
DataTags, Data Handling Policy Spaces and the
Tags Language

Michael Bar-Sinai
Computer Science Dept.

Ben-Gurion University of the Negev
Be’er-Sheva, Israel

Latanya Sweeney
Data Privacy Lab

Harvard University
Cambridge, MA

Mercè Crosas
Institute for Quantitative Social Science

Harvard University
Cambridge, MA

Abstract—Widespread sharing of scientific datasets holds great
promise for new scientific discoveries and great risks for personal
privacy. Dataset handling policies play the critical role of balanc-
ing privacy risks and scientific value. We propose an extensible,
formal, theoretical model for dataset handling policies. We define
binary operators for policy composition and for comparing policy
strictness, such that propositions like “this policy is stricter than
that policy” can be formally phrased. Using this model, The poli-
cies are described in a machine-executable and human-readable
way. We further present the Tags programming language and
toolset, created especially for working with the proposed model.
Tags allows composing interactive, friendly questionnaires which,
when given a dataset, can suggest a data handling policy that
follows legal and technical guidelines. Currently, creating such a
policy is a manual process requiring access to legal and technical
experts, which are not always available. We present some of
Tags’ tools, such as interview systems, visualizers, development
environment, and questionnaire inspectors. Finally, we discuss
methodologies for questionnaire development. Data for this paper
include a questionnaire for suggesting a HIPAA compliant data
handling policy, and formal description of the set of data tags
proposed by the authors in a recent paper.

I. INTRODUCTION

Wide dissemination of datasets holds great promises for
science — findings can be corroborated, research cost reduced
through data reuse, and new studies are made possible by
combining existing data into new datasets, to name a few.
But wide dissemination of datasets also poses risks to the data
subjects. Privacy of human subject has to be respected. Precise
locations of endangered species populations, rare minerals,
or ancient ruins should not be easily available to poachers,
illegal miners and tomb raiders. Many laws, regulations and
best-practices were formed in order to balance the positive
and negative potential of data sharing. In the US alone, there
are more than two thousand rules and regulations governing
data sharing [15]. To share data while respecting legislation,
the scientific community has resorted to specialized data
repositories, e.g. repositories specifically designed for medical
data. While legally sound, this approach leads to fractured data
storage infrastructure, and leaves datasets that contain data
governed by certain law combinations without a repository.

In [16], the authors propose the concept of datatags as
a way of ensuring that the handling of, and the access
requirements to a dataset are commensurate with the risks of
harm it poses. When deposited in a datatags-compliant data

Tag Type Description Security Features Access Credentials

Blue Public
Clear storage, 
Clear transmit Open

Green Controlled public Clear storage, 
Clear transmit

Email- or OAuth Verified
Registration

Yellow Accountable Clear storage, 
Encrypted transmit

Password, Registered,
Approval, Click-through DUA

Orange More accountable Encrypted storage,
Encrypted transmit

Password, Registered,
Approval, Signed DUA

Red Fully accountable Encrypted storage,
Encrypted transmit

Two-factor authentication,
Approval, Signed DUA

Crimson Maximally restricted Multi-encrypted storage,
Encrypted transmit

Two-factor authentication,
Approval, Signed DUA

�1

Fig. 1. Blue to Crimson model set of datatags, proposed in [16]. The Blue
tag is appropriate for datasets that pose no risks. As the risk level increases,
so does the required access credentials, the security imposed by the handling
requirements, and the strictness of the DUA terms and execution.

repository, a dataset is associated with a datatag which defines
a machine-actionable policy under which the dataset should
be handled. This ensures that the data repository handles the
dataset properly, from a legal and contractual standpoint. By
limiting the amount of datatags to a few well-defined choices,
managing, reasoning about, and implementing robust datatags-
compliant repositories becomes easier. Finally, a sample set of
datatags is suggested (see Figure 1).

Datatags-compliant repositories will help automate open
science, and facilitate data sharing [13]. Furthermore, since
Datatags-based systems can predict the legal and technological
requirements for the collection and handling of a dataset, they
can also serve other use-cases, such as IRBs and research
design.

Once a set of datatags has been defined, two challenges need
to be addressed. First, a tag has to be formally described, in
a way that allows formal reasoning about the data handling
policies the tags imply, and clear transition into implementa-
tion. Second, a mechanism to help users match a dataset with
the datatag most appropriate for it has to be created. Such
matching requires familiarity with the dataset’s history and
collection methods, and legal and technological expertise —
the latter two are not always readily available to researchers.
Enforcing the policy detailed by the datatags is a challenge in
its own right, is not in the scope of this paper.

In order to be useful, a datatag matching system should have

the following traits:
• Algorithmic Require input from the data depositor only.
• Deterministic Given the same input the system should

yield the same results (assuming no legislation or tech-
nological changes).

