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Abstract

Working becomes harder as we grow tired or bored. I model individuals who underesti-
mate changes in marginal disutility – as implied by “projection bias” – when deciding
whether or not to continue working. This bias leads to two mistakes. First, they are too
pessimistic when they are tired and working is hard, and too optimistic when rested and
work is easy. When within-day disutility is convex and individuals face a single task with
all-or-nothing rewards (such as passing or failing a test), they initially underestimate
the total disutility and start some overly ambitious tasks. As work becomes harder,
they perceive the task as less worth completing and may quit. If the deadline for the
task is far in the future, such individuals may repeatedly start working, yet quit earlier
than anticipated. No matter how small the bias is, this can lead to large daily welfare
losses. When tasks instead have concave rewards, including piece rates, such individuals
work optimally if facing only a single task. But when working on multiple such tasks
(for example, studying for two tests with continuous grades), they may mis-prioritize
the tasks. In particular, they over-prioritize urgent tasks over important but non-urgent
tasks, overestimating how much they will later work on the non-urgent tasks. Second,
when tasks can be completed across multiple days, individuals smooth work too little
over time. Because they underestimate how much the marginal disutility will increase
on better days, they work too much on those days, and overreact to daily differences in
opportunity costs, incentives, and productivity.

1 Introduction

Our tastes fluctuate, often rapidly: we grow tired and thirsty from running, and we savor food
or crave coffee more the longer we go without. Our perceptions of our tastes are biased toward
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our current tastes: we misperceive future tastes as being closer to our current tastes than
they will be – a tendency labeled projection bias by Loewenstein, O’Donoghue, and Rabin
(2003).1 This misperception can trigger undesirable and unintended habits and behaviors,
such as buying too much when shopping on an empty stomach, or becoming addicted due to
under-appreciating the future intensity of cravings. In this paper, I study effort choices where
the distaste for work fluctuates, such as when students grow bored of studying or employees
become tired of working. Due to projection bias, individuals mispredict future disutility of
work, which can cause them to work on the wrong tasks, mis-prioritize between tasks, and
inefficiently choose when to work on those tasks.

I describe the model in section 2. In the model, a person with projection bias either works
or does not work at every moment of the day and is self-directed: she works if and only if
at that moment she perceives it as worthwhile to continue working.2 Whether she decides
to work depends on her actual disutility, her future disutility as she perceives it, and the
benefits she faces, each of which I describe in turn. Her instantaneous disutility changes
over the course of the day: letting S denote the total time she has worked so far that day,
instantaneous disutility is equal to D′(S), where D(·) is the total daily disutility. Unless
stated otherwise, the marginal disutility D′(·) increases – the person grows more tired and
bored the longer she works. In this setting, projection bias implies that a person projects her
current marginal disutility: she predicts that her marginal disutility after E hours of work on
any day lies between her current marginal disutility, D′(S), and her true marginal disutility,
D′(E). Finally, every task she faces has either decreasing (or constant) marginal benefits or
all-or-nothing benefits, in which case she receives known, fixed benefits if she completes the
task by the end of a given day.

A projection-biased person makes two mistakes. First, when marginal disutility is particu-
larly low, she is too optimistic about how easy it will be to work, while she is too pessimistic
when marginal disutility is particularly high. She therefore misperceives how unpleasant tasks
are and mispredicts how much she will work later. She starts some overly costly all-or-nothing
tasks, but as work becomes more unpleasant, she grows less optimistic and may give up –
which, in this case, is correct. Second, she underestimates how much her marginal disutility

1Evidence for projection bias has been found for food (Read and Van Leeuwen (1998); Nordgren, Pligt,
and Harreveld (2008)), drink (Van Boven and Loewenstein (2003)), sexual arousal (Loewenstein, Nagin, and
Paternoster (1997); Ariely and Loewenstein (2006)), effortful tasks (Augenblick and Rabin (2016)), heroin
substitute cravings (Badger et al. (2007)), the endowment effect (Loewenstein and Adler (1995)) and for
predictions of gym attendance (Acland and Levy (2015)). Projection bias resembles immune neglect (Gilbert
et al. (1998)) whereby people overestimate how long they will feel bad about negative events.

2I discuss irreversible choices in passing. Since a projection-biased person has no desire to commit, there is
no reason why a particular plan should overrule her current plan – except in situations where a principal
might demand that she commit.
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increases the longer she works, she overreacts to differences in incentives, opportunity costs,
and productivity across days. She ends up working more than she should on productive
days, and less than she should on unproductive days. When working on an all-or-nothing
task, at the start of productive days she underestimates how much she will work, while she
overestimates it at the start of unproductive days.

I analyze the first mistake, that people fluctuate between being optimistic and pessimistic,
in sections 3 and 4. In section 3, I consider different reward structures when all the tasks
are due at the end of the first day. Because a person grows tired the longer she works, she
underestimates how unpleasant the work will be later that day and overestimates how much
longer she will work. With all-or-nothing rewards, a projection-biased person starts some
overly ambitious tasks, only to abandon them later. With decreasing returns to effort, she
works optimally. She works until the marginal benefits equal her marginal disutility, and then
stops. But there is a catch: she works optimally only if she faces a single such task. If she has
to allocate her time across multiple tasks, or distinct subtasks, she mis-prioritizes. Consider a
student who has an exam the next day and who studies chapter 1 before switching to chapter
2. When the time comes when she should optimally switch, she overestimates how much
longer she will study and therefore she keeps going on chapter 1. She ends up studying too
much for chapter 1 – done when she is rested – and too little on chapter 2 – done when she is
tired. This cannot happen if the student constantly switches to do the work with the highest
marginal benefit. But even minor switching costs are enough to keep the student from doing
so, since she doesn’t realize her mistake. Thus, when multi-tasking, she works too much on
early stages of tasks, such as planning or background research, and on time-sensitive tasks
which are best done immediately, such as urgent requests from colleagues.

In section 4, I consider tasks that are due on some future day. The person is overly
optimistic at the start of each day and potentially too pessimistic at the end. Consider
a person working on an all-or-nothing task, say a student who has to study at least 100
hours to pass an exam. She may start each day planning to complete the task efficiently,
yet stop studying earlier than anticipated, planning to drop the exam. This leads to one of
two outcomes. Either she passes the exam despite working too little in the early days, but
has to study harder later on. Or she repeatedly wastes time studying toward an exam that
she eventually drops for good. Unless the benefits are high enough for the student that she
actually passes the exam, higher benefits make her worse off, because they lead her to waste
more time on more days for no change in the outcome. I show that even for a relatively
unbiased student these repeated changes in plans can lead to a lot of wasted effort – up to the
point where she does almost all the work necessary to pass the exam, yet just fails to do so.
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The findings in sections 3 and 4 predict that people who work on tasks with decreasing
returns to effort overestimate how well they will complete a task, consistent with research
showing that people are often overly optimistic in predicting their own task completion. For
instance, Buehler, Griffin, and Ross (1994) find that students believe that they will finish
their bachelor’s thesis earlier than they actually do. They explain this mistake – called the
planning fallacy – in terms of students being overly optimistic about how many hours are
necessary for the task or how many distractions they will face. Projection bias provides
an alternative and complementary explanation, suggesting that people are overoptimistic
about how much time they will spend working.3 Even when they correctly estimate the work
required, projection-biased students will spend too much time on early stages of tasks, such
as planning and generating new ideas, as well as on time-sensitive tasks, such as problem
sets, lectures, or sports. They don’t realize that these tasks crowd out work on important
long-term tasks, such as preparing for an exam. Moreover, when they are tired, they don’t
appreciate how much time they will fritter away on less important but time-sensitive tasks
once they are rested and optimistic. Therefore they think that on future days – unlike in the
past – they will spend more time on the long-term task and fail to realize how much work
they should do today.

In section 5, I turn to the second mistake whereby projection bias leads people to smooth
work too little over time. Consider a student who has two days to finish her term paper.
A friend has offered to give feedback on her draft at the end of the first day, so that she
should work more on the first day than on the second. Due to projection bias, the student
underestimates the difference between the marginal disutility at the end of the first day and
the marginal disutility at the end of the second day, and therefore she works too much on the
first day. More generally, because she underestimates the differences in marginal disutility, she
is prone to working too much when her marginal disutility is high and effectively overreacts
to differences in incentives, opportunity costs, or productivity.

Moreover, the student mispredicts at the start of the day how much she will actually work
that day. The more tired she is, the more unpleasant she perceives every additional hour of
work, and the more valuable she finds a reduction in total work time. Thus she perceives the
feedback her friend provides as more useful at the end of the day than she does at the start
of the day, and therefore she wants to take advantage of it more than she initially thought.
If instead the student were more productive on the second day, she would work less on the
first day than she initially planned, in order to take advantage of her higher productivity on
the second day. The situation is similar when the student is uncertain about how long she

3See Buehler, Griffin, and Peetz (2010) for a review of planning fallacy and of situations where people are
overoptimistic about when they will complete a task.
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needs to work and learns about this as time goes on. Work done early on is more likely to be
unnecessary than work she does on a future day when she is better informed, thus leading her
to delay too much work when uncertain.

Given how important it is whether a person is optimistic or pessimistic, in section 6 I
study tasks where the marginal disutility is initially decreasing. Such tasks become easier
initially, such as physical exercise and music practice that become easier after some warm-up,
as well as mental tasks that require a high focus, such as programming or writing. Mirroring
results in section 3, a person now overestimates the disutility initially and may fail to start a
worthwhile task. And once she gets going, work is comparatively easy and she underestimates
the disutility of resuming the task after a break. She therefore takes too many breaks, and
either incurs higher disutility than expected once she resumes the task, or fails to resume the
task.

My paper is most closely related to Loewenstein, O’Donoghue, and Rabin (2003) who
formalize the model of projection bias and apply it to durable goods consumption, the
endowment effect, and habit formation. My focus is on effort choices when people’s plans
repeatedly fluctuate so that their final behavior is the aggregate outcome from decisions
made at different times that can be mutually inconsistent.4 I also show that when people’s
tastes fluctuate repeatedly, the mistakes people make can lead to large welfare losses, thus
highlighting that projection bias matters also outside domains where people experience large
swings in taste – such as addiction – or in binding choices where even small proportional
mistakes lead to large monetary losses – such as purchases of cars or homes. Thus the
paper also relates to the growing literature identifying projection bias in the field (Conlin,
O’Donoghue, and Vogelsang (2007); M. Levy (2009); Busse et al. (2015); Buchheim and
Kolaska (forthcoming)), highlighting how and when projection matters in effort choices and
thus facilitating empirical research in this economically important domain.

2 Projection Bias in Simple Effort Choices

In this section I show how both an unbiased and a biased person choose in a setting where
their daily utility U is given by

U(E) := B(E)−D(E)
4A paper that also considers these distributed choices (as they call it) is Herrnstein and Prelec (1991),

who analyze the implications of melioration.
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where E is the possible number of hours worked. Here, B(.) denotes the daily benefit and
D(.) the daily disutility. The person wants to maximize her utility. Usually, we think of this
as a static problem, where the person chooses how much to work and then works that much.
This abstracts away from the fact that people work over several hours and thus could decide
something else later in the day than what they decided earlier on. Of course, with an unbiased
person, in the absence of unanticipated information, the behavior is time-consistent, and
modeling the dynamic nature of the problem adds nothing. Since projection-biased people
need not have consistent plans, they may want to act differently after 3 hours of work, say,
than they thought they would initially. For this reason, this section describes a dynamic setup
that simply boils down to the maximization of U for an unbiased person, and extends it to
allow for projection bias in a unique way when B and D are specified.

2.1 A Model of Dynamic Effort Choices Within a Day

The time in the day, τ ∈ [0,∞) is continuous.5 Each moment, the person either works or does
not work, so that e(τ) ∈ {0, 1}. She does not choose to work at a higher or lower intensity.6

The instantaneous disutility from not working is 0, while the instantaneous disutility from
working is d(s(τ)). The latter depends on the current state, s(τ), which captures tiredness or
boredom or anything else that affects how unpleasant effort is at time τ . I assume moreover
that s(τ) depends only on the total amount of effort completed until time τ , which is therefore
equal to τ . The interpretation is that the person works continuously without interruptions,
and that once she stops working, she doesn’t start again.

The final assumption is that people decide each moment whether or not they want to
work that moment – they cannot choose at an earlier time whether they will work at a later
time. I call such people self-directed:

Definition 1. A person is self-directed if she does not make irreversible plans and in each
moment work according to the plan she currently perceives as optimal.

This situation is quite common, certainly at the day-to-day level. Most college students
choose their classes, decide whether to attend lectures, and study when they want to. Whenever
employees are not monitored around the clock – that is, whenever moral hazard is an issue
– they have some lee-way about when and how much they work. This excludes situations

5One can also work with τ ∈ [0, τ̄ ] for finite τ̄ .
6If I actually add something about intensity later, mention this here in a footnote. Otherwise get rid of

this footnote.
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where, for exogenous reasons, a person has to make an irreversible decision to work for the
next 10 hours, for instance.7

So, how does the person actually decide whether or not to work each instant? Given that
she is self-directed, the person continues working if she perceives that better than to stop at
that time. Formally, let E∗(τ) denote the optimal amount of work a person plans to do at time
τ . Then the person continues working at time τ , that is e∗(τ) = 1, if and only if E∗(τ) > τ –
if she thinks she should work more than she has worked so far. Thus E∗(τ) solves

E∗τ = arg max
E:E≥τ

B(E)−
∫ E

τ
d(s(τ ′))dτ ′

where I implicitly assume that benefits in a day depend only on total effort exerted E.
The total disutility from effort from working E hours in a day is

D(E) :=
∫ E

0
d(s(τ))dτ =

∫ E

0
d(s(E ′))dE ′ =

∫ E

0
(d ◦ s)(E ′)dE ′ (1)

Thus we have that d ◦ s = D′, since D is the integral of d ◦ s. Therefore the maximization
problem the person solves becomes:8

E∗τ (τ) = arg max
E:E≥τ

B(E)− (D(E)−D(τ))

When there is no uncertainty and the person is unbiased, then E∗τ = E∗ and we might as
well ignore the dynamic nature of the problem. But, as we will now see, it is necessary to
state it when people are projection-biased.

2.2 Projection Bias

Loewenstein, O’Donoghue, and Rabin (2003) define projection bias as follows. Let d(e, s)
be the instantaneous disutility a person experiences from exerting effort e when in state s.
Suppose that a projection-biased person is currently in state s and she predicts how unpleasant
effort would be if she were in state s′. Then she misperceives the disutility of exerting effort
e′ in state s′ as lying between the actual disutility d(e′, s′) and the disutility d(e′, s) that she

7In order to see what a person does who is self-directed, I will have to talk about the plans she makes at
any time. These plans are effectively the choice she would make at that time if she had to make an irreversible
decision. Thus, while I focus on the situation when a person is self-directed, in doing so I will also answer
what choices a person would make when not self-directed.

8This assumes that the person hasn’t already stopped working, in which case she won’t restart again (by
assumption) and there is nothing to decide.

7



would experience if she exerted the effort right now. The perceived disutility is denoted by
d̃(e′, s′|s) and is given by

d̃(e′, s′|s) := (1− α)d(e′, s′) + αd(e′, s) (2)

where α ∈ [0, 1] is the degree of projection bias.9 When α = 0, the person has no
projection bias and perceives future disutility correctly; when α = 1 she has full projection
bias and believes that future disutility is equal to current disutility of effort. Whenever there
is ambiguity for α = 1 – since such a person perceives her disutility as linear – I treat α = 1
as the limit of α going to 1.

Thus, projection bias captures two features of people’s perception of their future disutility.
First, people understand that if they grow more tired that they will enjoy working less. They
never think that they will want to work even more if only they were more tired. Second,
people underestimate how much less they will want to work once they are more tired. Those
studies that ask people to choose in at least two different states for at least two different
future states reject both no projection bias and full projection bias. For instance Read and
Van Leeuwen (1998) show that people choose to receive the more filling snack (a chocolate
bar) over the less filling one (a fruit) when they will receive the snack at 4pm when they will
be hungry rather than at 1pm after lunch. But they also choose to receive the more filling
snack more when they are currently hungry. Fisher and Rangel (2013) in another experiment
where people bid on food found that the over- and underbidding was symmetric: participants
who were satiated bid less for food on a second day where they were hungry than on that
day itself, and participants who were hungry bid more for food on the second day where they
were satiated than on that day itself.

We can now map the definition of projection bias to the current framework. Effort e is
either 0 or 1. The disutility of not working, of exerting effort e = 0, is 0 no matter what the
state is. Therefore the perceived disutility from not working is also 0. Similarly, we have that
the perceived disutility of working in a future state s′′ when currently in state s′, written
d̃(s′′|s′) is

9Specifically, this is what Loewenstein, O’Donoghue, and Rabin (2003) call simple projection bias. More
general versions of projection bias could allow for α to depend both on the current and the future state which,
for instance, would permit people to misperceive more when they are hungry than when they are sated, or
vice versa. While there is little evidence on details of the structure of projection bias, Read and Van Leeuwen
(1998) require people to choose both in craving and sated states for future craving and sated states. Assuming
that people make the correct prediction when they are in the same state as they will be next week, they find
that people project their current state whether they are sated or hungry. Moreover, Fisher and Rangel (2013)
find that projection bias is symmetric in food choices.

8



d̃(s′′|s′) = (1− α)d(s′′) + αd(s′) (3)

The goal is to rewrite this in terms of daily disutility D and its marginal D′, and to replace
the potential states s′′ and s′ by potential amounts of work a person may have completed
at different times. In order to do this, let us define the following: d̃|s′(s′′) := d̃(s′′|s′) and
D̃|E′(E) :=

∫ E
0 d̃|s(E′)(s(τ))dτ , where s(E ′) is the state a person is in after working E ′ hours.

