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Let F be a field, let G be an undirected graph on n vertices, and let
SF(G) be the class of all F-valued symmetric n x n matrices whose
nonzero off-diagonal entries occur in exactly the positions corre-
sponding to the edges of G. For each graph G, there is an associated
minimum rank class .# %" (G) consisting of all matrices A € S™(G)
with rank A = mrf (G). For most graphs G with connectivity 1 or 2,
we give explicit decompositions of matrices in .# 2" (G) into sums
of minimum rank matrices of simpler graphs (usually proper sub-
graphs) related to G. Our results can be thought of as generalizations
of well-known formulae for the minimum rank of a graph with a cut
vertex and of a graph with a 2-separation. We conclude by also show-
ing that for these graphs, matrices in .#2" (G) can be constructed
from matrices of simpler graphs; moreover, we give analogues for
positive semidefinite matrices.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The minimum rank problem in combinatorial matrix theory is concerned with determining the
minimum possible rank over all symmetric matrices with a specified zero/nonzero off-diagonal

* Corresponding author.

E-mail addresses: wayne@math.byu.edu (W. Barrett), mark.kempton@gmail.com (M. Kempton), nicolea.malloy@gmail.com
(N. Malloy), curtisgn@gmail.com (C. Nelson), wnsexton@gmail.com (W. Sexton), johnsinkovic@gmail.com (J. Sinkovic).

0024-3795/$ - see front matter © 2012 Elsevier Inc. All rights reserved.

doi:10.1016/j.1aa.2011.12.036

(2012), doi:10.1016/j.1aa.2011.12.036

Please cite this article in press as: W. Barrett et al., Decompositions of minimum rank matrices, Linear Algebra Appl.



http://dx.doi.org/10.1016/j.laa.2011.12.036
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.12.036
http://dx.doi.org/10.1016/j.laa.2011.12.036

2 W. Barrett et al. / Linear Algebra and its Applications xxx (2012) XxX—-XXX

pattern. Our aim in this paper is to also determine the structure of all matrices attaining the mini-
mum rank for a large number of patterns.

In order to state this problem precisely, we introduce the relevant graph-theoretic notation. Let F be
afield and let S,, be the set of all symmetric n x n matrices over F. Given A € S, define G(A) = (V, E)
to be the (simple, undirected) graph with vertex set V. = {1, 2, ..., n} and edge set E = {{i, j}|a;; #
0, i # j}. Given any graph G on n vertices, let

S'G) ={Ae S |G@A) =G}
mrf (G) = min{rankA | A € S (G)}

4% (G) = {A € ST(G) | rankA = mrF (G)}.

All of our results and most of our arguments do not depend on the field F, so we often suppress it
in later use of these definitions. We adopt the convention of including the F in statements of the-
orems to emphasize field independence while excluding the F from proofs except where the par-
ticular field becomes of importance. The minimum ranks of many graphs are well-known (see, e.g.,
www.aimmath.org/pastworkshops/matrixspectrum.html) and in examples we will usually state the
minimum rank of a graph without explanation.

Much less is known about .# 2" (G). For the field F, of two elements, .#%™ (G) is given explicitly
for a few small graphs in Lemma 16 and Proposition 17 of [3]. For many graphs G, it is well understood
how to construct matrices in .#%" (G) by considering appropriate subgraphs. The next two examples
illustrate this for graphs with connectivity one and two.

@ (D
Example 1.1. Let < be the bowtie graph '9‘ obtained by identifying two K3’s at a vertex.
@ ®
111
Clearly a matrix in .#%" (K3) is the all-ones matrix | 1 1 1 | and it is natural to embed this matrix in
111
two 5 x 5 matrices and add them to obtain a matrix in .# %" (). Let
[11100] [00000]
11100 00000
A=(11100|, B=|00111
00000 00111
100000 100111

Then rank (A + B) = 2 = mr"(G) so that A + B € .#%" (><). Note that A € .#%"(G;) and
® ©)

B € .# %" (G;) where G; is and G, is

®

mrf (G)) = mrf(Gy) = 1.
This motivates the following definition.

Definition 1.2. Given a proper subgraph H of a graph G, let H be the graph with vertex set V(G) and
edge set E(H).
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©,

So if H is the subgraph 9‘ of the bowtie graph in Example 1.1, then H is the graph G, above.
(5
Note that for any graph G with subgraph H, since H and H differ only by some number of isolated
vertices, mr(H) = mr(H). We will often label matrices with a ~ when they are padded with rows and
columns of zeros, and in this case the ~ does not constitute an operator symbol but merely emphasizes
a relation between a matrix and a corresponding subgraph.

Example 1.3. Let G be the graph

() (R
Let G4 be the graph i( )2 and let Gg be the graph A A . Then mrf (G) = 3 =
@ 0, O,

1+ 2 = mrf(G4) + mrf(Gp) for any field F. Letting

[111000] (0000 0 O]

111000 0101 1 0

111000 0010 1 1
A= . B:

000000 0101 1 O

000000 01111411

(000000] 0010 1 1]

we have A + B € .#%"(G),A € .#%"(G4),B € .#%" (Gg). This is another instance of a decom-
position of a matrix in .#2" (G) into minimum rank matrices of subgraphs with smaller minimum
rank.

The decompositions in Examples 1.1 and 1.3 are obvious as is the case in many further such examples.
What is missing in these examples is an explanation of how and under what circumstances such
decompositions can be obtained. We will give explicit decompositions of matrices in .#%" (G) for all
graphs with connectivity equal to 1 or 2 (note that the decomposition is obvious for disconnected
graphs). Consequently, one can think of our results as a way to reduce the study of minimum rank
matrices of a graph to the study of minimum rank matrices of 3-connected graphs.

2. Prior results

Our results can be viewed as generalizing two fundamental results giving formulae for the minimum
rank of a graph with a cut vertex and the minimum rank of a graph with a 2-separation.

Definition 2.1. Let G; and G, be graphs with at least two vertices, each with a non-isolated vertex
labeled v. The vertex-sum at v of G; and G, is the graph on |G;| + |Go| — 1 vertices obtained by
identifying the vertex v in Gy with the vertex v in G,. The vertex v is called a cut vertex of G.
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Definition 2.2. Let F be a field. The rank-spread of a vertex v of a graph G, denoted r‘f (G), is the
difference between the minimum rank of G over F and the minimum rank of G — v over F. i.e.,

r‘f(G) = mrF(G) — mrF(G — V).

The following theorem was originally published with proofs over the real field by Hsieh in [7], and
independently by Barioli et al. (see Theorem 2.3 in [1]). Proofs given over any field can be found in
[5] (see Theorem 7 where an equivalent version in terms of maximum nullity is given) or in [3] (see
Appendix B).