• User friendly Deciding on the datatag of a dataset, and
hence on the data handling policy applied to handle it,
has ethical and legal implications. Thus, data depositors
need to be well informed during the process, and user
errors should be minimized.

• Maintainable The system captures non-trivial legal and
technological knowledge, that has to be composed and
maintained by human domain experts.

• Assume reasonable user knowledge Data depositors
should not be expected to have legal or technological
expertise. They are expected to be familiar with the way
the dataset in question was collected.

This paper will propose an answer to both challenges, defin-
ing data handling policies as points in a mutli-dimensional
space, and creating a datatag decision aid using a decision
graph. The rest of this paper is organized as follows: Section II
proposes a formal description of data handling policies, and
uses this description to define datatags. Section III describes
Tags, our open source datatags system. Section IV presents
an example questionnaire. Section V mentions some of Tags’
tools and briefly discusses methodologies for using it. Sec-
tions VI and VII discuss related and future work.

II. POLICIES AS SPACES

A given a data handling policy can be described as com-
posed from many independent aspects. For example, the
requirement to encrypt data ‘at rest’1 is independent of the
requirement to have data users sign a data use agreement
(DUA), or even from the requirement to encrypt the data on
transmission. Granted, a policy that requires a signed DUA
and an encrypted storage is likely to also require encrypted
transmission. It is possible, however, to create a policy that
requires encrypted storage and signed DUA, but allows clear
transmission. It is therefore useful to allow description of such
policies, if only to create an algorithm that warn against them.

Each of the data handling policy aspects has multiple
possible requirements. For example, a policy might allow
accepting a data use agreement in an implied manner, require
using a click-through agreement process, or require a signed
document. It might allow storage to be in the clear, encrypted,
or even multi-encrypted2. These possible requirements can be
ordered from lenient to strict.

In cases where the possible requirements of a data handling
policy aspect cannot be ordered, it is possible to either gen-
eralize them, or split the aspect. For example, verifying user

1Encrypting the data before writing it to disk. This protects the data from
being read be parties who have access to the file system, either over a network
or physically. At rest encryption has performance downsides, and runs the risk
of losing the data if the encryption key is lost.

2Requires multiple keys to decrypt. This type of requirement may prevent
the dataset repository and its staff from reading the data in a dataset.

registration via an email address or an OAuth account is equiv-
alent, as both demonstrate an account on an external system.
Thus, as possible requirements for VerifyRegistration,
email is no stricter than oAuth, nor is oAuth stricter than
email. The solution is to replace them with a more general
usingExternalSystem possible requirement. The actual
choice between email, OAuth, or other equivalent technologies
is then left to data repository system implementors.

An example for an overly broad aspect definition
is Encryption. As there are two possible
aspects to encrypt — storage and transmission —
the possible requirements transferOnly and
storageOnly have no strict ordering. Splitting the
Encryption aspect to StorageEncryption and
TransmissionEncryption solves this issue.

We propose viewing the independent aspects of data han-
dling policies as orthogonal axes of an ordinal space, where
the possible requirements of a given aspect are the coordinates
along its axes. We call this space “Data Handling Policy
Space” (or DHP space for short). Viewed like this, data
handling policies become points in a DHP space. See Fig. 2
for a 2D example.

More formally, given independent aspects a1, a2, . . . an,
where each aspect ai has ki possible requirements
ri[1], ri[2], . . . ri[ki], a data handling policy P is a point in
an n-dimensional data handling policy space, and is specified
by the n-tuple:

P = 〈r1[l1], r2[l2], . . . rn[ln]〉

Where 1 ≤ li ≤ ki. Aspect order is arbitrary, but of course
has to be consistent once determined.

A. Relations Over Policies

Building on the above description of a data handling policy,
we now define equality and partial order, based on strictness.

Equality Given policies P = 〈p1, . . . , pn〉 and Q =
〈q1, . . . , qn〉, defined in the same DHP space,
we say that P is equal to Q iff all their
requirements are equal. Formally:

P = Q ⇐⇒ ∀i ∈ [1..n].pi = qi

Strictness Given DHP space S defined over n aspects,
and policies P = 〈p1, . . . , pn〉 and Q =
〈q1, . . . , qn〉 defined in S, we say that P is
stricter than Q iff along all aspects of S, P
has requirements that are equal or stricter than
Q’s, and on at least one aspect that value is
strictly stricter. Formally:

P > Q ⇐⇒ ∀i ∈ [1..n].pi ≥ qi

∧ ∃i ∈ [1..n].pi qi

For any DHP space with more than a single
aspect, strictness is a partial order relation.

Derived Using equality and strictness, the relations
more lenient (<), stricter than or equal to

(≥), and more lenient than or equal to (≤)
are intuitively defined.

