selection models which would allow

us to deal with the above mentioned issue in a theoretically founded way. Given that, in practical

applications, selection models often suffers from these types of convergence failures, it is likely

that our proposed development will be of use beyond the HIV study considered in this article.

Third, we make use of a parametrization of the smoothing criterion that is different from that

discussed in the previous literature on bivariate equation models (Marra & Radice, 2013; Radice

et al., 2015). This has the advantage of making smoothing parameter estimation more stable and

efficient. Our derivations also show that the proposed approach can in principle be applied to any

situation in which a model is fitted by penalized maximum likelihood, thereby appealing to a wider

audience of researchers.

Fourth, all the developments discussed in this article have been made available through the freely

distributed and easy to use R package SemiParBIVProbit (Marra & Radice, 2016), which can

allow researchers and policy-makers to apply a flexible selection approach to account for system-

atic non-participation in their data.

5



Our methodology incorporates each of these developments in a flexible simultaneous equation

framework for adjusting for systematic non-participation in HIV surveys. We outline further details

of this methodology in the rest of the paper as follows. Section 2 introduces the approach in more

detail by describing its main statistical components, including estimation and inference. Sections

3 and 4 describe the data and apply the proposed approach to three Sub-Saharan African countries

(Swaziland, Zambia, and Zimbabwe). In Section 5 we outline two approaches for evaluating the

sensitivity of results to model assumptions. The final provides a discussion and directions for

future research.

2 Extending Heckman-type selection models

Heckman-type selection models can be used to correct for selection bias due to unobserved char-

acteristics of respondents, as would be the case if HIV positive individuals were systematically

opting out of HIV testing because of fear of disclosure. This simultaneous equation approach ac-

knowledges the sequential decision making process involved in survey participation; respondents

first decide whether to participate in testing, and it is only conditional on consenting to test that

we observe their HIV status. Heckman (1979) originally proposed explicitly modeling the se-

lection mechanism (whether respondents test or not) and outcome of interest (the HIV status of

respondents) as a function of the observed characteristics of respondents, and linking the selection

and outcome equations through a bivariate normal distribution. In this approach, parameters are

typically estimated under a maximum likelihood framework. When the outcome is binary, the

conventional Heckman selection model is a bivariate probit (Dubin & Rivers, 1989; Van de Ven

& Van Praag, 1981). Common criticisms of this approach include, however, the reliance on the

assumption of bivariate normality and the lack of flexibility in modeling covariate effects. Subse-

quent developments have tackled these issues (Marra & Radice, 2013; McGovern et al., 2015b),
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which represented the starting point for our proposed extensions.

Selection models require a valid instrument for identification. As mentioned in the previous sec-

tion, interviewer identity will serve as an exclusion restriction in our study. The identity of the

interviewer who contacts the respondent to seek consent for an HIV test is often recorded in sur-

vey data as an anonymized code. The allocation of interviewers to eligible survey respondents is

typically highly correlated with whether the respondents consent to test. Such allocation is also

based on survey design, as opposed to the characteristics of the respondents themselves. There-

fore, interviewer identity is plausibly exogenous and should be unrelated to the HIV status of

survey respondents. This means that interviewer identity satisfies potentially the condition of ex-

clusion restriction (Bärnighausen et al., 2011). The validity of this assumption is discussed further

in Section 5.2.

2.1 Model representation

Let us assume that there are two random variables (y1i, y2i), for i = 1, . . . , n, where y1i, y2i ∈

{0, 1} and n represents the sample size. Variable y1i indicates whether an individual takes part in

the study whereas y2i denotes the observed outcome. The probability of event (y1i = 1, y2i = 1)

can be defined as (Sklar, 1959)

p11i = P(y1i = 1, y2i = 1) = C(P(y1i = 1),P(y2i = 1); θi),

where P(yvi = 1) = Φ(ηvi) for v = 1, 2, Φ(·) is the cumulative distribution function (cdf) of the

standard univariate Gaussian distribution, ηvi ∈ R is a linear predictor (defined in generic terms in

the next section), C is a two-place copula function and θi is an association parameter measuring the

dependence between the two marginals P(y1i = 1) and P(y2i = 1). Note that the marginal cdfs are
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conditioned on covariates (through η1i and η2i), but for notational convenience we have suppressed

this when expressing the marginal distributions. Since the strength of the association between

the selection and outcome equations may vary across groups of observations (specifically, across

regions in our case), in our framework we allow the copula dependence parameter to be specified

as a function of a linear predictor. That is, θi = m(η3i) where m is a one-to-one transformation

which ensures that the dependence parameter lies in its range. See Radice et al. (2015) for the list

of transformations and copulae considered here. In this context, y2i is observed only if y1i = 1,

hence the data can only identify the additional events (y1i = 1, y2i = 0) and (y1i = 0), with

probabilities p10i = Φ(η1i)− p11i and p0i = Φ(−η1i). Therefore, the log-likelihood function of the

sample is expressed as

` =
n∑

i=1

{y1iy2i log(p11i) + y1i(1− y2i) log(p10i) + (1− y1i) log(p0i)} .

2.2 Linear predictor specification

For simplicity, and without loss of generality, we suppress the v subscript and define the generic

linear predictor as

ηi = β0 +
K∑
k=1

sk(zki), i = 1, . . . , n, (1)

where β0 ∈ R is an overall intercept, zki denotes the kth sub-vector of the complete covariate vector

zi (which contains, e.g., binary, categorical, continuous and spatial variables), and the K functions

sk(zki) represent generic effects which are chosen according to the type of covariate(s) consid-

ered. Each sk(zki) can be approximated as a linear combination of Jk basis functions bkjk(zki) and

regression coefficients βkjk ∈ R, i.e.
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Jk∑
jk=1

βkjkbkjk(zki). (2)

Equation (2) implies that the vector of evaluations {sk(zk1), . . . , sk(zkn)}T can be written as Zkβk,

with coefficient vector βk = (βk1, . . . , βkJk)T and design matrix Zk[i, jk] = bkjk(zki). This allows

the linear predictor in equation (1) to be written as

η = β01n + Z1β1 + . . .+ ZKβK , (3)

where 1n is an n-dimensional vector made up of ones. Equation (3) can also be written in a

more compact way as η = Zβ, where Z = (1n,Z1, . . . ,ZK) and β = (β0,β
T
1 , . . . ,β

T
K)T. The

smooth functions may represent linear, non-linear, random and spatial effects, to name but a few.

Moreover, each βk has an associated quadratic penalty λkβT
k Dkβk, whose role is to enforce specific

properties on the kth function, such as smoothness. Smoothing parameter λk ∈ [0,∞) controls

the trade-off between fit and smoothness, and plays a crucial role in determining the shape of

ŝk(zki); a large value for λk means that the corresponding penalty has a large influence on the

parameters of the function during fitting, and viceversa. The overall penalty can be defined as

βTDλβ, where Dλ = diag(0, λ1D1, . . . , λKDK). Note also that smooth functions are subject to

centering (identifiability) constraints and we adopt the parsimonious approach detailed in Wood

(2006) to deal with this issue. In the following paragraphs, we outline the rationale for adopting

the specific model components relevant to our case study.

Spatial effects To model the spatial information based on the geographic location of survey

respondents, we employ a Markov random field smoother. This approach is popular when the

geographic area (or country) of interest is split up into discrete contiguous geographic units (or

regions), and allows us to take advantage of the information contained in neighboring observations

which are located in the same country. In this case, equation (2) becomes zTkiβk, where βk =

9



(βk1, . . . , βkR)T represents the vector of spatial effects, R denotes the total number of regions,

and zki is made up of a set of area labels. The design matrix linking an observation i to the

corresponding spatial effect is therefore defined as

Zk[i, r] =


1 if the observation belongs to region r

0 otherwise
,

where r = 1, . . . , R. The smoothing penalty is based on the neighborhood structure of the geo-

graphic units, so that spatially adjacent regions share similar effects. That is

Dk[r, q] =


−1 if r 6= q ∧ r ∼ q

0 if r 6= q ∧ r � q

Nr if r = q

,

where r ∼ q indicates whether two regions r and q are adjacent neighbors, and Nr is the total

number of neighbors for region r. In a stochastic interpretation, this penalty is equivalent to the as-

sumption that βk follows a Gaussian Markov random field (e.g., Rue & Held, 2005). This approach

is also used to allow for a heterogeneous selection process where the copula parameter (measuring

the conditional association between HIV status and participation in testing) varies according to

region.