Theorem 2.3. Let G and G, be graphs on at least two vertices each with a vertex labeled v and let G be
the vertex-sum at v of Gy and G,. Let F be any field. Then

mrf (G) = min{mr’ (Gy) + mrf (Gy), mrF (G, — v) + mrf (G, — v) + 2}.
Equivalently,
rF(G) = min{rf (G1) + £ (Gy), 2.

A more complex result applies to graphs with connectivity 2. We first recall the following definitions
from [5].

Definition 2.4. Let G = (V, E) be a graph with V = {1, 2, ..., n} which we allow to have parallel
edges. We denote by F; the field with only two elements. If F is a field unequal to F», we define ST (G)
as the set of all F-valued symmetric n X n matrices A = [q; ;] with

. a;j = 0ifi # jandiand j are not adjacent,

. a;j # 0ifi # jandiand j are connected by exactly one edge,

. a;j € Fifi # jandiand j are connected by multiple edges, and
.a;; € Fforalli e V.

A WN -

We define S™2(G) as the set of all Fy-valued symmetric n x n matrices A = [a; ;] with

1. a;j # 0ifi # jand i and j are connected by an odd number of edges,
2. a;j = 0ifi # jandiand j are connected by an even number of edges, and
3. a5 € Fforalli e V.

Definition 2.5. A 2-separation of a graph G = (V, E) is a pair of subgraphs (G 4, Gg) satisfying the
following: V(G4) U V(Gg) = V,| V(G4) NV(Gg) |= 2,E(G4) UE(Gg) = E,and E(G4) NE(Gg) = .

The main result of [5] (see Theorem 14 and Corollary 15) is:

Theorem 2.6. Let (G 4, Gg) be a 2-separation of G withR = {ry, r;} = V(G4) NV (Gp). Let H and Hg be
obtained from G 4 and Gg, respectively, by inserting an edge between ry and r,. Let G 4 and G be obtained
from G 4 and G, respectively, by identifying ry and r, or in other words, by inserting edges between one
vertex and the neighbors of the other and then deleting the latter.

Then mrf (G) = min{mr (G ) + mr (Gp),

mr’ (Hy) + mr* (Hg),

mrf (G4) + mr" (Gp) + 2,

mrf (G4 — 1) + mrf (Gg — 1) + 2,
mrf (G4 — ) + mrf (Gg — 1) + 2,
mrf (G4 — R) + mrf (G — R) + 4).
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Example 2.7. Continuing with Example 1.3, the graphs appearing in Theorem 2.6 are:

Gy it Gp: i j i t
A AVAN
& E & o
Ga—r1: O\D Gg—11: i‘z
Gy—ry: f Gg—r13: i j
GA—RZ O Gs—R: o0—0O0——=O0

Simple calculations show that

mr(Gy) + mr(Gg) =1+2 =3,

mr(H,) + mr(Hg) =1+ 3 =4,

mr(Gy) + mr(Gg) +2=0+42+2=4,

mr(Gy —r) +mr(Gg—ry)+2=1+2+2=35,

mr(Gy —r)+mr(Gg—1) +2=1+2+2=05,

mr(G4 —R) +mr(Ggs —R)+4=0+2+4+4=6.

So in this example, the minimum is attained uniquely by the first term.

Example 2.8. The following graphs with accompanying 2-separations show that each term in Theo-
rem 2.6 is necessary. To the left of each we show the term that attains the minimum uniquely.

mr(H,4) + mr(Hp) : % % C/D\D
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mr(G4) + mr(Gg) + 2 %

SN

Y
A

G

mr(G4 —R) +mr(Gg —R) + 4 : %

Note that a graph for the term we omitted, mr(G4 — r2) + mr(Gg — r2) + 2, can be obtained by
switching the labeling of the vertices ry and r, in the graph used for the term mr(G 4 — 1) + mr(Gg —
r1) 4 2. Also, since it is not obvious, we note that the minimum rank for the connected 16 vertex graph
is 10.

We will also make use of the following lemma from [5] (see Lemma 10 where it is stated in terms
of maximum nullity) and two propositions from [8].

Lemma 2.9. Let F be afield, let G = (V, E) be a graph, and let R = {r{, r,} C V. Let G be obtained from
G by identifying the vertices of R. Then

mrf (G) < mif (@) + 2.
Proposition 2.10 (Nylen). Let F be a field, let G be a graph, and let v a vertex of G. Then
mrF(G —v) < mrF(G) < mrF(G —v) + 2.
Equivalently,
0<rf@G) <2
Proposition 2.11 (Nylen). Let F be a field, let G be a graph on n vertices, and let A € .# %" (G). Then for

anyi € {1,2,...,n}, rankA(i) = rank A or rank A(i) = rankA — 2; i.e, rank A(i) = rankA — 1is
impossible.
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3. Decompositions for graphs with a cut vertex

In this section we generalize Theorem 2.3. We show that minimum rank matrices of a graph with
a cut vertex decompose in two different ways and that these correspond to the two different possible
minima in Theorem 2.3.

Theorem 3.1. Let G be the vertex-sum at v of Gy and G, and let Si41 be the star subgraph of G formed by
the degree k vertex v and all of its neighbors. Let F be any field and let A € .# %" (G).

1. Ifrank A = rank A(v), then A € ///JF(G1) + .2 %" (Gy) and mrF(G) = mrf(Gy) + mrf (Gy).

2. Ifrank A = rank A(v)+2, thenA € .4 %" (G — v)+.# %" (Gy — v V)+. 4% (Sey1) and mif (G) =
mrf (G, —v) + mif (G, — v) + 2.

Example 3.2. As an illustration of the above theorem, consider the graphs

noting that G is the vertex-sum at vertex 3 of G; and G,. Now consider the matrices in .#%(G)

1 0 100] [00100]
0-1-100 00100
A=|1-1 111/, B=|11111

0 0 111 00111

0 0 111 00111

Since rank A = rank A(3), statement 1 of the theorem applies, and

[1 0o 100] [00000]
0-1-100 00000
A=[1-1 000 |+|00111
0 0 000 00111
0 0 000 [00111]

where the two matrices are respectively in .#%(G;) and .#%(G5). Alsonotemr(G) =3 =2+ 1 =
mr(Gy) + mr(Gy).
Since rank B = rank B(3) + 2, statement 2 of the theorem applies, and

[0oo000] [ooooo] [oo0100]
ooooo| |ooo0o00| |00100
B=|00000[+|00000|+|11111
ooooo| |ooo011| |0o0100

00000 00011 00100

Please cite this article in press as: W. Barrett et al., Decompositions of minimum rank matrices, Linear Algebra Appl.
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where the three matrices are respectively in //A%’(GT:/V), //A%(G/Z:/v) and .# % (Ss) where v is vertex
3.Againnotemr(G) =3=0+142 =mr(G; —v) + mr(G, — v) + 2.