Composition Given DHP space S defined over n aspects,
and policies P = 〈p1, . . . , pn〉 and Q =
〈q1, . . . , qn〉 defined in S, P and Q can
be composed to a new policy, by selecting
the stricter requirement for each aspect. For-
mally:

P ⊕Q , 〈max(p1, q1), . . . ,max(pn, qn)〉

Where max(fi[a], fi[b]) is defined as fi[a] if
fi[a] > fi[b], and as fi[b] otherwise. Note that
by definition P ⊕Q ≥ Q and P ⊕Q ≥ P .

B. Compliance and Support Sub Spaces

Security and access restrictions are not breached by over-
doing. For example, if a dataset is allowed to be transmitted
in the clear, it is also acceptable to encrypt it during trans-
missions. Formally, if a dataset is required to use policy P ,
a dataset repository may handle it according to any policy Q,
when P ≤ Q. Thus, each policy P in DHP space S defines
two sub-spaces, demonstrated in Figure 2:

Compliance Space All policies that do not breach P :

compliance(P) , {Q ∈ S|P ≤ Q}

Support Space All policies that P does not breach:

support(P) , {Q ∈ S|Q ≤ P}

A dataset requiring policy P1 can be handled using any
policy in compliance(P1), without breaching any laws. A data
repository implementing policy P2 can properly handle any
dataset which requires a policy is in support(P2). In order to
decide whether dataset D, requiring policy PD, can be stored
in repository R under policy PR, it is enough to require that
compliance(PD) ∩ support(PR) 6= ∅. When this assertion
holds, we can say that R can handle D using policy P, writing
R �P D. In the interest of open science, it is better to use the
most lenient policy within that intersection.

Statistical disclosure limitation tools and sharing a differ-
entially private version of the dataset [8], [9] can be viewed
as moving the dataset to a more lenient point in DHP, at the
expense of some of its aspects, such as its level of detail.

C. DataTags and DHP

Under the Data Handling Policy Space model, DataTags
are a set of points in a defined DHP space, totally ordered by
strictness. The compliance and support spaces of the tags are
hierarchically contained. For the set of tags defined in [16],
compliance(blue) is the outermost compliance space, which
serves the intuition that handling an open access dataset as if
it required all its users to be fully accountable (red tag) will
not create a security breach (it would, however, unnecessarily
complicate the dataset handling). The outermost support space
is support(crimson), serving the complementary intuition.

The code addendum for this paper [5], contains the datatag
set proposed in [16] phrased using this approach.

Implied

Click-
Through

Sign

None

Email/
OAuth

Password

Two Factor

DUA agreement Method

Authentication

compliance(dataset)

support(orange)

green

orange

dataset

Fig. 2. Given a datatags repository R supporting the Green and Orange tags
defined in [16], and a dataset D requiring a click-through DUA and an Email
authentication, D could be stored in R under the Orange tag. This can be
written as R �orange D

III. TAGS, A GRAPH-BASED DATATAGGING SYSTEM

We now present Tags, domain-specific programming lan-
guage for defining data handling policy spaces, and creating
friendly interactive questionnaires, that helps users arrive at a
proper policy for a given dataset. We will also look at some of
the tools available for Tags programs. Tags is an open source
project under active development, so this paper covers only
its basic concepts. For an up to date information, we refer the
reader to the project website [4].

The DataTags concept serves multiple use cases, such as
individual researchers, research groups, IRBs, and scientific
and commercial data repositories [16]. Thus, the Tags parser
and runtime engine are available in an embeddable Java
library. This Library is currently embedded in two systems:
CliRunner, a Java console application which serves as a
development aid, and TaggingServer, a web application for
conducting interviews, written in Scala.

A Tags program is called a questionnaire. An interview is
the act of a user interactively answering questions from a ques-
tionnaire. Questionnaires are modeled after an interview with
an expert, where the expert asks questions using a language
the data depositor can understand, while writing comments in
her notebook using professional, accurate, language. A Tags
questionnaire is composed of two components: a tag space
defining the professional language, and a decision graph,
defining the questions and the flow of the interview. Tag space
is similar to data handling policy space, but contains additional
axes for auxiliary assertions, such as regulatory information
and internal program variables. These additional assertions can
be used later, e.g. for automatic customization of data use
agreements. Different decision graphs may refer to the same
tag space. Consequently, tag spaces may be used to define

standards that data repositories can comply with.
Tags was designed to be used by domain experts rather

than programers. While it does require its users to adhere to
formal syntax, it is a high-level language, and does not require
handling memory allocation or read/write operations. To better
serve the questionnaire development process, Tags supports
top-down design, by allowing parts of the questionnaire to be
marked as TODO.

