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Abstract

Bivariate copula regression allows for the flexible combination of two arbitrary, continuous
marginal distributions with regression effects being placed on potentially all parameters of
the resulting bivariate joint response distribution. Motivated by the risk factors for adverse
birth outcomes, many of which are dichotomous, we consider mixed binary-continuous re-
sponses that extend the bivariate continuous framework to the situation where one response
variable is discrete (more precisely binary) while the other response remains continuous.
Utilizing the latent continuous representation of binary regression models, we implement a
penalized likelihood based approach for the resulting class of copula regression models and
employ it in the context of modelling gestational age and the presence/absence of low birth
weight. The analysis demonstrates the advantage of the flexible specification of regression
impacts including nonlinear effects of continuous covariates and spatial effects. Our results
imply that racial and spatial inequalities in the risk factors for infant mortality are even
greater than previously suggested.
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1 Introduction

Birth weight and gestational age are important determinants of infant and child health.
Recent evidence has also shown that these factors affect long-term health throughout
adulthood (Oreopoulos et al. 2008; Hack et al. 2002). In the United States about 75% of
perinatal deaths occur in infants born prematurely (less than 37 weeks gestation), and
over two thirds of premature deaths are a result of the 30-40% of preterm infants who
are delivered before 32 weeks’ gestation (Slattery and Morrison 2002). Among surviving
premature and low birth weight (LBW, defined as less than 2500g) infants, rates of long-
term physical and mental disability and chronic health problems are high (Slattery and
Morrison 2002). Moreover, LBW is associated with poor educational and labor force
outcomes in adolescence and adulthood including lower scores on academic achievement
tests, lower rates of high school completion, lower income, and higher social assistance
take-up (Almond and Currie 2011; Behrman and Rosenzweig 2004; Black et al. 2007;
Hack et al. 2002; McGovern 2013; Oreopoulos et al. 2008).

Although both LBW and gestational age are independent predictors of future health,
modelling these outcomes jointly is essential for a number of reasons. First, birth weight
and gestational age are highly correlated, and confounded by factors such as intrauterine
growth restriction (Slattery and Morrison 2002). Second, risk factors for LBW such as
socio-economic status, smoking, and maternal age may also be the same risk factors for
preterm birth. Finally, evidence suggests that the impact of LBW on health may be
modified by early gestational age, and vice-versa (Hediger et al. 2002). Thus, modelling
these outcomes independently would present a confounded assessment of who is most
vulnerable to poor infant health and how best to intervene. A more accurate picture is
revealed by modelling these outcomes jointly.

We use data from the North Carolina State Center for Health Statistics to evaluate the
probability of mortality before age 1 by birth weight and weeks of gestation. The data
include all births in the state from 2007 to 2013 and provide information on maternal
characteristics, delivery characteristics, and infant birth and death outcomes at the county
level. Figure 1 (top) shows the probability of infant mortality for premature (but not
LBW) infants, LBW (but not premature) infants, premature and LBW infants, and
infants without these conditions (“normal”). The probability of death is more than two
times higher for infants that are both LBW and premature, compared to those that are
only LBW. In addition, the risk associated with LBW and prematurity varies depending
on maternal characteristics. For instance, Figure 1 (bottom left) shows that probability of
death for infants born both premature and LBW infants is significantly lower for infants
born to white mothers than those born to black or other race mothers, similar to the
rate of infant mortality for infants that are LBW (but not premature) even though being
much lower in absolute terms.

To adequately model these data, we consider bivariate copula regression models in the
same vein as Marra and Radice (2017b), Radice et al. (2016) and Klein and Kneib (2016).
Generally, these papers utilize copulas to construct flexible bivariate response distribu-
tions where both margins are either binary or continuous (see e.g. de Leon and K. 2013,
for a general overview of mixed data analysis). Following an approach similar to Marra



Figure 1: Probability of infant mortality by infant birth category (top), by infant birth category and
mother’s race (bottom left) and by weeks of gestation, stratified by low birth weight status (bottom
right). Error bars show the 95% confidence interval. Source: North Carolina Vital Statistics (combined
birth and death records), 2007-2013.
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and Radice (2017b), in this analysis we implement a simultaneous penalized likelihood
method which employs copulae to combine a binary response variable (low birth weight in
our case) and a continuous outcome (gestational age) while accounting for several types of
non-Gaussian dependencies. To facilitate the methodological developments for the binary
part of the model, we use the latent response representation of binary regression models.
To go beyond simplistic mean regression settings, the marginal and copula parameters
are related to regression predictors through structured additive form.

To the best of our knowledge, other existing bivariate copula regression approaches and
software implementations (see, e.g., Acar et al. 2013; Gijbels et al. 2011; Kramer et al.
2012; Kraemer and Silvestrini 2015; Sabeti et al. 2014; Yan 2007) cover only parts of
the flexibility of our approach. An exception is a recent paper by Vatter and Chavez-
Demoulin (2015), which is based on a two-stage technique where the parameters of the
marginal distributions and of the copula function are estimated separately. As shown
in the simulation by Marra and Radice (2017b), estimating all the model’s parameters
simultaneously offers computational and efficiency gains, hence the simultaneous esti-
mation approach adopted here. Simultaneous copula regression in a fully parametric
approach to likelihood estimation is considered in de Leon and Wu (2011) and Wu and
de Leon (2014) but restricted to the case of linear dependence via a Gaussian copula.



Note that the methodology developed here is most useful when the main interest is in
relating the parameters of a bivariate copula distribution to covariate effects. Otherwise,
semi/non-parametric extensions where, for instance, the margins and/or copula function
are estimated using kernels, wavelets or orthogonal polynomials may be considered in-
stead (e.g., Kauermann et al. 2013; Lambert 2007; Segers et al. 2014; Shen et al. 2008).
While such techniques are in principle more flexible in determining the shape of the un-
derlying bivariate distribution, in practice they are limited with regard to the inclusion
of flexible covariate effects, and may require large sample sizes to produce reliable results.

Our proposed copula modelling approach builds on previous work on adverse birth out-
comes. For example, our approach allows us to model gestational age continuously, rather
than using a binary cut-off (Neelon et al. 2014). The standard cut-off of 37 weeks used in
previous analyses may not necessarily be appropriate. For example, in Figure 1 there is
no clear change in the probability of death at 37 weeks. If anything, a more useful cut-off
may be at 31 weeks, as it appears that the greatest mortality risk is concentrated among
infants in this category (those born before 32 weeks gestation). By modelling gestational
age continuously, we are able to investigate mortality risk across the whole distribution,
which may be more useful for understanding the impact of gestational age on health.
The approach we propose here will be especially relevant if the goal of the analysis is to
learn about group level differences, for example racial inequalities. If the mortality risk
associated with prematurity varies by maternal characteristics, as suggested in Figure 1,
imposing a single cut-off could bias estimates of racial inequality in early life health.
Furthermore, we allow for (i) non-Gaussian dependence structures between LBW and
gestational age, (ii) the copula dependence and marginal distribution parameters to be
estimated simultaneously, and (iii) each parameter to be modelled using an additive pre-
dictor incorporating several types of covariate effects (e.g., linear, non-linear, random and
spatial effects).