Linear and random effects For parametric, linear effects, sk(zki) is approximated by zTkiβk, and

the design matrix is obtained by stacking all covariate vectors zki into Zk. In general, no penalty

is assigned to linear effects (Dk = 0). This would be the case for variables such as ever tested for

HIV and condom use at last sexual activity. However, sometimes the parameters of factor variables

such as interviewer identity may be weakly or not identified by the data (see Section 1.1). In such

cases, we recommend using a ridge penalty (i.e., Dk = I, where I is an identity matrix) to make

the model parameters estimable. This is equivalent to the assumption that the coefficients are i.i.d.
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normal random effects with unknown variance (e.g., Ruppert et al., 2003; Wood, 2006).

Non-linear effects For continuous variables such as age and years of education the smooth func-

tions are represented using the regression spline approach popularized by Eilers & Marx (1996).

Specifically, for each continuous variable zki we use equation (2), where the bkjk(zki) are known

spline basis functions. The design matrix Zk comprises the basis function evaluations for each i,

and describe the Jk curves which have varying degrees of complexity. We employ low rank thin

plate regression splines (Wood, 2003) which are numerically stable and have convenient math-

ematical properties, although other spline definitions (including B-splines and cubic regression

splines) and corresponding penalties are supported in our implementation. To enforce smoothness,

a conventional integrated square second derivative spline penalty is typically employed. That is,

Dk =
∫

dk(zk)dk(zk)Tdzk, where the jthk element of dk(zk) is given by ∂2bkjk(zk)/∂z2k and inte-

gration is over the range of zk. The formulae used to compute the basis functions and penalties

for many spline definitions are provided in Ruppert et al. (2003) and Wood (2006). This flexible

spline approach allows us to avoid arbitrary modeling decisions, such as choosing the appropriate

degree of a polynomial or specifying cut-points, which could induce misspecification.

In the context of our study, the linear predictors for the selection (η1) and outcome equations (η2)

and for the copula parameter (η3) are specified as

η1i = β10 + xT
i β11 + s11(agei) + s12(educationi) + s13(wealthi) + s1spatial(regioni) + βinterviewerIDi

,

η2i = β20 + xT
i β21 + s21(agei) + s22(educationi) + s23(wealthi) + s2spatial(regioni),

η3i = β30 + s3spatial(regioni).

Parameters β10, β20, β30 are constants comprising the overall levels of the predictors. Vector xi

contains discrete and binary variables with impacts β11 and β21, the svk for v = 1, 2 and k = 1, 2, 3
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are smooth functions of the continuous covariates represented using penalized thin plate regression

splines, and the svspatial for v = 1, 2, 3 model spatial regional effects using a Markov random field

approach. Finally, βinterviewerIDi
denotes the random effects for the set of binary variables defined

by interviewer identity. Linear predictor η3 models the presence of unobserved confounders and

therefore specifying the predictor equation as a function of observed characteristics only makes

sense from an estimation perspective if there are groups for which there is a clear rationale for

expecting heterogeneity in the selection process. While in theory we could include additional

group-level identifier variables, we opt to specify the copula parameter as depending on region.

This parametrization is motivated by the evidence on the spatial clustering of HIV prevalence

(Larmarange & Bendaud, 2014; Tanser et al., 2009). There are other types of smooth functions

that could be incorporated in our framework, should they be required. These include varying

coefficient models obtained, for instance, by multiplying one or more smooth components by some

predictor(s), and smooth functions of two or more continuous covariates; see Hastie & Tibshirani

(1993), Ruppert et al. (2003) and Wood (2006) for more details.

2.3 Parameter estimation

Let us define the overall quantities δT = (βT
1 ,β

T
2 ,β

T
3 ) and Sλ = diag(λ1S1,λ2S2,λ3S3), where

λT
v = (λvkv , . . . , λvKv) for v = 1, 2, 3. Parameter vectors β1, β2 and β3 and the corresponding

penalty matrices and smoothing parameter vectors relate to η1i, η2i and η3i. Because of the flexible

linear predictor structures employed here, the use of a classic (unpenalized) optimization algorithm

is likely to result in component estimates that are too wiggly to produce practically useful results

(e.g., Ruppert et al., 2003; Wood, 2006). Therefore, we maximize

`p(δ) = `(δ)− 1

2
δTSλδ. (4)
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Estimation of δ and λ is carried out in two steps. Given λ̂T = (λ̂T
1 , λ̂

T
2 , λ̂

T
3 ), we seek to max-

imize (4). As in Radice et al. (2015), we use a trust region approach which is generally more

stable and faster than its line-search counterparts (such as Newton-Raphson), particularly for func-

tions that are, for example, non-concave and/or exhibit regions that are close to flat (Nocedal

& Wright, 2006, Chapter 4). Let us define the penalized gradient and Hessian at iteration a as

g[a]
p = g[a] − Sλ[a]δ[a] and H[a]

p = H[a] − Sλ[a] , where g[a] consists of g[a]
1 = ∂`(δ)/∂β1|β1=β

[a]
1

,

g[a]
2 = ∂`(δ)/∂β2|β2=β

[a]
2

and g[a]
3 = ∂`(δ)/∂β3|β3=β

[a]
3

, and the Hessian matrix has elements

H[a]
r,h = ∂2`(δ)/∂βr∂β

T
h |βr=β

[a]
r ,βh=β

[a]
h

with r, h = 1, . . . , 3. For a given λ[a], the trust region

algorithm solves the problem

min
p

˘̀
p(δ

[a])
def
= −

{
`p(δ

[a]) + pTg[a]
p +

1

2
pTH[a]

p p
}

such that ‖p‖ ≤ r[a],

δ[a+1] = arg min
p

˘̀
p(δ

[a]) + δ[a],

where ‖ · ‖ denotes the Euclidean norm and r[a] is the radius of the trust region; full details can be

found, e.g., in Geyer (2015). Note that, near the solution, the trust region method typically behaves

as a classic unconstrained algorithm (e.g., Nocedal & Wright, 2006). Our implementation provides

the possibility of using E(H[a]) instead of the default option H[a]. However, as in Wood (2011),

we generally found observed information to be superior in terms of speed, stability and accuracy

of results (Efron & Hinkley, 1978).

The second step concerns smoothing parameter selection. There are a number of methods for

automatically estimating smoothing parameters within a penalized likelihood framework, and in

the specific context of bivariate equation models the approach discussed in Radice et al. (2015) and

Marra & Radice (2013) has proven successful. However, for the models considered in this paper

such a scheme may be unstable and inefficient when the linear predictors are highly flexible and

the copula parameter is specified as a function of covariates (see Supplementary Material (SM)-A

for a through explanation of this). We therefore perform smoothing parameter estimation using an
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alternative (more stable and efficient) parametrization of the smoothing criterion. As explained in

detail in SM-A, after some manipulation, the model’s parameter estimator can be expressed as

δ[a+1] =
(
I [a] + Sλ[a]

)−1√
I [a]z[a], (5)

where I [a] = −H[a] and z[a] =
√

I [a]δ[a] + ε[a] with ε[a] =
√

I [a]
−1

g[a]. From likelihood

theory, ε ∼ N (0, I) and z ∼ N (µz, I), where I is an identity matrix, µz =
√
Iδ0 and δ0

is the true parameter vector. The predicted value vector for z is µ̂z =
√
I δ̂ = Aλ̂z, where

Aλ̂ =
√
I (I + Sλ̂)−1

√
I . Representation (5) allows us to base smoothing parameter estimation

on a parametrization of z that uses H and g as a whole instead of the n components that make them

up. As elaborated in SM-A, this is advantageous in our context. Since our goal is to estimate λ so

that the smooth terms’ complexity which is not supported by the data is suppressed, the smoothing

parameter vector is estimated so that µ̂z is as close as possible to µz. Using this, for a given δ[a+1],

the problem to minimize becomes

λ[a+1] = arg min
λ

V(λ)
def
= ‖z[a+1] − A[a+1]

λ[a] z[a+1]‖2 − ň+ 2tr(A[a+1]

λ[a] ),

which is solved using the automatic stable and efficient computational routine by Wood (2004).