A. Tag Space

A direct description of multi-dimensional space — namely,
a list of dimensions and the possible values along them —
may be hard to work with, especially as the number of
described aspects increases. Furthermore, such list does not
allow for logical grouping, and hinders collaboration, both are
crucial for engineering a questionnaire. Thus, Tags describes
tag spaces using named slots, and defines a simple algorithm
for generating a list of dimensions from a set of slots. Tags
supports four types of slots:

1) Atomic Slot: A slot containing a single atomic value.
Values defined for this type of slot are totally ordered. Slots
of this type are defined using the one of keyword.

Storage: one of clear, encrypt, multiEncrypt.

2) Aggregate Slot: A slot that contains a set of values
of its item type. Aggregate slots can be used to logically
group multiple binary dimensions. They are defined using the
some of keyword.

ProtectedDataSubjects: some of livingPersons,
deceasedPersons, endangeredSpecies, rareMinerals.

3) Compound Slot: Slots of this type consist of other slots,
referred to as sub-slots. Compound slots do not define tag
space dimensions directly. Rather, they are are used to logi-
cally group other slots, and are defined using the consists of

keyword.

Handling:
consists of Storage, Transit, Authentication.

4) Todo Slot: A placeholder slot, containing no values.
Slots of this type are useful for building tags spaces using
a top-down approach. In the tag space below, the intellectual
property aspects of a the policy will be defined later:

DataTags: consists of Handling, IntellectualProperty.
IntellectualProperty: TODO.

To improve user friendliness, slots and values can have an
associated explanatory text. Unlike code comments, these texts
are retained at runtime, and interview softwares can make them
available to the interviewee. Explanatory text association is
done by adding it, between square brackets, immediately after
the name of the defined entity, like so:

Storage [The way data are stored on the server]:
one of
clear,
encrypt [Encryption by the server, before storage],
multiEncrypt

[Encryption by both the client and the server].

TODOIP

some ofAssertions
Handling

humanData

educationalRecords

one of: clear encryptTransit

one of: clear encrypt multiEncrypt

Storage

DataTags

Fig. 3. The tag space defined in Listing 2, visualized by Tags’ CliRunner tool.
Atomic slots are visualized as scales, with the most lenient value on the left.
Aggregate slots are shown as baskets, containing some of the aggregate values,
visualized as eggs. Compound slots are visualized as circles with outgoing
arrows. The arrows are labeled with the name of the slot they point to.

Slots are statically associated with the type implied by
the slot definition. For example, the type of the Storage

slot defined above contains the values clear, encrypt and
multiEncrypt. It is an error to a assign a value to a slot, if
said value is not a member of the slot’s type.

The root slot of the tag space definition is a compound slot
called DataTags. Unfolding a slot-based tag space definition
to a list of dimensions is done as follows:

1) Start with a list containing the DataTags slot.
2) While there are compound slots in the list:

a) Remove the first compound slot, c
b) For each of c’s sub-slots (except the TODO ones),

prefix the name the sub-slot with c’s name and a
delimiter3, and add the sub-slot to the list.

3) For each aggregate slot a in the list:
a) Remove a from the list
b) For each of a’s values, generate an atomic slot

with the value’s name prefixed by a’s name, and
a delimiter. The generated slot has two values,
the lesser representing the value not present in
the aggregate slot, and the greater representing
the value’s presence. This pair of values can be
thought of as YES and NO, or applies and
does-not-apply, depending on the semantics
of the values in aggregate slot.

When the algorithm terminates, the list of slots will contain
only atomic slots with unique names, listing all dimensions
of the described tag space, and the possible values for each
dimension. The code addendum [5] offers a complete example
for unfolding a tag space definition.

B. Decision Graph

The “program” part of a Tags questionnaire is called a
decision graph, and is modeled after a graph with various
type of nodes. These types denote program instructions for
asking questions, setting tag values, and control flow. During
execution — interview, in Tags terms — the runtime engine
traverses the decision graph, executing the command in each

3A delimiter is a character not allowed in a slot’s name.

node. The runtime maintains two data structures: Tags value,
a single instance of type DataTags, as defined in the tag
space part of the questionnaire, and a call stack. Thus, a Tags
interview can be viewed as an interactive, stacked traversal of
the decision graph. At the end of the interview, the engine’s
Tags value contains the resultant data handling policy, and
auxiliary assertions, if any.

Nodes are written between square brackets, and consist of
a head and a body, separated by a colon (see Listing 1). The
node head contains the node’s instruction (e.g. ask, call) and
a possible id. The node body, if present, contains additional
information required for executing the node’s instruction. For
example, the body of a call contains the id of the node to
call.