Proof. Let G be as stated in the theorem with A € .#%(G) given. Labeling the vertices of G appropri-

a xl X

atelyA = | x; C; 0 | where each G; € S(G; — v) and the first row and column of A correspond to

X2 0 Cz
the vertex v. By Proposition 2.11, either rank A(v) = rank A or rank A(v) = rankA — 2.
Consider the case where rank A(v) = rank A. It follows that

x1 G O
rank A > rank e > rank A(v) = rank C; + rank G.
_Xz 0 C2

X
Since rank A(v) = rank A, we actually have equality throughout. Thus |: 1} is in the column space of
X2

A(v). Further since A(v) is a block diagonal matrix, each x; is in the column space of C;. Thus there exist
a yiG yiG
vectors y; such that x; = C;y;. Now rewrite the matrixasA = | C;y; (; 0 | . Note that the first
Gy, 0 G

row of A is a linear combination of the other rows of A. Thus using block Gaussian elimination we see
thata = y{Clyl +y£C2y2. Let

yiCiyr y1Ci 0 yiGys 0 Y36
Bi=| Gyi G 0 and By = 0 00
0 0 0 Gy, 0 G

Then A = By + By, where rank B; = rank C; and B; € S(G;),i = 1, 2. By Theorem 2.3,

mr(G) < mr(Gy) 4+ mr(Gy) = mr(Gy) + mr(Gy)
< rank By + rank B; = rank C; + rank G; = rankA = mr(G).
Then we have equality throughout, so mr(G) = mr(G;) + mr(G,) and rank B; = mr(G;), i = 1, 2.

Then B; € .#%(G;), i = 1, 2, which completes the proof of the first statement of the theorem.
Now consider the case where rank A(v) = rank A — 2. Let

000 000 a xI xf

Ey=|0C 0|, =|000]|, and E=|x 0 0

00O 00GC x 0 0
NotethatA:ﬂ—i—fz—i-E,fieS(Ei_\—/v),i:1,2,and§ES(S/k:).ByTheoremZBandthe

hypothesis,
mr(G) < mr(Gy —v) +mr(Gy —v) +2 = mr(GT\;/v) + mr(G/Z:/v) +2
< rank By + rank E; + 2 = rank C; + rank G, + 2
= rankA(v) + 2 = rank A = mr(G)

Please cite this article in press as: W. Barrett et al., Decompositions of minimum rank matrices, Linear Algebra Appl.
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Thus we have equality throughout, somr(G) = mr(G;—v)+mr(G,—v)+2,and mr(a\—_/v) = rank E;,
i=1,2 ie, E € .#%(G; — v). Since v is not an isolated vertex in either G; or G, rankE = 2 =

mr(Serq), and E € .#%(Si1). Since A = E; + E; + E, the proof of the second statement of the
theorem is complete. [

The following corollary gives a method for knowing the possible decompositions given only the
graph and also determines when both decompositions or only one is possible.

Corollary 3.3. LetG, F, v, Gy, Gy and Sk+1 be as in Theorem 3.1.
1 Ifrf(G1) + 1 (Gy) < 2, then
M7 (G) = % (G)) + w7 (Gy).
2. IfrE(Gy) + 1(Gy) > 2, then
MF(G) = 4T (1 — V) + 4% Gy — V) + 4% (Ser1).
3. Ifrf(Gy) +E(Gy) = 2, then
A F(G) = (,//z,%F (G)) +.u#" (E;}))
U (wa" (G —v) + 4% Gy —v) +.a%" Gern) -

Looking back at Example 3.2, we see that r3(G1) + r3(G2) = 2 4+ 0 = 2, so G illustrates statement 3
of the corollary.

Proof. Since

mr(G)

min{mr(G;) + mr(Gy), mr(G; — v) + mr(Gy, — v) + 2}
= mr(Gy — v) + mr(Gy — v) + min{r,(Gy) + r,(Gz), 2},

letting r = r,(Gy) + r,(G,) we have

mr(Gy) + mr(Gy) < mr(Gy —v) + mr(G, —v) +2 ifr <2
mr(G) = { mr(Gy) +mr(Gy) = mr(G; —v) + mr(G, —v) +2 ifr=2 (3.1)
mr(G; —v) + mr(Gy; — v) + 2 < mr(Gy) + mr(Gy) ifr > 2.

We first prove the forward containments. Let A € .#%(G). By Proposition 2.11, either rankA =
rank A(v) + 2 or rank A = rank A(v).

Case 1. Suppose r,(G1) + 1y (G2) < 2. Since mr(G) # mr(Gy — v) + mr(Gy — v) + 2, by the contra-
positive of statement 2 of Theorem 3.1 rank A = rankA(v) and A € .#%(G1) + #%#(G>).

Case 2. Suppose 1,(G1) + 1,(G) > 2. Then mr(G) # mr(Gy) + mr(G) and by the contrapositive of
statement 1 of Theorem 3.1 rank A = rankA(v)+2andA € .#%(Gy — v)+.#%#(Gy — V)+.# %(Sk+1)-

Case 3. Suppose 1,(G1) + 1,(G2) = 2. Whether rankA = rank A(v) + 2 or rank A = rank A(v), Ais in
the union on the right hand side of 3.

Now we verify the reverse containments.

Please cite this article in press as: W. Barrett et al., Decompositions of minimum rank matrices, Linear Algebra Appl.
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Case 1. Suppose 1,(Gy) + 1r(G2) < 2and A € MR(Gy) + #%(Gy). Write A = A, + A, with
Ai € #%(Gj),i =1,2.ThenA € S(G).By Eq. (3.1), mr(G) = mr(G;) + mr(Gy), so

mr(G) < rankA = rank (A; + Az) < rankA; + rank A,

= mr(Gy) + mr(Gz) = mr(Gy) + mr(Gy)
= mr(G).

Then rankA = mr(G) and A € .#%(G).
Case 2. Now suppose 1,,(G1) —i—rv(Gz) > 2andA € //ZJ(G1 —Vv)+ ///J(Gz —Vv)+ ///J(Sk+1) Write

A=B] +B, +EwithB; € ////(Gl —v),i=1,2,andE € ////(Sk+1) Necessarily A € S(G). By Eq.
(3.1),

mr(G) = mr(G; —v) + mr(Gy —v) +2
= mr(Gfl:/v) + mr(G/Z:/v) +2
= rank By + rank B, + rank E
> rank (By 4+ By + E) = rankA > mr(G).

ThenrankA = mr(G) and A € .#%(G). O

4. Decompositions for graphs with a 2-separation

We will now give a decomposition theorem associated with Theorem 2.6. There are twelve mini-
mum rank classes associated with the terms on the right hand side of the formula for mrf (G), namely:

% (Gr), w % (GCp), w% (Hy), %" (Hg),
AF(CL), MF(Cg), MA(Ca—11), MF (Cs—11),
MGy —T12), T (Cs—12), MG (GCa—R), 4% (G5 —R).