Then d̃|s′ is the perceived instantaneous disutility function when the current state is s′ and
D̃|E′ is the perceived daily disutility of working a given number of hours when the person has
already worked E ′ hours so far that day. These are the instantaneous and daily disutility as
the projection-biased person perceives them, and highlights the analogy to the unbiased case.
Thus, just as d ◦ s = D′, we have that d̃|s′ ◦ s = D̃

′

|E′ for all E ′ such that s(E ′) = s′. Finally,
if s′′ and s′ are possible states, then let E ′′ and E ′ denote effort levels such that s′′ = s(E ′′)
and s′ = s(E ′) – which must exist, since states by assumption only depend on total effort
worked up to the current time.

From equation (3) we obtain the following:

d̃(s′′|s′) = (1− α)d(s′′) + αd(s′) =⇒ d̃|s′(s(E ′′)) = (1− α)d(s(E ′′)) + αd(s(E ′)) (4)

=⇒ (d̃|s′ ◦ s)(E ′′) = (1− α)(d ◦ s)(E ′′) + α(d ◦ s)(E ′) (5)

=⇒ D̃
′

|E′(E ′′) = (1− α)D′(E ′′) + αD′(E ′) (6)

We can integrate this to obtain

D̃E′(E) =
∫ E

0
D̃
′

E′(E ′′)dE ′′ = (1− α)D(E) + αD′(E ′) · E

To make the notation consistent with the notation in Loewenstein, O’Donoghue, and
Rabin (2003) and to highlight the difference between the role played by E ′′ and E ′ above, I
write this as follows:

D̃′(E|s) = (1− α)D′(E) + αD′(s)

I call this special case projecting marginal disutility and use it throughout the paper.

Observation 1 (Projecting Marginal Disutility). Suppose the following holds in effort choices
during a single period:
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1. The time in a period is continuous (τ ∈ [0,∞));

2. each moment, a person either works or does not work (eτ ∈ {0, 1});

3. once a person stops working, she doesn’t start again, and each moment she is in state
s(τ) that depends only on total work done until time τ

4. the instantaneous disutility from working is 0 from not working, d(s(τ)) from working.

Then the total disutility of working E hours in a row is given by D(E) with D′(E) =
(d ◦ s)(E) and the perceived disutility D̃ depends on the total amount the person has completed
so far that period, denoted by S. Specifically, we have

D̃(E|S) = (1− α)D(E) + αD′(S) · E (7)

where α ∈ [0, 1] is the degree of projection bias.

Together with the following maximization problem, this completes the single-period setup
in a way that allows us to forget about d and s:

Ẽ∗(S) = arg max
E:E≥S

B(E)− (D̃(E|S)− D̃(S|S))

As the next sections will show, Ẽ∗(S) is in general not independent of S, so that plans are
inconsistent. Before going there, it is important to draw a distinction between the disutility
that is projected, and the benefits and opportunity costs.

2.3 Difference Between Utility and Opportunity Costs

Note that a projection-biased person does not project the benefits and opportunity costs.
This is not an additional assumption, but follows from the definition of projection bias (and
the empirical evidence justifying that definition). Projection bias acts on utility, not on
choice sets or options available to a person. Projection bias makes a person misperceive the
future utility of the options she will have, but it does not make a person misperceive that she
will have different options. Economists are of course very familiar with this distinction, for
instance from risk aversion. A risk-averse person who believes that a coin is fair perceives the
chances of heads and tail as 50% each, just as a risk-neutral person does. But she may give
different values to the outcomes of losing $25,000 or winning $25,000. The difference between
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projection bias and risk aversion is of course that risk aversion is about actual preferences,
whereas projection bias is about how people perceive their preferences – but it is about how
they perceive their preferences, not about how they perceive probabilities or add up money.

Thus a projection-biased student who is at a party right now and therefore has a high
current opportunity cost of studying does not then think that her opportunity costs of studying
will be high tomorrow at the same time too. What is possible though is that she might
perceive those possibilities that make her future opportunity costs as more or less worthwhile
depending on whether she feels more or less tired right now. For instance, one alternative to
studying might be to go to the gym. It is possible that she might want to go less to the gym
the more tired she is from working – not just in comparison to studying, but in comparison
to all other remaining activities. In that case, studying would not only affect the perception
of future studying, but also of future gym-going, which is bundled into opportunity costs.
The reason for ignoring this effect is, first, simplicity; second, the fact that, as long as the
effect of studying is substantially larger and more robust than the effect on gym-going, it
is a good approximation; and third and finally, the fact that if multiple activities share a
common state that changes from any of the activities, that we can model this the way any
other complementarities are modeled in economics, and we can unbundle opportunity costs
into those tasks that have high complementarities with the activity we are studying, and
those that do not.

3 Single-Period Choices

Let us start with single-day decisions where people maximize their daily utility given by
U(E) = B(E)−D(E), with the dynamic interpretation described in section 2: people who
have worked for S hours so far keep working if they perceive it optimal at that time. When
the disutility D is convex and the benefits B are linear or concave, a projection-biased person
works optimally – despite (in fact, because of) her plans changing. I then show that when the
benefits are all-or-nothing, such that a person receives a known reward if she completes a
minimum amount of work, people start overly ambitious tasks. They either end up completing
the task despite it not being worthwhile, or they quit the task without receiving any benefits
for their effort, which goes wasted. Finally, when the person works on multiple tasks each
with decreasing returns to effort, then she spends too much time on the task done when she
is rested, because she overestimates how long she will keep working on the second task.
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3.1 Optimal Behavior with Convex Disutility and Linear Benefits

Consider Anna, a projection-biased student with α = 0.5, who has an exam tomorrow. The
benefits of every additional hour of studying are equal to 3, and from studying becomes more
unpleasant the longer she studies. Specifically, Anna’s daily disutility is quadratic in total
time studied, thus D(E) = E2

2 and D′(E) = E. After having studied for S hours, Anna plans
to study until her currently perceived marginal disutility is equal to her marginal benefits
(which are constant and equal to 3). I denote the time at which she plans to stop by Ẽ∗(S),
the total hours she plans to work after having worked for S hours. She perceives her marginal
disutility after studying for E hours to lie between her current marginal disutility, D′(S), and
her actual marginal disutility after E hours of studying, D′(E):

D̃′(E|S)︸ ︷︷ ︸
Perceived D′

= (1− α)
Actual D′︷ ︸︸ ︷
D′(E) +αD′(S)︸ ︷︷ ︸

Current D′

= 1
2(D′(E) +D′(S))

At the start of the day, Anna hasn’t studied at all and S = 0. So she thinks that her
marginal disutility after E hours of studying will be D̃′(E|0) = 1

2D
′(E). She plans to work for

Ẽ∗(0) hours, with D̃′(Ẽ∗(0)|0) = 3 ⇐⇒ 1
2Ẽ
∗(0) = 3 ⇐⇒ Ẽ∗(0) = 6. Anna plans to study

for 6 hours and thus starts studying. After 2 hours of studying, the current marginal disutility
is D′(2) = 2. Anna now plans to study for Ẽ∗(2) hours in total, with D̃′(Ẽ∗(2)|2) = 3 – the
first order condition as she perceives it now. This leads to Ẽ∗(2) = 4 hours. Finally, once
she has completed 3 hours of studying, the current marginal disutility is D′(3) = 3, so that
Ẽ∗ = 3 and Anna stops studying.

The same logic applies when the returns to effort are decreasing rather than constant, so
this example essentially proves proposition 1. (All proofs can be found in the appendix.)

Proposition 1. D(.) is strictly convex and B(.) is linear or concave, α < 1. Then a
projection-biased person who is self-directed works optimally. Moreover, letting Ẽ∗(S) be the
optimal amount of work as perceived by the person after having worked for S hours and E∗

the optimal amount, we have that Ẽ∗(S) > E∗ ∀S < E∗.

Proposition 1 also highlights that Anna constantly overestimates how much she will work.
Why? By assumption, the marginal disutility of effort increases, so that Anna – who projects
her current marginal disutility – underestimates how high marginal disutility will be later
that day, and therefore overestimates for long she will study.

Proposition 1 relies on the person being self-directed. If Anna had to make an irreversible
(or hard-to-reverse) choice, then she would choose to work too much. This is not likely in the
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case of studying, but may be the case if Anna is grading exams for a course or working on
a common project with a friend. In such situations, due to being overoptimistic, Anna will
work too much, since she underestimates how unpleasant work later in the day will be.

Given that behavior is optimal when the disutility is convex and benefits are linear or
concave, I now turn to settings where either of these assumptions does not hold. I first
consider tasks with all-or-nothing benefits: benefits are received only if the person completes
a minimum number of hours. Then, I highlight a major caveat to the optimality result in
proposition 1. When a task consists of many small subtasks, each with concave benefits, a
projection-biased person no longer exerts optimal effort, because she spends too much time
on some subtasks at the expense of others.

3.2 Fixed-Hours Tasks

I now study the choice of a self-directed projection-biased person who can work on a single-day
all-or-nothing task:10

Definition 2. A single-day all-or-nothing task is a task that has benefits B only if the person
completes at least E hours by a known deadline.

Each instant, the person chooses whether to start or continue the task. She does so if and
only if she currently thinks that completing the task is better than quitting the task. Suppose
that Alice, a projection-biased high-school student with α = 0.5, has a deadline to finish a
college application tonight, which will take her 6 hours. Let’s say that D(6) = 18 and B = 12,
so that Alice should not complete the application. For an unbiased person, the decision is
clearcut: since the disutility exceeds the benefits, the task is not worth doing. Whether Alice
starts the application depends also on how unpleasant the task is at the start.

Does she start the application and, if so, does she finish it? She starts if the perceived
disutility D̃(6|0) is less than B. But D̃(6|0) = (1− α)D(6) + αD′(0) · 6 = 9 + αD′(0) · 6. If
D(E) = E2

2 , so that D′(E) = E, then D̃(6|0) = 9 < 12 = B and Alice starts the application.
After one hour, we have that the perceived disutility from completing the application is
D̃(6|1) − D̃(1|1) = 1

2(D(6) − D(1)) + 1
2D
′(1) · 5 = 11.5 < 12 = B. Thus Alice continues

studying. Now imagine what happened if Alice worked for another hour – which, as we will
see, does not happen. Then the perceived disutility of completing the application would be
D̃(6|2)− D̃(2|2) = 13 > 12 = B, and so she would not want to continue working. It is clear

10All-or-nothing tasks include tasks where a person makes a hard-to-reverse choice or commitment to
another person to complete a certain task – thus even tasks that may not naturally be all-or-nothing (such as
studying) may become so if an outsider sets incentives in that way.
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that Alice will have stopped working before this point. This shows that, as she keeps working,
Alice’s perception of how unpleasant it is to complete the application increases – something
that cannot happen for an unbiased person. As current effort becomes more unpleasant, the
final 4 hours of work seem more unpleasant than they did at the start. Because the task now
seems harder to complete than it did initially, Alice may decide to quit. Proposition 2 states
formally when this happens.

Proposition 2. A self-directed person with strictly convex disutility D works on an all-or-
nothing task that requires effort E to complete and has benefit B if completed. Let Ẽ be the
actual effort exerted and U(e) = 1(e = E) · B −D(e) the utility of working e hours. Then
there exists a unique EH ≥ 0 such that the following statements hold:

1. ∀E, ∃B s.t. U(E) < 0 and Ẽ > 0

2. ∀E < EH if Ẽ > 0 then Ẽ = E.

3. ∀E > EH , ∃B s.t. 0 < Ẽ < E.

The first point of proposition 2 states that for any task, we can find a payment such that
a person starts the task even though the task isn’t worth doing. The proposition also states
that there is a threshold EH such that if a task requires less work than EH hours, then Alice
finishes the task if she starts it, even if the task isn’t worth doing. If on the other hand the
task requires more than EH hours of work, it is always possible to find a benefit such that
Alice starts the task, yet she doesn’t complete it. In fact, it is possible to show that when
D′(0) = 0, then EH = 0, so that starting and stopping can happen for all tasks, no matter
how small.

Proposition 2 applies more widely to tasks with sufficiently convex benefits, although
the mistake is the most obvious in for all-or-nothing tasks. Take a task that has increasing
returns to effort, so that the benefits B(·) are convex, and which allows for a maximum
effort of E. Let D′(0) > B′(0) and (1− α)D′′(·) < B′′(·). Then for both an unbiased and a
projection-biased person with projection bias α, it is either optimal to work 0 hours or to
work E hours. Yet, even though the person at every moment perceives not doing the task at
all, or doing the task fully as the only options, she may end up working a little before giving
up. Unlike in all-or-nothing tasks, there are some benefits from the work the person puts
in. Since we may often not know that D(·) and thus not know whether the person should
either put no work in or do all the work, in these situations it is harder to infer whether the
behavior was a mistake or not. One type of situations where benefits are convex is when
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success is discrete – such as receiving an A in an exam, getting a job or promotion – and the
probability of success is S-shaped in the amount of effort exerted.

The behavior described here – that people start a task that they don’t finish – is similar
to people starting but not finishing multi-stage projects as studied in O’Donoghue and Rabin
(2008) driven by naive present bias. The important difference is that in O’Donoghue and
Rabin (2008) people procrastinate: they repeatedly fail to do a task today, because they think
that they will do the task tomorrow. In the case of projection bias, people quit, fully aware
that they will never complete the task, since the deadline is the same day. Thus there is
no scope for procrastination in this setting.11 Another difference is that a projection-biased
student who quits a task is better off quitting – since she underestimates the disutility of
completing the task even at the time of quitting – whereas a present-biased person would
benefit from completing the task.12 Thus, while a naive procrastinator would benefit from
committing to complete the task, a projector would be hurt by it.

3.3 Multi-Tasking with Concave Benefits

Let us now revisit the situation with convex disutility and decreasing returns to effort, but
with a twist: the person now divides her time between two tasks, each of which has decreasing
returns to effort. One of the tasks is more time-sensitive than the other task:

Definition 3. Task A is more time-sensitive than task B if the benefits from task B are
depreciating faster than those of task A, so that (conditional on doing both tasks) task B
should be done first. When there are only two tasks, I call the more time-sensitive task simply
the time-sensitive task and the less time-sensitive task the flexible task.

A task with an early deadline is more time-sensitive than a task with a late deadline or
no deadline. So is a task where there are very small benefits from early completion – such
as impressing one’s boss or colleagues by completing a task quickly. To illustrate, suppose
that Elaine has two problem sets due the same day, one in economics due at 3pm and one in
mathematics due at 8pm. Given these deadlines, she starts working on the economics problem
set first. For simplicity, assume that the benefits for each problem set are the same and given

11It is still possible that a person with naive (but not sophisticated) present bias starts a task that they
don’t complete if they have present bias at the hourly time frame, but this is substantially less likely than
procrastination, since procrastination entails delaying benefits, whereas dropping a task entails never receiving
them. Moreover, if present bias is over really short time intervals (say 10 minutes), then it is unlikely to be a
plausible explanation.

12Here I apply the welfare criterion based on a person’s long-run perspective, as in O’Donoghue and Rabin
(1999). Even if one does not apply that criterion, the projection-biased person is always better off quitting in
this setup.
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by B(.), which has decreasing marginal returns. After working on the first problem set for S
hours, she plans to spend E(S) hours on each assignment. She thus stops working on the
economics assignment when she thinks that she thinks that she has done half the work. Let’s
say that this happens after 5 hours, at which point she thinks that she will do another 5 hours
on the mathematics assignment. She is of course wrong, and overestimates how long she will
keep working. Thus she may stop working after only 3 hours on the mathematics assignment.
We know from proposition 1 that this choice is optimal conditional on her having spent 5
hours on the economics assignment – so the mistake she makes is to spend too much time on
the economics assignment, because she is overly optimistic at that time. As proposition 3
shows, while she works less on the second assignment than she should have, she works more
in total than would have been optimal.

Proposition 3. There are two tasks: a time-sensitive one with stictly concave benefits BS(.),
and a flexible one with strictly concave benefits BF (.). Let ẼS and ẼF be the actual effort
spent on the time-sensitive and flexible task respectively, and E∗F and E∗S be the optimal effort
levels. Then B′(ẼF ) > B′(E∗F ) = B′(E∗S) > B′(ẼS) and ẼF + ẼS > E∗F + E∗S.

The proposition states that, optimally, Elaine should have worked less in total than she
did, and she should have spent more time on the later task, and less on the earlier task. She
works too much because, by the time she should stop – say after 7 hours – she has only spent
2 hours on the mathematics assignment, due to spending too much time on the economics
assignment. Therefore her marginal benefit from working on the mathematics assignment
is higher than it would be had she worked optimally, and therefore she continues (correctly,
given that she cannot undo her earlier mistake) to work for longer to receive some of these
high marginal benefits.

A projection-biased person makes the same mistake when working on a single task
consisting of two or more subtasks, as long as each subtask is best done in one continuous
session. If the subtasks have a natural sequence, so that one subtask makes the subsequent
subtask easier, then Elaine will work too much on the earlier stages than on the later stages.
For instance, suppose that Elaine plans to read both the lecture notes and to finish a problem
set for the same class today. If she believes that the problem set will be easier after reading
the lecture notes, then she reads the lecture notes first and consequently spends too much
time on them.

In proposition 3, I assume that the person completes the first task fully before switching
to the second task. If instead the person constantly switches to the task with the highest
current marginal benefit, then we are back to the result of proposition 1. I already mentioned
one situation where this is likely not the case: when there is a natural order in which a person
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should do the tasks. A more general reason why this is unlikely to happen is switching costs.
Even very minor switching costs will keep Elaine from switching, since she doesn’t realize
that her decision would be beneficially affected by doing so. Moreover, the problem may
often be substantially worse than I described it, since most tasks consist of multiple subtasks.
A problem set consists of multiple problems, and thus Elaine will spend too much time on
the early questions at the expense of later questions, even if she did switch between the
mathematics and economics problem set. There is one very situation where Elaine would
switch more often: If Elaine is uncertain over how long she will take for the individual tasks
or subtasks, and she learns from working on each subtask, then she will quite naturally switch
between them in order to identify those tasks that will take her a long time and those that
won’t.13 Thus, in this particular instance, Elaine may be better off when she is more uncertain
about the benefits of each subtask, because this will lead her to switch more often.