Listing 1. Sample nodes, showing various nodes structures: with and without
id (lines 1 and 2, respectively), and a node with no body (line 3).
[call: medicalCompliance]
[>anId< set: Storage=encrypted]
[end]

Tags support various node types, some of which are listed
below.

a) Set Node: Assigns values to some of Tags Value’s
slots. Atomic slots are assigned to using =, while aggregate
slots are added to using +=. More than a single value can
be assigned at a time, by separating the assignments using
semicolon. For brevity, unique suffixes of a slot name can be
used, instead of the full path to it. This type of abbreviation is
demonstrated by the below example in the assignment to the
HIPAA aggregate slot.

[set: DataTags/Handling/Storage=clear;
HIPAA+={expertDetermination, waiver}]

A set node can only make values stricter — in effect, it has
the semantics of the ⊕ operator, defined in II-A. This prevents
different sections of an interview from lifting each other’s
restrictions: Consider a dataset containing mundane health data
and private educational data. The educational data section of
the questionnaire will conclude that the dataset has to be
encrypted at rest. However, as the dataset does not contain
private health data, the health section of the same questionnaire
might allow it to be stored in the clear. Clearly, the dataset
has to be stored encrypted. By preventing set nodes from
replacing strict values with lenient ones, the health section
cannot interfere with the decision made by the educational
records section.

b) Ask Node: Present a question to the user, and wait
for an answer. An ask nodes define a set of possible answers.
ask nodes have a recursive structure: each answer has its own
decision sub-graph, executed by the engine if that answer is
selected.

[ask:
{text: Do the data contain personally

identifying information of humans?}
{terms:

{personally identifying information:
This means the name, address, fingerprints. . .}}

{answers:
{yes, living: [set: livingPersons=yes]

[call: privacySection] }
{yes, deceased: [call: deceasedSection] }
{no: [call: nonHuman] }}]

As legal and technological questions can be daunting, it is
possible to clarify terms that appear in the question. This is
done by using the optional terms sub node.

Our experience is that a yes/no question, where one answer
leads to a sub-series of questions, and the opposite just moves
to the next question, is a common pattern in questionnaires.
For example, a questionnaire may ask the user whether a
dataset contains health-related data, calling the health records
section only if she answers “yes”. In effect, this translates to
an ask node that has a sub-graph for one answer only. In
order to support this, if a node contains only a single yes or
no answer, the other answer is assumed to be implicit — it is
added automatically, and points to the node that is syntactically
after said ask node.

c) Reject Node: Terminates the interview, flagging the
dataset as unacceptable. Supports cases where the dataset was
obtained illegally, or when handling it would breach some law.
[reject: Possible FERPA violation due to

failure to obtain written consent. . .]

d) Todo Node: A placeholder node, to be later replaced
with an implementation. Useful for top-down implementation
approaches, where the questionnaire structure is decided early
on, but its parts are implemented gradually.
[>educationalRecords< todo: comply with FERPA]

e) Call and End Nodes: The equivalent of a procedure
call in other programming languages, this node makes the
engine traverse another part of the decision graph before
moving on to the syntactically next node. When visited by
the engine, a call node is pushed onto the call stack, and the
engine begins a new traversal of the decision graph, starting
from the node whose id is in the call node body. When the
engine visits an end node, it pops the call node and moved
to the node syntactically after it. If the engine visits an end

node while its call stack is empty, the interview terminates.
[call: healthSection]
. . .
[>healthSection< ask . . .]
[end]

IV. EXAMPLE QUESTIONNAIRE

This section shows a sample questionnaire covering ju-
risprudence pertaining to educational records. While inspired
by real questionnaires and actual legislation, this questionnaire
is built for instructional purposes, and is of very little legal
value. For a real life questionnaire covering HIPAA compli-
ance, we refer the reader to the code addendum [5].

Listing 2 shows the tag space part of the questionnaire. The
root compound slot, DataTags, has three sub-slots: Handling,
covering a simple data handling policy, Assertions, storing
information about the dataset that could be used later (e.g. for
generating a data use agreement), and IP, which will cover
intellectual property issues once implemented. A visualization
of the tag space is presented at Figure 3.

Listing 3. Sample decision graph for handling educational records.
1 [ask:
2 {text: Do the data concern humans?}
3 {answers:
4 {yes: [set: Assertions+=humanData]
5 [ask:
6 {text: Does the data contain
7 educational records?}
8 {answers:
9 {yes: [call: eduCompliance]}

10 {no: [set: Transit=encrypt]}}]}}]
11 [set: Storage=clear; Transit=clear] <-- defaults
12 [todo: Handle IP issues here]
13 [end]
14 <* Educational Compliance Section *>
15 [>eduCompliance< ask:
16 {text: Was written consent obtained?}
17 {answers:
18 {no: [reject: Cannot handle educational records
19 without written consent.]}
20 {yes: [set: Storage=encrypt; Transit=encrypt;
21 Assertions+=educationalRecords]}}]
22 [end]

Listing 2. Tag space for the sample questionnaire.
DataTags: consists of Handling, Assertions, IP.
Handling: consists of Storage, Transit.
Assertions: some of humanData, educationalRecords.
Storage: one of clear, encrypt, multiEncrypt.
Transit: one of clear, encrypt.
IP[Intellectual Property]: TODO.