We will need all of these and five additional graphs and their minimum rank classes in the statement
of our decomposition theorem. For ease of reference, we restate the definitions of the above graphs
originally given in the statement of Theorem 2.6 as well as define the five additional graphs.

Definition 4.1. Let (G4, Gg) be a 2-separation of a graph G and let R = {ry, ry} = V(G4) N V(Gp).
To avoid degenerate cases we now assume that G 4 and Gz each have at least 3 vertices. We define the
following graphs associated with G.

1. G4, Gp are the multigraphs obtained by identifying ry and r in G4 and G, respectively.

2. Hy, Hp are the multigraphs obtained from G 4 and G, respectively, by inserting one edge rq15.

3. Fori = 1,2, Starj(G) = (V(G), E;) where E; is the set of all edges incident to vertex r;.
Stari2(G) = Starq(G) U Stary(G).

4, TStar(G) is the graph obtained from Star; (G) by inserting an edge between every neighbor of
r1 in G (excluding ;) and r,. TStar, (G) is the graph obtained from Star, (G) by inserting an edge
between every neighbor of 15 in G (excluding 1) and ry.

The T in the preceding definition refers to the fact that we are twinning vertices; we are making r,
a twin of 7 in forming TStar; (G) and vice versa in forming TStar, (G).

It is well known that if G is a star on 4 or more vertices and M € .#%(G) then m;; = 0 for every
pendant vertex i (see, e.g., [2]). In the settings we will encounter, the minimum rank classes associated
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with the latter two “star classes” will also have restricted diagonal entries, so for these we modify the
definitions at the beginning of the paper appropriately.

Definition 4.2. Let
S5 (Starpz(G)) = {M € SF(G) | my = 0;j # 11, 12}

SE(TStari(G)) = (M € SF(G) |mjj = 0;j # 11,2}, i =1,2
mrf (Star12(G)) = min{rank A | A € S} (Star12(G))}
mrf (TStar;(G)) = min{rankA | A € S{(TStar;(G))},i=1,2
//{%5 (Stari2(G)) = {A € Sg (Star12(G)) | rank A = mrg (Star12(G))}
A7 (TStar;(G)) = {A € SE(TStar;(G)) | rank A = mrh(TStar;(G))},i = 1, 2.
Proposition 4.3. Let F be a field. Let (G 4, Gg) be a 2-separation of a graph G, assume that G 4 and Gg

each have at least 3 vertices, let R = {ry, 3} = V(G4) N V(Gg) and assume that neither ry nor r, is a cut
vertex of G. Then

mr! (Star;(G)) = 2, mrS(TStari(G)) =2, and mrS(Staru(G)) < 4.

Proof. Since r; is not a cut vertex of G, rq is adjacent to a vertex in V(G 4) \ R and a vertex in V(Gg) \ R.
Then P3 is induced in Star; (G) and in TStar; (G), so each has minimum rank at least 2. Similarly Star, (G)
and TStar; (G) each have minimum rank at least 2.

Fori = 1 or 2, Star;(G) is a star so mr(Star;(G)) < 2. If we label the graph G so that r1, r, occur
first, there is a matrix of either the form

00 xT 11«7
000 or 100
x00 x00

in S(Star;(G)). Then depending on whether or not rir; € E(G), either

00x 11"
00x"| orelse |11xT
xx 0 xx 0
isin Sp(TStary (G)) and both have rank at most 2. So mr(TStar; (G)) < 2 and similarly mrq(TStar, (G))

< 2.
Finally, there is a matrix of the form

abx’
bcy'
xy 0

in Sp(Stary2(G)), and its rank is at most 4. O
The following theorem which generalizes Theorem 2.6 is our main result. We show that mini-

mum rank matrices of graphs with a 2-separation decompose in essentially six different ways, each
corresponding to one of the six possible minima in Theorem 2.6.

Please cite this article in press as: W. Barrett et al., Decompositions of minimum rank matrices, Linear Algebra Appl.
(2012), doi:10.1016/j.1aa.2011.12.036



http://dx.doi.org/10.1016/j.laa.2011.12.036

12

W. Barrett et al. / Linear Algebra and its Applications xxx (2012) XxX—-XXx

Theorem 4.4. Let F be a field. Given G as in Definition 4.1 and that neither ry nor ry is a cut vertex, let

Ax1x20

xIa byl r
M= €M% (G)

T T
X, b ¢y

0 yi1y2 B

where the vertices are labeled so that A € SF(G4 — R), B € 87 (Gz — R),

1L

1L

V.

V.

If

0x00 00x 0
xIa byl . 00b 0 .
€ & (Star1(G)), and € S (Stary(G)).
0 b0oO XX b ocyl
0y1 00 00y, 0
rank A 4 rank B = rank [A xy x2] + rank [y1 y2 B],

then either M e’;///%F(C’?;) +A;///%F(@) and mrf (G) = mrf(G4) + mrf (Gp)
orM € . %" (Hy) + .« %" (Hg) and mrf (G) = mrF (H4) + mrf (Hp).
If

rank A + rank B = rank [A x1] + rank [y B] < rank [Axq x2] + rank [y y2 B]

then M € 4% (G4 — 13) + 4% (Gs — 12) + 4% (Star2(G))
and mrf (G) = mrf (G4 — 1) + mrf (G — 1) + 2.

If
rank A 4 rank B = rank [Ax;] + rank [y, B] < rank [Axq x2]| 4 rank [y; y, B]
then M € 4% (Ga —11) + .4 % (Gs — 11) + .47 (Star1 (G))
and mrf (G) = mrf (G4 — 1) + mrf (Gs — 1) + 2.
If either

rank M = rank A + rank B + 4,
or

rank A 4 rank B < rank [Ax{] + rank [y B] < rank [Axq x2]| 4+ rank [y; y2 B],
or

rank A 4 rank B < rank [Ax;] + rank [y, B] < rank [Axq x2] 4+ rank [y; y» B],

then M € .4/ %" (G4 — R) + .4%" (Gg — R) + .4/ %% (Star12(G))
and mrf (G) = mrf (G4 — R) + mrf (Gs — R) + 4.
If

rank A 4 rank B < rank [Axy] + rank [y B] = rank [Axy x»] 4+ rank [y; y» B],

rank A 4 rank B < rank [Ax;] + rank [y, B] = rank [Axq x2]| 4 rank [y; y2 B],

(El)

(EL)

(I)

(I2)

(IE1)

(IE3)
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and
rank M # rank A + rank B + 4
then
M € %" (Ga) + .4 % (Gs) + .4 %E(TStar, (G)),
M € .#%" (Gy) + .4 % (Gg) + .47 (TStar,(G)),
and

mr! (G) = mrf (G) + mrf (Gy) + 2.