Details on the derivation of the results stated above are provided in SM-A.

2.4 Further considerations

Estimation of λ is achieved using g and I which are obtained as a byproduct of the estimation step

for δ, hence little computational effort is required to set up the quantities needed for the smoothing

step. The additional key benefit of using z and A as defined in the previous section is that the

proposed smoothing approach is in principle suitable for any model fitted by penalized maximum

likelihood. Consistency of the proposed estimator can be proved along the lines of Wojtys & Marra
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(2015), but this is beyond the scope of this paper.

At convergence, reliable point-wise confidence intervals for linear and non-linear functions of

the model coefficients (e.g., smooth components, prevalence estimates, copula parameter) can be

obtained using N (δ̂,−Ĥ
−1

p ). The rationale for using this result is provided in Marra & Wood

(2012), and references therein, and some examples of interval construction are given in Radice

et al. (2015). We can also test smooth components for equality to zero using the results discussed

in Wood (2013a) and Wood (2013b). However, we do not deem this necessary as there are many

previous studies which examine the predictors of testing and HIV status and hence we are able

to follow the previous literature in terms of variable selection (Bärnighausen et al., 2011; Hogan

et al., 2012). HIV prevalence estimates are obtained using
∑n

i=1wiΦ(η̂2i)/
∑n

i=1wi, where the

wi are survey weights, while confidence intervals are derived using the delta method or posterior

simulation using the above mentioned distributional result (e.g., McGovern et al., 2015b).

All the developments discussed in this article have been implemented in SemiParBIVProbit.

See SM-B for a brief description of the software.

3 Data

We implement the extended simultaneous equation model framework to estimate HIV prevalence

in three sub-Saharan African countries. Data are obtained from the Demographic and Health Sur-

veys (DHS) conducted in Zambia in 2007, Zimbabwe in 2005-2006, and Swaziland in 2006-2007.

For further details on the DHS and HIV testing procedures, see Corsi et al. (2012), Fabic et al.

(2012) and Mishra et al. (2006). Regional identifiers for respondents are used in this analysis,

along with information on spatial boundaries at the sub-national level from http://gadm.org/. DHS

are not designed to be representative below the regional level, and sampling within regions can

be sparse. Therefore, in this analysis we focus on regional level heterogeneity in estimating HIV
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prevalence.

We follow the previous literature by including the following binary and categorical variables in

xi: type of location (urban or rural), marital status, had a sexually transmitted disease, age at first

intercourse, had high risk sex, number of partners, condom use, would care for an HIV-infected

relative, knows someone who died of AIDS, previously tested for HIV, smokes, drinks alcohol,

language, region, ethnicity and religion. Unlike the previous literature, we specify smooth func-

tions of age, years of education, and wealth index (based on household assets) and employ Markov

random field smoothers to model spatial variation. All these components enter into the linear pre-

dictors for participation (η1) and HIV status (η2). Exclusion restriction is achieved by including

interviewer identity into η1 only. We apply a ridge penalty to the coefficients of this variable in

order to account for the difficulties associated with its use which we outlined in Section 1.1. Linear

predictor η3 only depends on a Markov random field term and allows for the copula association pa-

rameter to vary by region. All of our models are stratified by sex to reflect potentially sex-specific

consent and HIV related factors. All our prevalence estimates are weighted to be nationally repre-

sentative. We do not weight during model fitting as the variables on which the DHS weights are

based are already included in the model (Hogan et al., 2012). Nevertheless, we have conducted a

sensitivity analysis where we use the weights as part of the model fitting procedure and have found

very similar results. Table 1 illustrates the sample size, number of regions, number of respondents

who participate in testing, and the number of respondents who are HIV positive (among those who

participate in testing) in each survey.

There are between 4 and 8 thousand observations in each country, with the percentage of eligible

respondents consenting to test for HIV ranging from 78% for men in Zambia and Zimbabwe, to

92% for women in Swaziland. The percentage of HIV positive individuals (among those who

consent to test) is high in all countries, and ranges from 12% for men in Zambia to 31% among

women in Swaziland. Confidence intervals for the HIV prevalence estimates which do not account
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Zambia Zimbabwe Swaziland

Men Women Men Women Men Women

No. HIV− 4,457 4,689 4,773 5,941 2,898 3,146
No. HIV+ 641 936 782 1,553 704 1,438
% HIV+ (95% CI) 12% (11% - 13%) 16% (14% - 18%) 14% (13% - 16%) 21% (20% - 23%) 19% (18% - 21%) 31% (29% - 33%)

No. Declined to Test 1,318 1,400 1,620 1,413 554 403
No. Consented to Test 5,098 5,625 5,555 7,494 3,602 4,584
% Consented to Test (95% CI) 78% (76% - 80%) 79% (78% - 81%) 78% (76% - 80%) 84% (83% - 85%) 87% (86% - 89%) 92% (91% - 93%)

No. of Regions 9 10 4

Table 1: Descriptive Statistics for Demographic and Health Survey HIV Data. HIV prevalence (%) and consent to test
(%) estimates are weighted, and confidence intervals are clustered to account for survey design. HIV status is only
available for those who consent to test. Individuals who were eligible but not contacted to test for HIV are not included
in the analysis.

for non-participation are between 3 and 4 percentage points wide in each country.

In this paper, we focus on non-participation due to eligible respondents declining to test for HIV

after interview. The amount of missing data due to this type of non-participation is typically more

substantial than non-participation due to eligible respondents not being available for interview

(Hogan et al., 2012). In addition, previous analysis of the Zambia data found little evidence of

selection bias among this second group (Bärnighausen et al., 2011). The HIV datasets used for the

analysis are freely available from http://www.measuredhs.com after registration, and the code for

preparing the data can be obtained from http://hdl.handle.net/1902.1/17657 (Bärnighausen et al.,

2011; Hogan et al., 2012). In the following section, we present new sex-specific national HIV

prevalence point estimates and confidence intervals, and illustrate the regional heterogeneity in

HIV prevalence and dependence parameter in each country.
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Imputation model Selection model
Country HIV Prevalance (95% CI) HIV Prevalance (95% CI) θ̂ (95% CI)

M
en

Swaziland 19.4 (18.2, 20.6) 26.5 (23.9, 29.2) −4.09 (−10.4,−1.82)

Zambia 12.1 (11.2, 12.9) 22.9 (19.8, 26.0) −8.45 (−16.4,−4.25)

Zimbabwe 14.4 (13.5, 15.3) 14.5 (12.4, 16.5) −1.03 (−22.7,−1.00)

W
om

en Swaziland 30.7 (29.4, 31.9) 35.1 (33.5, 36.8) −9.83 (−30.9,−3.91)

Zambia 16.1 (15.2, 17.1) 19.3 (13.8, 24.8) −1.40 (−2.39,−1.07)

Zimbabwe 20.5 (19.6, 21.3) 21.7 (19.2, 24.1) −1.45 (−3.79,−1.05)

Table 2: National estimates of HIV prevalence (and associated confidence intervals) obtained from the single imputa-
tion and proposed simultaneous equation approaches. The estimates shown in column 1 do not account for potentially
systematic non-participation whereas those in column 2 do. The dependence structure used for estimating the sample
selection models is based on the Joe 90 copula. Because we specify the dependence parameter in terms of a linear
predictor, the values shown in column 3 are the average values in each country. Intervals are calculated using the infer-
ential result mentioned in Section 2.4. The range of θ is (−∞,−1), with higher values (in absolute terms) indicating
greater association; Figure A1 in SM-C shows three dependence scenarios.