The interview decision graph is shown in Listing 3 and
visualized in Figure 4. It has two components, the main one
(lines 1–10) asks the user about the data subjects and, in case
they are human, about the data type. Line 11 sets a default data
handling policy — note that since set nodes cannot replace
strict values with lenient ones, if the Storage slot contains
encrypt or multiEncrypt, the set node at line 11 has no
effect. Line 11 ends with an end-of-line comment: all text
starting with <-- is ignored up to the end of the line.

The second component of the decision graph, starting at line
15, ensures the dataset was collected after the data subjects
have signed a consent form. If that was not the case, the
dataset is rejected (lines 18–19; again, the actual law is more
complicated than this). Line 14, above the consent section, has
a block comment documenting that section. Block comments,
surrounded by <* *>, can span multiple lines.

V. TOOLS AND METHODOLOGIES

Tags is a new language, but already has some tools for
creating questionnaires and performing interviews. This sec-
tion will introduce some of these tools, and discuss budding
methodologies for questionnaire development.

A. Tags CliRunner

The main tool for developing questionnaires is CliRunner.
This is a “swiss-army knife” command-line application. First
and foremost, it allows running interviews. For debugging
a questionnaire, CliRunner supports call stack and interview
trace inspections. Code validations for finding unreachable
nodes, unused tag values and invalid call nodes are also

simple.dg

[#1]eduCompliance

start

ask
Do the data concern humans?

ask
Does the data contain educational

records?

Set
Handling=[Transit:encrypt]

no

eduCompliance

yes

Set
Assertions={humanData}

yes

Set
Handling=[Transit:clear Storage:clear]

no

todo
Handle IP issues here

eduCompliance
ask

Was written consent obtained?

REJECT
Cannot handle educational records

without written consent.

no

Set
Assertions={educationalRecords}

Handling=[Transit:encrypt Storage:encrypt]

yes

Fig. 4. The decision graph in Listing 3, visualized by Tags’ CliRunner tool.

available. With the aid of Graphviz [10], CliRunner can create
visualizations of tag spaces and decision graphs. Figures 3
and 4 were generated this way. CliRunner is built using an
open architecture to support easy extension. Like the rest of
the Tags code, it is open source.

B. Decision Graph Queries

Given a decision graph, it is possible to find all runs that
yield policies with specific traits. For example, one can ask
“which sets of answers result in a policy that allows clear
transmission, and an assertion that the dataset holds sensitive
data?”. This type of question is useful, since the answer for
most valid questionnaires should be “no such set of answers
exists”. CliRunner’s find-runs command allows running
such queries, by finding all the interviews (i.e. sequences of
nodes and answers) that result in a tag value that is a superset
of the supplied tag (tag value a is a superset of tag value b if
they both agree on the values in b‘s non-empty slots). Listing 4
shows the find-runs output for a query over the sample
questionnaire presented in Section IV. We hope to expand this
type of queries to a richer set of tools that will allow formal
questionnaire verification.

Listing 4. CliRunner’s find-runs command can find all the runs that result
in a superset of a given result.
answer (? for help): \find-runs Storage=clear
Run 1:
[>[#1]< ask: Do the data concern humans?]
-yes->
[>[#2]< set]
[>[#3]< ask: Does the data contain

educational records?]
-no->
[>[#5]< set]
[>[#6]< set]
[>[#7]< todo: Handle IP issues here]
[>[#8]< end]
Final Tags:
DataTags/Assertions = humanData
DataTags/Handling/Storage = clear
DataTags/Handling/Transit = encrypt

Run 2:

Fig. 5. A TaggingServer screen during an interview. Note the explanation of
the terms, the answer feed (which allows users to revisit their answers), and
the current tags, providing feedback on the tagging progress.

. . .

Found 2 matches in 3 possible runs.

C. Web-based Interviews Using TaggingServer

TaggingServer is a web-based questionnaire runner, allow-
ing users to go through a user-friendly interview online.
Providing a good user experience for an interview is important,
as answering a questionnaire which has legal and ethical
implications might be a daunting experience.

TaggingServer provides application program interface
(API), allowing it to be integrated into dataset depositing
workflows of online data repositories, such as Dataverse [12]
[7] [6]. The integration works as follows:

1) During the depositing process, the data repository re-
quests an interview from a TaggingServer. The Tag-
gingServer replies with a URL for the interview.

2) The repository redirects the user to the URL sent from
TaggingServer.