Example 4.5. Let F be a field with char F # 2. Let G be the graph in Example 1.3 with the same
2-separation (G 4, Gg). The following matrix is an example where part [ applies.

1/1 1fo 00
121110
111 2[011
ol1ol110
0
0

11121
01011

Notice that A = M[1], and B = M[4, 5, 6]. Also x1, x appear as columns in A, while y1, y, appear in
B. Thus M satisfies the hypothesis of part 1.
In this case M € .# %" (G ) + .# %" (Ggz) and M can be decomposed as shown in Example 1.3.

Example 4.6. The following graph and matrix provide another example where part [ applies.

11 1 1] 0

1] 0 0|—1
G: M =

1] 0 0]|—-1

0|—1 —1|-1

The 2-separation is G — {4} and G — {1}. The matrices A and B are both 1 x 1 matrices corresponding
to M[1] and M[4], respectively. It is easily verified M satisfies the hypothesis of part I.

In this case M € %%FV(I:I;) + .#%" (Hg) and can be decomposed into the following matrices
corresponding to H 4 and Hg, each of which is isomorphic to K3 U Kj.

1110 (0 0 0 o]
1110 0-1-1-1
1110 0-1-1-1
0000 0-1-1-1

Please cite this article in press as: W. Barrett et al., Decompositions of minimum rank matrices, Linear Algebra Appl.
(2012), doi:10.1016/j.1aa.2011.12.036



http://dx.doi.org/10.1016/j.laa.2011.12.036

14 W. Barrett et al. / Linear Algebra and its Applications xxx (2012) XxX—-xXx

Example 4.7. Let F be a field with char F # 2. The following graph and matrix give an example where
part Il applies.

[1110{00/0000 |
1110/01[0000
1121/11[0000
0011/10[0000
. o | 0011211100
0110/11/0110
0000/10/1100
0000/11{1211
0000/01(0111
| 0000[00[0111 |

We have rank M = 6 = mr(G). The 2-separation is the graph induced by the first 6 vertices and the
graph induced by the last 6 vertices excluding edge {56} as in Example 2.8. The matrices A and B are
respectively M[1, 2, 3, 4] and M[7, 8, 9, 10]. In this case x; appears as a column of A and y; appears
in B. Thus the equality in (EI;) is satisfied. Further x; is not in the column space of A, which justifies
the inequality in (EI;).

The conclusion states that M can be decomposed into 3 matrices corresponding to the graphs

Gy — 1o, G;_\—_/rz, and Star, (G). The graphs and corresponding matrices are given below.

(1110000000 ] 0000000000 (0000000000 ]
1110000000 0000000000 0000010000
1121100000 0000000000 0000010000
0011100000 0000000000 0000000000
0011100000 0000101100 0000010000
0000000000 | 0000000000 | 0110110110
0000000000 0000101100 0000000000
0000000000 0000101211 0000010000
0000000000 0000000111 0000010000
10000000000 | 10000000111 10000000000
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Example 4.8. Let F be a field with char F 7% 2. The following graph and matrix provide an example
where part IV applies.

([100110000[00/00000 |
010011000/00[00000
001100010/00[00000
101210010[1000000
110121000[11/00000
010102101/01/00000
000001101/00[00000
o y_|001100010/1000000
000001101/01/00000
000110010/01[11000
000011001(10[01100
000000000[10[11010
000000000/11[12111
000000000/01[01101
000000000/00[11010
|000000000(00[0110T1 |

We have rank M = 10 = mr(G). The 2-separation is illustrated in Example 2.8. Note that A =
MJ1,2,3,4,5,6,7,8,9] and B = M[12, 13, 14, 15, 16]. The matrix B has 3 distinct columns, and
the second column is the sum of the first and third columns. Thus rank B = 2. Since y1, y», the first
column of B, and the third column of B form a linearly independent set, rank [y y> B] = 4. Therefore
rank B < rank [y B] < rank [y; y2 B] and (I;) follows.

A0O0O 0000
. L~ 0000| ~ 0000
The conclusion states that M can be decomposed into A = ,B = , and
0000 0000
0000 000B

—~

S =M — A — B corresponding to G4 — R, Gg — R, and Stary2(G), respectively.

Example 4.9. Let F be a field with char F # 2. The following graph and matrix provide an example
where part V applies.

[11] 1 oloo]
O—Q 11 o 100
G JllL ¥ 10 2-110
' ‘I' 01/—1 2[01
©, (o) 00l 1 0J11

00/ 0 111
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We have rankM = 4 = mr(G). The 2-separation is the four cycle induced by {1, 2, 3, 4} and the
path with edges {35, 56, 64}. Note that the matrices A and B corresponding to this 2-separation are
both the 2 x 2 all 1’s matrix. Thus rankA = rank B = 1. Neither x; nor x; is in the column space
of A justifying the inequality in both (IE;) and (IE3). Also x; + x; is in the column space of A and
¥1 + y» is in the column space of B justifying the equality in both (IE1) and (IE;). Lastly we note that
rank M = 4 # rank A + rank B + 4 = 6.

The conclusion of part V states that M can be decomposed into 3 matrices corresponding to

0‘9 ® @ @Q @
Gi: ® X Gs: @ @ TStan(Q): eke

L/

® © E—® ® ©®

The matrices are

[110100]] 000000 00 1-1 00
110100 000000 00 0 0 00
000000 000000 10 2—-1 10
110100| |oo00111| |—-10-1 0-10
000000 000111 00 1—-1 00
|000000] [000111] | 00 0 0 00|

Example 4.10. We note that in rare instances the decomposition may be trivial. Consider the following
graph and matrix

0 ol1 1/o
N BELRE
G GvQ M=11h1)

O 01 1|0

with 2-separation consisting of the clique induced by vertices {1, 2, 3} and the path with edges
{24, 34}. The matrices A and B are both 1 x 1 matrices corresponding to M[1] and M[4], respectively.
It is easily verified M satisfies the hypothesis of part V.

The conclusion of part V states that M can be decomposed into 3 matrices corresponding to

G:A: @ %@ GB @ TStar (G +

The only matrix in either .#: Z(G 4) Or ///%(GB) is the zero matrix which leads to the trivial decompo-
sition,M = 0+ 0 + M.

We require several lemmas before giving the proof of Theorem 4.4. The next one follows immedi-
ately from Theorem 2.6, but we give an independent proof that aligns with the proof we will give of
Theorem 4.4.
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Lemma 4.11. Let F be any field. Given G, G 4, Gg, H4, Hg, G4, Gg as in Definition 4.1,
mrf (G) < min{mrF(GA) + mrf (Gp),
mr' (H.) + mr’ (Hg),
mr’ (Gy) + mr’(Gy) +2,
mrf (G4 — 1) + mrf (G — 1) + 2,
mrf (G4 — ) + mif (Gg — 1)) + 2,
mrf (G4 — R) + mrf (Gg — R) + 4).