4 Multi-Day Tasks and Multiple Deviations

In single-day tasks, a person with increasing marginal disutility is always overly optimistic
about how much she will work. In multi-day tasks, she is overly optimistic at the beginning of
each day, but if she works long enough, she becomes overly pessimistic: her marginal disutility
is higher than it will be in the future, and she thinks that she therefore underestimates how
much she will work on future days. She may therefore repeatedly change her mind about
whether a task is worth doing, fluctuating between perceiving it worthwhile when work the
marginal disutility is low and perceiving it not worthwhile when her marginal disutility is high.
In this section I study the how these fluctuations affect effort choices, as well as the welfare
implications thereof. Throughout the section the marginal disutility is strictly increasing
during a day, and given by D(·).

4.1 Multi-Day All-or-Nothing Task

Consider Beth, a student who is working on an all-or-nothing task with a deadline in T days.
She has an economics exam in 100 days and knows that she will receive a B in her final if she
does nothing but attend the required lectures. Getting an A on the final has a value of 1, 250
to her. If she studies 5 hours a day on average, Beth is sure to receive an A.

13More formally, what Elaine is uncertain about is how quickly the marginal benefits decrease from each
subtask.
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The daily disutility is quadratic: D(E) = E2

2 and D′(E) = E. First, note that Beth
at every moment either plans to complete the task efficiently, or to not do the task at all.
After all, at any given moment she plans to do what an unbiased person would do whose
actual disutility was given by D̃(.|S). On the first day, Beth therefore studies so long as she
perceives it worthwhile to study 5 hours every day. The disutility of studying 5 hours per
day is 100 ·D(5) = 1250, so an unbiased student would be indifferent between studying and
not studying. But Beth is projection-biased, with α = 0.5. At the start of the first day she
underestimates the disutility of the task and starts studying. After 2.5 hours of studying, her
marginal disutility is D′(2.5) · 5 = 2.5 · 5 = 12.5 = D(5), and she perceives the disutility of
working 5 hours on every future day correctly: D̃(5|2.5) = (1− α)D(5) + αD′(2.5) · 5 = D(5).
She therefore perceives the remaining disutility of studying 5 hours every day almost correctly:
she still slightly underestimates it because she underestimates the disutility of the 2.5 hours
of work she has to complete on the first day. Thus, she keeps studying a little, and as she
does so, she overestimates the disutility of studying 5 hours on future days and therefore soon
stops working.14 At the time she stops studying, she perceives the task no longer as worth
doing and believes, mistakenly, that she won’t resume it the next day. At the beginning of
the next day, the same pattern repeats: she starts studying when effort is not very unpleasant
is, planning to get an A; and then she stops once effort becomes sufficiently unpleasant.

When does this happen that Beth starts studying with the intention of studying 5 hours,
yet she stops studying before she has done 5 hours? If average daily benefits are strictly lower
than D̃(5|0) = 6.25, Beth will not start studying, since she doesn’t perceive it worthwhile even
at the beginning of the day. Similarly, it can be shown that she will work for a full 5 hours if
the benefits are strictly larger than 99 · D̃(5|5) = 99 · 18.75 – she perceives the remaining 99
days of work as worthwhile, even at the end of the first day.15 For daily benefits in the range
between (6.25, 99

10018.75), Beth will start studying on day 1, yet stop before having done 5
hours.

Every day, Beth thus either doesn’t study at all, studies inefficiently given how much work
still remains to be done, or studies efficiently. It is not difficult to see that if Beth doesn’t
study at all on day t, than she won’t study on day t+ 1 or any later day either, and therefore
not get an A. Similarly, if she studies efficiently on day t, then she will study efficiently on all

14More concretely, she certainly will stop working when she perceives the disutility of working 5 hours on
all future days as equal to the benefits of getting an A, that is once D̃(5|S) = 1250

99 , which we can solve for S
and find that S ≈ 2.56. In this particular case, she thus won’t work more than 2.56 hours on the first day.

15The condition that the disutility of work on future days is perceived worthwhile is necessary, but may
appear not sufficient. In this case, it is sufficient because one can show that the perceived disutility of
completing the task is strictly increasing over the course of the first day, so that it is enough to know the
perceived disutility of completing the task as perceived at the end of the first day, after 5 hours of work –
which is given by the 99 · D̃(5|5).
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future days and thus get an A. For instance, if after 50 days, Beth had only completed 50
hours of studying, she would have to study 9 hours per day on the remaining days, and she
wouldn’t start studying any longer. Alternatively, if after 75 days Beth had completed 300
hours of studying, she would have to work 8 hours a day for the remaining 25 days to receive
the full benefits worth 1250. She would work 8 hours a day, since she would perceive this as
worthwhile even after 8 hours of work: D̃(8|8) = 16 + 32 = 48 < 50 = 1250

25 . Whether or not
these situations also can happen for some initial benefit is answered by proposition 4.

The proposition formally states that for any average daily effort required, each of these
two outcomes – wasting effort on a task that won’t be completed and working inefficiently for
a while on a task that is completed – will happen for some average daily benefit, provided
that the number of days is sufficiently large. Thus, in our example, this means that if Beth
has to study on average 5 hours per day to receive some benefit T · b, then we can pick b = bL

such that Beth will fail to achieve the goal, yet waste time studying, and we can pick another
benefit b = bH > bL such that she will study 5 hours on average and receive the A, but she
will work less initially and more at the end. It shouldn’t be surprising that T has to be large,
since the result is clearly wrong for T = 1 given what we know from the single-day settings.
There we had, for instance, the result that people finish all tasks that they start if the task
requires effort E less than some EH (proposition 2).

Definition 4 (Multi-Day Task). The triplet (e, b, T ) denotes the following multi-day task:
the task has to be completed in T days, requires e · T hours of work to be completed and pays
b · T if completed by the end of day T .

Definition 5 (Partial Work). Take a multi-day task (e, b, T ), let et(e, b, T ) be the amount
of work the person actually exerts on day t, and let Et := T · e0 −

∑t−1
0 ei be the amount of

work that still remains to be done at the start of day t in order to complete the task. Then
a person works partially on day t if et > 0 and et < Et

T−t+1 , that is she does some work, but
stops working earlier than is optimal if she plans to complete the task.

Next I define the number of days for which a person doesn’t work at all, and the number
of days for which a person works efficiently, or fully (given the amount of effort remaining).

Definition 6. Fixing some E, let g0(B, T ) be the number of days for which et = 0, and let
gF (B, T ) be the number of days for which et = Et

T−t+1 . Let τi(B, T ) = gi(B,T )
T

for i ∈ {0, F}.

With these definitions out of the way, I can state the main proposition of this section:

Proposition 4. The disutility of effort is strictly convex with D′(0) > 0 and D′(E)→∞ as
E →∞. Consider a task (E,B, T ) with E > 0 fixed. Then there exist BH(E0) > BC(E0) >
BL(E0) > 0 with BH > D(E0) > BL such that
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• if B > BH , then the task is completed efficiently.

• if BH > B > BC, then limT→∞ τF (B, T ) = τF (B) ∈ (0, 1) and the task is completed
inefficiently.

• if BC > B > BL, then limT→∞ τ0(B, T ) = τ0(B) ∈ (0, 1) and the task is not completed.

• if BL > B, then no effort is spent on the task.

where τ0(B) is continuous and decreasing in B and τF (B) is continuous and increasing in
B.

Moreover, letting Ū(B, T ) = 1(B > BC)B −∑T
t=1D(et(B, T )) be the average daily utility

from task (E,B, T ), we have that limT→∞ Ū(B, T ) = Ū(B) when B ∈ [0, BC) ∪ (BC ,∞), is
strictly decreasing on (BL, BC) and strictly increasing on (BC , BH) with limB→B−C

Ū(B) ≤
−D(E).

What does the proposition mean? Notice first that the average daily effort and average
daily benefit are fixed – rather than total effort and benefit – but the number of days the
task requires potentially has to be very large. For instance, a problem set may be due in 5
days, yet require an average of 2 hours of work per day, while the final exam may be in 2
months and also require an average of 2 hours of work per day. The proposition then states
that if we fix the average effort for a task, there exist three thresholds BH > BC > BL > 0
such that if the actual average benefit of the task is low enough (strictly less than BL), then
Beth never starts the task – intuitively this is because the payment is too low for her to want
to start the task on the first day. If the average benefit is large enough (strictly larger than
BH) then Beth will complete the task efficiently, because she perceives the task worth doing
at all times.

If the payment B lies in (BL, BC) – which is a non-empty interval for every α > 0 and
every E0 > 0 – and if the task requires sufficiently many days (which depends both on B and
on E0), then Beth spends some days working inefficiently until some day T0 from which point
onward she never does any further studying. The day T0 is moreover such that T0

T
≈ τ0(E0, B),

which means that if T is sufficiently large, and if τ0(E0, B) = 0.3 say, then Beth always spends
close to the first 30% of days wasting pointless effort before she stops working for good. If
the payment B lies in (BC , BH), the result is similar, except that Beth spends the first 30%
of days working inefficiently before working efficiently on the task and finishing it.

The proposition also states that τ0(E0, B) is continuous and decreasing in B. Since τ0

is the fraction of days a person spends not working at all, it is clear that it goes from 1 to
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0. This means that there is some B such that Beth spends 10% of days not working (the
final 10% of days) or 1% if the benefits are larger, or 0.1 if the benefits are even larger. Thus
increasing the benefits initially doesn’t lead to completion of the task, but simply causes Beth
to waste more effort for more days on a task she fails to complete. The second part of the
proposition states that this in fact can lead Beth to almost complete the task, yet just fall
short, which of course means that she has occurred almost all of the disutility of doing the
task – on average D(E0) per day – yet receives no benefits. Thus the repeated fluctuations
may lead her to incur this welfare loss. In the example given previously where Beth needs
to study 5 hours per day on average, this states that Beth may incur welfare losses close to
D(5) = 12.5 per day on average.

Why does the result rely on T being large enough? I prove the result for a continuous-time
equivalent of proposition 4, where the actual effort levels, as well as τ0 and τF are continuous,
which makes it much easier to prove the results. In a setting with T days, τ0 clearly need not
be continuous in E0 and B: if for a small increase in B Beth wastes effort for one more day,
then τ0 jumps discontinuously since it is the fraction of two integers. As T becomes large, it
is possible to approximate the discrete-time solution with the continuous-time one, which
proves the result.

Proposition 5 partially answers the question whether BC > D(E0) or BC < D(E0). In
other words, it gives a partial answer to the question whether Beth will pass the exam if it
would be worthwhile for her to do so efficiently, or whether she fails to pass her exam even
though it would have been worthwhile doing so. Specifically, the proposition states that if
D′′′ < 0, Beth completes all worthwhile tasks, as well as some tasks that are not worthwhile.
And if D′′′ > 0, Beth fails to complete some worthwhile tasks. The proposition does not state,
though, that if Beth completes a task, she is better off. If D′′′ < 0 and Beth completes task
that would have been worthwhile if completed efficiently, it may still be the case that she is
worse off than if she had never worked on it, since she may complete the task very inefficiently.

Proposition 5. Let D′′ > 0 with D′(0) > 0, and consider a task given by (E, b, T ). Let
b̄(E, T ) be the threshold such that if b > b̄(E, T ) the task is completed, and if b < b̄(E, T ) the
task is not completed. Then we have that

• D′′′ < 0 =⇒ limT→∞ b̄(E, T ) < D(E)

• D′′′ > 0 =⇒ limT→∞ b̄(E, T ) > D(E)

The reason that D′′′ matters is as follows. Suppose that Beth faces a task with D(E0) = B

– one where an unbiased person is indifferent between completing it and not completing it
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efficiently – with E0 = 5. Then on the first day, Beth will do some work, but not the full 5
hours if T is large enough (this follows from proposition 4, since BH > D(E0 > BL). Let’s say
for simplicity that Beth works 2.5 hours and that T = 100. Then on the second day she faces
effectively a task with a deadline in 99 days, and one that requires 5 + 2.5

99 ≈ 5.025 hours on
average for each of those 99 days. Thus the change in total disutility of completing the task
efficiently starting on day 2 compared to completing it efficiently starting on day 1 has two
components. First, Beth doesn’t need to do the 5 hours on day 1 any more, so the disutility
decreases by D(5). Secondly, she has to do an additional 0.025 hours every day from now on,
which increases total disutility by 99 · (D(5.025) −D(5)). When the marginal disutility is
concave – when D′′′ < 0 – then the first factor wins out, and the disutility from completing
the task is smaller on day 2 than on day 1. Since on day 1 we had that D(E0) = B, this
means that the task is now strictly worth doing (if done efficiently). Thus the task becomes
strictly better, and thus is completed on the last day, since all worthwhile tasks are completed
on the final day. When the marginal disutility is convex – when D′′′ > 0 – then the task is
definitely not worth doing on the second day. In this case, the task becomes worse with every
passing day, and (if there are sufficiently many days) it becomes so bad that Beth eventually
stops working on it for good.

What does it mean that D′′′ < 0 rather than D′′′ > 0? A task that has D′′′ < 0 has
concave marginal disutility, which means roughly that the difference in disutility between
the 11th hour and the 10th hour of work is smaller than the difference in disutility between
the 2nd and the 1st hour. Thus while additional work is more unpleasant, the increase in
unpleasantness is smaller. When instead D′′′ > 0, then the difference between the 11th and
the 10th hour is larger than that between the 1st and the 2nd.

4.2 Multi-Day Multi-tasking

As we saw previously, a projection-biased person works optimally on a single task with concave
benefits, but when she multi-tasks, she works too much on time-sensitive tasks at the expense
of more flexible tasks. I now consider multi-tasking over multiple days. Specifically, I consider
what happens when Carla, a projection-biased student with projection bias 0.5, has an exam
in T days, and has to decide how much time to spend on various short-term tasks each
day, such as administrative tasks or attending lectures. As in one-day situations, Carla is
overoptimistic about how much she will work each day. This leads her to do too many of the
time-sensitive tasks during the day. Unlike in one-day situations, Carla doesn’t work as hard
at the end of the day to catch up, because she underestimates how many time-sensitive tasks
she will do on future days. In short, she thinks that in the future, unlike today, she will focus
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more on studying for the exam than she did today.

Suppose that Carla has an economics exam in 2 days. She receives benefits of 6 for each
of the first 8 hours of studying until then, and 3 for every hour thereafter. Each day, she can
also attend 2 hours of lectures for a mathematics class, each hour of which gives her benefits
of 4. Carla’s disutility is given by D(E) = E2

2 .16 What will Carla do? As long as she has
worked less than 2 hours, Carla thinks that the marginal disutility after 6 hours of work (4
from studying, and 2 from attending the lecture) is less than D̃′(6|2) = 1

2(D′(6) +D′(2)) = 4.
Since the benefits from the lecture are equal to 4, she therefore plans to attend the lecture.
Following the lectures, she plans to study for 4 hours, but after 2 hours of studying, she
realizes that the marginal benefit of attending the lecture tomorrow is less than the marginal
disutility. She therefore no longer plans to attend tomorrow’s lecture, and thus plans to do
the 8 hours of studying by working 5 hours each day and studies 3 hours the first day. Yet,
she starts the next day refreshed and attends the lecture, only to realized after 1.5 hours that
it isn’t worth staying. After 4.5 hours of additional studying, she gives up, having studied
only 7.5 hours in total, and having worked 1 hour more on the second day than on the first.

As proposition 6 shows, if a person first works on short-term tasks before working on
long-term tasks, then the person works too much on the short-term tasks at the expense of
the long-term task, and works more and more each day. On earlier days, she stops work early
because she underestimates how much time she will fritter away on future time-sensitive tasks,
and therefore has to work longer to achieve the gains from the long-term task.

Proposition 6. A person works on one long-term task over T days with benefits BL(e) =
BL(

∑T

t=1 et
T

) and each day faces a short-term task with benefits BS(e). Both BL and BS are
strictly concave. Let ẽS and ẽL be the amount of effort spent on the short-term and long-term
tasks by a projection-biased person, and e∗S and e∗L the optimal amounts.

When the person works first on the long-term task, then the behavior is equivalent to the
one-day setting in proposition 3 repeated T days in a row, where the long-term task takes the
role of the time-sensitive task, with daily effort given by the average daily effort BL.

When people work on the short-term task first, then ẽL,t ≥ ẽ∗L and e∗S ≥ ẽS,t, and ẽS,t is
decreasing over time, while ẽL,t and ẽS,t + ẽL,t are increasing in t.

In the example, Carla attends the lectures first because I assumed the lectures are early
in the day. This need of course not always be the case, although there is one natural setting

16As before, effort on economics studying or attending lectures has the same effect on her disutility, which
is a simplification. As long as the disutility for studying economics depends on some kind of ‘tiredness’ that
increases with the amount of time spent on doing mathematics, the results are qualitatively the same.
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where Carla would first work on the short-term task before working on the long-term task.
Suppose that Carla is uncertain both about the marginal benefits of the short-term task and
the long-term task, and she learns about those benefits while working on the tasks. If a task
turns out to be more beneficial than she expected, she will want to work for longer. If the
task she learns about is a short-term task, then she should work on the short-term task first,
since she will be able to smooth the shock over all the remaining days, by working less on the
long-term task today and make up for it on future days. For instance, suppose that Carla first
works on the problem set and learns that she will work 1 hour more than expected. Then
she can work one hour more on the problem set, yet only work one tenth of an hour more in
total the first day by spreading the shock across the remaining days. If on the other hand she
first studies for the exam, then once she finds out that she will work one additional hour, she
cannot undo her studying, and so can no longer smooth work across days. Thus, in the case
of uncertainty it will be quite natural for Carla to work first on the short-term task — and
thus to end up spending too much time on short-term tasks.