4 Results

Table 2 presents national estimates of HIV prevalence (and associated confidence intervals) ob-

tained from the simultaneous equation framework introduced in this paper. These are compared to

imputation-based estimates shown in column 1, which only use the single linear predictor equation

for HIV status (η2). The reason we compare selection model results with imputation estimates

is that the latter is the recommended approach for dealing with missing data in HIV research by

UNAIDS/WHO, and is also very popular in the applied literature for dealing with data affected

by missingness. As was found in previous research, we find that these estimates are almost iden-

tical to those in Table 1 which were based only on observations without missing data (Mishra

et al., 2008; Marston et al., 2008; Hogan et al., 2012; Bärnighausen et al., 2011). Moreover,

the imputation-based confidence intervals are, similarly, between 3 and 4 percentage points wide.

Column 2, which shows our selection model estimates, which account for potentially systematic

non-participation, indicate evidence of selection bias for men (Swaziland and Zambia) and women

(Swaziland). In each of these cases, we can reject that the selection model point estimates are the
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same as the imputation-based approach, or analysis of observations without missing data.

In the final column of Table 2, we present estimates of the copula association parameter which

measures the degree of association between participation in testing and HIV status (conditional

on observed covariates). The values shown in column 3 are the average values in each country.

The range of this parameter is (−∞,−1), with higher values (in absolute terms) indicating greater

association. Three dependence scenarios for the 90-degree rotated Joe copula are illustrated in

Figure A1 in SM-C. The precise definition of this parameter will vary according to the copula of

interest.

If the copula parameter is close to −1 then there is lack of noticeable association between partic-

ipation in testing and HIV status once observed characteristics have been adjusted for, and hence

no selection bias due to unobserved characteristics. This is the case for men in Zimbabwe, and

women in Zambia and Zimbabwe, where in fact the selection model HIV prevalence estimates

are close to those of the imputation-based approach. However, even if point estimates are similar,

we find that the imputation method substantially understates the amount of uncertainty associated

with estimating HIV prevalence when survey testing data are affected by non-participation; con-

fidence intervals obtained from the selection model are generally twice as wide as those from the

single-equation approach.

We have considered a number of different dependence structures for estimating these models, the

majority of which do not rely on the assumption of bivariate normality. Using information criteria,

we found that the Joe 90 copula was the preferred choice for most cases, and therefore all estimates

in Table 2 use this dependence structure.
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Figure 1: Sub-national HIV prevalence estimates for men obtained by applying the single imputation and proposed
simultaneous equation approaches. The copula dependence parameter plot reports the estimated absolute values of the
association parameter with range (1,∞) in a Joe copula rotated by 90 degrees. The higher the value, the stronger the
association between the selection and outcome equations.
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Figure 2: Sub-national HIV prevalence estimates for women obtained by applying the single imputation and proposed
simultaneous equation approaches. The copula dependence parameter plot reports the estimated absolute values of the
association parameter with range (1,∞) in a Joe copula rotated by 90 degrees. The higher the value, the stronger the
association between the selection and outcome equations.
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Our sub-national HIV prevalence estimates, which are based on the region-specific copula depen-

dence parameters, are presented in Figures 1 (men) and 2 (women). There is clear variation in HIV

prevalence within some countries, most notably for men in Zambia and women in Zambia and

Zimbabwe, either on the basis of the imputation-based model, or the selection model estimates.

For men in Zambia, the selection model HIV prevalence estimates range from 28% (24%, 32%)

in Lusaka to 13% (7%, 18%) in Northwestern. For women in Zambia, the selection model HIV

prevalences range from 26% (19%, 33%) in Lusaka to 10% (6%, 14%) in Northern. For women

in Zimbabwe, the selection model HIV prevalences range from 25% (21%, 28%) in Matebeleland

South to 20% (18%, 22%) in Midlands. Although the sample size is reduced when conducting

sub-national analyses and confidence intervals are enlarged compared to the national prevalence

estimates, most of these differences between highest and lowest prevalence regions show non-

overlapping intervals. In Swaziland, which is relatively more homogeneous, the selection model

HIV prevalence estimates differ by 6 percentage points between the region with the highest preva-

lence (29% (26%, 32%) in Hhohho) and lowest prevalence (23% (21%, 26%) in Shiselweni) for

men, and 3 percentage points between the region with the highest prevalence (36% (34%, 38%)

in Hhohho) and lowest prevalence (33% (31%, 35%) in Shiselweni) for women. However, these

estimates have overlapping intervals.

There is also support for a heterogeneous selection process across regions within some of these

countries, as we find the copula dependence parameter varies according to location. For example,

for men in Zambia, the selection model HIV prevalence for Northwestern is 8 percentage points

greater than the imputation-based model (13% compared to 5%), while for Luapula, the differ-

ence is 9 percentage points (16% to 25%). In addition to this heterogeneity at the regional level,

compared to a model which imposed homogeneity on the copula parameter, we found that this

approach of allowing the dependence to reflect spatial variation was more efficient for estimating

national HIV prevalence.
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There are important non-linearities and functional form differences across sex and country in the

association between observed characteristics of survey respondents and testing participation and

HIV status outcomes, which highlights the relevance of our spline and penalized smoothing frame-

work (see SM-E).

5 Sensitivity of results to violations of model assumptions

When dealing with data which are affected by non-participation or other missing information, it

is necessary to make assumptions about the missing data mechanism. This is because we cannot

observe the outcomes of interest for those individuals who do not consent to test for HIV, and

therefore we can not simply test certain assumptions empirically (Nicoletti, 2006). To relax the

assumption of missing at random conditional on observed covariates using the selection model

framework, we require an alternative set of assumptions which describe the missing data mecha-

nism. We argue that missing at random is not reasonable in the context of HIV surveys because

those who are HIV positive have an incentive not to participate, and that the proposed framework

is therefore much more realistic. However, it is important to critically assess the likely validity

of these alternative assumptions. In this section, we discuss two approaches to evaluating the

parametric assumptions and exclusion restriction.

5.1 Simulation study

We assess the empirical effectiveness of the proposed sample selection modeling framework through

a simulation study, in which we use the results presented in the previous section and employed

parsimonious model settings to maintain feasibility. We constructed responses for consent and

HIV status using several unobserved confounding variable distributions (normal, uniform and log-
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normal) and link functions (derived from the Gaussian, logistic and Weibull cumulative distribution

functions). Imposition of assumptions about the relevant link functions has been a criticism of se-

lection models with continuous response (Kenward, 1998). For each of these nine combinations,

we considered the situation in which the exclusion restriction assumption holds (i.e., interviewer

identity predicts participation in HIV testing but not HIV status), and the cases where the assump-

tion is mildly and strongly violated. Interest was in prevalence estimates. Exact simulation settings

of the resulting 27 scenarios are given in SM-D.

We present results for the best-case and worst-case scenarios (called S0PG, S0WL and S1WL

in Table A3). Figure 3 compares the results from the single imputation model, classic Heckman

model (assuming bivariate normality) and the preferred copula selection model (as determined

by the Akaike information criterion). Figure 3a confirms that, when the Gaussian assumption

holds and the exclusion restriction is valid, the traditional selection model is appropriate for cor-

recting for systematic non-participation (bias in absolute value = 1.6% and root mean squared

error (RMSE) = 0.04) and that the single imputation model performs poorly (bias = 49% and

RMSE = 0.107). The wider variability of the selection model estimates as compared to those of

single imputation is not surprising; imputation-based models do not acknowledge the uncertainty

surrounding the relationship between participation in testing and HIV status. Figure 3b shows

the results under model misspecification (Weibull link function and log-normal unobserved con-

founder) when the exclusion restriction holds. The performance of the Gaussian selection model

worsens (bias = 19.2%). In contrast, the preferred copula model (in this case the 90◦ rotated Joe,

although the 90◦ rotated Gumbel and 270◦ rotated Clayton copulae unsurprisingly produced sim-

ilar results) gives a bias of 6.5%. The corresponding RMSE is equal to 0.044 and is lower than

that for the Gaussian selection model (RMSE = 0.054). In the absence of a valid instrument (in

this case the independence of HIV status of the instrumental variable conditional on observed and

unobserved covariates was violated) and under model misspecification, the Gaussian and Joe 90◦
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copula selection models perform poorly (see Figure 3c), although the latter is less biased and has

lower RMSE as compared to the former (bias of 22% and 17% and RMSE of 0.072 and 0.067,

respectively).