3) The user is interviewed by the TaggingServer.
4) After the interview, the TaggingServer sends the result

to the data repository. The data repository replies with
a URL to redirect the user to.

5) The TaggingServer redirects the user to the provided
URL. The data depositing process continues.

One important aspect of this integration is that the in-
terview result is sent to the data repository directly from
the TaggingServer, rather than manually by the user. This
prevents users from fiddling with the interview result and
from depositing one dataset under with the interview result of
another. After the TaggingServer supplies the datatag to the
repository, it is up to the repository to ensure that the dataset
is handled according to the supplied tag, e.g. by using a sticky
policy approach.

A TaggingServer hosting a questionnaire for creating data
handling policies compliant with educational, health, and gov-
ernment records regulations, is available from http://datatags.
org. Note that the tag space and questions were created as a

Fig. 6. Code review tools, such as GitHub’s line comments shown here, allow
experts to collaborate over a questionnaire.

proof of concept, demonstrating Tags’ ability to handle large
questionnaires that span multiple legislation areas. It is not
intended for real world use.

D. Methodologies

Tags questionnaires aim to provide legal and technical
expertise. As such, developing them requires collaboration
between legal scholars and security experts. Technical parts
tend to have simple implications on the decision graph, mostly
deciding between tag values such as encryption requirements
and authentication method classes. Legal aspects, on the
other hand, requires detailed question flows which may create
complicated decision graphs.

Our questionnaire development process so far has been as
follows: First, the relevant laws and regulations were studied,
and an initial version of the tag space was constructed. Then,
the decision graph was created, either using a word processor
or a text editor. While the questionnaire was not written
using Tags language, it did contain instructions with similar
semantics, such as “set” or “go to question 12b”. Once an
initial version of the questionnaire was ready, it was translated
to Tags, and visualized. The visualization was sent to the
legal scholars for vetting. When errors were discovered, the
legal scholars sent them back to the coding team. After a few
iterations the questionnaire was loaded into a TaggingServer
for final QA.

As Tags coding tools advances, we expect this methodology
to change. CliRunner, and a language package for the Atom
text editor, enable the development of questionnaires directly
in Tags. Since Tags programs are plain texts, the development
process can leverage distributed version control systems and
code review tools for collaboration (see Figure 6).

Decision graph query tools, such as the find-runs
command presented in Subsection V-B, enable an new set
methodologies, inspired by formal software verification. For
example, after studying the relevant jurisprudence and creating
the tag space for the questionnaire, the development team
can create a formal specification by composing a set of
assertions that hold for any valid questionnaire. For example,
such assertion might be “no series of answers exists such
that the result of the questionnaire will contain the val-
ues DataType=personal; Harm=criminal; Transit=clear”.
This translates to find-runs DataType=personal;
Harm=criminal; Transit=clear returning 0 results.

During the questionnaire development, the team can test it
against the set of assertions. This can be seen as a form of
test-driven design.

VI. RELATED WORK

Formalization of data handling policies is not new. W3C’s
recommendation Platform for Privacy Preferences Project
(P3P) [1] allows web servers to state the data they collect
and its intended use. It includes a policy matching concept,
allowing users to specify which policies they agree to. Another
aim of P3P is to allow users understand data handling policies.
To this end, version 1.1 [19] (currently a W3C note) adds
policy display guidelines. Unlike P3P, which focuses on web
browsing scenario, ODRL [2] models policies used by com-
mercial, educational, and government institutes. ODRL policy
descriptions are composed of permissions and prohibitions of
actions on assets, applying to a user with a defined role. To
better support communities with specific needs, the ODRL
core is extended by profiles. The PrimeLife Policy Language
(PPL) [3], which focuses on downstream data usage, is another
policy language that uses rules to permit and deny actions.
Its data handling preferences (the way users expect their
data to be handled), and data handling policies (the way
servers treat the data) are comparable to Tags’ compliance()
and support() sub spaces. Data-Purpose Algebra [11] offers
a more mathematical approach for modeling data usage re-
strictions. As ODRL, it aims to model general restrictions,
created by legislation, contracts, or “common decency”. DPA
describes how data usage restrictions transform when one data
item is produced by processing other data items.

The above projects, as well as Tags, aim to prevent forbid-
den usage. An alternative approach, presented in [17] and [18],
is to hold users accountable for such usages.

Seneviratne, Kagal, and Berners-Lee demonstrated a tool for
helping users comply with licenses when writing attributions
for web content [14]. The design of TaggingServer, which
offers a user friendly experience uncommon in data handling
policy related tools, was in part inspired by commercial
systems like TurboTax, which guide users through filling their
tax forms.