5 Careless Timing: Misallocation of Effort

In the previous section I showed that, even though they always plan on completing the task
inefficiently or not at all, projection-biased people may complete tasks inefficiently. This is
because their plans may fluctuate between completing a task and dropping it. In this section
I show that projection-biased people make plans that allocate effort inefficiently, even if they
total effort is fixed and they never decide to drop the task. The reason is that projection-biased
people underestimate the difference in marginal disutility at different times and therefore are
too willing to work more on days when they receive larger marginal benefits for their work or
on days when their productivity is higher.

5.1 Misallocation in General

A person on day 0 plans how much to work between days 1 and T . She has worked for S
hours on day 0, so that the instantaneous disutility from working is D′(S). She plans to work
ẽ(S) = (ẽ1(S), ..., ẽT (S)) where ẽt(S) is the day-t effort. These plans maximize her current
perceived utility:

Ũ(ẽ|S) := B(ẽ)−
T∑
t=1

D̃(ẽt|S) = B(ẽ)− (1− α)
T∑
t=1

D(ẽt)− αD′(S) · Ẽ (8)
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where B(ẽ) is the benefit from working and Ẽ := ∑T
t=1 ẽt is total effort across all days. I

will use the following lemma:

Lemma 1. Let Ua(e) = X(e) + a · Y (e), with X and Y continuous (real-valued) functions
of the vector e, and a ∈ R a fixed parameter. Let e(a) ∈ arg maxe∈E Ua(e) for some compact
set E. If aH > aL, then X(e(aH)) ≤ X(e(aL)) and Y (e(aH)) ≥ Y (e(aL)).

Lemma 1 says that if a person maximizes a sum of two utilities then the person who puts
more weight on the second dimension chooses a bundle with higher utility in that dimension.

Now suppose a person works on a given task requiring a fixed amount of effort E := ∑T
t=1 et.

We can rewrite total utility from equation (8) as follows

Ũ(ẽ|S) = B(ẽ)−
T∑
t=1

D(ẽt) + α

(
E0

(
T∑
t=1

D(ẽt)
)
−D′(S) · E

)
(9)

We can apply lemma 1 to see that a more biased person chooses effort such that
E0
(∑T

t=1D(ẽt)
)
− D′(S) · E increases with α. Thus total disutility increases or total ef-

fort E decreases or both. When total required effort E := ∑T
t=1 et is fixed, it must be the

case that total disutility increases. Of course, a projection-biased person only increases the
disutility if this also increases the benefits. She thus overreacts to benefits and opportunity
costs, underestimating how much this will cost her, as shown in the next proposition.

Proposition 7. Suppose that the person has to complete total effort E by day T . Then we
have that ẽ∗(S) = ẽ∗, so that planned effort does not depend on S. Moreover, ẽ is the same
as that of an unbiased person with actual disutility (1− α)D or, equivalently, with net benefits
B

1−α .

Let us consider what kinds of mistake this can lead to. Doris, a projection-biased student,
has to decide how to split 10 hours of studying across two days. Her disutility of effort is
convex, so that it becomes more unpleasant to keep studying the longer she has studied. A
good friend is visiting town tomorrow, so that Doris has higher opportunity costs of time
tomorrow than today. She therefore should work more today than tomorrow, say 7 hours
today and 3 hours tomorrow. But Doris underestimates how much more unpleasant it will be
to work an additional hour tomorrow and thus works even more today than she should, say 8
hours.17 In the next section, I show that when the marginal disutility is decreasing, then this
underestimation leads projection-biased people to take too many breaks.

17This underestimation in the domain of consumption choices would lead a person to consume goods too
fast, since she would not realize how much more she would enjoy eating something once she is hungry rather
than sated. This is exactly what Galak, Kruger, and Loewenstein (2013) find: people consume chocolates
faster when they choose themselves when to eat, yet report enjoying them less.
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5.2 Uncertainty, Productivity, and Time Discounting

Let us now move to a setting where people discount time. Doris has to complete an assignment
by tomorrow night that requires e1 + e2 = E hours. She discounts time: her disutility is
D(e1) + δD(e2), with δ < 1. When she has worked for S hours, she plans to stop after
completing e1(S) hours today, given by

D̃′(e1(S)|S) = δD̃′(e2(S)|S)

⇐⇒ (1− α)D′(e1(S)) + αD′(S) = δ(1− α)D′(e2(S)) + δαD′(S) (10)

⇐⇒ D′(e1(S))− δD′(e2(S)) = − α

1− αD
′(S)(1− δ)

which shows that e1(S) > e∗1 when δ < 1 and D′(S) > 0. She stops working when her
current perceived plan is equal to (or less than) what she has done, that is when e1(S) = S.
Substituting this into (10), we get

D′(ẽ1) = δ(1− α)D′(ẽ2) + δαD′(ẽ1)

⇐⇒ D′(ẽ1) = 1− α
1− δαδD

′(ẽ2)

and so she acts as if her discount rate was 1−α
1−δαδ, which is strictly less than δ.

A similar overreaction happens when Doris doesn’t discount time but may learn how to
complete the assignment more efficiently tomorrow. For instance, the next lecture might
provide a shortcut about how to solve the assignment. Say that Doris knows that she can
solve the problem in 4 hours, but she expects that with probability p she may learn a shortcut
tomorrow, in which case she will only have to spend 15 minutes to write the solution up. If
she does no work at all today and she learns no shortcut tomorrow, then she has to do the
full 4 hours tomorrow. Her optimization problem is

min
e1

D̃(e1) + (1− p)D̃(4− e1) + pD(0.25)

with first order conditions given by

D̃′(e1) = (1− p)D̃′(4− e1)
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The projection-biased person stops again when s = e1(s)

D′(e1) = (1− p)(1− α)D′(4− e1) + (1− p)αD′(e1)

⇐⇒ D′(e1) = 1− α
1− αqqD

′(4− e1)

where q = 1− p. As in the case of discounting, since 1−α
1−αq < 1 she works too little today.

Both of these results are special cases of proposition 8.

Proposition 8. Suppose a person allocates effort over T days, with uncertainty over what
the total amount of required effort is. Uncertainty resolution is independent of the person’s
actions. On the final day, the state is known and the constraint Es = ∑T

t=1 pt · et must hold,
where pt is her (known, exogenously given) productivity on day t. Then on the first day, she
perceives the first order conditions after s hours of work as

D′(ẽ1(s))− qtE(D′(ẽt(s))) = − α

1− αD
′(s)(1− qt)

where qt = pt
p1

and ẽ1, thus solves

D′(ẽ∗1) = 1− α
1− αqt

E(D′(ẽ∗t|1))

where ẽ∗t|1 is the amount of work on day 6 the person plans at the end of day 1.

When T = 2, if q2 < 1, we have that ẽ1(s) decreases with s, and if q2 < 1, we have that
ẽ1(s) increases with s.

Using these first order conditions, we can show the following:

Proposition 9. Consider the same setup as in proposition 8, with qt weakly increasing and
the optimal solution having e∗1 > 0. If qt is strictly increasing, or the optimal solution is
such that there will be no work on at least one day, then denoting by Ẽ∗t the total amount
of work done by the beginning of day t, we have that Ẽ∗t < E∗t ∀t > 1. Moreover, the person
overestimates on day t how much work she will have done by day t′ > t.

Similarly, if there is a maximum amount of work a person can do in a day, say Ē, then if
qt is strictly decreasing or if optimal effort is equal to Ē on some days but never zero, then
Ẽ∗t > E∗t . Moreover, the person underestimates on day t how much work she will have done
by day t′ > t.
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Here is an example of proposition 9 in action. Betsy has to complete an assignment
that would take her E = 18 hours of work if each day she was as productive as she is
today. Fortunately for her, she has lectures tomorrow and office hours the day after that:
during lectures and office hours she will learn shortcuts for completing the problems on the
assignment. Specifically, every hour of work done tomorrow is worth 1.5 hours of work today,
while every hour of work done in two days is worth 1.5 hours of work tomorrow.

Obviously, she should work less today than tomorrow, since she will become more efficient
at solving questions. Suppose that her disutility is quadratic. The optimal effort levels
should satisfy the first order conditions D′(e∗1) = 1

p
D′(e∗2) = 1

p2D
′(e∗3), which leads to e∗1 ≈ 2.2,

e∗2 ≈ 3.33, and e∗3 ≈ 4.95. On day 1, Betsy instead solves her perceived first order conditions,
which we can derive as in the 2-day case to be D′(ẽ1) = 1−α

1−α 1
p

1
p
D′(ẽ2|1) = 1−α

1−α 1
p2

1
p2D

′(ẽ3|1),
where ẽi|1 indicates that it is the effort Betsy perceives to be optimal at the end of day 1.
These are given by ẽ1 ≈ 1.52, ẽ2|1 ≈ 3.03, and ẽ3|1 ≈ 5.29.

Yet, on day 2 she will not do what she thought she would do. She solves her new perceived
first order condition, which is now exactly as in the 2-day case, taking into account that
she worked roughly 1.52 hours on day 1: D′(ẽ2) = 1−α

1−α 1
p

1
p
D′(ẽ3). Solving this, we find that

ẽ2 ≈ 2.75 and that ẽ3 ≈ 5.50. Betsy was already planning to work less than she should,
planning to do 3.03 instead of 3.33, yet she ends up doing even less, namely 2.75. Thus, Betsy
postpones too much work, and thinks that she will have done more by the end of day 2 than
will be the case. The reason is that Betsy wants to delay more effort, the more unpleasant
effort is at that time. Betsy correctly understands that doing 1 minute less of work requires
her to do 40 seconds more work tomorrow. Thus she saves 20 seconds, which she perceives as
more unpleasant the more unpleasant effort is right now. Therefore she is willing to delay
more work until tomorrow to take advantage of her higher productivity. Since tomorrow she
will work more, she will be more tired at the end of the day when she decides to stop, and
therefore she will want to delay more at the end of day 2 than at the end of day 1 and stops
working earlier than anticipated.

6 Concave Disutility

Until now I have assumed that the daily disutility D is convex, so that work becomes more
unpleasant the longer a person works. While this is often correct, it is also true that some
tasks become easier as we warm up or become focused, before eventually becoming harder
as fatigue and boredom take over. Warm up is an integral part of both sports and music
performance, and many tasks that require focus, such as writing or programming, get easier

28



after an initial time of settling in. For this reason, in this section I explore daily disutility
that, at least initially, is concave.

When a projection-biased person with concave disutility faces a single all-or-nothing task,
she overestimates the task’s disutility at the start of the day and therefore fails to do some
worthwhile tasks. Let us consider the same situation as in section 3, where a high-school
student named Alice has a deadline to finish a college application by midnight. Her daily
disutility is D(E) = 6 · E − E2

2 for E ≤ 6. The application takes her exactly 6 hours to
complete and is worth B = 20. Since D̃(6|0) = 27 > 18 = D(6), Alice decides not to complete
the application: she is willing to start the application only if B > 27.

This result also holds when D is first concave and then convex. Concretely, suppose
that D(·) is concave for E < Ē and convex on E > Ē for some Ē > 0. Then there is a
threshold EL such that Alice overestimates the task’s disutility if it takes fewer than EL

hours to complete, and she underestimates it if it takes more. We thus obtain the following
proposition which, when the task is large enough, mirrors proposition 2 and, when the task is
small enough, mirrors the preceding example.

Proposition 10. Let D be concave for E < Ē and convex for E > Ē, with Ē > 0. The
marginal disutility eventually becomes larger than it is initially: limE→∞D

′(E) = D̄ with
D̄ > D′(0). A self-directed person faces an all-or-nothing task requiring effort E0 and paying
B if completed. Let Ẽ be the actual effort exerted and U(Ẽ) = 1(Ẽ = E0) · B −D(Ẽ) the
total utility. Then there exist unique EH and EL with EH > EL > Ē and D′(0) = D(EL)

EL
such

that the following hold:

• ∀E0 > EL, ∃B s.t Ẽ > 0 and B −D(E0) < 0.

• ∀E0 < EL, ∃B s.t Ẽ = 0 and B −D(E0) > 0.

• ∀E0 < EH if Ẽ > 0 then Ẽ = E0.

• ∀E0 > EH , ∃B s.t. 0 < Ẽ < E0.

Now suppose that we know that Alice will complete the application for sure, but she can
take a break, whether to have coffee with a friend, respond to emails, or do homework. Since
her disutility is concave, she should work without interruptions, unless the benefits B from
taking a break are positive. Suppose that after 3 hours of work, a friend asks Alice if she
wants to grab coffee. As we have seen in 7, Alice underestimates the change in disutility by a
factor of 1 − α = 0.5. Thus, since the actual change in disutility from taking the break is
3 for each of the 3 hours she will have to do after the break, she perceives the increase in
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disutility to be (1− α)(3 · 3) = 4.5 and joins her friend if B > 4.5, even though she should
only do so if B > 9.

Now consider the case where Alice can work up to 6 hours on her application, with each
hour of work having a benefit of 5. Then Alice may take a break expecting to continue working
on the application afterwards, yet fail to resume the task. She starts the application, since
5 · 6 = 30 > 27 = D̃(6|0). After 3 hours of work, her friend again asks her if she wants to have
a break. If she takes a break, she will fail to resume the task, since her perception of resuming
again will be D̃(3|0) = 1

2(D(3)+D′(0)·3) = 1
2(13.5+18) = 15.25 > 15 = 3·5. But after 3 hours

of work, Alice mistakenly thinks that she will resume the task, since she currently perceives the
disutility of completing 3 hours after the break as D̃(3|3) = 1

2(13.5 +D′(3) · 3) = 11.25 < 15.
As we just saw, she thinks that the increase in disutility from taking the break is only 4.5
and thus takes a break if the benefits exceed 4.5. Since she doesn’t resume the task, she in
fact is worse of by 3 · 5− (D(6)−D(3)) = 11.5, so that if B ∈ (4.5, 11.5) she is strictly worse
off from taking the break.

Moreover, Alice may fail to resume a task even if the task becomes easier only over very
short time intervals – if Ē is small. To take an extreme example, suppose D′(0) = 6 and
D′(E) = 2 ∀E > 0, so that the task is instantaneously easier after Alice gets started. Then
as long as Alice resumes the task, she doesn’t incur any costs. But because there are no costs
incurred from resuming, she always thinks that she will resume the task if she currently would
continue, and therefore she will take every opportunity for beneficial breaks, even though she
may not resume the task, since she overestimates the disutility when she has to start.

One way that Alice can overcome the failure to start a worthwhile task is to front-load
benefits. Let us stick with the example where D′(0) = 6 and D′(E) = 2 ∀E > 0. Suppose the
benefits per hour are b and that Alice can work for at most 6 hours on the task. Then she
perceives the task worthwhile doing if b > 4 = D̃′(E|0), and not worthwhile if b < 4, even
though it is worth doing as long as b > 2. If instead, Alice perceived the rewards of the first
hour to be b + 1 and the rewards of the other hours to be equal to b − 1

5 , then she would
start working for b > 3 – and once she starts working, she will continue to work as long as
b− 1

5 > 2. In short, Alice would complete all 6 hours if b > 3, even though the total benefits
from doing so did not increase. Whenever Alice doesn’t start a worthwhile task, there is a
way to front-load benefits (without raising total benefits) such that Alice completes all the
work.
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7 Discussion and Conclusion

Throughout the paper, I made three assumptions on the instantaneous disutility. First I
assumed that a person either works or doesn’t work, ruling out intensity of effort. Second I
assumed that the instantaneous disutility depends only on total time a person has worked so
far, ruling out breaks and rest during a day. And third, I assumed that people know their
disutility, but misperceive it. I now discuss each of these assumptions in turn.

It is straightforward to extend the results in sections 3 and 4 to allow for intensity of effort.
These results rely on the person being overly optimistic when work is currently easy and
overly pessimistic when it is currently hard, which remains true when we allow for intensity of
effort. In the notation of section 2, the instantaneous disutility is d(e, s) where e is no longer
restricted to 0 or 1, and a projection-biased person perceives her future instantaneous disutility
as d̃(e, s|s0) = (1− α)d(e, s) + αd(e, s0) when she is in state s0. If d(e, s) is increasing in s,
then a person starts some all-or-nothing tasks that are overly ambitious, yet may quit once
she becomes tired. She will also work too much on time-sensitive tasks when multi-tasking,
underestimating how soon she will stop working on other tasks afterwards.

On the other hand, the results in section 5 do change in meaningful ways. Whereas in
the simple framework, a person can only change the timing of effort by working more on one
day – by changing the extensive margin of time – now she can also work more on a given
day by working at a higher intensity – by changing the intensive margin. When a person
responds to changes in incentives and opportunity costs primarily along the extensive margin
– by working longer, but not harder – the results in section 5 hold: the person overreacts
to incentives and opportunity costs, working too much on days where incentives are higher
or costs lower. If however, she responds primarily along the intensive margin, this need no
longer be true. Consider, to take the extreme case, a person who has to work for exactly 8
hours every day, but can choose the intensity of effort at every moment. She has to complete
an all-or-nothing task, requiring a fixed amount of work, so that she only decides when to
work, but not how much. Then, at the end of the first day, being tired she underestimates
how easy work will be the next day and therefore works more on the first day, even when
there are no incentives to do so and no differences in opportunity cost of time. Thus the
intensive margin has new implications, and may push behavior in a different direction from
the extensive margin studied in section 5.

Let us now relax the assumption of no rest during a day and consider a person who
can take a fixed number of breaks in a day. This is identical to the situation analyzed in
section 4. The main lesson from section 4 was that repeated fluctuations in plans can lead to
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inconsistent behavior with large welfare consequences for all-or-nothing tasks, and that people
are systematically overly optimistic about how well they will complete long-term tasks with
decreasing returns to effort. If a person can take breaks during a day, these results extend
to daily tasks. Since a person doesn’t become fully rested after a break and can choose how
many breaks to take, the fluctuations in marginal disutility during a day will be less severe
than those studied in section 4, which may attenuate – but not reverse – these results.

Finally, people are often uncertain about their disutility of effort, in which case a projection-
biased person may mislearn what her actual disutility is. She may mistakenly attribute her
dislike of a task she always does when tired to the task itself, rather than to the fact that she
is always tired when doing it. This may lead to the type of attribution bias as described in
Haggag and Pope (2016). This type of incorrect belief updating may lead her to become too
confident that some tasks are better than others – or fail to realize that this is the case.