In our analyses, birth weight is modelled as a binary outcome. While the argument we
have just made for gestational age could potentially be applied to birth weight, the use of
the low birth weight cut-off is often specifically required for epidemiological research. For
example, the World Health Organisation produces global estimates of prevalence based
on the 2,500g low birth weight threshold (Wardlaw et al. 2005). Moreover, we prefer
to focus on the binary-continuous case because there are many contexts in the health
domain where the focus is on clinical diagnosis thresholds which are dichotomous, and
there are few existing methods which allow for flexible modelling of the dependence of
these outcomes alongside other continuous measures of interest. Nevertheless, we have
also conducted robustness checks using the threshold for very low birth weight (<1,500g),
and found similar results.

In summary, our paper contributes to the literature on copula regression by

+ analysing a complex, high-dimensional, and challenging data set on adverse birth
outcomes where we combine a binary regression model for the presence/absence of
low birth weight with a flexible, continuous specification for gestational age,

* providing a generic framework for bivariate response models with mixed binary-
continuous outcomes and a copula dependence structure where all parameters are
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estimated simultaneously and can potentially be related to flexible functions of
explanatory variables, and

* incorporating the proposed developments into the freely distributed and easy to use
R package GJRM (Marra and Radice 2017a).

The rest of the paper is organized as follows. In Section 2, we introduce bivariate copula
models with mixed binary-continuous marginals and flexible covariate effects. Section
3 provides technical details on the penalized maximum likelihood inferential framework
employed, while in Section 4 we discuss the results of the empirical analysis of adverse
birth outcomes. Section 5 summarizes the main findings. The appendix lists further
empirical results and investigates the empirical performance of our joint model against a
model with independent marginal specifications.

2 Bivariate Copula Models with Mixed Binary-Continuous
Marginals

2.1 Building Bivariate Distributions with Copulas

Bivariate copula regression models aim at modelling the joint distribution of a pair of
response variables (Y7, Y3) given covariates based on a copula specification for the depen-
dence structure between the two responses. We therefore make use of the copula-based
representation of the bivariate cumulative distribution function (CDF) Fias(yi,y2) =
PY1 <y, Y2 <) as

Fia(yr,y2) = C(Fi(y1), Fo(y2)) (1)

where C' : [0,1]*> — [0,1] denotes the copula (i.e. a bivariate CDF defined on the unit
square with standard uniform marginals) and Fj(y;) = P(Y; < y;), j = 1,2 are the
marginal CDFs of the two response components Y; and Y;5. If both Y] and Y5 are con-
tinuous, the copula C(-,-) in (1) is uniquely determined. In copula regression, we use
the representation (1) as a construction principle for defining bivariate regression models
where the distribution for the response vector is determined by choosing a specific para-
metric copula and two (continuous) marginals. In this way, copulas provide a flexible and
versatile way of constructing bivariate distributions with various forms of dependencies
induced by the copula.

2.2 Mixed Binary-Continuous Copulas

In this paper, we consider the case where one of the two responses is not continuous but
rather binary, such that the immediate application of the copula regression specification
is not possible (more specifically, the copula is then no longer uniquely defined). To
circumvent this difficulty, we make use of the latent variable representation of binary
regression models. Without loss of generality, we assume that the first response variable
Y] is binary (i.e. Y3 € {0,1}) but can be related to the (unobserved) latent variable Y*
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via the threshold mechanism Y; = 1(Y}* > 0) where 1(-) denotes the indicator function.
Note that this implies

P(Y1=0)=PY: <0)=F(0) = F{(0) = P(Y <0)
i.e. the CDF of the observed response Y; (Fi(y1)) and the CDF of the latent variable Y}*
(F(yy)) coincide at y; = yi = 0.
Plugging the latent variable into the copula regression specification, we obtain
P(Y1=0,Y; <yp) = P(Y]" <0,Y <o) = C(FT(0), Fa(y2))
and
P(Y1 =1,Y, <yp) = P(Y]" > 0,Ys <) = Fo(y2) — C(FT(0), F2(y2))-

From these expressions, we can also derive the mixed binary-continuous density
OC(Fy(0), Fg(y2>>>1‘“ , (1 _ OC(FY(0), Fy(ys))
OF3(y2) OF3(y2)

OF>(y2

where fo(ys) = B—yz) is the marginal density of Y,. Equation (2) will provide the basis
for calculating the likelihood of our copula regression specification.

fi2(y1,92) = ( )yl foly2),  (2)

2.3 Specifications for the Marginal Distributions

Various options for the specification of the marginal distribution of the latent response Y;*
have been considered; the logistic distribution leading to a marginal logit model for the
binary response Y7, the standard normal distribution leading to a probit model, and the
Gumbel distribution leading to a complementary log-log (cloglog) model. We eventually
chose a probit specification (see Table 1 below) although using logit and cloglog links did
not lead to different conclusions. In this case, Fy(y}) = ®(y; — m1), with the standard
normal CDF ®(-) and a regression predictor 7; specified for the success probability.

For the continuous marginal, any strictly continuous CDF Fy(y2) can be employed. In
this work we have considered the normal, log-normal, Gumbel, reverse Gumbel, logistic,
Weibull, inverse Gaussian, gamma, Dagum, Singh-Maddala, beta, and Fisk distributions
parametrised according to Rigby and Stasinopoulos (2005). Using information criteria
such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC),
we found the Gumbel and Dagum to be the best fitting distributions (see Table 2). For
the sake of simplicity, we adopted a Gumbel specification for Y5 with CDF

Fy(yz) = exp (_ exp (_yQ; u))

folya) = %exp (—m;” — exp (—y2 _M)> :

and density

g

where p € (—o00,00) and ¢ > 0 denote the location and the scale parameter of the
Gumbel distribution. While p corresponds to the mode of the Gumbel distribution, its
expectation and variance are given by u+ o and o?72/6, respectively, where v & 0.5772
is the Euler-Mascheroni constant.



2.4 Copula Specifications

Our framework allows for several copulae (see the documentation in Marra and Radice
(2017a) for the choices available). The copula most supported by the AIC and BIC was
the Clayton rotated by 90 degrees (see Table 3 in Section 4). The Clayton copula is
defined as

Clur, ug) = (u? +uz? —1)71°

with dependence parameter # > 0, whereas its rotated versions can be generated as

Ogo(Ul,'LLQ> = Ug — 0(1 — ul,u2),
Ciso(ur,ug) = u1 +ug — 1+ C(1 —uy, 1 — uy),

Coro(ur,ug) = up — Cug, 1 — ua),

where C(-,-) is the standard Clayton copula. The rotation allows to the shifting of the
tail dependence to either of the four corners of the unit square. This results in either
upper tail (rotation by 180°) or negative tail dependence (rotation by 90° to relate large
values of Y, with small values of Y] and vice versa for rotation by 270°).

Note that while the classical Gaussian copula allows for positive as well as negative
dependence between the marginals, it also makes the strong assumption of symmetric
dependence, i.e. the strength of dependence is the same for the lower and the upper tail.
In contrast, the Clayton copula and its rotated versions allow for positive and negative
tail dependence. For a comprehensive introduction to the theory of copulas and their
properties see, for instance, the monographs by Nelsen (2006) and Joe (1997).