In summary, the simulations indicate that estimates obtained from the classic selection model can

be biased when the model assumptions are not met, and that the proposed copula approach per-

forms better. In particular, the copula selection model seems to be robust to situations in which the

link functions are not Gaussian. It is worth pointing out that it is difficult to simulate the highly

complex processes that likely underlie the relation between consent to HIV testing and HIV status.

Nevertheless, our findings suggest that the copula approach has merit in dealing with non-random

sample selection. However, as expected, in the absence of a valid exclusion restriction all mod-

els considered essentially deliver biased estimates. In general, it is not possible to determine a

priori how the model assumptions will affect prevalence estimates as the true data structures are

unknown. However, we believe that the proposed approach is a useful addition to the statistical

toolbox as it can allow researchers to gain a better understanding of the sensitivity of estimation

results to non-Gaussian specifications, for instance. These simulations clearly point to the validity

of the exclusion restriction as a determinant of the performance of the selection approach, therefore

we now discuss the exclusion restriction used in this paper in detail.
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Figure 3: Simulation results of prevalence estimates obtained under the best-case (S0PG) and worst-case scenarios (S0WL and S1WL) considered in this
paper. In S0PG the unobserved confounder distribution and cumulative distribution function (used to derive the link function) were both Gaussian. In S0WL
and S1WL the unobserved confounder distribution and cumuative function were Log-normal and Weibull. In S0PG and S0WL a valid exclusion restriction
was employed, whereas in S1WL the assumption that interviewer identity predicts participation in HIV testing but not HIV status was violated. The number
of replicates was 250 and the horizontal lines represent the true prevalence. Prevalence estimates were obtained using the single imputation, classic Gaussian
selection and preferred copula selection models. Exact simulation settings are given in SM-D.
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5.2 Evaluating the plausibility of the exclusion restriction

As with instrumental variables, it is not possible to conclusively test whether the exclusion restric-

tion holds in the sample under consideration. Therefore, it is important to assess the extent to which

interviewer assignment is likely to be independent of respondents’ unobserved characteristics. In

this section, we provide a detailed explanation of how interviewers are allocated to respondents in

the DHS. We also propose an empirical approach to evaluate the plausibility of this assumption

based on Chamberlain (1980) and Mundlak (1978), whose technique has been used by Dustmann

& Rochina-Barrachina (2007) in a sample selection context.

The DHS are a coordinated series of nationally representative household surveys conducted ac-

cording to a common approach and framework, with the goal of providing high-quality compara-

ble data. The sampling procedure for the DHS is designed in two stages, first a random sample

of primary sampling units (PSU) are drawn which comprise geographic locations usually defined

by a preceding census. This first stage sampling is often stratified by urban/rural location, and/or

region. Then, a random sample of households is chosen within each PSU, and all eligible residents

of these households are sought for interview.

At each stage of the survey implementation, the procedure has been standardized with oversight

of the process from country-teams and the DHS management. These principles are outlined as

part of the DHS manuals and guidelines, which emphasize conducting a household listing and

pre-selection of households, providing good sample documentation, and implementing the sample

exactly as designed (ICF International, 2012a). There are a number of aspects of the DHS proce-

dure which support the assumptions that interviewer identity is plausibly exogenous, conditional

on observed covariates. First, two-stage sampling is designed to provide a systematic way of se-

lecting households to participate in the survey, and the DHS standard procedure recommends that

households be pre-selected in the central office rather than by teams in the field. In particular, inter-
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viewers are not allowed to select households, can only interview pre-selected households, and no

changes or replacements are permitted (ICF International, 2012a). Therefore, the opportunity for

interviewers themselves to select their interviewees is limited. In addition, it is the responsibility

of the field supervisor to distribute the pre-selected households among the interviewers. According

to the DHS supervisor and editor’s manual, interviewer allocation should be made on the basis of

equally distributing the workload and linguistic capability (ICF International, 2015). Specifically,

in relation to workload, the recommendation is that “Drawing numbers out of a hat is a good sys-

tem to ensure that team and interviewer assignments are distributed on a random basis and that

interviewers are aware of this" (p. 11 ICF International, 2015). Therefore, if the guidelines laid

out by the DHS procedures are correctly followed, the risk of bias associated with violation of the

exclusion restriction seems low.

It is worth mentioning that it is difficult to assess whether the procedures were exactly followed

without having on-the-ground experience of the particular survey of interest. In particular, we do

not expect pure random assignment of interviewers because of the presumption that interviewers

be matched on language, and the fact that travel times per team may tend to be minimized (ICF

International, 2012b). In our model, we control for language of the respondent, which should

account for the fact that respondents with different languages may have differential risk of being

HIV positive. In addition, we control for region, which should account for the fact that respondents

living in different regions may have differential risk of being HIV positive. However, there may

be variation in HIV risk at a smaller geographic scale than the regional level. Unfortunately, we

cannot include an indicator for every PSU in the model as this would involve too many parameters,

but we are nevertheless concerned that there may be some variation in HIV risk associated with the

fact that interviewers tend to work in proximal areas (at least to the extent that this occurs within

rather than between regions).

One potential solution might appear to be to include an indicator variable for each interviewer in
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the HIV status equation. Unfortunately, in the selection model framework, this would mean that

we would no longer have a selection variable. An alternative is to follow Chamberlain (1980)

and Mundlak (1978), who propose approximating fixed effects using the mean of the observed

characteristics of the group of interest. We have, therefore, conducted a sensitivity analysis where

we included the mean characteristics of each interviewer’s interviewees as additional predictors in

the HIV status outcome equation. That is, η2 also included the term x̄T
i β22, where x̄i is the mean

of each xi for the ne people interviewed by a given interviewer e (i.e., x̄i = x̄ie =
∑ne

1 xie
ne

,∀e =

1, . . . , E, where E is the total number of interviewers) and β22 is the associated parameter vector.

Because we expect interviewers and respondents to be matched on region and language, we could

not include these in x̄i, but these controls remain in xi. The linear predictors for the selection

and copula parameter equations (η1i and η3i) were left specified as described on page 10. When

we implemented this sensitivity analysis, we obtained very similar results to those in the main

analysis. Therefore, along with the description of the survey procedure and simulation study, this

provided some reassurance that the underlying model assumptions are unlikely to cause major bias

in our application. Nevertheless, the treatment of missing data always requires some assumptions

which cannot be fully tested, and therefore results must be assessed bearing in mind how plausible

the given assumptions are.

An alternative way of approaching the validity of the exclusion restriction is provided by Angrist

et al. (1996). These authors theoretically derive the likely bias associated with violation of the

exclusion restriction in their application, and then use this to assess whether interpretation of their

results is likely to be affected. Due to the complexity of our model, it is not clear how to derive

the relevant bias theoretically. However, the simulation results do provide us with an indication of

the likely consequences for our estimates if the exclusion restriction is violated. We focus on the

worst case scenario (S1WL) where the model was misspecified and the exclusion restriction was

not valid. In this case, a bias of 17% was found for best performing selection model. How would
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the estimates shown in Table 4 change then? Assuming that violation of the exclusion restriction

arises because good interviewers are more likely to be assigned to respondents who are more likely

to be HIV positive (alternative scenarios involving a negative association seem less likely), then

our selection model estimates will be upward biased. Focusing, for instance, on some cases in

which there is substantial difference between the selection and imputation estimates, we have that,

for men in Swaziland, if the selection estimates are biased upwards by 17% then the true HIV

prevalence is 26.5 − 3.9 = 22.6% (compared to the imputation estimate of 19.4%). For men in

Zambia, the corresponding bias-corrected estimate would be 22.9−3.3 = 19.6% (compared to the

imputation estimate of 12.1%). Therefore, the results presented in this article indicate substantial

concern about the validity of the assumption of missing at random, at a minimum for the surveys

among men in Swaziland and Zambia, even if some or all of the selection model assumptions do

not fully hold.