All of this suggests that the basic logic drawn out in this paper – the repeated fluctuation
between overly optimistic and pessimistic, the inconsistent plans, the inefficient effort allocation
– are robust to extensions that allow for effort intensity and flexible breaks.
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A Proofs

A.1 Proofs for Section 3

Proof of proposition 1.

Proof. A projection-biased person solves the same maximization problem as an unbiased
person, but perceives her disutility to be D̃(.|S) at time S. The first order condition thus
depends on time S:

D̃(Ẽ∗(S)|S) = B′(Ẽ∗(S)) ⇐⇒ (1− α)D′(Ẽ∗(S)) + αD′(S) = B′(Ẽ∗(S))

Let E∗ be the optimal level of effort, so that D′(E∗) = B′(E∗). Then S < E∗ =⇒
D′(S) < D′(E∗) =⇒ D̃(E∗|S) < D′(E∗) = B′(E∗), so that Ẽ∗(S) > E∗, since B is concave
and D strictly convex. Similarly, if S = E∗, then D̃′(E∗|S) = D′(E∗) = B′(E∗). Thus as
long as the person has worked less than E∗, she plans to work more than E∗ and continues
working, and once she has worked E∗ she stops.

Here is the proof of proposition 2.

Proof. Let R̃(E|S) := D̃(E|S) − D̃(S|S), the perceived remaining disutility of completing
the task after S hours of work have already been completed. Notice that the person works as
long as R̃(E|S) < B, never works when R̃(E|S) > B.

The first part of the proposition claims that for all E > 0, it is possible to find a B > 0 such
that the person starts working on the task. Notice that D̃(E|0) = (1−α)D(E) +αD′(0) ·E <
D(E), since D(E) =

∫ E
0 D′(S)dS >

∫ E
0 D′(0)dS since D(·) is strictly convex and E > 0. Pick

B ∈ (D̃(E|0), D(E)). Then, since R̃(E|0) = D̃(E|0) and since R̃(E|S) is continuous in S, we
have that R̃(E|ε) < B for some sufficiently small ε > 0, so that the person will work at least
for a time ε. This proves the first part of the proposition.

Now define R̃∗(E) := maxS∈[0,E] R̃(E|S), that is, the worst perceived remaining disutility
of completing the task. Of course, for an unbiased person, the worst remaining disutility is
always at the start when the most work remains to be done, but this won’t necessarily hold for
projection-biased people. Notice that if R̃∗(E) < B, then the task is always perceived worth
doing and therefore is completed. If R̃∗(E) > B, then the task is definitely not completed,
since at some point the person perceives it not worth doing. Finally, if R̃(E|0) < B and
R̃∗(E) > B, then the person starts the task, but does not complete it.

Let E := {E ≥ 0 : R̃∗(E) > B > R̃(E|0)}. I will show that E = (EH ,∞) for some
finite EH > 0, which proves that if E > EH , then we can pick B in the non-empty interval
(R̃(E|0), R̃∗(E)) and the person starts the task but fails to complete it. Moreover, I will show
that if E < EH , then R̃(E|0) > R̃(E|S) ∀S ∈ (0, E], which means that if the person starts
the task, she also completes it.

First, let us show that E is not the empty set. Pick some S > 0 such that D′(S) > 0.
Notice that R̃(E|S) − R̃(E|0) = D̃(E|S) − D̃(S|S) − D̃(E|0) = (1 − α)(D(E) − D(S) −
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D(E)) + αE(D′(S)−D′(0)) + αSD′(S) = −D(S)(1− α) + αSD′(S) + αE(D′(S)−D′(0)).
Since D′(S) − D′(0) > 0, this expression becomes positive for sufficiently large E, say for
E > Ē, so that R̃(E|S)− R̃(E|0) > 0 for all E > Ē. Thus E is not empty.

Further, notice that R̃∗(E)− R̃(E|0) > 0 and E ′ > E we have

(1− α)D(E) + αED′(S)− (1− α)D(S)− αSD′(S) > (1− α)D(E) + αED′(0)
⇐⇒ αE(D′(S)−D′(0)) > (1− α)D(S) + αSD′(S)
⇐⇒ αE ′(D′(S)−D′(0)) > (1− α)D(S) + αSD′(S)

⇐⇒ R̃∗(E ′) > R̃(E ′|0)

Thus if E ∈ E , then E ′ ∈ E . Let EH = lim inf E . Then if E > EH , since by definition
of EH , there is some E ′ ∈ (EH , E) such that E ′ ∈ E , so that E ∈ E . Moreover, EH /∈ E ,
since either EH = 0 (in which case it is obvious) or EH > 0. If EH > 0 and EH ∈ E , then
R̃(EH |S) > R̃(EH |0) for some S > 0, and thus R̃(EH − ε|S) > R̃(EH − ε|0) for sufficiently
small ε, which contradicts the definition of EH as lim inf.

Finally, note that when E < EH , we must have that 0 > R̃(E|S)− R̃(E|0) ∀S > 0. If not,
then R̃(E|S)− R̃(E|0) = 0 and we know that the LHS strictly increases in E, which would
imply that EH ∈ E . And thus we are done.

Proof of proposition 3:

Proof. The person – by assumption – first works on the first task, and then on the second
task. As long as she works on first task she solves the following first order conditions:

D̃′(Ẽ∗1(S) + Ẽ∗2(S)|S) = B
′

1(Ẽ∗1(S)) = B
′

2(Ẽ∗2)

She switches to the second task when the amount she has worked on the first task so far,
S, is equal to how much she thinks she should optimally work on the first task, Ẽ∗1(S). Let
Ẽ∗1 be the actual time by which she switches to the second task , which must satisfy the first
order condition when S is equal to it. Thus:

D̃′(Ẽ∗1 + Ẽ∗2|1|Ẽ∗1) = B
′

1(Ẽ∗1) = B
′

2(Ẽ∗2|1)

where Ẽ∗2|1 is the amount she plans to work on task 2 when she switches. Note that
B
′
1(Ẽ∗1) = B

′
2(Ẽ∗2|1) implies that Ẽ∗1 > E∗1 ⇐⇒ Ẽ∗2|1 > E∗2 ⇐⇒ Ẽ∗1 + Ẽ∗2|1 > E∗1 + E∗2 , since

the B∗i are strictly convex.
We can now show that Ẽ∗1 > E∗1 . Suppose not. Then we have
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D̃′(Ẽ∗1 + Ẽ∗2|1|Ẽ∗1) < D̃′(Ẽ∗1 + Ẽ∗2|1|Ẽ∗1 + Ẽ∗2|1)
= D′(Ẽ∗1 + Ẽ∗2|1)
< D′(E∗1 + E∗2)
= B′(E∗1)
< B′(Ẽ∗1)

which shows that it does not satisfy the first order condition. Thus Ẽ∗1 > E∗1 .
Once she switches, she keeps working on the second task, she will only want to reduce

E1, which she cannot do. Thus she takes Ẽ∗1 as a given. Thus she now simply solves the first
order condition

D̃′(Ẽ∗1 + Ẽ∗2(S)|S) = B
′

2(Ẽ∗2(S))

and as before, she stops once S is equal to the total effort she feels she should exert, that
is S = Ẽ∗1 + Ẽ∗2 :

D̃′(Ẽ∗1 + Ẽ∗2 |Ẽ∗1 + Ẽ∗2) = B
′

2(Ẽ∗2)
⇐⇒ D′(Ẽ∗1 + Ẽ∗2) = B′(Ẽ∗2)
⇐⇒ D′(Ẽ∗1 + Ẽ∗2)−B′(Ẽ∗2) = 0
⇐⇒ D′(E∗1 + Ẽ∗2 + x)−B′(Ẽ∗2) = 0 for some x > 0

Since D′(E∗1 +E∗2 + x) > D′(E∗1 +E∗2) = B′(E∗2), we must have that Ẽ∗2 < E∗2 . Otherwise,
D′(E∗1 + Ẽ∗2 + x) > B′(E∗2) > B′(Ẽ∗) and the first order condition can’t hold.

Therefore, D′(Ẽ∗1 + Ẽ∗2) = B′(Ẽ∗2) > B′(E∗2) = D′(E∗1 + E∗2), so that Ẽ∗1 + Ẽ∗2 > E∗1 + E∗2
and we are done.

A.2 Proofs for Section 4

A.2.1 Proofs of Results on Multi-Day All-or-Nothing Task

In the first part of this section, I prove the propositions 4 and 5 for a continuous-time version
of the task, which I show in the second part to be the limit case as T →∞, which then proves
the original propositions.

Proofs of Results on Multi-Day All-or-Nothing Task: Continuous Time Setup

First, I need some notation to talk succinctly about tasks and I need to define the
continuous-time problem.
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Definition 7. A discrete-time task requiring total effort E0 · T , paying rewards B0 · T if
completed by the end of day T is written as task (E0, B0, T ). A continuous-time task requiring
total effort E0 and paying total rewards B0 if completed by time 1 is written as (E0, B0).

Definition 8. Consider a person facing a task (E,B, T ). Then the continuous time problem
corresponding to this discrete time problem is as follows. At every time x ∈ [0, 1) a person
chooses instantaneous (flow) effort ex, based on receiving total benefits B for completing total
effort E by time x = 1. Let Ex for x ∈ [0, 1) be the effort remaining at time x – that is
Ex = E −

∫ x
0 ex′dx

′. The initial condition is E0 = E and a task is completed if E1 = 0.
Instantaneous effort ex satisfies the following:

ex =


0, if G(x, 0, Ex) > B
Ex

1−x , if G(x, Ex1−x , Ex) < B

e∗x otherwise, with G(x, e∗x, Ex) = B

where G(x, s, E) = (1− α)(1− x) ·D( E
1−x) + αD′(s)E.

Notice that ex solves a similar maximization problem, as if at instant x she did work more
and more and perceive effort at later times as more costly. Intuitively, the difference with
the discrete time setup is that we do not need to take into account that the more a person
has worked, the less work there remains to do, since the instantaneous work doesn’t matter,
which ensures that the perceived remaining disutility always increases during the ’period’ at
time x. Readers who do not like this interpretation can simply treat the continuous time
problem as an analytical device.

The proofs will refer to the times τ0 and τF , which are (roughly) the total time a person
spends not working at all or the total time a person works efficiently given how much she
worked up to a given time x. Formally and concretely, we have the following definition:

Definition 9. Let τ0(E0, B0) := lim inf{1 − x : x ∈ [0, 1) and G(x′, 0, Ex′(E0, B0)) <
B0 ∀x′ < x}.

Let τF (E0, B0) := lim inf{1 − x : x ∈ [0, 1) and G(x′, Ex′ (E0,B0)
1−x′ , Ex′(E0, B0)) > B0 ∀x′ <

x}.

With this, let us first prove that Ex(E0, B0) for x < 1 is Lipschitz continuous in a
neighborhood of (E0, B0, x) and that it is increasing in E0.

I will use the following theorem (from https://www.math.washington.edu/~burke/crs/
555/555_notes/continuity.pdf) to prove continuity.

Theorem 1. Consider the initial value problem

x′ = f(t, x, µ), x(t0) = y

If f is continuous in t, x, µ and Lipschitz in x with Lipschitz constant independent of t and
µ, then x(t, µ, y) is continuous in (t, µ, y) jointly.
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Then we get continuity as follows:

Lemma 2. Suppose that D′(0) > 0. The solution Ex(E,B) to the continuous-time problem
restricted to x ∈ [0, 1− ε] with ε > 0 exists and is Lipschitz continuous in x, E, and B, on
[0, 1− ε]× [E, Ē]× [0,∞], for some Ē > E > 0.

Proof. We have that Ėx = −e(x,Ex, B) with

e(x,Ex, B) =


0, if G(x, 0, Ex) > B
Ex

1−x , if G(x, Ex1−x , Ex) < B

f(x,Ex, B) otherwise

where G(x, s, E) = (1 − α)(1 − x) · D( E
1−x) + αD′(s)E, and f(x,E,B) :=

(D′)−1
(
B−(1−α)(1−x)D(E)

αE

)
. Given theorem 1, we only need to show that ex(x,E,B) is

continuous in t, E, and B, and Lipschitz continuous in E. Notice that G and f are continuous
functions.

First, notice that when G(x, 0, E) = B, by definition of G and f we have that f(x,E,B) =
(D′)−1(D′(0)) = 0, and similarly when G(x, E

1−x , E) = B, we have that f(x,E,B) = E
1−x .

Thus e(x,E,B) restricted to A := {(x,E,B) : G(x, 0, E) ≥ B} is the constant 0 function,
e(x,E,B) restricted to B := {(x,E,B) : G(x, E

1−x , E) ≤ B} is equal to E
1−x , and e(x,E,B)

restricted to C := {(x,E,B) : G(x, 0, E) ≤ B and G(x, E
1−x , E) ≥ B} is equal to f(x,E,B).

If we can show that e(x,E,B) restricted to A, B, and C is Lipschitz in all parameters (which
is stronger than what we need), then e(x,E,B) is Lipschitz continuous in all parameters over
the union of A, B, and C. The reason is that all three regions are closed, and thus contain their
limit points. Here is why. Suppose we have two points x = (x,E,B) and x′ = (x′, E ′, B′) and
we want to show that |e(x,E,B)−e(x′, E ′, B′)| < K(|x−x′|+ |E−E ′|+ |B−B′|) for some K.
First, if both points are in the same region, then this immediately holds, by the assumption that
the function is Lipschitz in that region. Now suppose that the two points are in regions A and
C. These two regions share a common border. Thus there exists some point x′′ = (x′′, E ′′, B′′)
on the line connecting the two points that belongs to both regions (this is the part that requires
both A and C to be closed), so that |e(x,E,B)− e(x′, E ′, B′)| = |e(x,E,B)− e(x′′, E ′′, B′′) +
e(x′′, E ′′, B′′)− e(x′, E ′, B′)| ≤ |e(x,E,B)− e(x′′, E ′′, B′′)|+ |e(x′′, E ′′, B′′)− e(x′, E ′, B′)| <
K(|x−x′′|+|E−E ′′|+|B−B′′|+|x′′−x′|+|E ′′−E ′|+|B′′−B′|) = K(|x−x′|+|E−E ′|+|B−B′|),
where |x− x′′|+ |x′′ − x′| = |x− x′| because the point ~x′′ lies between the two points (is a
convex combination of) x and x′.

Restricting ourselves to E0 ∈ [E, Ē], it is clear that e(x,E,B) is Lipschitz on A, where it is
constant. It is equally clear that e(x,E,B) is Lipschitz continuous on B since (by assumption)
we are only considering x ≤ 1− ε, that is 1− x ≥ ε.

Finally, e(x,E,B) is Lipschitz continuous on C, since (by assumption) D′(0) > 0. It
is clear that Ex ≤ E0, so we can pick Ē > E0. We also need to show that, starting with
E0 ∈ [E, Ē], we will not fall below E before time x. Given that the maximum instantaneous
effort is given by Ex

1−x it is not hard to see that at most a fraction x of the total effort will
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be completed by time x (the efficient amount, conditional on trying to complete the task).18

Thus if E0 ≥ 1
ε
E, then Ex will be larger than E for all x ≤ 1− ε. Thus we have shown that

e(x,E,B) is Lipschitz continuous when x ≤ 1 − ε, E ∈ [E, Ē] and B ≥ 0, for any ε > 0,
E > 0, Ē > 0.

Lemma 3. If G(x, 0, Ex) > B, then G(x′, 0, Ex′) > B for all x′ ≥ x. Similarly, if
G(x, Ex1−x , Ex) < B, then G(x′, Ex′1−x′ , Ex′) < B for all x′ ≥ x.

Proof. Suppose not. Then there exists 1 > x′ > x such that G(x′, 0, Ex′) ≤ B. Note that
because Ex is continuous on [0, x′ + ε] for sufficiently small ε, and because G is continuous
in all its arguments, we know that G(x + ε1, 0, Ex+ε1) > B for sufficiently small ε1. Now
let x∗ := lim inf{x′ > x : G(x′, 0, Ex′) ≤ B}, then x∗ > x. Moreover, G(y, 0, Ey) > B for
all x ≤ y < x∗ and therefore ey = 0. Thus Ex∗ = Ex −

∫ x∗
x eydy = Ex. Hence we have

that G(x∗, 0, Ex∗) = G(x∗, 0, Ex) > G(x, 0, Ex) > B, since G is strictly increasing in x. But
then by continuity of Ex and G, we have that G(x∗ + ε2, 0, Ex∗+ε2) > B for sufficiently small
varepsilon2, which contradicts the definition of x∗.

A similar argument works for the second part of the lemma.

Now let us prove that Ex is increasing in E0:

Lemma 4. For a fixed x < 1 and B0 > 0, Ex(E0, B0) is increasing in E0.

Proof. Let ∆x = Ex(E
′
0, B0) − Ex(E0, B0) for some E ′0 > E0 > 0. We need to show that

∆x ≥ 0.
Notice that ∆0 = E

′
0 − E0 > 0 and that d∆

dx
= e

′
x − ex. Since Ex is continuous, we

have that ∆x > 0 for all x < ε at least. Suppose that the claim is false, so that there
x∗ := lim inf{x : ∆x∗ = 0} exists. Then x∗ ≥ ε > 0. Note that for all x < x∗, ∆x∗ > 0.
Thus E ′x > Ex. Therefore if G(x, 0, Ex) > B, then G(x, 0, E ′x), and hence ex = e

′
x = 0. If

G(x, ex, Ex) = B, then G(x, ex, E
′
x) > B, since G is increasing in E, and therefore e′x < ex

because G is increasing in its second argument. (Note that it could have been possible that
the third condition holds, i.e. G(x, E

′
x

1−x , E
′
x) < B, but this would imply G(x, Ex1−x , Ex) <

B contradicting G(x, ex, Ex) = B.) Finally, if G(x, Ex1−x , Ex) < B, then ex = Ex
1−x and

e
′
x ≤

E
′
x

1−x . Thus it is easy to see that d∆x

dx
≥ Ex−E

′
x

1−x = ∆x

1−x , and therefore for x < x∗

∆x∗ = Dx +
∫ x∗
x

d∆x

dx
dx ≥ Dx +

∫ x∗
x

∆y

1−ydy. We know by the definition of x∗ that ∆x > 0 for
x < x∗. Pick x ∈ [x∗− δ, x∗) that achieves a maximum of ∆x (possible since ∆x is continuous).
Then we have that ∆x∗ ≥ Dx −

∫ x∗
x

∆y

1−ydy ≥ Dx −Dx
δ

1−x∗ >
1
2Dx > 0 when δ < 1

2(1 − x∗).
Thus ∆x∗ > 0 and therefore (by continuity) ∆x∗+ε > 0 for some small ε > 0, which contradicts
the definition of x∗. Thus the claim is proved.