2.5 Distributional Regression Framework

For statistical inference in the mixed binary-continuous copula regression model, we em-
bed our model structure in the distributional regression framework. We therefore assume
a fully parametric specification for the distribution of the bivariate response vector, where
potentially all parameters of the joint distribution can be related to regression predictors
formed from covariates collected in the vector v; (containing, e.g., binary, categorical,
continuous, and spatial variables). More precisely, we assume that for observed response
vectors Yy, = (i1, ¥i2)'s i = 1,...,n (or equivalently y, = (y¥, yi2)'), the conditional den-
sity f(y;|v:) given covariates v; depends on in total K = K; + Ky + K. parameters
9; = (Va,. .., V%K) comprising

« K; = 1 parameters for the binary regression model for y;; (the success probability),

« Ky parameters for the marginal of y;5 (i.e. Ky =2 in case of the Gumbel distribu-
tion), and

+ K, parameters for the copula C(-,-) (in our case, we will always have K, = 1).

For each of the parameters, we assume a regression specification

Vi = hk(ﬁik); Nik = gk(ﬁik)



with regression predictor n;, response functions hy mapping the real line to the parameter
space and link functions gp = h;l mapping the parameter space to the real line. The
choice of the response / link function is determined by the restrictions applying to the
parameter space of the corresponding parameter such that, for example, we use the
probit response function for the success probability of the binary response y;; and the
exponential response function for non-negative parameters.

For each of the predictors 7;;, we assume a semiparametric, additive structure (as proposed
in Fahrmeir et al. 2004)

I
e = By" Y87 () (3)
j=1
consisting of an intercept S* and an additive combination of .Jj, functional effects s?’“ (Vi)
depending on (different subsets of) the covariate vector v;. In particular, v; can be
multidimensional and univariate, see the next subsection for details and specific examples
relevant in our empirical study.

2.6 Predictor Components

Dropping the parameter index v for notational simplicity, we assume that any of the
functions in (3) can be written in terms of a linear combination of D; basis functions
Bj,dj (Vi)7 i.e.

s;(Wi) =Y Bra,Bia, (v). (4)
dj=1

Equation (4) implies that the vector of function evaluations (s;(v1),...,s;(v,))" can

be written as Z;3; with regression coefficient vector 3; = (8j1,...,8;p,)" and design
matrix Z; where Z;[i,d;] = Bjq4,(v;). This allows us to represent the predictor vector
n = (m,...,n,) for all n observations of any distributional parameter as

n=05l.+2Z6,+...+Z,8;

where 1,, is a vector of ones of length n. To ensure identifiability of the model, specific
constraints have to be applied to the parameter vectors 3; and we adopt the approach
described in (Wood 2006, p. 163ff).

Since the parameter vectors 3; are often of considerably high dimension, quadratic
penalty terms \; B;K ;B; with positive semidefinite penalty matrix K; are typically sup-
plemented to the likelihood of semiparametric regression models to enforce specific prop-
erties of the j* function, such as smoothness. The smoothing parameter \; € [0, 00) then
controls the trade-off between fit and smoothness, and plays a crucial role in determining
the shape of §;(v). For instance, let us assume that the j function models the effect of a
continuous variable and s; is represented using penalized splines. A value of A\; =0 (i.e.,
no penalization is applied to 3; during fitting) will result in an unpenalized regression
spline estimate with the likely consequence of over-fitting, while \; — oo (i.e., the penalty
has a large influence on 3; during fitting) will lead to a simple polynomial fit (with the
degree of the polynomial depending on the construction of the penalty matrix K).
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Different model components can be obtained by making specific choices on the basis
functions in (4) and the penalty matrix K ;. In the following paragraphs, we discuss the
examples that are relevant to our case study.

Linear and random effects For parametric linear effects, equation (4) becomes 2,3;,
and the design matrix is obtained by stacking all covariate vectors z;; into Z;. No penalty
is typically assigned to linear effects (K; = 0). This would be the case for binary and
categorical variables. However, sometimes it is desirable to penalize parametric linear
effects. For instance, the coefficients of some factor variables in the model may be weakly
or not identified by the data. In this case, a ridge penalty could be employed to make the
model parameters estimable (here K; = I p, where Ip. is an identity matrix). This
is equivalent to the assumption that the coefficients are independent and identically
distributed normal random effects with unknown variance (e.g. Chapter 4 in Ruppert
et al. 2003).

Non-linear effects For continuous variables, the smooth functions are represented
using the regression spline approach popularized by Eilers and Marx (1996) where the
Bjq,(zi;) are known spline basis functions. The design matrix Z; then comprises the ba-
sis function evaluations for each individual observation 7. Note that for one-dimensional
smooth functions, the choice of spline definition does not play an important role in de-
termining the shape of §;(z;) (e.g. Chapters 3 and 5 in Ruppert et al. 2003). To enforce
smoothness, a conventional integrated squared second derivative spline penalty is typi-
cally employed, i.e. K; = [ d;(z;)d;(z;) dz;, where the ji* element of d;(z;) is given by
9”Bjq,(z;)/0%; and integration is over the range of z;. The formulae used to compute the
basis functions and penalties for many spline definitions are provided in Ruppert et al.
(2003) and Wood (2006). For their theoretical properties see, for instance, Wojtys and
Marra (2015) and Yoshida and Naito (2014). As a simple, approximate version, Eilers
and Marx (1996) suggest using K; = D;Dj where D) is a first or second order difference
matrix.

Spatial effects When the geographic area (or country) of interest is split up into
discrete contiguous geographic units (or regions) and such information is available, a
Markov random field approach can be employed to exploit the information contained in
neighbouring observations which are located in the same area (or country). In this case,
equation (4) becomes z;;3; where B; = (8;1,...,;p,) represents the vector of spatial
effects, D; denotes the total number of regions and z;; is made up of a set of area labels.
The design matrix linking an observation 7 to the corresponding spatial effect is therefore
defined as

1 if the observation belongs to region d;

Y

0 otherwise

Zj[ivdj] - {



where d; = 1,..., D;. The smoothing penalty is based on the neighborhood structure of
the geographic units, so that spatially adjacent regions share similar effects. That is,

Ny, ifd; = d,

where d; ~ dj indicates whether two regions d; and d; are adjacent neighbors, d; = d
indicates that d; and d; are not neighbours, and Ny, is the total number of neighbours
for region d;. In a stochastic interpretation, this penalty is equivalent to the assumption
that 3; follows a Gaussian Markov random field (e.g. Chapter 2 in Rue and Held 2005).

Other effect types Several other specifications can be employed. These include vary-
ing coefficient smooths obtained by multiplying one or more smooth components by some
covariate(s), and smooth functions of two or more continuous covariates (e.g. Wood 2006;
Fahrmeir et al. 2013, for several cases studies and illustrations).

Predictor specifications When specifying the structure of the predictors in our ap-
plication, we mainly follow the analysis in Neelon et al. (2014) and previous findings on
relevant covariates for modelling birth weight and gestational age from the epidemiologi-
cal literature (Kramer 1987). This allows us to avoid the common hurdles associated with
performing model selection in a complex regression setting such as confounding of effects,
collinearity and upward biases in estimated coefficients after selecting the most relevant
effects. Although shrinkage or penalized regression approaches may help with these prob-
lems, we prefer to rely on theoretical arguments for covariate inclusion. Nevertheless, we
provide additional insight into the role of the risk factors used in the previous literature
by allowing for flexible modelling of continuous covariates through spline functions, and
by allowing the dependence between birth weight and gestational age to be modified by
model covariates.