6 Discussion

Nationally representative datasets containing information on HIV status conducted through home-

based testing have made an important contribution to our understanding of the evolution of the HIV

epidemic. However, non-participation in testing as part of these surveys can lead to substantial

amounts of missing data, and missing at random may not be a realistic assumption. In this article,

we have developed a simultaneous equation framework which extends the capabilities of Heckman-

type selection models and does not require non-ignorability. Our results for Zambia, Zimbabwe,

and Swaziland indicate that some DHS HIV surveys are likely to be affected by selection bias.

Using our modeling framework, we find that HIV prevalence estimates are substantially higher

than, and statistically different from, those found by either the imputation-based single equation

approach or the analysis of cases without missing data for men in Swaziland and Zambia, and

women in Swaziland. We also find that not accounting for the relationship between participation
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in testing and HIV status yields confidence intervals that are too narrow as they do not reflect the

true uncertainty associated with surveys which are affected by systematic non-participation.

Our sub-national estimates indicate that there is clear variation in HIV prevalence within some

countries and that the dependence parameter varies according to location, hence supporting the de-

veloped framework. Because the copula parameter models unobserved characteristics, it is difficult

to concretely assess what could be driving these regional differences. It seems reasonable that the

incentive to participate in testing for HIV positive individuals, hence the unmeasured dependence,

would vary by location. For example, we would expect areas where the stigma associated with

HIV was greatest to exhibit the greatest negative unmeasured dependence because of the greater

consequences of disclosure. We have attempted to find comparable data on HIV stigma to assess

which countries and regions were most likely to be affected, however we were unable to locate

such data; investigating the reasons underlying this heterogeneity is an important direction for fu-

ture research. We cannot conclusively rule out that the exclusion restriction is less likely to be

valid in some locations. However, given that the imputation-based model also implies substan-

tial heterogeneity in HIV prevalence, it seems implausible that these differences could be largely

attributed to violation of the exclusion restriction in certain areas.

In this paper, we have focused on HIV testing, however there are many other contexts in which

biomarker data collection is affected by non-participation. More broadly, there are many instances

of missing data in medical and social science surveys in which the assumption of missing at ran-

dom may be unrealistic due to the existence of plausible behavioral mechanisms leading to selec-

tion bias. The methodology we introduced in this paper, therefore, has wide range of potential

applications outside of HIV research. Because of the flexibility of this framework, the approach

we outline in this paper can easily be applied to other countries and contexts, and the software

for doing so has been designed specifically with this in mind. The main requirement to adopt this

approach is a valid selection variable in the survey of interest, and in many contexts interviewer
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identity is a plausible choice as a selection variable and is often available. However, future surveys

could be designed with this methodology in mind, for example by providing additional meta-data

to act as selection variables, documenting survey procedure, or implementing specific randomized

interventions aimed at increasing participation.

From a methodological point of view, it would be interesting to explore the use of semi/non-

parametric copula approaches. These would allow the margins and/or the copula to be estimated

non-parametrically using, for instance, smoothing methods such as kernels, wavelets and orthog-

onal polynomials. If the specification of the model for the margins and copula is correct, then the

parametric approach will outperform semi/non-parametric methods; however, the reverse will be

true under misspecification. Without any plausible prior information, semi/non-parametric tech-

niques should be favored as they will be more flexible in determining the shape of the underlying

distribution. However, in practice, such techniques are typically limited with regard to the in-

clusion of a large set of covariates and very flexible linear predictor structures, may require the

imposition of restrictions on the functions approximating the underlying distribution and may be

computationally demanding (e.g., Kauermann et al., 2013; Segers et al., 2014; Shen et al., 2008).

Future research will determine the feasibility of such developments.
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Supplementary Material A: Justification of smoothing approach

Data-driven and automatic estimation of smoothing parameters is pivotal for practical modeling,

especially when each model equation contains more than one smooth component (as in our case

study). Estimating the effects of individual-level predictors may not be straightforward and in HIV

studies continuous variables are typically entered into the equations as parametric components,

polynomials of various degrees, or else categorized according to a series of cut-points. This ap-

proach runs the risk of under/over-fitting, may be inefficient, and can be arbitrary. Because some

portion of the data are missing, often a substantial percentage, it can be difficult to reliably specify

these choices ex ante. Moreover, the degrees of the relevant polynomial or the effective cut-points

can be difficult to set in general because they may vary according to the context. For example,

years of education in one country could have a different meaning to years of education in another,

and specifying education groups according to some common threshold could be inappropriate.

This is an important issue because identifying the relevant associations requires an appropriate

flexible specification of the covariate effects. In addition, in the absence of a strong selection vari-

able which is sufficiently predictive of the selection outcome, model identification can in theory be

achieved through non-linearities and hence misspecification of the model component effects could

introduce bias into the results (Madden, 2008). Misspecification of the linear predictor equations

could also result in inducing a violation of the assumed model’s bivariate distribution typically

required for identification, even if this assumption holds under the correct model specification.

To this end, we employ a penalized regression spline approach which allows us to estimate flexibly

non-linear effects and does not depend on arbitrary modeling decisions by the researcher (e.g.,

Marra & Radice, 2013; Ruppert et al., 2003; Wood, 2006). For example, modeling the association

of age with HIV status is crucial for understanding when peak incidence occurs, and such evidence

can be used for appropriate targeting of efforts to reduce risky behavior (Gouws et al., 2008). The
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role of education in the evolution of the HIV epidemic is another question of fundamental impor-

tance to policy makers due to its potential for affecting population health, behavior and knowledge.

However the literature has found its impact as protective or to be changing over time (Hargreaves

et al., 2008). Finally, the literature has debated the association of poverty with HIV risk (Gillespie

et al., 2007). If any of these factors (age, education and poverty, which we measure with household

wealth defined by an asset index) are systematically associated with the outcomes of interest, and

such relationships are not modeled flexibly and reliably, then results could be misleading.

Radice et al. (2015) and Marra & Radice (2013) discussed a smoothing approach for bivariate

equation models with penalized regression splines which is based on z =
√

W
(
W−1d + Zδ

)
.

Loosely speaking, W is of dimensions ň × ň, where ň = 3n, and represents a block diagonal

weight matrix containing minus the second derivatives of the log-likelihood with respect to η1, η2

and η3, d is a vector of length ň containing the first derivatives of the log-likelihood with respect to

η1, η2 and η3, and Z is an overall design matrix of dimensions ň×m, where m is the total number

of columns, which has a block diagonal structure and contains the design matrices associated with

η1, η2 and η3. Pseudodata vector z requires W be positive definite. Unfortunately, when the

copula parameter is specified as a function of covariates and/or the model is highly flexible, the

n weight matrices contained in W = diag (W1, . . . ,Wn) need not all be positive definite, and

in practice a non-negligible number of non-positive definite Wi may be encountered for perfectly

reasonable models (see, e.g., Wood (2011) for an example in a related context). Therefore, positive

definiteness can only guaranteed if E (W) is used in place of W. However, as in Wood (2011), we

generally found observed information to be superior in terms of speed, stability and accuracy of

results (Efron & Hinkley, 1978). All this suggests employing observed information and basing

smoothing parameter estimation on a parametrization of z that uses H and g as a whole instead of

the n components that make them up. There will clearly be situations in which H is not positive

definite but these would occur considerably less frequently than when working with the n weight
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matrices that make it up, and can be addressed by perturbing H to positive definiteness (e.g., Wood,

2015, Chapter 5). The additional advantage of such an approach is that H and g would be obtained

as a byproduct of the estimation step for δ, hence little computational effort will be required to set

up the pseudodata vector needed for the smoothing step.