Lemma 5. Ex(E0, B0) ≥ Ex′
1−x′
1−x′ for 1 > x > x′ ≥ 0.

18This statement is proved in Lemma 5
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Proof. Notice that for any ε, we can choose sufficiently large B0 so that G(x′, Ex′1−x′ , Ex′) < B0

for all x′ < 1− ε. Therefore by lemma 3 we know that G(x, Ex1−x , Ex) < B0 for all x′ < x, and
thus ex = Ex

1−x . We can solve the differential equation

Ėx = − Ex
1− x ⇐⇒

Ėx
Ex

= − 1
1− x ⇐⇒ log(Ex)− log(Ex′) = −

∫ x

x′

1
1− ydy

⇐⇒ Ex
Ex′

= 1− x
1− x′

which proves that equality is possible. The same argument holds for all B > B0. Thus,
if we can show that Ex(E0, B0) is decreasing in B0 we are done, since then Ex(E0, B0) ≥
Ex(E0, B

∗) = Ex′(E0, B0) 1−x
1−x′ .

The proof that Ex(E0, B0) is decreasing in B0 is similar to the proof of lemma 4, and thus
I omit it.

Now let us prove that τ0(E0, B0) and τF (E0, B0) are continuous in E0.

Lemma 6. Suppose D′(E) → ∞ as E → ∞ and D′(0) > 0. If τ0(E0, B0) ∈ (0, 1), then
τ0(E,B) is continuous and increasing in E in a neighborhood of E0. If τF (E0, B0) ∈ (0, 1),
then τF (E,B) is continuous and decreasing in E in a neighborhood of E0.

Proof. The proofs are essentially identical for τ0 and τF , so I only prove the first. Remember
that

τ0(E0, B0) = lim sup{τ : 1−τ ∈ [0, 1) and G(x′, 0, Ex′(E0, B0)) < B0 ∀x′ > 1−τ} = lim sup Γ0

Notice that 0 ∈ Γ0, thus τ0 always exists. Suppose τ0 ∈ (0, 1). Then take x > 1 − τ0.
Suppose E ′0 > E0 and let τ0 := τ0(E0, B0) and τ

′
0 := τ0(E

′
0, B0) and similarly for Γ0 and

Γ′0. Note that if G(x, 0, Ex(E0, B0)) > B then, by lemma 4, E ′x ≥ Ex, and thus (since G is
increasing in its third argument) G(x, 0, Ex(E0, B0)) > B. Therefore if τ /∈ Γ0, then there
exists some x′ < 1 − τ with G(x, 0, Ex) > B and therefore G(x, 0, E ′x) > B so that τ /∈ Γ′0.
Hence Γ′0 ⊂ Γ0 and thus τ ′0 ≥ τ0.

Further note that if δ > 0, then we must have that there is some x′ ∈ [1−τ ′0, 1−τ
′
0 +δ] such

thatG(x′, 0, E ′x′) > B, since if this is not the case thenG(x′, 0, E ′x′) ≤ B for all x′ ≤ 1−τ ′0+δ (if
not, then pick some counterexample x′′ and then by lemma 3 all x′ > x′′ have G(x′, 0, E ′x′) > B
contradicting the initial statement). But this means that τ ′0−δ ∈ Γ′0 contradicting the definition
of τ ′0. Thus there is some x′ ∈ [1 − τ ′0, 1 − τ

′
0 + δ] with G(x′, 0, E ′x′) > B. By continuity of

Ex′ in E0 and of G in E, we can find E
′
0 close to E0 such that G(x′, 0, Ex′) > B, so that

1− τ0 < x′ < 1− τ ′0 + δ. Thus we have that τ ′0 − δ < τ0 ≤ τ
′
0, proving the claim.

Now let us prove the equivalent to proposition 4 but for continuous time tasks. Let us
split the proof in two parts.
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Proposition 11. The disutility of effort is strictly convex. Consider a task (E0, B0) with
E0 > 0 fixed. Then there exist BH(E0) > BC(E0) > BL(E0) > 0 such that

• if B > BH , then the task is completed efficiently, i.e. τF = 1.

• if BH > B > BC, then τF (E0, B0) ∈ (0, 1) and the task is completed.

• if BC > B > BL, then τ0(E0, B0) ∈ (0, 1) and the task is not completed.

• if BL > B, then no effort is spent on the task, i.e. τ0 = 1.

Proof. Let BL = (1− α)D(E0) + αD′(0)E0. Then G(0, 0, E0) = BL and therefore if B < BL

we have G(0, 0, E0) > BL and hence by lemma 3 we know that G(x, 0, Ex) > BL for all
x ≥ 0. Hence ex = 0 and τ0(E0, B0) = 0. Similarly, if BH = (1− α)D(E0) + αD′(E0)E0, then
G(0, E0, E0) = BH . Hence if B > BH we have G(0, E0, E0) < B and again by lemma 3 this
holds for all x ≥ 0 and thus τF = 1 and ex = E0 (this last part in effect requires solving the
same differential equation as we did in lemma 5, which I omit).

Moreover, note that if B < BH then we have that G(0, E0, E0) > B and thus (by continuity
of Ex and G) we have that G(x, Ex1−x , Ex) > B for all sufficiently small x. Therefore, τF < 1.
Similarly, if B > BL we have that τ0 < 1.

It is clear that if τ0 > 0 then τF = 0 and if τF > 0 then τ0 = 0. Let BC,0 = lim inf{B :
τ0(E0, B) = 0}. Then because τ0 is decreasing in B0, we know that if B < BC,0 then
τ0(E0, B) > 0, since if τ0(E0, B) = 0, then τ0(E0, B

′) = 0 for all B′ ≥ B, contradicting the
definition of BC,0. Similarly we can define BC,F = lim sup{B : τF (E0, B) = 0} and show that
if B > BC,F then τF > 0.

To finish the proof, we need to show that BC,F = BC,0. Notice that if B0 ∈ [BC,0, BC,F ] we
have that τ0 = 0 and τF = 0. Therefore G(x, ex, Ex(E0, B0)) = B for all x < 1. Suppose that
BC,0 < BC,F . Since G(x, ex,0, Ex,0) = BC,0 < BC,F = G(x, ex,F , Ex,F ) for all x, we must have
that ex,F > ex,0 or Ex,F > Ex,0 for every x. By continuity of Ex in x and G in E, we can pick
ε > 0 such that G(x, ex,0, Ex,F ) is arbitrarily close to G(x, ex,0, Ex,0) = BC,0 so that ex,F > ex,0
for all x < ε. Thus Ex,F < Ex,0 and we can show that ex,F > ex,0 for all x. Suppose not,
then we must have that Ex,F > Ex,0 for some x and therefore there exists a smallest x∗ > ε
such that Ex∗,F = Ex∗,0. But ex,F > ex,0 for all x < x∗, therefore Ex∗,F < Ex∗,0, which is a
contradiction.

Thus we have shown that Ex,F < Ex,0 and that ex,F > ex,0 for all x > 0. Let δ =
E 1

2 ,0
−E 1

2 ,F
> 0, then Ex,0−Ex,F ≥ δ for x > 1

2 and therefore Ex,0 ≥ δ > 0 for all x. Therefore

D(Ex,01−x )(1− x) ≥ D(
1
2

1−x)1−x
1
2
→∞ by lemma 7. But this means that G(x, 0, Ex,0)→∞ and

therefore that G(x, 0, Ex,0) > B as x → 1, so that τ0 > 0. Therefore, we cannot have that
BC,0 < BC,F and we are done.

Here is the lemma I referred to at the end of the previous proof.

Lemma 7. Let D be convex with D′(e)→∞ as e→∞. Then ∀K > 0, ∃E s.t. D(e) > K · e
∀e > E. That is, D(e)/e→∞ as e→∞.
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Proof. Since D′(e)→∞, pick E s.t. D′(E2 ) > 2 ·K. Then for e > E

D(e) =
∫ e

0
D′(s)ds ≥

∫ e

E/2
D′(s)ds ≥

∫ E

E/2
2 ·Kds ≥ e

22 ·K = e ·K

Now let us show that the utility is continuous and decreasing on (BL, BC) and continuous
and increasing on (BC , BH).

Lemma 8. The utility u0(E0, B0) := −
∫ 1
0 D(ex)dx is continuous and decreasing on

(BL(E0), BC(E0)) and the utility uF (E0, B0) := B −
∫ 1

0 D(ex)dx is continuous and increasing
on (BC(E0), BH(E0)).

Proof. Notice that when B ∈ (BL, BC) then we know that τ0 ∈ (0, 1) and the task is not
completed, hence the definition of the utility as u0 is correct. Moreover u0 =

∫ 1−τ0
0 D(ex)dx. We

can show that τ0 and Ex are continuous and decreasing in B0. Picking B0 < B
′
0, we therefore

have that τ ′0 < τ0 and that for x ≤ 1−τ0 we have G(x, ex, Ex) = B0 < B
′
0 = G(x, e′x, E

′
x). Since

E
′
x ≤ Ex we therefore have that e′x > ex and therefore u′0 >

∫ 1−τ0
0 D(e′x)dx >

∫ 1−τ0
0 D(ex)dx =

u0. Moreover, if B′0 is close to B0 then Ex is close to E ′x by Lipschitz continuity and therefore
e
′
x and ex are close together, since ex is Lipschitz continuous in all the parameters as well (I
haven’t shown this in detail, but this is where I use the condition D′(0) > 0). Therefore the
u
′
0 and u0 are close.
Now suppose B0, B

′
0 ∈ (BC , BH) then τF ∈ (0, 1). Let B0 < B

′
0. We can show in a

similar way as before that τ ′F > τ
′
0 and that e′x > ex for x ≤ 1 − τ

′
0. Then notice that∫ 1

0 ex = E0 =
∫ 1
0 e
′
x. Let F (e) =

∫ 1
0 1(ex ≤ e)de and G(e) =

∫ 1
0 1(e′x ≤ e)de. Let ē = e1−τ ′F

.
Then if e < ē, F (e) < G(e) (this can be proved rigorously using continuity of ex, but it is
intuitive noting that e′x > ex for all x ≤ 1− τ ′0). And since F (ē) = 1 and G(ē) < 1 we have
that F (e) ≥ G(e) for e ≥ ē. Therefore G is a mean-preserving spread of F and thus the
disutility for ex is higher than for e′x. Continuity follows again by noting that, until time
1− τ0, ex is Lipschitz continuous in all parameters, and thereafter it is constant. Therefore
the utility is Lipschitz continuous.

I will need the following two lemmas to prove the second part of the proposition.

Lemma 9. Let D be convex and such that D′(e)→∞ as e→∞. Fix B and ε > 0. Let eε
be s.t.

D(eε) · ε = B (11)

Then eε · ε→ 0 as ε→ 0.

Proof. First note that as ε goes to 0, eε goes to ∞, since if it was bounded, then D(eε) · ε
would go to 0. By lemma 7, we know that D(eε)

eε
→∞. Dividing both sides of equation 11 by

ε · eε yields
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D(eε)/eε = B

eε · ε
⇐⇒ eε · ε = B

D(eε)/eε
→ 0

which proves the claim.
Lemma 10. Take the continuous time problem with effort E > 0. Then for every ε > 0 there
exists B∗ s.t.

D
(
E1−ε

ε

)
· ε = B∗ (12)

Proof. We know from lemma 2 that Et(B) is a continuous and decreasing function in B.
Moreover Et(0) = E, and Et(B) → (1 − t)E as B → ∞, since the task eventually will be
completed efficiently. Let B̄ be such that it is completed efficiently and worth it.

Moreover, D
(
E

1−t

)
(1− t) > 0 and D(E)(1− t) < B̄. Since both sides are continuous in

B, there is a B∗ ∈ (0, B̄) s.t. equation (12) holds, and we are done.

Here is the proof of the second part of proposition 4 in the continuous-time setting.
Proposition 12. Suppose D′(0) > 0 and D′(E)→∞ as E →∞. Then limB0→B−C

u0(E0, B0) ≤
−D(E0).

Proof. Since τ0 is continuous and decreasing on (BL(E0), BH(E0)), and since τ0 can be 0
and 1, we know that for every τ ∈ (0, 1) there is some B0 ∈ (BL(E0), BH(E0)) such that
τ0(E0, B0) = τ . Notice that at time τ0 we have that G(1 − τ0, 0, E1−τ0

τ0
) = B0. Therefore

(1− α)D(E1−τ0
τ0

)τ0 + αD′(0)E1−τ0 = B0. As τ0 → 0, we must therefore have that E1−τ0 → 0,
since otherwise G → ∞. But this means that almost all the work gets done before time
1− τ0 for which the least disutility is D(E0 − ε) > D(E0)− δ for sufficiently small ε (i.e. τ0
sufficiently close to 1). Therefore the disutility is at least D(E0)− δ for arbitrary δ. Hence
the result holds.

Here is the proof of proposition 5.

Proof. First, I show that in the continuous time problem the statement holds. That is, if
D′′′ < 0 and D(E) ≤ B, the task is completed, whereas if D′′′ > 0 and D(E) ≥ B, the task is
not completed.

Claim: When D′′′ < 0 and D(E) < B, then D( Ex
1−x)(1 − x) strictly decreases with x.

When D′′′ > 0 and D(E) > B, then D( Ex
1−x)(1− x) strictly increases with x.

Proof of the claim:

d

dx
D
(
Ex

1− x

)
(1− x) = D′

(
Ex

1− x

)(
Ėx

1− x + Ex
(1− x)2

)
(1− x)−D

(
Ex

1− x

)

= D′
(
Ex

1− x

)(
Ėx + Ex

1− x

)
−D

(
Ex

1− x

)
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First, notice that Ėx is how much the person works instantaneously. Since the person
stops working only once she overestimates the disutility of the task (before that, she won’t
stop since the task is worth doing), we have that in picture 1 we have 0 < αB − αA, since
αB−αA is the difference between the perceived and the actual disutility D

(
Ex

1−x

)
. In picture

2 I highlight both D( Ex
1−x) and D′( Ex

1−x)( Ex
1−x + Ėx). This shows that C − D in picture 3 is

equal to D′( Ex
1−x)

(
Ėx + Ex

1−x

)
−D( Ex

1−x). Finally, because D′ is concave, we have that A > D
and C > B, so that C > D and hence we are done.

The second part follows the same way, except that Ėx is now such that the person still
underestimates total disutility (since the task is not worth doing), and that A < D and B < C
since D′ is strictly convex.

This proves the claim.
From lemma 10 we know that for every x there is some Bx such that D

(
Ex(E0,Bx)

1−x

)
(1−x) =

Bx. By the claim we have just proved, we know that the LHS is decreasing in x if D′′′ < 0.
Therefore if x′ > x, we have that D

(
Ex′ (E0,Bx)

1−x′
)

(1−x′) < Bx. Since Ex(E0, Bx) is decreasining
in Bx and Bx is (trivially) increasing in Bx, we must have that Bx′ < Bx in order for
D
(
Ex′ (E0,Bx′ )

1−x′
)

(1 − x′) = Bx′ to hold. Now I will show that limx→1Bx = BC and therefore
BC < Bx, so that the task is completed for all Bx, which means the task is completed whenever
the task is just weakly worth doing at time x, in particular at time 0, which proves the claim.
A similar argument works for D′′′ > 0, as long as we can prove that Bx → BC .

Proof that Bx → BC:

Notice that τ0(E0, Bx) ≤ 1− x, since G(x, 0, Ex1−x) ≤ D
(
Ex(E0,Bx)

1−x

)
(1− x) = Bx. Similarly,

τF (E0, Bx) ≤ 1− x. Thus, pick some B ∈ (BL, BC). Then for sufficiently large x, we have
that τ0(E0, B) > 1−x, and therefore (since τ0 is decreasing in B) we have that Bx > B. Thus
lim supBx > B for all B ∈ (BL, BC) so that lim supBx ≥ BC . A similar argument shows
that lim inf Bx ≤ BC , so that limBx = BC . And we are done.

The propositions then follow if we can show that in the limit, the discrete time solution
approaches the continuous time solution.

Multi-Day All-or-Nothing Tasks: Continuous to Discrete Time

With the following lemma, we are done, since it shows that as T goes to infinity, everything
converges to the quantities in the continuous-time problem, for which we have shown that the
statements in proposition 4 and in proposition 5 hold.

Lemma 11. If B0 ∈ (BL(E0), BC(E0)), then limT→∞ τ
D
0 (E0, B0, T ) = τ0(E0, B0) and

limT→∞ u
D(E0, B0, T ) = u(E0, B0). If B0 ∈ (BC(E0), BH(E0)), then limT→∞ τF (E0, B0, T ) =

τF (E0, B0) and limT→∞ u(E0, B0, T ) = u(E0, B0).