For the additive predictors n of all distributional parameters (in our case m, u,o,6) we
use the same specification (for the reasons outlined above) and consider as the following
regressors: male (yes, no), mother’s race (white, Hispanic, black, other), mother’s edu-
cation (primary, secondary, tertiary), marital status (married, not married), whether the
individual smokes (yes, no), first birth (yes, no), mother’s age (in years), month of birth
(from 1 to 12) and region (representing the 100 North Carolina counties). All variables
except for mother’s age and region enter the predictor equations parametrically. The
effect of mother’s age is modelled flexibly using thin plate splines with 10 bases and a
second order penalty, whereas the effect of region is modelled using the Gaussian Markov
field approach described above. Using different spline definitions for the smooth functions
of mother’s age and/or increasing the basis size did not lead to tangibly different results.
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3 Penalized Maximum Likelihood Inference

In the following section, we provide some details on the penalized likelihood inferential
framework employed for the proposed mixed binary-continuous copula regression models.
Both variants rely on Equation (2) for constructing the likelihood of the model.

Using (2), for a random sample of n observations the log-likelihood function of the copula
model can be written as

(B) = Z(l — yi1) log {F1|2(0’yi2)} + yi1 log {1 — F1|2(O’yi2)} + log { f2(vi2) } (5)

i=1

where 0C (1 (0). Fy(y2)
) Yi2
Fi2(0]y;2) = ; -
112(0]yi2) O3 (ys)
is the conditional CDF of y; given ys and the complete vector of regression coefficients
given by B = (6”91, B0, 80 )" where in turn B collects all regression coeffi-

cients of one particular parameter 9. Adding the penalty terms yields the penalized
log-likelihood

1
(B) = U(B) — ;B'KB, (6)
where K = bdiag(A\J'K{*,... AT K ARK L ANKKYE) is a block-diagonal

matrix containing all penalty matrices and X is the vector of all smoothing parameters
)\}9’“, kE=1,....K,j=1,...,J;. To maximize (6) we have extended the efficient and
stable trust region algorithm with integrated automatic multiple smoothing parameter
selection introduced by Marra and Radice (2017b) to incorporate any parametric con-
tinuous marginal response distribution, link functions for the binary equation and one-
parameter copula function, and to link all parameters of the model to additive predictors.
Estimation of 3 and A is carried out in a two-step fashion:

step 1 Holding the smoothing parameter vector fixed at Al and for a given parameter
vector value 8%, we seek to maximize equation (5) using a trust region algorithm.
That is,

j e a 1 a
B8 = {68 + gl + JpHYp )

Bt = arg min K;(B[a]) + 89, so that ||p|| <
P

lal _ g[“ Kﬁ H[“ H — K, vector g[“]

where a is an iteration index, g,
consists of

g = 00(B) /08" | g0 _gorial, - - -, OUB) /OB | go_gontal, - - - OUB) /OB | gosc _goxcla

and the Hessian matrix has elements
Hl h[a] ( )/8,6 8,6,h|ﬁl /Bl [a] Bh Bh[a

where I,h = ¥1,...,9k, || - | denotes the Euclidean norm and 7% is the radius of
the trust region which is adjusted through the iterations.
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step 2 For a given smoothing parameter vector value Al and holding the main parameter
vector value fixed at B! solve the problem

Al — arg min V(A) o | Zla+t — AE\Z[:”Z["H]HQ — N+ 2tr(A[f[;1}), (7)
A

-1

where, after defining FI+! ag — {lotll zlatl] — \/pletiglatl] o/ plotl]  glat1]
-1

AE&:I] = / Flotl] (F[“H] + K ) Fletl, tr(A[f[:l]) represents the number of

effective degrees of freedom (edf) of the penalized model and 7 = Kn. Problem

(7) is solved using the automatic efficient and stable approach described in Wood
(2004).

|eBle )~ |

0.1+|5(I@[a+1])’
1e7%7. The use of a trust region algorithm in step 1 and of (7) in step 2 are justified in
Marra et al. (2017). It is worth remarking that a trust region approach is generally more
stable and faster than its line-search counterparts (such as Newton-Raphson), particularly
for functions that are, for example, non-concave and/or exhibit regions that are close to
flat (Nocedal and Wright 2006, Chapter 4). Also, since H and g are obtained as a
by-product of the estimation step for 3, little computational effort is required to set up
the quantities required for the smoothing step. Starting values for the parameters of the
marginals are obtained by fitting separate binary and continuous models with additive
predictors. An initial value for the copula parameter is obtained by using a transformation
of the unadjusted Kendall’s association between the responses.

<

The two steps are iterated until the algorithm satisfies the criterion

The proposed algorithm uses the analytical score and Hessian of ¢(3) which have been
derived in a modular fashion. For instance, for the copula Bernoulli-Gumbel distribution,
the score vector for 9 = (9,99, 93,194), represented by m, u, 02, and 6 respectively, is
made up of
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o)/ 8,3“2 whose expression is similar to (8), and
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where Z™, Z* and Z? are the overall design matrices corresponding to the equations for
7, i and 0. Looking, for example, at equation (8), we see that there are two components
which depend only on the chosen copula, three terms which are marginal distribution de-
pendent and one derivative whose form will depend on the adopted link function between
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w; and 7. However, the main structure of the equation will be unaffected by the specific
choices made. It will therefore be easy to extend the algorithm to other copulas and
marginal distributions not discussed in this work as long as their CDF's and probability
density functions are known and their derivatives with respect to their parameters exist.
If a derivative is difficult and/or computationally expensive to compute then appropriate
numerical approximations can be used.

Further considerations At convergence, reliable point-wise confidence intervals for
linear and non-linear functions of the model coefficients (e.g., smooth components, copula
parameter, joint and conditional predicted probabilities) are obtained using the Bayesian

large sample approximation 8 ~ N (B, -H ; 1). The rationale for using this result is
provided in Marra and Wood (2012) for GAM, whereas some examples of interval con-
struction are given in Radice et al. (2016). For general smooth models, such as the ones
considered in this paper, this result can be justified using the distribution of Z discussed
in Marra et al. (2017), making the large sample assumption that F' can be treated as
fixed, and making the usual Bayesian assumption on the prior of 3 for smooth models
(Silverman 1985; Wood 2006). Note that this result neglects smoothing parameter uncer-
tainty. However, as argued by Marra and Wood (2012), this is not problematic provided
that heavy over-smoothing is avoided (so that the bias is not too large a proportion of
the sampling variability) and in our experience we found that this result works well in
practice. To test smooth components for equality to zero, the results discussed in Wood
(2013a) and Wood (2013b) can be adapted to the current context. However, for our em-
pirical analysis we do not deem this necessary as argued in the previous section. Proving
consistency of the proposed estimator is beyond the scope of this paper but the results
presented for instance in Wojtys and Marra (2015) can be easily adapted to the current
context.