Using the quantities and notation defined in Section 3, recall that a first order Taylor expansion of

g[a+1]
p about δ[a] yields 0 = g[a+1]

p ≈ g[a]
p +

(
δ[a+1] − δ[a]

)
H[a]

p , where g[a]
p = g[a] − Sλ[a]δ[a] and

H[a]
p = H[a] − Sλ[a] . As explained above, finding an expression for δ[a+1] that is based on g[a] and

H[a] is crucial to our developments and it can be obtained as follows. Let us define I [a] = −H[a],

we then have

0 = g[a]
p +

(
δ[a+1] − δ[a]

) (
−I [a] − Sλ[a]

)
,

g[a]
p =

(
δ[a+1] − δ[a]

) (
I [a] + Sλ[a]

)
,

g[a] − Sλ[a]δ[a] = δ[a+1]
(
I [a] + Sλ[a]

)
− δ[a]I [a] − δ[a]Sλ[a] ,

δ[a+1]
(
I [a] + Sλ[a]

)
= g[a] + δ[a]I [a],

δ[a+1] =
(
I [a] + Sλ[a]

)−1√
I [a]

(√
I [a]δ[a] +

√
I [a]

−1

g[a]

)
.

Therefore, the parameter estimator can be expressed as

δ[a+1] =
(
I [a] + Sλ̂

)−1√
I [a]z[a],

where z[a] = µ
[a]
z + ε[a] with µ

[a]
z =

√
I [a]δ[a] and ε[a] =

√
I [a]

−1

g[a]. The square root of I and

its inverse are obtained by eigen-value decomposition. Note that, to within an additive constant,

pseudodata vector z is also a quadratic approximation to the model log-likelihood in the vicinity

of the converged parameter vector, since they share first and expected second derivatives with

respect to δ. From likelihood theory, ε ∼ N (0, I) and z ∼ N (µz, I), where I is an identity

matrix, µz =
√
Iδ0 and δ0 is the true parameter vector. The predicted value vector for z is
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µ̂z =
√
I δ̂ = Aλ̂z, where Aλ̂ =

√
I (I + Sλ̂)−1

√
I . Since our goal is to estimate λ so that

the smooth terms’ complexity which is not supported by the data is suppressed, the smoothing

parameter vector is estimated so that µ̂z is as close as possible to µz. Therefore, we use

E
(
‖µz − µ̂z‖2

)
= E

(
‖ (z− ε)− Aλz‖2

)
= E

(
‖z− Aλz− ε‖2

)
= E

(
‖z− Aλz‖2

)
+ E

(
−εTε− 2εTµz + 2εTAλµz + 2εTAλε

)
= E

(
‖z− Aλz‖2

)
− ň+ 2tr(Aλ),

(6)

where tr(Aλ) is the number of effective degrees of freedom of the penalized model. Line 2 is

obtained by expanding the square in line 1. The last line follows from line 2 by recalling the

properties of ε and that a scalar is its own trace. In practice, λ is estimated by minimizing an

estimate of (6), i.e.

V(λ) = ̂‖µz − µ̂z‖2 = ‖z− Aλz‖2 − ň+ 2tr(Aλ). (7)

Given δ[a+1], the problem becomes

λ[a+1] = arg min
λ

V(λ)
def
= ‖z[a+1] − A[a+1]

λ[a] z[a+1]‖2 − ň+ 2tr(A[a+1]

λ[a] ),

which is solved using the automatic stable and efficient computational routine by Wood (2004).

This approach is based on Newton’s method and can evaluate in an efficient and stable way the

components in V(λ) and their first and second derivatives with respect to log(λ) (since the smooth-

ing parameters can only take positive values). Note that, to within an additive constant, the first

term on the right hand side of (7) is a quadratic approximation to −2`(δ̂). Therefore, dropping

irrelevant constants yields V(λ) ∝ −2`(δ̂) + 2tr(Aλ). This means that smoothing parameters

would be estimated to minimize what is effectively the Akaike information criterion with effective

degrees of freedom instead of number of parameters. Finally, it is worth stressing that another key
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benefit of using z and A as defined above is that the proposed smoothing approach can in principle

be applied to any situation in which a model is fitted by penalized maximum likelihood.

Supplementary Material B: Software implementation

The framework this paper provides allows researchers and policy-makers to apply a transparent

approach to account for systematic non-participation in their data. The features of this software

have been designed specifically with transparent and straightforward dissemination of results in

mind. First, the choice of optimization algorithm and confidence interval procedure allow for re-

sults to be obtained relatively quickly without the need for bootstrapping or complex simulation

methods. Second, model fitting is designed to avoid arbitrary decisions by the researcher (e.g.,

pooling of interviewers, polynomial or cut-point specification for the effects of continuous vari-

ables) to the maximum extent possible. Finally, national HIV prevalence estimates and adjusted

confidence intervals (which account for the uncertainty inherent in estimating the relationship be-

tween testing participation and HIV status) can be obtained directly as the primary output of the

model, along with sub-national spatial maps for HIV prevalence and associational graph for the

relevant covariates of interest, as shown in Section 4 and SS-D.

We have implemented the proposed approach in R (R Development Core Team, 2016), by ex-

tending the package SemiParBIVProbit (Marra & Radice, 2016) so that the main function

SemiParBIVProbit() can estimate all the models mentioned in this paper. The function

should be easy to use for anyone familiar with (generalized) linear and additive models in R. For the

copula selection models, the user simply supplies one of the bivariate distributions F, C0, C180,

C180, C270, J0, J180, J180, J270, G0, G180, G180 or G270 to SemiParBIVProbit as

the BivD argument, in place of the usual Gaussian (N) copula. For example, the call to fit a rotated
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90◦ Clayton copula selection model is:

f.list <- list(sel ~ x1 + s(x2, bs = "tp") + x3,

HIV ~ x1 + s(x2),

~ s(x4, bs = "mrf"))

SemiParBIVProbit(f.list, data, Model = "BSS", BivD = "C90",

weights = NULL)

where the first formula in f.list specifies in the following order the equation for consent to

HIV testing (selection) and for HIV status (outcome), whereas the third equation allows the user to

model the copula association parameter as a function of covariates. The s terms represent smooth

functions of the continuous predictor x2 and factor variable x4. Model = "BSS" denotes a bi-

variate model with non-random sample selection. Argument bs specifies the type of spline basis;

possible choices are cr (cubic regression spline), cs (shrinkage version of cr), tp (thin plate

regression spline, the default), ts (shrinkage version of tp), re (random effect smoother, used

in this paper for the interviewer variable), and mrf (Markov random field smoother, used for the

regional variable). Argument weights allows the user to employ a vector of prior weights in fit-

ting. Model summary and plot functions work in a similar fashion as those of generalized linear

and additive models. The prevalence, with corresponding interval, can be obtained using the prev

function. More details and options can be found in the documentation of SemiParBIVProbit.
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Supplementary Material C: Some dependence scenarios
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Rotated Joe − 90 degrees (θ = −14)
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Figure A1: Three dependence scenarios for the counter-clockwise 90-degree rotated Joe copula: θ = −2, minimal
dependence, θ = −7, moderate dependence, θ = −14, high dependence. The range of θ is (−∞,−1). If this
parameter is close to −1 then there is lack of noticeable association between participation in testing and HIV status
once observed characteristics have been adjusted for. Note that dependence structure implied by the Joe 90 copula is
consistent with the interpretation that those who are most likely to be HIV positive are those who are also most likely
to decline to participate in testing.