Proof. When B0 ∈ (BL(E0), BC(E0)), we want to show that ∀δ > 0, ∃T ∗ > 0 such that
∀T > T ∗ we have both of the following
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|τD0 − τ0| < δ

|uD0 − u0| < δ

where τD0 := τD0 (E0, B0, T ) and τ0 := τ0(E0, B0), and uD0 := uD(E0, B0, T ) and u0 :=
u(E0, B0). I will show this by finding large N and T ∗ such that τ−0 := τ0(E0 − 1

N
, B0) and

τ+
0 := τ0(E0 + 1

N
, B0) τ0 and τD0 ∈ [τ−0 , τ+

0 ] with |τ−0 − τ+
0 | < δ and u0, uD0 ∈ [u−0 , u+

0 ] and
|u−0 − u+

0 | < δ, which will prove the claim.
First, by lemma 6, we know that τ0 is continuous and decreasing and u0 is continuous

and increasing on [0, EC(B0)), thus (since E0 < EC(B0) given that the task is not completed)
we can find a neighborhood E of E such that τ0 and u0 are continuous and increasing. Pick
N1 large enough so that E0 − 1

N
and E0 + 1

N
∈ E . τ0 and u0 are continuous for E ∈ E , thus

we can choose N larger than N1 large enough such that |τ+
0 − τ−0 | < δ and |u+

0 − u−0 | < δ.
Moreover, we can pick N1 large enough as well so that |τ−0 − τ0| < 1

2τ0. Since τ0 is decreasing
in in E, we have that τ0 ∈ [τ+

0 , τ
−
0 ] and since u0 is increasing in E we have that u0 ∈ [u−0 , u+

0 ].
To prove the remainder, pick T ∗ large enough so that E0+1

1
2 τ
−
0 T
∗ <

1
N

and consider any T > T ∗.
Moreover, pick T ∗ large enough such that 1

T
< 1

2τ0. Let xt = t−1
T

for t ∈ {1, ..., T}. First, let
us show that if E−xt ≤ ED

xt −
1
N

and ED
xt + 1

N
≤ E+

xt , and xt ≤ 1− 1
2τ0, then

GD(xt, s, ED
xt) > G(x, s, E−x )∀x ∈ [xt, xt+1]

GD(xt, s, ED
xt) < G(x, s, E+

x )∀x ∈ [xt, xt+1]

We have the following:

G(x, s, E−x ) ≤ G(xt+1, s, E
−
x ) since G increases in x (13)

≤ G(xt+1, s, E
−
xt) since G increases in E which decreases in x (14)

= (1− α)D
(

E−xt
1− xt+1

)
(1− xt+1) + αD′(s)E−xt (15)

Now note the following:
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E−xt
1− xt+1

=
E−xt

1−xt
1−xt+1

1− xt
=
E−xt(1 + xt+1−xt

1−xt+1
)

1− xt

=
E−xt + E−xt

T (1−xt+1)

1− xt

≤
E−xt + E−xt

Tτ0
1
2

1− xt
since 1− xt+1 ≥

1
2τ0

≤
E−xt + E0+1

Tτ0
1
2

1− xt
since E−xt ≤ E−0 ≤ E0 + 1

N
≤ E0 + 1

<
E−xt + 1

N

1− xt
since T > T ∗ and by how T ∗ is chosen

≤
ED
xt

1− xt
by the assumption we made

Therefore we have that ∀s ≤ EDxt
1−xt

(1− xt+1)D
(

E−xt
1− xt+1

)
< (1− xt+1)D

(
ED
xt

1− xt

)
= (1− xt)D

(
ED
xt

1− xt

)
− 1
T
D

(
ED
xt

1− xt

)

≤ (1− xt)D
(

ED
xt

1− xt

)
− 1
T
D(s)

and that

E−xt ≤ ED
xt −

1
N
< ED

xt −
E0 + 1
T 1

2τ0
< ED

xt −
ED
xt

T (1− xt)
≤ ED

xt −
s

T

Thus, plugging this into equation (15), we get

G(x, s, E−x ) < (1− α)
(
D( ED

xt

1− xt
)(1− xt)−

1
T
D(s)

)
+ αD′(s)

(
ED
xt −

s

T

)
= GD(x, s, ED

xt)

which proves the first of the two statements. Next we have:

G(x, s, E+
x ) ≥ G(xt, s, E+

x ) because G is increasing in x (16)
≥ G(xt, s, E+

xt+1) because G is increasing in E (17)
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We also have that E+
xt+1 ≥ E+

xt −
E+
xt

T (1−xt) by lemma 5 with

E+
xt −

E+
xt

T (1− xt)
≥ ED

xt + 1
N
−

E+
xt

T (1− xt)
≥ ED

xt + 1
N
− E+

0
T 1

2τ0
≥ ED

xt + 1
N
− E0 + 1

T 1
2τ0

> ED
xt

where I used the fact E+
xt ≥ ED

xt + 1
N
, that E+

xt ≤ E+
0 , that 1 − xt >

1
2τ0, that E+

0 =
E0 + 1

N
≤ E0 + 1 and that E0+1

T 1
2 τ0

< 1
N
. Plugging this into equation (17), we get

G(x, s, E+
x ) > G(xt, s, ED

xt) ≥ GD(xt, s, ED
xt)

which proves the second of the two statements.
Let P−t be the statement that is true E−xt′ ≤ ED

xt′
− 1

N
for all t′ ≤ t and that eDx ≤ e−x

for all x < xt. By assumption, P1 holds. Suppose Pt holds. Then if xt+1 ≤ 1 − 1
2τ0, we

have that eDxt ≤ e−x and therefore that Pt+1 holds. First, note that G(x, e−x , E−x ) ≥ B for all
x ∈ [xt, xt+1], since if G(x, E

−
x

1−x , E
−
x ) < B, then τ−0 = 0, which we ruled out by choosing N

sufficiently large. Since τ−0 > 1
2τ0 we can use the bounds between G and GD just proved, thus

we have B ≤ G(x, e−x , E−x ) < GD(xt, e−xt+1 , E
−
xt), which implies that eDxt ≤ e−x and therefore

ED
xt+1 ≥ E−xt+1 + 1

N
. Therefore Pt holds for all t such that xt ≤ 1− 1

2τ0.

Now note that because of how we picked N and T , we have that 0 < τ0 − τ−0 < 1
2τ0 and

that 1
T
< 1

2τ0. Therefore we have that 1
2τ0 < τ−0 < τ0, thus 1 − τ0 < 1 − τ−0 < 1 − 1

2τ0 and
finally (1− 1

2τ0)−(1−τ−0 ) = (1− 1
2τ0)−(1−τ0)+(1−τ0)−(1−τ−0 ) = 1

2τ0 +τ−0 −τ0 >
1
2τ0 >

1
T
.

Let t∗ be the largest t such that xt ≤ 1− τ−0 . Then xt+1 = xt + 1
T
≤ 1− τ−0 + 1

T
< 1− 1

2τ0,
and therefore Pt∗ holds and Pt∗+1 holds. Therefore eDxt∗ ≤ e−x for all x ∈ [xt∗ , xt∗+1], which
means that ex∗t = 0 since e−xt∗+1

= 0. This proves that τD0 ≥ τ−0 .

A similar argument definining P+
t as the statement that holds that E+

xt′
≥ ED

xt′
+ 1

N
for

all t′ ≤ t and that eDx ≥ e+
x for all x < xt can be made to show that P−t holds for all t with

xt ≤ 1− 1
2τ0 and therefore τD0 ≤ τ+

0 . Moreover, since the effort is always in between, and the
task is never completed, it is clear that the disutility uD0 lies in between u− and u+.

This proves the first half of the proposition, when B0 ∈ (BL(E0), BC(E0)).
Now let us look at the case when B0 ∈ (BC(E0), BH(E0)). The proof is identical if we

replace τ0 by τF , until we get to the final step regarding property P−t and property P+
t .

Let P+
t be the statement that E+

xt′
≥ ED

xt′
+ 1

N
for all t′ ≤ t and that eDx ≥ e−x for all x < xt.

By assumption P1 holds. Suppose Pt holds. Then if xt ≤ 1− τ+
F , we have that xt+1 < 1− 1

2τF
by our choice of N and T (this uses a similar argument as in the τ0 case). Therefore we
know that G(x, s, E+

x ) ≥ GD(xt, s, ED
xt) ∀x ∈ [xt, xt+1]. We have that B = G(x, e+

x , Ex) (since
we know that the person works partially until time 1 − τ+

F ) and thus B > GD(xt, e+
x , E

D
xt).

Therefore we have that eDxt ≥ e+
x or eDxt = EDxt

1−xt , i.e. work is done efficiently from then onwards.
Thus, either we have that Pt+1 holds or that τDF ≥ τ+

F . Suppose that t∗ is the largest t for
which Pt holds. Then if xt∗ ≤ 1− τ+

F we know that either Pt∗+1 holds or that τDF ≥ τ+
F . Thus
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τDF ≥ τ+
F since by the definition of t∗, Pt∗ cannot hold. If we have that xt∗ > 1 − τ+

F , then
we know that Pt∗ holds, and thus eDxt∗ ≥ e−x for all x < xt∗ , i.e. for all x ≤ 1 − τ+

F as well.

But since eτ+
F

= ex =
E+
τ+
F

τ+
F

, this means that eD
τ+
F

≥
E+
τ+
F

τ+
F

>
ED
τ+
F

τ+
F

, which implies that the person
works more than is efficient, which is a contradition. Thus xt∗ ≤ 1− τ+

F and τDF ≥ τ+
F , with

Pt holding for all xt ≤ 1− τDF .
A similar argument establishes that τDF ≤ τ−F and that e−x ≥ eDx for all x ≤ 1− τ−F . Then

we can apply lemma 8 which shows that in this case u+
F ≤ uDF ≤ u−F . This completes the

proof.

A.2.2 Proofs of Results on Multi-Day Multi-Tasking

Proof of proposition 6.

Proof. The first part of the proof relies on proposition 3. By assumption, all days are the
same, so the person plans to work the same amounts on the short-term and the long-term
task. Therefore on the first day, she switches exactly at the time where she would if T = 1.
The same is true on the second day, because as long as she has worked less than she worked on
day 1, she is more optimistic, and therefore plans to work more, and thus switch later than on
day 1. Once she has worked as much as on day 1, she solves exactly the same maximization
problem as she did at that time on day 1 – the fact that she worked less on the short-term
task afterwards does not change her benefits today or on any other future day. Therefore she
switches at the same time. The same is true for all future days.

The situation is more interesting when the person works each day first on the short-term
task – the intuition is that on the second day, she switches earlier, because she did not work as
much at the end of day 1 on the long-term task, and therefore she does, in fact, face different
benefits on day 2 than she thought.

First, let us prove that on the first day, she works just the same on the short-term task as
she would in the single-day case, but that she works less on the long-term task.

Note that the on the first day, they switch at the same time as when T = 1. The reason is
as follows: call this time S∗1 . Then at S∗1 they solve the same maximization problem that an
unbiased person would solve who actually had the disutility D̃(.|S∗). But this person would
switch at the same time when T = 1 or when T > 1, since it is optimal to work the same
amount each day, and what is optimal for 1 day is optimal for T days. Therefore, on day 1
she switches to the long-term task at the same time as she would in the 1-day case.

Let us now show that she stops working on the long-term task sooner when T > 1 than
when T = 1.

Step 1: The higher S is on day 1 after switching (the longer she has worked), the less
she plans to work in total on all future days.

Let Ê1(S) and Ê2(S) be the amount the person plans to work on day 2 (and thus on all
following days) when she has worked S hours so far on day 1. Notice that the amount she
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plans to work on the first day on the long-term task is given by taking the total amount of
work she plans to do (which is the same as on all future days) minus how much she already
has worked on the short-term task, that is Ê1(S) + Ê2(S) − Ẽ∗1 . Thus she thinks that in
total she will work (T − 1)Ê2(S) + (Ê1(S) + Ê2(S)− Ẽ∗1) = TÊ2(S) + (Ê1(S)− Ẽ∗1) on the
long-term task.

The first order conditions are given by

D̃′(Ê1(S) + Ê2(S)|S) = B
′

1(Ê1(S)) = B
′

2

(
(T − 1)Ê2(S) + Ê2(S) + Ê1(S)− Ẽ∗1

T

)
(18)

Notice that if Ê1(S) + Ê2(S) weakly increases as S strictly increases, then D̃′(Ê1(S) +
Ê2(S)|S) strictly increases. The first equality implies that Ê1(S) must strictly decrease (since
B1 is strictly concave), and the second equalilty implies that Ê2(S) must strictly decrease
(since the remainder of the argument increases). But that contradicts the statement that
Ê1(S) + Ê2(S) weakly increases. Therefore, it must strictly decrease as S strictly increases.

Step 2: Ê1(S) strictly decreases as S strictly increases.
Suppose not. We know from step 1 that Ê1(S) + Ê2(S) strictly decreases. If Ê1(S) does

not strictly decrease, then Ê2(S) must strictly decreases. Moreover, by equation (18), if
Ê1(S) stays the same or increases, then so must (T − 1)Ê2(S) + (Ê1(S) + Ê2(S)). But this is
impossible, since it is the sum of two terms, both of which strictly decrease. Therefore, Ê1(S)
must strictly decrease.

Step 3: Find the first order conditions for T = 1 and T > 1:
Let Ẽ∗2,i be the amount the person actually works on the second task on day 1 for i ∈ {L, S}

for "long-term" and "short-term". Let Ê∗i := Êi(Ẽ∗2 , the amount the person plans (at the end
of the first day) to work on task i ∈ {1, 2} on all future days. The first order conditions are
then as follows:

T = 1 : D′(Ẽ∗1 + Ẽ∗2,S) = B
′

2(Ẽ∗2,S)

T > 1 : D′(Ẽ∗1 + Ẽ∗2,L) = B
′

2

(
(T − 1)Ê∗2 + Ẽ∗2

T

)
= D′(Ê∗1 + Ê∗2)

Step 4: Ẽ∗2(T > 1) is lower than Ẽ∗2(T = 1).
From the first order condition, we have that Ẽ∗1 + Ẽ∗2,L = Ê∗1 + Ê∗2 . But since Ẽ∗1 = Ê1(S)

at S = Ẽ∗1 , and Ê∗1 = Ê1(S) at S = Ẽ∗1 + Ẽ∗2,L, we know from step 2 that Ẽ∗1 > Ê∗1 and
therefore Ẽ∗2,L < Ê∗2 . This in turn means that (T−1)Ê∗2 +Ẽ∗2,L

T
= Ẽ∗2,L + a for some a > 0.

We can now rewrite the first order condition for T > 1 as D′(Ẽ∗1 + Ẽ∗2,L) = B
′
2(Ẽ2,L + a),

whereas Ẽ2,S solves the first order condition D′(Ẽ∗1 + Ẽ∗2,S) = B
′
2(Ẽ2,S). Thus Ẽ∗2,L < Ẽ∗2,S: if

it is the same or larger, then the LHS of the first order condition is the same or larger, and
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the RHS strictly smaller, since a > 0, and thus it cannot hold. Thus, on day 1, the person
works less on the long-term task with T > 1 than with T = 1.

Part II: The amount spent working on the long-term task is lower on average with T > 1
than with T = 1.

Let Ei,L(t) the work done on day t on task i ∈ {L, S} task when T > 1. Let Ei,F (t) be
the amount the person would choose that day if she was told that she would have to work
*exactly* the same on all future days too (F stands for ’fixed’). Then she works the same as
she does in the single-day choice where her daily benefits are her average benefits – taking
the effort she has worked so far as a given.

Then I claim that E2,S(t + 1) · (T − t) + E2,L(t) < E2,S(t)(T − t + 1), so that E2,S(t +
1)(T − t) + E2,L(t) + E2,L(t− 1) < E2,S(t)(T − t+ 1) + E2,L(t− 1) < E2,S(t− 1)(T − t+ 2),
and so on until E2,S(t+ 1)(T − t) +∑t

i=1E2,L(i) < T · E2,S(1). Thus for t = T − 1, we have
E2,S(T ) + ∑T−1

i=1 E2,L(i) = ∑T
i=1E2,L(i) < T · ES,1, since E2,S(T ) = E2,L(T ) as there is only

one day left. This proves the claim, since the LHS is equal to the work done when T > 1 and
the RHS is equal to T times the work done when T = 1 on day 1. We now have to prove the
claim.

Claim: E2,S(t+ 1) · (T − t) + E2,L(t) < E2,S(t)(T − t+ 1) for all t < T .
In fact, let us prove a stronger claim. Let Ei(x) be the work done on task i ∈ {L, S} on

day 2 if on day 1 the person has worked for x hours on the long-term task, and if she again
will be required to work exactly the same across all future days as she does on day 2. Then I
will show that for all x < E2,S(1) we have

E2(x)(T − 1) + x < E2,S(1) · T

This proves the claim when we relabel day t as day 1 and focus only on the continuation
problem, and set x = E2,L(t), since we know that E2,L(t) < E2,S(t), as we showed in part
I that the this holds for the first day – and day t is the first day of the remaining task.
Intuitively, this says that if the person works on day 1 knowing that she has to work the same
on all future days, she works more than if she had only completed x on day 1 (for whatever
reasons), and knew that she had to work the same on all days after day 2.