4 Empirical analysis

Before commenting on the results of the empirical study, we describe succinctly the
process used for building the bivariate copula model and the R code employed to fit the
final model. For the analysis, we restrict the data to infants born in 2008 in North
Carolina.

To simplify the process, we exploited the fact that in a copula context the specification
of margins and copula can be viewed as separate but related issues. We first chose the
marginal distributions with fixed covariate specifications based on the AIC and BIC values
(see Table 2). Then we proceeded to the choice of copula. Specifically, we began with
the Gaussian and then, based on the (negative or positive) sign of the dependence, we
considered the alternative specifications that were consistent with this initial finding. In
this case, the values for the correlation coefficients were found to be negative. Therefore,
we only considered copula which were consistent with this sign of dependence (see Table
3).
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Y1: low birth weight ‘

Inverse link function AIC BIC

Probit 52816.28  53249.79
Complementary log-log 52833.92 53273.13
Logit 52828.86  53267.76

Table 1: Comparison of AIC and BIC values for the candidate marginal distributions for
low birth weight Y.

Y,: gestational age

Distribution AIC BIC

Normal 466124.1 468094.7
Gumbel 440225.2 441942.9
Reverse Gumbel 518570.4 520754.7
Logistic 452021.4 453842.5
Log-normal 473938.8 475957.8
Weibull 441611.7 443345.4
Inverse Gaussian 473678.4 475678.2
Gamma 500382.1 501186.1
Dagum 439730.9 441992.1
Singh-Maddala 3526100 3526607
Fisk 457351.8 457907.3

Table 2: Comparison of AIC and BIC values for the candidate marginal distributions for
gestational age Y5.

The chosen model, written below in terms of R syntax based on the GJRM package, is

male + race + educ + marital + smokes + firstbirth +
dobmonth + s(age) + s(county, bs = "mrf", xt = xt)
eq2 <- wksgest " male + race + educ + marital + smokes + firstbirth +
dobmonth + s(age) + s(county, bs = "mrf", xt = xt)

eql <- lbw

eq3 <- ” male + race + educ + marital + smokes + firstbirth +
dobmonth + s(age) + s(county, bs = "mrf", xt = xt)
eq4 <- ” male + race + educ + marital + smokes + firstbirth +

dobmonth + s(age) + s(county, bs = "mrf", xt = xt)

f.1 <- list(eql, eq2, eq3, eq4d)
outC90 <- gjrm(f.1l, margins = c("probit", "GU"), BivD = "C90",
Model = "B", data = dat)

where the s(age) are the smooth effects of age represented using thin plate regres-
sion splines with 10 basis functions and penalties based on second order derivatives, the
s(county, bs = "mrf", xt = xt) represent spatial effects with neighborhood structure
information stored in xt, arguments margins and BivD have the obvious interpretations
and Model = "B" stands for bivariate model (other options are available in the package).
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Copula AIC BIC

Normal 477846.8 480871.1
Frank 479754.1 482632.9
Farlie-Gumbel-Morgenstern 486614.1 488980.5
Plackett 477198.4  479899.4
Ali-Mikhail-Haq 486950.1 489309.0
Clayton 90° 475933.5 4784278
Clayton 270° 482370.4  482598.1
Joe 90° 483057.9 486311.6
Joe 270° 475940.2 478437.9
Gumbel 90° 478033.6  481054.5
Gumbel 270° 476016.7 478506.8

Table 3: Comparison of AIC and BIC values under different copula assumptions.

Using a 2.20-GHz Intel(R) Core(TM) computer running Windows 7, computing time was
about 25 minutes for a sample size of n = 109, 380 observations with 524 parameters,
hence highlighting the efficiency of the numerical implementation.

The R summary output in the Appendix presents the regression coefficients from the
bivariate model for low birth weight (a binary indicator for being born with a weight
less than 2,500 grams), and gestational age (measured in continuous weeks). As outlined
above, flexible splines are used to model the association between maternal age and each
outcome, and a Markov random field smoother is applied to the county indicators for
mother’s residence.

4.1 Results

Effects of Covariates As in Neelon et al. (2014), we find the expected associations
between the covariates and outcomes of interest, shown in the Appendix. As noted
previously (Kramer 1987), some factors have adverse associations with both intrauterine
growth and gestational duration, while others contribute positively to one and negatively
to the other. For example, male babies are less likely to be low birth weight than female
babies, but more likely to be born earlier. First births are born later than higher-order
births, but are more likely to be LBW. In contrast, the impact of maternal smoking is
unambiguously harmful. It increases the risk of low birth weight, and reduces gestational
age. The most substantial coefficient for gestational duration in terms of magnitude
relates to race. Babies born to black mothers are more likely to be low birth weight, and
more likely to be born earlier than babies born to white mothers. In contrast, babies
born to Hispanic mothers are less likely to be low birth weight and more likely to be born
later than babies born to white mothers. After adjusting for other covariates, education
does not appear to have a consistent impact on either outcome.

Results for the flexibly modelled impact of maternal age on these outcomes are shown in
Figure 2. There is clear evidence of non-linearity, supporting our implementation of spline
functions, with the risk of low birth weight increasing after the mid-30s, and gestational
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age reaching its maximum in the mid-20s.

These results point to both modifiable and non-modifiable risk factors for poor early life
health. The main modifiable risk factor is smoking, which emphasises the importance
of public health campaigns to reduce smoking prevalence for promoting infant health.
Non-modifiable risk factors, such as maternal age, race, and place of residence (county)
are also important from a policy perspective because they provide a basis for identifying
cohorts and individuals at risk. Because of the adverse consequences associated with low
birth weight and early gestational age in both the short and long run (Black et al. 2007;
McGovern 2013), an understanding of who is likely to experience these outcomes can
help direct public resources. Moreover, as we argue above, because of the multiplicative
risk of adverse outcomes associated with jointly being preterm and low birth weight, it is
important to identify babies in this category. By simultaneously modelling the outcomes
under study, and allowing for flexible dependence between birth weight and gestational
age, the statistical model described in this paper permits estimation of the relevant joint
and marginal quantities of interest.

Predicting joint relatives risks Figure 3 shows a bar plot with relative risk ratios for
being low birth weight and being born before 37 weeks and 32 weeks, stratified by race,
maternal smoking status and education. It is apparent from this figure that babies born
to black mothers are at greatest risk, in that the predicted probability of joint occurrence
of LBW and being born before 37 weeks is roughly twice that of babies born to mothers
of other races. A similar risk penalty is apparent when stratifying by maternal smoking
status. Here again, the relative risk of joint occurrence of LBW and being born before 37
weeks is almost twice as great for babies born to mothers who smoke compared to mothers
who do not. Because there are few observations in the primary education category,
the relevant comparison in mother’s education is between secondary and tertiary, where
mothers with tertiary education are at slightly lower risk for joint LBW and prematurity
than those with only secondary education.