Supplementary Material D: Simulation settings

This section provide details of the simulation study used for evaluating the performance of the

classic and proposed selection models. We constructed responses for consent to HIV testing and

HIV status using several unobserved confounding variable distributions and link functions. For

each scenario, we considered the situation in which the exclusion restriction assumption holds

(i.e., interviewer identity predicts participation in HIV testing but not HIV status), and the cases

where the assumption is mildly and strongly violated. Interest was in prevalence estimates.

We simulated an HIV survey with missing data in which the assumption of missing at random does

not hold. We followed the approach implemented in Clark & Houle (2014) by generating a dataset

based on a real HIV survey which in this case was the 2007 Zambia Demographic and Health

Survey (DHS) for men. Therefore, our simulations closely match the overall observed consent
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Age Category N % Urban/Rural Place of Residence N %
15-19 1257 21 Urban 2540 42
20-24 1008 17 Rural 3460 58
25-29 921 16 Total 6000
30-34 862 14
35-39 745 12
40-44 423 7
45-49 350 6
50-54 244 4
55-59 190 3
Total 6000 100

Table A1: Summary statistics of simulated covariate information. N represents the number of observations (within
each category and total).

rates in the actual data and HIV prevalence estimated by fitting a selection model on the real data

used in the empirical part of this paper (the HIV prevalence was around 22% and consent rate

around 80%). For each individual in the simulated dataset, we constructed variables for consent

and HIV status based on two observed covariates (age and urban or rural place of residence) and

an unobserved confounder. We used place of residence as our second covariate rather than sex as

all our empirical models are stratified by sex and thus could not be included as a regressor. The

dependence of consent to HIV testing and HIV status on a common unobserved predictor induced

an association between the two variables and hence created a problem of systematic selection. The

distributions of the two observed covariates were drawn to match those in the data (see Table A1

for a description of these characteristics), whereas the distribution of the unobserved confounder

was allowed to be a standard normal, a uniform over the interval [0, 1], or a standard log normal.

Consent to HIV testing and HIV status were based on linear predictors η1i and η2i which were

determined by age and place of residence, contained in xi, an unobserved confounder ui and inter-
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Consent equation HIV status equation
β11 β21

Age 15-19 (Omitted Category) (Omitted Category)
Age 20-24 -0.039 0.229
Age 25-29 -0.036 0.703
Age 30-34 0.017 1.036
Age 35-39 0.081 1.147
Age 40-44 0.134 1.203
Age 45-49 0.053 1.063
Age 50-54 0.028 0.834
Age 55-59 0.166 0.661
Rural 0.123 -0.396

Table A2: Regression parameters for age and place of residence in the consent to HIV testing and HIV status equations.

viewer identity:

η1i = β10 + xT
i β11 + γ1ui + βinterviewerID1i

,

η2i = β20 + xT
i β21 + γ2ui + δβinterviewerID2i

.

Individuals were matched to one of 30 interviewers, whose persuasiveness (βinterviewerID1i
and

βinterviewerID2i
) were drawn from two uniform distributions over the interval [−0.3, 0.4]. We con-

sidered the case in which interviewer persuasiveness was always included in the consent equation

but excluded from the HIV equation (δ = 0), and the situations in which it was included in the

HIV status equation with mild (δ = 0.5) and strong effects (δ = 1). The parameter vectors β11

and β21 were chosen by fitting a bivariate sample selection model on the 2007 Zambia DHS for

men and are summarized in Table A2. All remaining parameters (β10, γ1, β20, γ2) were selected so

that the consent rate and HIV prevalence were around 80% and 22%, respectively. Probabilities of

consent to HIV testing and HIV status were obtained by transforming η1i and η2i using the cumu-

lative distribution functions of the Gaussian, logistic and Weibull. Finally, binary outcomes were

generated by using a random generator of the Bernoulli distribution with probabilities determined
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cdf Gaussian Logistic Weibull

Unobservable G U L G U L G U L

δ = 0 S0PG S0PU S0PL S0LG S0LU S0LL S0WG S0WU S0WL
δ = 0.5 S5PG S5PU S5PL S5LG S5LU S5LL S5WG S5WU S5WL
δ = 1 S1PG S1PU S1PL S1LG S1LU S1LL S1WG S1WU S1WL

Table A3: Summary of the 27 scenarios explored in the simulation study. G, U and L stand for Gaussian, uniform and
Log-normal unobserved confounder distributions. cdf stands for cumulative distribution function.

as just explained.

In the simulated data we observe HIV status for all individuals. In practice, we only observe

the HIV status of those who consent to test. Therefore, when comparing the performance of the

models, we censored the HIV outcome for individuals who did not consent to HIV testing. This

allowed us to compare the true HIV prevalence (which we know) to that which would actually be

observed in practice when there is missing data for HIV status, because of refusal to test (or other

mechanisms for missing data). We compared the results obtained from the single imputation and

selection models to the known true value. By varying the distribution of the unobserved covariate,

link function and strength of interviewer persuasiveness in the HIV status equation, we evaluated

the extent to which the standard selection model is sensitive to the assumption of normality and

valid exclusion restriction, and whether the copula model could improve on the performance of the

standard approach.

We considered nine different scenarios resulting from choosing several unobserved covariate dis-

tributions (normal, uniform and log-normal) and link functions (derived from the Gaussian, logistic

and Weibull cumulative distribution functions). For each of the nine scenarios, we considered the

case in which the assumption of exclusion restriction holds (δ = 0) and the situations in which

the assumption was mildly and strongly violated (δ equal to 0.5 and 1, respectively). A total of

27 scenarios were explored; these are summarized in Table A3. Each scenario was replicated 250

times.
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For each of the 27 scenarios we estimated the HIV prevalence, and compared the percent bias and

root mean squared error (RMSE) for each of the following models: Gaussian, which is equivalent

to the standard bivariate normal probit model; 90 and 270 degrees rotated Clayton; 90 and 270

degrees rotated Joe; 90 and 270 degrees rotated Gumbel; imputation-based estimate from univari-

ate regression. Using more complex imputation approaches did not lead to significantly different

results as compared to those obtained from the single imputation model.

Supplementary Material E: Smooth estimates

Smoothed estimates obtained from our flexible spline approach for modeling the effects of age,

years of education and wealth in Swaziland are shown in Figures A2 and A3. There is clear

evidence of non-linearity for most of these variables in both consent to test for HIV and HIV

status. Some of these relationships are consistent across sex, for example, the impact of educa-

tion on participation in testing and on HIV status. Other associations differ by sex, for example,

wealth exhibits a very different association with HIV status among men as compared to that among

women. Among women, higher wealth is linearly associated with an increasing risk of being HIV

positive, while there seems not be a statistically significant association between household wealth

and HIV status among men. We can use these results to identify peak prevalence (which has been

adjusted for selective non-participation) according to the predictor of interest, for instance, age.

Highest HIV prevalence occurs at age 25 in women in Swaziland, compared to age 35 among men

in Swaziland. The functional form for these relationships also differs across models, which sup-

ports our data-driven approach to model specification and the avoidance of imposing a common

specification across models. Smooth function estimates for Zambia and Zimbabwe are available

upon request.
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Figure A2: Swaziland (men). Smooth function estimates and associated 95% point-wise confidence intervals in the
selection (first row) and outcome (second row) equations obtained from the proposed sample selection model based
on the Joe copula rotated by 90 degrees. Results are plotted on the scale of respective linear predictors. The jittered
rug plot, at the bottom of each graph, shows the covariate values. The numbers in brackets in the y-axis captions are
the effective degrees of freedom of the smooth curves; the higher the value, the more complex the estimated curve.
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Figure A3: Swaziland (women). Smooth function estimates and associated 95% point-wise confidence intervals in the
selection (first row) and outcome (second row) equations obtained from the proposed sample selection model based
on the Joe copula rotated by 90 degrees. Results are plotted on the scale of respective linear predictors. The jittered
rug plot, at the bottom of each graph, shows the covariate values. The numbers in brackets in the y-axis captions are
the effective degrees of freedom of the smooth curves; the higher the value, the more complex the estimated curve.
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