Proof. If rir; € E(G), we assume that riry € E(G4).

1. Let
_A X1 Xz_
My = |xI a b |€S(Gy) withrank My = mr(G4)
% b o
and
h 0yl
My =0 k y!| e S(Gg)withrank M = mr(Gg).
V1 Y2 B |
Then
A x1 x 0 A X x0 0000
T T T T
xya+h b y Xy a b0 0Oh Oy
M=|"] =17 + 1 €s©)
X, b c+ky, X, b ¢ O 00 k y
0 ¥ y2 B 0 0O0O 0y vy, B

whether or not r11; € E(G). Then

mr(G) < rank M < rank M; 4 rank My = mr(G4) + mr(Gg).

2. Let

A Xq xz_

M = x{ a b | € S(Hy) with rank M; = mr(H4)
b o

and

- y{_

M, =|s t y}| e S(Hp) withrank M = mr(Hp)
[ V1 Y2 B |

(sos # 0).

17

(2012), doi:10.1016/j.1a2.2011.12.036

Please cite this article in press as: W. Barrett et al., Decompositions of minimum rank matrices, Linear Algebra Appl.



http://dx.doi.org/10.1016/j.laa.2011.12.036

18 W. Barrett et al. / Linear Algebra and its Applications xxx (2012) XxX—-xXx

Subcase 1. 11, ¢ E(G).
Thenrirp € E(Hy) sob # 0.

Let
A x1 %0 00 0O
T T
Mzsx}abo_bOrsy}
X, b ¢ 0 0s ty
0 00O Oy y2 B

Then M € S(G) and mr(G) <rank M <rank M;+rank M, = mr(Hy4) 4+ mr(Hg).

Subcase 2. 111y € E(G).
Then there is a double edge between ry and r, in Hy4. For F # F,, b may or may not be 0, while for
F = F,,b = 0. Since s # 0, there is a nonzero k such that kb + s # 0. Let
A Xx1x0 0000O0
T T
X a b O 0O0r sy
M=klM n 1
xX3b coO 0s ty

0 0O00O0 0 y1y2 B
Then M € S(G) and mr(G) <rank M <rank M;+rank My = mr(H4) + mr(Hp).

3. The multigraph G, obtained from G by identifying ry and r», is the vertex sum at v of G4 and Gg.
By Lemma 2.9 and Theorem 2.3, mr(G) < mr(G) + 2 < mr(Gy4) + mr(Gg) + 2.

4. Let
f) x2_
My = € S(G4 — r1) withrank M; = mr(G4 — 1)
XD ¢
and
Q) .
M, = € S(Gg — ry) withrank My = mr(Gg — ).
_y2 B -
Then

AX20 00 0
M=|x cg0|+|0cy|esG-r)
000 0y2 B

and by Proposition 2.10, mr(G) < mr(G — ry) + 2 <rank M + 2 <rank M;+ rank M, + 2 =
mr(G4 —rq) + mr(Gg —ry) + 2.

By the same argument, mr(G) < mr(G4 — ry) + mr(Gg — 12) + 2.

5.Wehavemr(G) < mr(G—ry)+2<mr(G—ry—r)+4=mr(G—R)+4 =mr((G4—R)U
(Ggs—R) +4=mr(G4 —R) +mr(Gg —R) +4. O
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Lemma 4.12. Let F be a field, let G be a graph on 3 or more vertices, let u, v be vertices of G and let G be
the multigraph obtained by identifying u and v. Let

A Xy
M=|x"ab|es )
V' bec

where the last 2 rows and columns are associated with u and v. Then for any nonzero h,k and any
scalar @,

o A hx + ky B
M= e sF@©)
|+ kyT

Proof. Leti # u, v be a vertex of G. Then

0 if neither iu nor iv is an edge of G

nonzero if exactly one of iu, iv is an edge of G
hx; + ky; is

0 or nonzero if iu, iv are both edges of Gand F # F,

0 if iu, iv are both edges of Gand F = F;.
It follows that M € SF(G). O

Lemma 4.13. Let F be a field. Given G as in Definition 4.1, let

A X1 X2 0
xIa byl .

M= e #% (G),
XX b ocyl
0 y1y2 B
Ax 0 AXx 0

Ki=|xl ayl|, and Ko =|x} ¢ y}
0y B 0y, B

If rank [Ax1] + rank [y; B] < rank [Ax; x2] + rank [y; y» B],

then Ky € .#%" (G —13), rank Ky = rankM — 2, and mr" (G) = mrf (G — ) + 2,
while if rank [Ax,] + rank [y, B] < rank [Ax1 x2] + rank [y y2 B],
then Ky € # %" (G —r1), rank Ky = rank M — 2, and mrf(G) = mrf (G — 1) + 2.

Proof. It suffices to prove the first claim. Then either rank [Ax1] < rank [Axq x,] or else rank [y; B] <
rank [y; y2 B]. Without loss of generality assume rank [Ax;] < rank [Axq x2]. Since x, ¢ C([Ax1]),
rank K; < rank M. By Propositions 2.11 and 2.10,

mr(G —ry) < rankK; = rankM — 2 = mr(G) — 2 < mr(G — ).

Therefore mr(G — rp) = rank Ky = rankM — 2 = mr(G) — 2and Ky € .#%(G —r3). O
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Lemma 4.14. Let F be a field. Given G as in Definition 4.1, let

_A X1 X2 O_

xIa byl
M= e .#% (G).

T T
X, b ¢y

10 y1¥2 B

Then rank M — rank A — rank B equals 4, 2, 1, or 0.
Proof. Let Ky be as in Lemma 4.13. By Proposition 2.11, rank K; is either rank M or rank M — 2.
Case 1.rank Ky = rank M — 2

A0
Then Ky € .#%(G — ) and again by Proposition 2.11 the rank K; — rank { :| is either O or 2. Then
0B

AO
rank M — rank A — rank B = (rank M — rank K7) + (rank K7 — rank |: })
0B

which is either 2 + 0 or 2 + 2; i.e,, 2 or 4.

Case 2. rank Ky = rank M

AO
Then rank Ky — rank |: :| is0,1,or 2 and
0B

A0
rank M — rank A — rank B = rank K; — rank |: }
0B

whichis0,1,or2. O

Proof. (Of Theorem 4.4)
The five hypotheses of I, I1, III, IV, V are mutually exclusive and exhaustive.
We adopt the same convention as in the proof of Lemma 4.11 that if ryr, € E(G) thenriry € E(Gy).