In Figure 4 (top, left), the relative risk of joint occurrence of LBW and being born before
37 weeks are shown by county of residence (of which there are 100) in North Carolina.
Risk of an infant being born both LBW and preterm varies across counties , from 3%
to 8%. The relative risk of joint occurrence for the highest risk counties of residence
is twice that of the lowest risk counties of residence. The least favourable places to
be born are clustered in the northeast of the state, specifically Hertford, Northampton,
Halifax, Warren, Vance, Edgecombe, Bertie, and Washington counties. These results
clearly indicate substantial inequality at birth dependent on a number of background
characteristics including place of residence, smoking status, and race.

As we outlined in the introduction, adverse outcomes may be associated with a particular
cut-off in the gestational age distribution. Previous research has focused on the standard
definition of preterm (before 37 weeks) (Neelon et al. 2014), however, certain types of
risk, for example mortality, are much more concentrated lower down the gestational age
distribution, in this case prior to 32 weeks of gestational age (Slattery and Morrison 2002).
Therefore, it is important to be able to incorporate different cut-offs in the modelling of
joint probabilities so as to be able to focus on the most at risk part of the population.
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Identifying those most likely to be born low birth weight and with a gestational age
less than a given cut-off (that we can vary depending on the particular application of
interest) will assist with policy orientation. Therefore, motivated by the data presented
in the introduction, we also compute relative risk ratios from our statistical model for
being born low birth weight and with gestational age less than 32 weeks. This allows us to
predict the characteristics of babies among whom risk of mortality is most concentrated.
The second set of bars in Figure 3 shows the joint probability of LBW and gestational
age less than 32 weeks, stratified by maternal race, smoking, and education. Compared
to white mothers, babies born to black mothers are 2.75 times more likely to be low birth
weight and fall below the 32 week cut-off, as opposed to 2 times more likely to be low birth
weight and be born before 37 weeks. This suggests that racial inequality is even greater
than would be expected from examining the standard 37 week cut-off. This same pattern
for being born before 32 weeks in relation to county of residence is apparent from Figure 4
(top, right), with higher relative risk ratios than for 37 weeks. The same counties exhibit
the highest risk, but in this case babies in these locations are up to 3 times more likely
to fall below the relevant cut-offs. The second row shows the resulting joint probabilities
using two independent models based on gam() from the mgcv R package for the binary
equation and gamlss() from the gamlss R for the second equation. These results clearly
deviate from the findings of our proposed joint model, providing an indication for a lack
of fit when falsely assuming an independent model specification.

Conditional dependence of outcomes Figure 5 shows the estimates for Kendall’s 7
(Nelsen 2006) by county obtained using the 90 degrees Clayton model. After accounting
for covariates, the association between the two responses is non-zero and heterogeneous
across counties. This clearly supports the presence of dependence between the binary
and continuous outcomes after accounting for covariates, and hence that prediction of the
relative risks has to be based on the joint model rather than the two marginal models.

Our overall estimate for the association between low birth weight and gestational age
is negative (the copula parameter is estimated to be —0.296 (95% CI —0.323,—0.271)
indicating that those who are low birth weight are more likely to be born earlier. However,
our model allows us to examine whether this expected negative dependence is modified
by the covariates we include. For example, male babies exhibit weaker dependence than
female babies (the relevant parameter in the equation for dependence is negative), as do
babies born to black mothers and mothers with tertiary education. In contrast, babies
born to mothers of Hispanic origin and mothers who smoke exhibit even more negative
dependence, indicating that if the baby is low birth weight they are also more likely to
be born early.

5 Discussion

We have developed an inferential framework for fitting flexible bivariate regression copula
models with binary and continuous margins with the aim of examining the risk factors of
adverse birth outcomes. Parameter estimation is carried out within a penalized maximum
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likelihood estimation framework with integrated automatic multiple smoothing parameter
selection, and the proposed model can be easily implemented via the R package GJRM.

The empirical results highlight the flexibility of the statistical approach, and its potential
to be applied to policy-relevant questions in population health. We are able to predict
the joint occurrence of low birth weight and early gestational age, and identify the co-
variates predicting which babies most at risk of adverse outcomes. The joint prediction
is important because of the multiplicative risk associated with both outcomes, for exam-
ple, as we discussed in relation to infant mortality. Our results have a number of policy
implications. First, we identify substantial racial inequalities in that babies born to black
mothers are more than twice as likely to be both low birth weight and be born earlier
than babies born to mothers of other races. In addition, these disparities are also evi-
dent across county of residence, where the relative risk of joint occurrence for the worst
counties is around twice that of the best counties. Second, we find that these disparities
only increase as gestational age declines, and are present for other cutoffs besides the
standard one at 37 weeks gestation.. Given the concentration in mortality risk before 32
weeks of gestation, the ability to model how family background is associated with these
factors across the relevant distribution is likely to be important for policy intervention.
For example, confirmation of these racial and spatial inequalities in early life health may
provide a basis for action to target these disparities. Given the evidence supporting the
short and long run impact of early childhood conditions, this is likely to be a policy pri-
ority (Deaton 2013; McGovern 2018). This model is widely applicable because it can be
used to flexibly model both the impact of covariates of interest (including non-linearity
in continuous predictors and spatial dependence), and other outcomes of interest, one of
which is binary and one of which is continuous, which are expected to be correlated.
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Figure 2: Estimated smooth function of mother’s age and regional effects and respective 95% confidence
intervals for the probit equation (row 1), location (row 2), and scale parameters (row 3) of the Gumbel
distribution, and association copula coefficient.
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Figure 3: Joint probabilities for being low birth weight and being born before 37 weeks and 32 weeks by
race, smoking behavior and education. The results are presented in terms of relative risk ratios where the
baseline categories are white, non-smoker and primary, respectively. Variable age was set to its average,
whereas the other factor variables were set to the respective categories with highest frequencies.
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Figure 5: Estimates for Kendall’s 7 obtained using the 90 degrees Clayton model. These have been
averaged by the covariate values, within each county in North Carolina.
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6 Appendix

6.1 Further Empirical Results

Summary of parametric and non-parametric effects from the 90 degrees rotated Clayton copula
model with Bernoulli (with probit link) and Gumbel margins. Sample size is 109 380, whereas
the overall estimate for 6 with CI is —0.847(—0.96, —0.749). The corresponding Kendall’s tau
is —0.296(—0.323, —0.271). Total number of effective degrees of freedom is 260.

COPULA: 90 Clayton
MARGIN 1: Bernoulli
MARGIN 2: Gumbel

EQUATION 1
Link function for mu.1l: probit

Formula: 1lbw male + race + educ + marital + smokes + firstbirth + dobmonth +
s(mage, k = 12, bs = "ps", m = c(2, 2)) + s(county, bs = "mrf",

xt = xt)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.569347 0.045614 -34.405 < 2e-16 **x*
malel -0.089513 0.011734 -7.629 2.38e-14 *xx*
raceHispanic -0.059786 0.021324 -2.804 0.00505 **
raceBlack 0.339162 0.015379 22.0563 < 2e-16 **x*
raceOther 0.169090 0.028753 5.881 4.08e-09 x**x
educSecondary 0.070154  0.038956 1.801 0.07172 .
educTertiary -0.033780 0.040390 -0.836 0.40296
maritall -0.101551  0.014805 -6.859 6.93e-12 *xx*
smokes1 0.352365 0.018065 19.506 < 2e-16 **x
firstbirthi 0.106756  0.013304 8.025 1.02e-15 **x
dobmonth?2 -0.039269 0.029054 -1.352 0.17650
dobmonth3 -0.004533 0.028483 -0.159 0.87354
dobmonth4 -0.015908 0.029016 -0.548 0.58352
dobmonthb -0.009279  0.028750 -0.323 0.74690
dobmonth6 0.010851 0.028527 0.380 0.70366
dobmonth7 -0.016584 0.028284 -0.586 0.55765
dobmonth8 -0.018836  0.028315 -0.665 0.50590
dobmonth9 -0.037382 0.028612 -1.307 0.19138
dobmonth10 -0.007949 0.028268 -0.281 0.77856
dobmonthi11l -0.034410 0.029093 -1.183 0.23690
dobmonth12 0.013941 0.028166 0.495 0.62063