This statement is true for an unbiased person. Suppose it wasn’t true. We have that
D′(E2,S(1) + E1,S(1)) = B

′
1(E1,S(1)) = B

′
2(E2,S(1)) and D′(E2(x) + E1(x)) = B

′
1(E1(x)) =

B
′
2(

(T−1)E2(x)+x
T

). If E2(x) ≤ E2,S(1) then we are done. So suppose E2(x) > E2,S(1) > x

(which is true, but that is irrelevant). Then we can write B′2( (T−1)E2(x)+x
T

) = B
′
2(E2(x)−a) for

some a > 0. Note that E2(x) + E1(x) is strictly increasing in a: suppose not, so that it stays
or decreases. Then E1(x) stays or increases. Therefore E2(x)−a stays or increases. Therefore
E2(x) must strictly increase, which is a contradiction, since E1(x)+E2(x) – assumed to weakly
decrease – is then the sum of two terms, both of which increase, and one strictly increasing.
Therefore, we have that E1(x) +E2(x) strictly increases, and hence that B′(E2(x)−a) strictly
increases, and thus that E2(x)− a is strictly smaller the larger a is. Since E2,S(1) solves the
same equations when we set a = 0, we have that (T−1)E2(x)+x

T
< E2,S(1) which proves the

claim.
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The statement is also true for a projection-biased person. Let us write down the first
order conditions satisfied by the different amounts of effort exerted. For E1,S, E2,S and E2|1,S
we have the following:

D̃′(E1,S + E2|1,S|E1,S) = B
′

1(E1,S) = B
′

2(E2,S) (19)
D′(E1,S + E2,S) = B

′

2(E2,S) (20)

For E1(x), E2(x) and E2|1(x) we have:

D̃′(E1(x) + E2|1(x)|E1(x)) = B
′

1(E1(x)) = B
′

2

(
(T − 1)E2|1(x) + x

T

)

D′(E1(x) + E2(x)) = B′2

(
(T − 1)E2(x) + x

T

)

Case 1: E1(x) ≥ E1,S. Then I claim that E1(x) +E2(x) > E1,S +E2,S. If so, then we have
we have D′(E1(x) + E2(x)) > D′(E1,S + E2,S) =⇒ B

′
2(

(T−1)E2(x)+x
T

) > B
′
2(E2,S) =⇒ (T −

1)E2(x)+x < TE2,S as we want. To prove the claim, suppose that E1(x)+E2(x) ≤ E1,S+E2,S
when E1(x) ≥ E1,S. Then E2(x) ≤ E2,S and thus (T − 1)E2,S + x < TE2,S since x < E2,S.

Case 2: E1(x) < E1,S. Let us look at the plans the person would ideally make if she had
to choose at S = E1,S, that is at the moment she decides to switch when her future behavior
mirrors behavior on day 1. Then she solves the first order condition in equation (19) when
choosing on day 1. If she could change her behavior earlier on day 2 (after working for x
hours on day 1), on day 2 she would choose

D̃′(E1(x|S) + E2|1(x|S)|S = E1,S)) = B
′

1(E1(x|S)) = B
′

2

(
(T − 1)E2|1(x|S) + x

T

)

Since E1,S > E1(x), she would choose to work less in total, and therefore to switch earlier
than she actually did switch on day 2. Thus E1(x) > E1(x|S). Now we can note that these
plans, E1(x|S) and E2|1(x|S) in one case, and E1,S and E2|1,S in the other are both as if
done by an unbiased person in two different situations. We have shown that such a person
works less in total on the long-term task, that is (T − 1)E2|1(x) + x < TE2|1,S, so we have the
following
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(T − 1)E2|1(x|S) + x < TE2|1,S (21)
=⇒ B

′

2((T − 1)E2|1(x|S) + x) > B
′

2(E2|1,S) (22)
=⇒ D̃′(E1(x|S) + E2|1(x|S)|S = E1,S) > D̃′(E1,S + E2|1,S|S = E1,S) (23)
=⇒ (1− α)(D′(E1(x|S) + E2|1(x|S))−D′(E1,S + E2|1,S))+ (24)

αD′(E1,S)(E1(x|S) + E2|1(x|S)− E1,S − E2|1,s) > 0 (25)
=⇒ E1(x|S) + E2|1(S) > E1,S + E2|1,S (26)
=⇒ − E1(x|S)− E2|1(S) < −E1,S − E2|1,S (27)

where the last line holds since both terms are of the same sign. We want to show that
E1(x)+E2(x) > E1,S+E2,S. Suppose that this is not true, so that E1(x)+E2(x) ≤ E1,S+E2,S.
Adding inequality (27) to this we obtain:

E1(x|S) + E2|1(x|S)− E1(x)− E2(x) > E2|1,S − E2,S

=⇒ E2(x)− E2|1(x|S) < E2,S − E2|1,S + E1(x|S)− E1(x)︸ ︷︷ ︸
<0

where the final inequality holds because we know that E1(x|S) < E1(x) and E2,S < E2|1,S
– since they are choices over exactly the same choice variable made when the person is more
tired, and thus plans to work less. Finally, we have that

(T − 1)E2(x) + x = (T − 1)(E2(x)− E2|1,S(x|S)) + (T − 1)E2|1,S + x < (T − 1)E2|1,S + x < TE2,S

and we are done with part II.
Part III: Total effort exerted on both tasks is strictly lower on day 1 than on day 2, and

thus is strictly increasing over time.
The second half follows directly from the first, since we can relabel day t as day 1 of the

remaining task and we are done.
Let us show that total effort increases. At the end of day 1, the person plans to switch

sooner on day 2 than she will switch (similar proof to all such statements so far). On day
2 once she has worked as much as she worked on day 1, she therefore has worked less on
the long-term task than she had planned the day before, so that the marginal benefit from
continuing are strictly larger, so that she strictly continues working.

Part IV: Effort on task 1 is strictly lower on day 2 than on day 1, and is therefore strictly
decreasing over time.

The second part is easy. If E1,S(1) > E1,S(2), then E1,S(t) > E1,S(t + 1) since day t is
simply the first day of the task starting that day, which satisfies all the same conditions.
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Let us prove that on day 2, the person switches earlier. If she had worked as much on the
long-term task as she planned when she switched, then on the second day she would switch at
exactly the same time (all first order conditions hold as they did on day 1). But she worked
less on the long-term task. Therefore the marginal benefits from working on the long-term
task are higher, and an argument as in step 4 of part I (with a > 0) will go through, showing
that she works indeed less, in order to have more time working on the long-term task.

Part V: Effort on task 2 is strictly larger on day 2 than on day 1, and is therefore strictly
increasing over time.

As for part IV, the second half of the claim follows by relabeling day t as the first day
of the remaining days. The first half follows immediately from parts III and IV, since the
person works strictly less on the first task, but strictly more on both together, so she must
work strictly more on the second task.

This completes the proof.

A.3 Proofs for Section 5

Lemma 12. Let Ua(e) = X(e) + a · Y (e), with X and Y continuous (real-valued) functions
of the vector e, and a ∈ R. Then, for all a, arg maxe∈E Ua(e) is not empty when E is a
compact set. Let e(a) ∈ arg maxe∈E Ua(e). If aH > aL ≥ 0, then X(e(aH)) ≤ X(e(aL)) and
Y (e(aH)) ≥ Y (e(aL)).

Proof. By compactness of E and continuity of X and Y , the maximimum is achieved in E we
can find e(a) as stated. Denote X(e(ai)) by Xi, Y (e(ai)) by Yi for i ∈ {H,L}. Since e(ai)
maximizes Uai , we have that

XH + aH · YH ≥ XL + aH · YL (28)
XL + aL · YL ≥ XH + aL · YH (29)

Adding equations (28) and (29), we find that

aH · YH + aL · YL ≥ aH · YL + aL · YH ⇐⇒ (aH − aL)YH ≥ (aH − aL)YL
⇐⇒ YH ≥ YL

since aH − aL > 0. If aH > aL ≥ 0, then by adding aL times equation (28) and aH times
equation (29), we find that

aL ·XH + aH ·XL ≥ aL ·XL + aH ·XH ⇐⇒ (aH − aL) ·XL ≥ (aH − aL) ·XH

⇐⇒ XL ≥ XH
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which completes the proof.

Proof of 7:

Proof. The person at every moment maximizes her perceived utility, which is given by

B(ẽ)−
T∑
t=1

D̃(ẽt) = B(ẽ)− (1− α)
T∑
t=1

D(ẽt)− αD′(s)
T∑
t=1

ẽt

Since ∑T
t=1 ẽt = E by assumption – the person needs to complete a given amount of work

– at every moment she maximizes B(ẽ)− (1− α)∑T
t=1D(ẽt) and the claim follows.

Proof of 8:

Proof. The actual first order condition is

D′(e1)− qtE(D′(et)) = 0

Replacing D′ by D̃′ and expanding this yields the first part (similar to the derivation for
the examples). The actual effort ẽ∗1 is determined when the person stops working – when
s = ẽ∗1. Substituting this for s in

D′(ẽ1(s))− qtE(D′(ẽt(s))) = − α

1− αD
′(s)(1− qt)

yields
D′(ẽ1) = 1− α

1− αqt
E(D′(ẽ∗t|1))

Finally, when q2 < 1, then (1− qt) > 0 and so − α
1−αD

′(s)(1− q2) is decreasing in s, which
requires ẽ1(s) to decrease with s.

Proof of 9.

Proof. After period t, the person receives one of kt <∞ signals based on which she updates
her beliefs over E. Every sequence of signals thus determines a single final outcome, which I
denote by s ∈ S. Let n(s, t) ∈ {1, ..., N} for some N index all the possible effort levels the
person can choose, where n(s, t) is the effort level at time t when the final outcome will be
state s. Notice that n(s, t) = n(s′, t) is possible for s 6= s′ when at time t, the person puts
strictly positive probability on both states s and s′ happening. Let et denote the random
variable representing effort chosen at time t. Then the optimization problem is given by:

min
en,n∈{1,...,N}

E
(

T∑
t=1

δtD(et)
)

s.t.
∑

en(s,t)qt = Es, ∀s ∈ S
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Let us first prove that ẽ∗1 ≤ e∗1, that the projection-biased person works less on day 1 than
the unbiased person. Suppose not. Then ẽ∗1 > e∗1. First, this means that the projection-biased
person is not at a corner solution. Suppose that e1 > 0, then the first order condition is

δ1D
′(e1)
q1

≤ δtE1(D′(et))
qt

Now the perceived first order condition when the person has worked for H ≥ 0 hours is:

δ1D̃
′(e1|H)
q1

≤ δtE1(D̃′(et|H))
qt

⇐⇒ δ1

q1
D′(ẽ∗1)− δt

qt
E(D′(ẽ∗t|1)) ≤

(
δ1

q1
− δt
qt

)
D′(H)

(
− α

1− α

)
≤ 0

which implies that E1(D′(ẽ∗t|1)) δtqt ≥ D′(ẽ∗1) δ1
q1
> D′(e∗1) δ1

q1
≥ E(D′(e∗t )) δtqt . In particular,

this means that there is some n2 = n(s, 2) s.t. D′(ẽn2) > D′(en2). If not, then we can
sum over {n : n(s, 2)∀s ∈ S}, over all possible effort levels in period 2 and obtain that
E1(D′(ẽ∗2|1) ≤ E1(D′(e∗2)), which is a contradition. We can now repeat the same argument for
day 2 and show that, starting with the subproblem on day 2 with the state n2, that there
exist possible continuations n3, ..., nt s.t. ni = n(s, i) for a given s ∈ S, such that ẽ∗ni > e∗ni .
But this is impossible, since it means that the person works strictly more than she must,
which cannot minimize the disutility. Therefore ẽ∗1 ≤ e∗1 (and in fact the inequality is strict if
e∗1 > 0).

It is therefore clear that the person plans to have worked less by day t in total than the
unbiased person. But if at time t, she is behind, and at time t+ 1 has pulled ahead, she must
have worked strictly more, and therefore (by a similar argument as above) work strictly more
in some other periods as well, in which case she works strictly more again. This is impossible.

Let us now show that the projection-biased person works less on day 2 than she thought
she would when there is no uncertainty in E, so that |S| = 1. Since δt

qt
is strictly decreasing,

she should work strictly more on day 2. Denote δt
qt

simply by pt, so that pt is decreasing (at
some point strictly) in t. I assume that the person exerts some effort on day 1 (and thus on
all days). Then the FOCs are

p1D̃
′(ẽ1|s) = ptD̃

′(et|s) ⇐⇒ q1D
′(ẽ1(s))− qtD′(ẽt(s)) = − α

1− α(q1 − qt)D′(s)

Thus ẽ1(s) is strictly increasing in s. (If it was increasing, then ẽt(s) strictly increases,
which means that total effort strictly increases, a contradiction since it doesn’t minimize
perceived disutility.) Thus, on day 2, the person plans to work at least as much as she planned
to do at the end of day 1, until she has worked more than she worked on day 1, at which
point she plans to work strictly less.
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We can again show that the person also plans to have less work done by day t than she
did at the end of day 1. Here is why. Let t̄ be the first day on which the person plans to work
more at the end of day 2 than at the end of day 1. (This must exist in order to complete all
the work.) Then she works strictly more on all subsequent days, since the FOC for day t′ > t̄
is

qt′D
′(ẽ∗t′|i)− qt̄D′(ẽ∗t̄|i) = − α

1− α(qt′ − qt̄)D′(ẽ∗i )

Thus

D′(ẽ∗t′|2) = qt̄
qt′
D′(ẽ∗t̄|2)− α

1− α(qt′ − qt̄)D′(ẽ∗2)

≥ qt̄
qt′
D′(ẽ∗t̄|1)− α

1− α(qt′ − qt̄)D′(ẽ∗2)

>
qt̄
qt′
D′(ẽ∗t̄|1)− α

1− α(qt′ − qt̄)D′(ẽ∗1)

= D′(ẽ∗t′|1)

so that the person plans to work more on all days after t̄, and therefore must have done
less work until that point, and at the start of every day until the final day.

A.4 Proofs for Section 6

Proof for proposition 10.

Proof. The claims regarding EH follow the same as in the proof of proposition 2, using the
fact that there is an S such that D′(S) > D′(0).

Thus I focus on the statements around EL.
Claim 1: If ē > 0, then there is a unique E0 > 0 such that D′(E0) = D′(0) and

D′(E) < D′(0) for E ∈ (0, E0) and D′(E) > D′(0) for E > E0.
Proof of claim 1: D′′(E) < 0 ∀E ∈ [0, ē), and D′′(ē) = 0. Thus D′(E) − D′(0) =∫ E

0 D′′(e)de < 0 for all E ∈ [0, ē]. By assumption, D′(E) → D̄ > D′(0). Therefore, by
the intermediate value theorem, there exists some E0 ∈ (ē,∞) such that D′(E0) = D′(0).
Similarly, D′′(E) > 0 for E > ē, therefore D′(E) is strictly increasing on E > ē, so there
cannot be two such E0. Since D′(ē) < D′(0) and since D′(E) is increasing for E > ē, the
claim follows.

Claim 2: If ē > 0, there is a unique strictly positive number (call it EL) such that
D(E)/E = D′(0). (Note that if ē = 0, then D(E)/E > D′(0) for all E > 0, and thus there is
no such E.)

By claim 1, we know that there is a unique E0 > 0 such that D′(E0) = D′(0), and D′(E) >
D′(0) when E > E0 and D′(E) < D′(0) when 0 < E < E0. Therefore D(E)/E < D′(0)
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for E < E0. Moreover, since D′(E0 + ε) > D′(E0) = D′(0), we have that D(E)/E0 must
eventually become arbitrarily close to D′(E0 + ε) and thus exceed D′(0). By the intermediate
value theorem there must therefore be a point at which D(E)/E equals D′(0). Denote the
first time this happens by EL. Note that EL > E0. Then it is easy to see that there is only
one such EL. Suppose there was a second, E ′L > EL > E0. Then

D′(0) = D(E ′L)
E
′
L

= 1
E
′
L

∫ E
′
L

0
D′(e)de

= 1
E
′
L

(∫ EL

0
D′(e)de+

∫ E
′
L

EL
D′(e)de

)

= 1
E
′
L

(
D′(0) · EL +

∫ E
′
L

EL
D′(e)de

)

>
1
E
′
L

(
D′(0) · EL +D′(0)(E ′L − EL)de

)
= D′(0)

which is a contradiction. The inequality comes from the fact that D′(e) > D′(0) for
e > E0, which holds when e > EL since EL > E0. Note that the proof also shows that
D(E)/E < D′(0) when E < EL and D(E)/E > D′(0) when E > EH .

Suppose that e < EL. We want to show that people only start tasks that are worth it,
that if they start a task, they finish it, and that they fail to start some worthwhile tasks.

People start a task if the initial perceived disutility of the task is lower than the benefits,
that is if

B ≥ D̃0(E) = (1− α)D(E) + αD′(0) · E = D(E) + α(D′(0)−D(E)/E)

Since D′(0) > D(E)/E when E < EL, this means that the task needs to be strictly worth
it for projection-biased people to start it, and if B ∈ (D(E), D(E) + α(D′(0)−D(E)/E)),
then people don’t start the task.

We only need to show (for the first part) that people finish all worthwhile tasks that they
start. Since this result should hold for all E, not just for E < EL, that’s what I shall prove.

People stop a task if the remaining perceived disutility at any point, D̃s(E)− D̃s(s), is
larger than the benefits.

B ≤ D̃s(E)− D̃s(s)
= (1− α)(D(E)−D(s)) + αD′(s)(E − s)

For tasks that are worthwhile, D(E) ≤ B, thus D(E)−D(s) ≤ B. If D′(s) ≤ D′(0) then
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(1− α)(D(E)−D(s)) + αD′(s)(E − s) < (1− α)D(E) + αD′(0)E ≤ B, since the task was
started at time 0. This means that people do not stop before reaching ē, as D′(e) < D′(0) for
e ∈ (0, ē].

For e > ē, we have that D′ is strictly increasing, which implies that D′(s)(E − s) <
D(E)−D(s) < D(E), and therefore (1−α)(D(E)−D(s)) +αD′(s)(E− s) < (1−α)D(E) +
αD(E) = D(E) < B, so people do not stop.

59


	Introduction
	Projection Bias in Simple Effort Choices
	A Model of Dynamic Effort Choices Within a Day
	Projection Bias
	Difference Between Utility and Opportunity Costs

	Single-Period Choices
	Optimal Behavior with Convex Disutility and Linear Benefits
	Fixed-Hours Tasks
	Multi-Tasking with Concave Benefits

	Multi-Day Tasks and Multiple Deviations
	Multi-Day All-or-Nothing Task
	Multi-Day Multi-tasking

	Careless Timing: Misallocation of Effort
	Misallocation in General
	Uncertainty, Productivity, and Time Discounting

	Concave Disutility
	Discussion and Conclusion
	References
	Proofs
	Proofs for Section 3
	Proofs for Section 4
	Proofs of Results on Multi-Day All-or-Nothing Task
	Proofs of Results on Multi-Day Multi-Tasking

	Proofs for Section 5
	Proofs for Section 6