VII. FUTURE WORK

DataTags and legal modeling using DHP spaces are very
young concepts, and we believe they can be developed in
many ways. We are still lacking structured methodologies for
developing tag spaces to model legislation and best practices.
A study about the limits of this approach is also needed —
what are the legal and technological concepts that cannot be
captured by a DHP space?

While code tools go a long way in providing a collaborative
environment, they still assume a certain technical knowledge,
and are not as user friendly as word processors. We envision an
on-line collaborative questionnaire development environment,
allowing scholars from different backgrounds to develop,
discuss, and publish questionnaires, no technical knowledge
required. Additional tools can be developed, such as advanced

graph queries, automated questionnaire verification, or auto-
mated detection of questionable data handling policies.

Finally, Tags’ formal modeling may be useful as a tool for
purposes other than dataset handling, such as comparative legal
studies.

ACKNOWLEDGMENT

The authors thank Sean Hooley, Alexandra Wood, David
O’Brien, Stephen Chong, Salil Vadhan, Gary King, and the
other members of the Privacy Tools Project at Harvard. We
also thank the students of 2016 Fall semester at Ben-Gurion
University of the Negev, Israel, who participated in class 202–
1–4531 Topics in DataTags. This work was funded by grant
CNS-1237235 from the National Science Foundation.

REFERENCES

[1] The platform for privacy preferences 1.0 (P3P1.0) specification. W3C
recommendation, W3C, April 2002. http://www.w3.org/TR/2002/REC-
P3P-20020416/.

[2] ODRL version 2.1 core model. http://www.w3.org/community/odrl/
model/2.1/, 2015.

[3] Claudio A. Ardagna, Laurent Bussard, Sabrina De Capitani Di, Gregory
Neven, Stefano Paraboschi, Eros Pedrini, Stefan Preiss, Dave Raggett,
Pierangela Samarati, Slim Trabelsi, and Mario Verdicchio. Primelife
policy language, 2009.

[4] Michael Bar-Sinai. DataTags code repository. https://github.com/IQSS/
DataTaggingLibrary, 2016. Accessed: 2016-02-02.

[5] Michael Bar-Sinai, Latanya Sweeney, and Mercè Crosas. Technical
appendix for datatags, data handling policy spaces and the tags language.
http://dx.doi.org/10.7910/DVN/HKHGWZ, 2016.

[6] Mercè Crosas. The dataverse network R©: an open-source application for
sharing, discovering and preserving data. D-lib Magazine, 17(2), 2011.

[7] Mercè Crosas. A data sharing story. Journal of eScience Librarianship,
1(7), 2013.

[8] Cynthia Dwork. Differential privacy. In ICALP. Springer, 2006.
[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.

Calibrating noise to sensitivity in private data analysis. In Third Theory
of Cryptography Conference, volume 3876 of Lecture Notes in Computer
Science, pages 265–284. Springer, 2006.

[10] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. SOFTWARE -
PRACTICE AND EXPERIENCE, 30(11):1203–1233, 2000.

[11] Chris Hanson, Tim Berners-Lee, Lalana Kagal, Gerald J. Sussman, and
Daniel J Weitzner. Data-purpose algebra: Modeling data usage policies.
In 8th IEEE International Workshop on Policies for Distributed Systems
and Networks, pages 173–177, 2007.

[12] Gary King. An introduction to the dataverse network as an infrastructure
for data sharing. Sociological Methods and Research, 36:173–199, 2007.

[13] Crosas Mercè, Honaker James, King Gary, and Sweeney Latanya.
Automating open science for big data. ANNALS of the American
Academy of Political and Social Science, 659(1):260–273, 2015.

[14] Oshani Seneviratne, Lalana Kagal, and Tim Berners-Lee. Policy-aware
content reuse on the web. In International Semantic Web Conference,
volume 5823 of Lecture Notes in Computer Science. Springer, 2009.

[15] Latanya Sweeney. Operationalizing american jurisprudence for data
sharing. Technical report, 2013.

[16] Latanya Sweeney, Mercè Crosas, and Michael Bar-Sinai. Sharing
sensitive data with confidence: The datatags system. http://techscience.
org/a/2015101601/, 2015.

[17] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum,
James Hendler, and Gerald Jay Sussman. Information accountability.
Commun. ACM, 51(6):82–87, June 2008.

[18] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Chris Hanson,
James A. Hendler, Lalana Kagal, Deborah L. McGuinness, Gerald Jay
Sussman, and K. Krasnow Waterman. Transparent accountable data min-
ing: New strategies for privacy protection. In AAAI Spring Symposium:
Semantic Web Meets eGovernment. AAAI, 2006.

[19] Rigo Wenning and Matthias Schunter. The platform for privacy pref-
erences 1.1 (P3P1.1) specification. W3C note, W3C, November 2006.
http://www.w3.org/TR/2006/NOTE-P3P11-20061113/.