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value
s (mage) 2.964 3.664 54.91 6.05e-11 ***
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s(county) 27.079 99.000 61.36 2.61e-07 *x**

Signif. codes: O *** 0.001 *x 0.01 *x 0.05 . 0.1 1

EQUATION 2

Link function for mu.2: identity

Formula: wksgest ~ male + race + educ + marital + smokes + firstbirth +
dobmonth + s(mage, k = 12, bs = "ps", m = c(2, 2)) + s(county,
bs = "mrf", xt = xt)

Parametric coefficients:
Estimate Std. Error =z value Pr(>|zl)
(Intercept) 39.613609 .035462 1117.058 < 2e-16 *x*x*

o

malel -0.073412 0.009735 -7.541 4.67e-14 *xx
raceHispanic 0.034584 0.016479 2.099 0.035839 x*
raceBlack -0.317929 0.014651 -21.700 < 2e-16 **x*
raceOther -0.082286 0.024253 -3.393 0.000692 **x*
educSecondary -0.035389 0.029332 -1.207 0.227620
educTertiary 0.031329 0.030589 1.024 0.305742
maritall -0.003031 0.012776 -0.237 0.812469
smokes1 -0.110066 0.018665 -5.897 3.70e-09 **xx
firstbirthi 0.221671 0.011081  20.004 < 2e-16 **x*
dobmonth2 -0.017297  0.024262 -0.713 0.475882
dobmonth3 -0.008670 0.024012 -0.361 0.718048
dobmonth4 0.023724  0.024190 0.981 0.326722
dobmonthb -0.027441 0.023975 -1.145 0.252391
dobmonth6 -0.037190 0.023954  -1.553 0.120527
dobmonth7 0.017129  0.023580 0.726 0.467591
dobmonth8 0.008875 0.023343 0.380 0.703799
dobmonth9 0.072997  0.023279 3.136 0.001714 *x*
dobmonth10 0.022596  0.023598 0.958 0.338300
dobmonthi11l 0.030304 0.024061 1.259 0.207865
dobmonth12 0.015868  0.023954 0.662 0.507696

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s (mage) 4.108 4.983 307.7 <2e-16 ***

s(county) 72.382 99.000 586.4 <2e-16 *x**

Signif. codes: O **xx 0.001 *x 0.01 *x 0.05 . 0.1 1

EQUATION 3

Link function for sigma2: log

Formula: "male + race + educ + marital + smokes + firstbirth + dobmonth +
s(mage, k = 12, bs = "ps", m = c(2, 2)) + s(county, bs = "mrf",
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Xt = xt)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.878581  0.033827 25.973 < 2e-16 ***
malel 0.045561 0.009311  4.893 9.91e-07 **x*
raceHispanic 0.018671 0.0156810 1.181 0.237622
raceBlack 0.260953 0.013208 19.757 < 2e-16 **x*
raceOther 0.068929  0.023282 2.961 0.003070 **
educSecondary 0.010272 0.027917 0.368 0.712896
educTertiary -0.103331 0.029156 -3.544 0.000394 *x*x
maritall -0.105515  0.011945 -8.833 < 2e-16 **xx*
smokes1 0.147066 0.016612 8.853 < 2e-16 **x*
firstbirthl -0.013728 0.010693 -1.284 0.199198
dobmonth2 0.021599  0.022993  0.939 0.347551
dobmonth3 0.027197  0.022744 1.196 0.231768
dobmonth4 0.020124 0.022993 0.875 0.381470
dobmonthb 0.011315 0.022893 0.494 0.621148
dobmonth6 0.009636 0.022781  0.423 0.672307
dobmonth7 0.010346  0.022458 0.461 0.645017
dobmonth8 -0.027985  0.022339 -1.253 0.210293
dobmonth9 -0.061163 0.0225563 -2.712 0.006689 x*x*
dobmonth10 -0.008476 0.022602 -0.375 0.707643
dobmonth11 -0.023756 0.023012 -1.032 0.301910
dobmonth12 0.027743  0.022658 1.224 0.220802
Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s (mage) 4.37 5.278 57.32 9.25e-11 **x

s(county) 57.22 99.000 351.06 < 2e-16 **x*

Signif. codes: O **xx 0.001 **x 0.01 * 0.05 . 0.1 1

EQUATION 4

Link function for theta: log(- )
Formula: "male + race + educ + marital + smokes + firstbirth + dobmonth +
c(2, 2)) + s(county, bs =

s(mage, k = 12, bs = "ps", m = "mrf",

xt = xt)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.443353 0.106572 -4.160 3.18e-05 x**x
malel 0.055999 0.026091 2.146 0.031851 *
raceHispanic -0.182236 0.047815 -3.811 0.000138 **x*
raceBlack 0.090711 0.032552 2.787 0.005325 *x*
raceOther -0.164939 0.065248 -2.528 0.011476 *
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educSecondary 0.142429 0.093100 1.530 0.126054
educTertiary 0.212788 0.095637 2.225 0.026085 *
maritall 0.044000 0.032003 1.375 0.169172
smokes1 -0.079724 0.041510 -1.921 0.054782 .
firstbirthi 0.031688 0.029183 1.086 0.277550
dobmonth2 0.112302 0.065288 1.720 0.085413 .
dobmonth3 0.092269 0.063786  1.447 0.148026
dobmonth4 -0.043052 0.066085 -0.651 0.514745
dobmonthb 0.038112 0.064422 0.592 0.554121
dobmonth6 0.147006 0.064017 2.296 0.021655 *
dobmonth7 -0.012702 0.064170 -0.198 0.843093
dobmonth8 0.153894 0.064453 2.388 0.016955 *
dobmonth9 0.009381 0.064231 0.146 0.883881
dobmonth10 -0.004853 0.063891 -0.076 0.939453
dobmonth11 -0.003268 0.065797 -0.050 0.960393
dobmonth12 0.093968 0.063081 1.490 0.136319

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:
edf Ref.df Chi.sq p-value

s (mage) 5.878 6.912 19.983 0.0071 =*x

s(county) 1.752 99.000 2.219 0.1817

Signif. codes: O *** 0.001 *x 0.01 *x 0.05 . 0.1 1

n = 109380 sigma2 = 2.43(2.26,2.61)
theta = -0.847(-0.96,-0.749) tau = -0.296(-0.323,-0.271)
total edf = 260

6.2 Simulation
6.2.1 Settings and Design

The aim of this section is to assess the empirical properties of the proposed modelling approach.
We consider a scenario where data are generated using probit and Gumbel margins, and the
Joe copula. In this case, all the parameters of the bivariate distribution depend on additive
predictors. That is,

O~ Hm) = ap + army + s1(72) + sz,

p=Po + s2(z2) + Prxs,

log(0?) = 3§ + B7 w3,

log(6) = B4 + 21 + s3(w2),

where ap = —0.8, a; = —1.3, ap = 1, By = 0.1, 81 = —0.9, 8" = 0.5, 7" =1, 8§ = 1.1, g =
—1.4, s1(z) = x + exp(—30(z — 0.5)?), so(x) = sin(27z) and s3(x) = 0.6(e® +sin(2.97)). Recall
that the marginal distributions are parametrised according to Stasinopoulos et al. (2017b).