I. Assume that rank A 4+ rank B = rank [A xq x2] 4 rank [y y B]. It follows that x1, x, € C(A) and
¥1, Y2 € C(B).Then there are vectors uy, vi, Uy, Vo suchthatx; = Auq, y1 = Bvy, X, = Auy, y» = Bv,

A AU1 Auz 0

ulA a b VB

and hence M = . It is straightforward that M is row and column equivalent to
u!A b ¢ vIB
2 2
0 Bvi Bvy B
A 0 0 0

0 a — ulAuy —vIBvy b —ulAuy —vIBv, 0
0 b—ulAuy — viBvy ¢ — ujAu; — viBv, 0
0 0 0 B
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Sorank M = rank R = rank A + rank B + rank T where

_— — ulAuy —vIBvy b —ulAu, — vlTsz
b —ulAuy; — vIBvy ¢ — ulAu; — vIBvy
We now explain why rank T is 0 or 1. If the off-diagonal entry of T is O then since M € .#%(G), the

two diagonal entries of T must be 0. And if the off-diagonal entry of T is nonzero then since a and ¢
could be chosento makedet T = Oand since M € .#%(G) it must be the case that they were so chosen.

Case 1. T is the zero matrix. Then rank M = rank A + rank B and a = ulAuy + vIBvy, b = ulAu, +
vIBv, (= ulAuy + vIBvy) and ¢ = ulAuy + v Bv,.

A Au1 AUZ 0
SoM ulA ulAuy + viBvy ulAuy + viBv, VB
(0] =
A Wl Au; +vIBvy ulAuy + vIBv, VB
0 Bvq Bvy B
A Auq Auy O 0 0 0 0
uTA uT T T
— 1A ujAug ujAuy 0 —
Let M; = 1 2 . My = 0 v; TBv; vy TBy, viB
ulA ulAu; ulAu; 0 0 vIBvy vIBv, vIB
0 0 0 O 0 Bvy Bvy B

Then M = 1\7; + Mp, rank m = rank A and rank M = rank B.
Subcase 1. vIBv, = 0.

Then ulAuz = b # 0if and only if r;r, € E(G) if and only if 1, € E(G4). Then M, € S(G4) and
Mg € S(GB) By Lemma 4.11,

mr(G4) + mr(Gg) > mr(G) = rank M = rank A + rank B
= rank M4 + rank Mz > mr(G4) + mr(Ggz) = mr(G,) + mr(Gg).

It follows that rankI\A/IZE mr(G,) and rank Mz = mr(Gg) so M4 € .#%(G4), Mg € .#%(Gg) and
M € .#%(G ) + #%(Gg). Furthermore mr(G) = mr(G4) + mr(Gg).

Subcase 2. levz # 0.
Then Mz € S(Hg). We claim that M, € S(H,) also. For if riry ¢ E(G), nr E(H,) and u{Auz =
-V T By, # 0.1fryrp € E(G), there is a double edge between r; and r; in HA Here ulAuz may be zero
or nonzero for any F # F,. Butif F = F,,

1 =b = ujAuy + viAv; = ujAuy + 1
and u{Auz = 0. So in either case M, € S(H ). By Lemma 4.11,
mr(H,) + mr(Hg) > mr(G) = rank M = rank A + rank B
= rankm + rank Mz > mr(I:I:l) + mr(ﬁg) = mr(Hy4) + mr(Hg).

It follows that rank M4 = mr(H,) and rank Mg = mr(Hg) so M4 € .#%(H,), Mg € .#%(Hg), and
M € .#%(H,) + .#%(Hg). Furthermore mr(G) = mr(H4) + mr(Hp).

Case 2. Now assume rank T = 1. Then rank M = rank A 4+ rank B + 1. Let
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A Auy Aup 0 0 O 0 0
My = ulA a —vIBvy b—vIBv; 0 Mp = 0 viBvy vIBv, viB
ulA b —vIBvy ¢ —vIBv; 0 0 viBvq ViBvy ViB
0 0 0 0 0 Bwy Bv, B

Then M = M + Mg, rank Mz = rank B and rank M, = rankA + 1 since M is row and column
equivalenttoA @ T. So

mr(G) = rank M = rankA + 1 + rank B = rank M4 + rank Mg, (E2)

Subcase 1. vIBv, = 0.
Then b — vlTsz = b and whether or not b = 0, M4 € S(G4) and Mi € S(Gg). Then by (Ez) and
Lemma 4.11,

mr(G) = rank M4 + rank Mz > mr(G4) + mr(Gz) = mr(G4) + mr(Gg) > mr(G).
Then we have M4 € .#%(G4), Mg € .#%(Gg) and mr(G) = mr(G4) + mr(Gg).
Subcase 2. vIBv, # 0.
Then Mg € .#%(Hg).1f 111y ¢ E(G), rrp € E(H,); also b=0= b—v{sz # Oand M, € S(Hy).If
rirp € E(G), there is a double edge between r; and r, in H4. We only need to check the case in which

F = K and in that case b = 1 = vIBv; = b — vIBv; = 0. So M4 € S(H,). Again by (E;) and
Lemma 4.11,

mr(G) = rank M4 + rank Mgz > mr(H,) + mr(Hg) = mr(H,) + mr(Hg) > mr(G).

Now M, € .#%(H,), Mg € .#%(Hg) and mr(G) = mr(H4) + mr(Hg).
II. Now assume (EI; ):

rank A 4 rank B = rank [Ax1] + rank [y B] < rank [Axq x»]| + rank [y; y, B].

Because of the inequality, we can apply Lemma 4.13 to conclude
Axs O
Ki=|x a yI| € #%(G—r3), rankK; =rankM — 2,
0 y1 B
and mr(G) = mr(G — ry) + 2.
The equality implies that x; € C(A) and y; € C(B). Write x; = Auq and y; = Bv; so that

A Aup O
Ki=|ulA a vIB
0 Bvi B

Since Kj is row and column equivalent to

A 0 0
Ry = |0 a—ulAu; +vIBv; 0|, rankK; = rankR;.
0 0 B

Also, since Kj is a minimum rank matrix, we must have a — u{Aul — V{Bvl = 0. Then rank M =
rank Ky + 2 = rank Ry + 2 = rank A + rank B + 2. Now let
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A Aup 00 0 0 0O
—  |wAujAy 00| __ |0 viBv; 0 V{B
““lo o oo " |o o 0o

0 0 00O 0 Bvy 0 B

00x 0
and S, = 00b O

xXXbcyl

00y, 0

Then M4 g‘LS(GE/rz), rank M; =rank A, Mg € S(Cg — r3), rank Mg = rankB, S, € S(Stars(G)),
and M = M4 + Mg + S,. Also, since ry is a cut vertex for G — r, and G — r5 is the vertex sum at ry of
G4 — rp and Gz — 1, we have by Theorem 2.3, mr(G — rp) < mr(G4 — rp) + mr(Ggz — r7). Therefore,

mr(G) =mr(G—ry) +2 < mr(Gy —rz) + mr(Gg —rp) +2

=mr(Gy — 1) + mr(G;\—_/rz) + 2 < rank M + rank Mg + 2

= rank A + rank B 4+ 2 = rank M = mr(G).
Somr(G) = mr(G4—r3)+mr(Gg—ry)+2, rank M, = mr(Gj\—_/rz),and rank Mg = mr(G;—\—_/rz).
Thus M4 € #% (G4 — 12) and Mg € .#%(Gg — 12).