The simulated data sets consists of one binary response and one continuous response related to
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one binary covariate and two continuous regressors. Sample sizes were set to 1,000 and 5,000,
and the number of replicates was set to 1,000. The models were fitted using gjrm() in GJRM and,
following a reviewer’s suggestion, using two independent models based on gam() from the mgcv
R package for the binary response and gamlss() from the gamlss R for the Gumbel response.
In both approaches, each smooth function is represented using a penalized low rank thin plate
spline with second order difference penalty and 10 basis functions. For each replicate, smooth
function estimates are constructed using 200 equally spaced fixed values in the (0, 1) range (e.g.,
Radice et al. 2016). The code used to generate the data is given below.

library(copula)
library(gamlss.add)
library (GJRM)

cor.cov <- matrix(0.5, 3, 3); diag(cor.cov) <- 1

sl <- function(x) x+exp(-30%(x-0.5)72)
s2 <- function(x) sin(2*pi*x)
s3 <- function(x) 0.6*(exp(x) + sin(2.9%x))

datagen <- function(cor.cov, sl, s2, s3){

cov <- rMVN(1, rep(0,3), cor.cov)
cov <- pnorm(cov)

z1 <= cov[, 1]
z2 <- cov[, 2]
z3 <- round(cov[, 3])

eta_pi <- -.8 - 1.3xz1 + s1(z2) + z3
eta_mu <- 0.1 + 52(22) - 0.9%z3
eta_si2 <- 0.5 + z3

eta_the <- 1.1 - 1.4%zl1 + s3(z2)

Cop <- archmCopula(family = "joe", dim = 2, param = exp(eta_the) + 1 + 1e-07)

speclistl <- list( mu
speclist2 <- list( mu

eta_pi, sigma = 1)
eta_mu, sigma = sqrt(exp(eta_si2)))

spec <- mvdc(copula = Cop, c("NO", "GU"), list(speclistl, speclist2) )

resp <- rMvdc(1, spec)
respl[1] <- respl[1] > 0

c(resp, zl, z2, z3)

The package copula (Yan 2007) contains functions archmCopula(), mvdc () and rMvdc () which
allow us to simulate from the desired copula. Package gamlss.dist (Stasinopoulos et al. 2017a)

30



contains all the functions required to simulate the marginals adopted here, and rMVN() (from
GJRM) allows us to simulate Gaussian correlated variables. The correlation matrix used to
associate the three simulated Gaussian covariates is cor.cov, whereas cov <- pnorm(cov)
yields Uniform(0,1) correlated covariates (e.g., Gentle 2003). A balanced binary regressor is
created using round(cov[, 3]). Functions s1, s2, s3 produce curves with different degrees of
complexity. The various eta refer to the model’s additive predictors. If necessary, these are
transformed in archmCopula, speclistl and speclist2 to ensure that the restrictions on the
parameters’ spaces of the employed bivariate distribution are maintained.

6.2.2 Results

Figures 6 and 7 provide a pictorial representation of the accuracy and precision of the linear
and non-linear effect estimates, whereas Table 4 reports the bias and root mean squared error
for the two approaches.

Overall, the results show that both methods estimate all the model components fairly well,
and that the estimates improve as the sample size increases. Specifically, all mean estimates
are very close to the true values and, as expected, their variability decreases as the sample
size increases. The components in the additive predictor of the dependence parameter are
estimated less precisely than those of the others. This indicates that the effects of covariates on
the association between the two equations require more information to be estimated reliably.

Our proposal generally delivered somewhat less biased and slightly more efficient estimates,
although the differences are not striking. It may be argued that ignoring dependence may still
deliver estimates that are similar to those obtained from a simultaneous model. To this end, we
would like to stress that the main advantage of the proposed joint model is to enable the user to
study and account for the association between outcomes and how such dependence is modified
by covariates. As illustrated in our empirical analysis, this can reveal interesting mechanisms
(which would not otherwise be accessible using a model assuming independence) and allows one
to obtain joint probability statements that account for dependence between the outcomes.

We also explored the ability of information criteria such as AIC and BIC in selecting the correct
model (in this case the one accounting for dependence). Unsurprisingly, the correct model was
always chosen by both criteria.
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Figure 6: Linear coefficient estimates obtained by applying gjrm (black lines) and gam +
gamlss (grey lines) to data simulated as described in this section. Vertical bars in the
left panel refer to n = 1,000 whereas the ones in the right panel belong to n = 5, 000.
Circles indicate mean estimates while bars represent the estimates’ ranges resulting from
5% and 95% quantiles. True values are indicated by black solid horizontal lines.
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Figure 7: Smooth function estimates obtained by applying gjrm (top plots) and gam +
gamlss (bottom plots) to data simulated as described in this section. True functions are
represented by black solid lines, mean estimates by dashed lines and point-wise ranges
resulting from 5% and 95% quantiles by shaded areas. In each group of plots, the first
row refers to n = 1000 and the second to n = 5000.
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Bias RMSE

gjrm gam + gamlss gjrm gam + gamlss

n=1000 «a; -0.001 -0.010 0.115 0.185
ar  0.014 0.001 0.090 0.100
51 0.018 0.004 0.123 0.123
a®.0.004 0.002 0.094 0.099
Y -0.065 - 0.429 -
s1 0.028 0.030 0.109 0.110
sy 0.029 0.031 0.118 0.117
s3  0.056 - 0.184 -
n=>5000 a; 0.000 0.001 0.046 0.085
az  -0.001 -0.001 0.038 0.046
81 0.001 0.003 0.055 0.058
a®0.002 -0.001 0.044 0.044
¢ -0.012 - 0.162 -
s 0.012 0.014 0.041 0.053
so  0.014 0.014 0.049 0.054
s3  0.024 - 0.081 -

Table 4: Bias and root mean squared error (RMSE) obtained by applying the gjrm
and gam + gamlss parameter estimators to data simulated as described in this section.
Bias and RMSE for the smooth terms are calculated, respectively, as n;t > " [s; — s

-1 Nrep 4

rep Dropee Srepyis Ts 18 the number

—1 Ns -1 Nrep A e 2 7‘ o
and n;' > %, \/nrep rome1 (Srepi — Si)°, where §;, = n

of equally spaced fixed values in the (0,1) range, and n,, is the number of simulation

replicates. In this case, ny = 200 and n,., = 1000. The bias for the smooth terms is based
on absolute differences in order to avoid compensating effects when taking the sum.
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