Finally, by Proposition 4.3, mr(Starz(G)) = 2 sorankS; = 2. Then S; € .#%(Star,(G)). Since
M = M4 + Mg + S5, the proof is complete.

III. The only difference between (El;) and (EL,) is that the roles of x1, X, and of y1, y, are both
reversed. So the result in I follows from that of II.

For convenience we let G4 = G4 — Rand Gg = Gz — R.

IV. We first show that any of (E1), (I1), (I) imply that
mr(G) = mr(Gy) + mr(Gg) + 4,A € .#%(Gp), and B € .#%(Gg).

First, assume (E7), that rank M = rank A + rank B 4 4. Since A € S(Ga) and B € S(Gg), mr(G) =
rank M = rank A + rank B + 4 > mr(G,) + mr(Gg) + 4 > mr(G), where the last inequality follows
from Lemma 4.11. So equality holds, and A € .#%(Ga), and B € .# %(Gp).

Next, assume that (I7) holds:

rank A 4 rank B < rank [Axq] + rank [y B] < rank [Axq x»]| + rank [y; y» B].
By Lemma 4.13,K; € .#%(G — r3),rankK; = rank M — 2, and mr(G) = mr(G — r3) + 2. Now either
rank [Ax;] > rankA or else rank [y; B] > rank B; equivalently, x; ¢ C(A) or y; ¢ C(B). Applying

A0
Proposition 2.11, rank 0B = rank K;(ry) = rank Ky — 2. Then

mr(G) = rank M = rankK; + 2 = rank A + rank B + 4 > mr(Ga) + mr(Gg) + 4 > mr(G),

and again equality holds, A € .#%(Ga) and B € .# %(Gp).
The case in which (I3) holds is similar, so any of (E1 ), (I1), (Iz) imply mr(G) = mr(Gs) + mr(Gg) + 4,
A€ %/W(GA), and B € ///OZ(GB)
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A0O0O 0000 0 xg1x 0

- -~ 0000 ~ 0000 T a byl

Now write M = A + B + S where A = B = ,and S = X} a y}.
0000 0000 b ¢yl

0000 000B 0 y1y2 0

Since A € .#%(Ga) and B € .#%(Gg), we have A € .#%(G,) and B € %%(@);Ngw S € Sp(Stary2(G))
and clearly rank S < 4. Let S’ be any matrix in .#%(Star;2(G)), and let M’ = A+B+S’ € S(G). Then

mr(G) < rank M’ < rank A + rank B + rank S’ < rankA + rank B + 4 = mr(G)

which implies ranAlgS’ = 4. Therefore mro(Star12(G)) = 4and S € .#%y(Star12(G)). Then M €
MR (Gp) + 4 %(G) + .4 %o(Stary2(G)). We arrive at the same conclusion if (I;) holds, so this con-
cludes the proof of IV.

V. By Lemma 4.14, rank M < rank A+ rank B+ 2. By the inequality of (IE1 ), either x; ¢ C(A) or else
y1 ¢ C(B). Without loss of generality say x; ¢ C(A). The equality of (IE;) implies that x, € C([A x1])
and y, € C([y1 B]). Therefore there are vectors u and v and scalars h and k such that x, = Au + hx;
and y, = Bv + ky;. By the inequality of (IE3), h and k cannot both be 0. Now

A X1 Au+ hxq 0

xt a b y!
uTA+hx] b c  VIB+ky!

0 y1 Bv+ ky, B

and it is straightforward to show that M is row and column equivalent to

A Xq 0 0
X7 a b—xju—ah v
0 b—ulx; —ha ¢ — u"Au + h?a — 2hb v'B + (k — h)y!

0 V1 Bv + (k — h)y1 B

Since x; ¢ C(A) we know that the rank of the matrix

A 0 0
M'(2) = | 0 ¢ — uTAu + h?a — 2hb VB + (k — h)y!
0  Bv+ (k—hy B

isrank M — 2. Since

rank A + rank B < rank M’(2) = rank M — 2 < rank A + rank B,
rank M = rank A + rank B + 2 and rank M’ (2) = rank A + rank B.

¢ — uTAu+ h%a — 2hb vIB + (k — h)yT

Bv + (k — h)y, B
which implies (k — h)y; € C(B). Then either k = h or y; € C(B), so we consider these two
cases.

It follows that rank B = rank [ } .Thus Bv+ (k—h)y; € C(B)
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Case 1.k = h.
A 0 Au O 00 0 O
P —_— 00 0 0
Let M4 = 00 00 , Mg = T T , and
uTA 0 uTAu 0 00v'Bvv'B
00 0 O 00 Bv B
0 xq hX1 0
T T
— X7 a b y
N=M-My;—Mzg=|"1 1
AT T b oo — uTAu—vTBY byl
0 »n hy1 0
A 0 0
Then since h = k, M'(2) = | 0 ¢ — u’Au + h®a — 2hb v'B |. Since rank M’(2) = rankA + rank B,
0 Bv B
it follows that vVBv = ¢ — uTAu + h?a — 2hb = ¢ — u'Au — v/Bv = 2hb — h?a. Thus N =
0 x hxq 0 0 X 0 o0
X a b yi o ) xl1 a b—hay! )
which is row and column equivalent to , Which
hx] b 2hb — h*a hy! 0Ob—ha 0 O
0 ¥ hy1 0 0 0 0
has rank 2.
__Since Au = —hxy + xp, Bv = —ky1 +y2 = —hy1 + y2, and h is nonzero, by Lemma 4.12,

M4 € 8(G4) and Mg € S(Gg). Also h # 0 gives that N € Sp(TStar;(G)). Moreover

mr(G) = rank M = rankA + rankB + 2 = rankM:A + rankM:B + rank N
> mr(Gy) + mr(Gy) + 2 = mr(Gy) + mr(Gg) + 2 > mr(G)

where the last inequality follows by Lemma 4.11. Therefore mr(G ) +mr(Gg) +2 = mr(G), and rank
M4 = mr(Gy), rank Mz = mr(Gg), and by Proposition 4.3
rank N = mro(TStar{ (G)). In other words,

M, e .##Gy), Mge .#%Gg), and N € .47 (TStar;(G)).

Case 2:y; € C(B).
Thus there is a vector z such that y; = Bz. Since y, = Bv + ky; = Bv + kBz, y, € C(B) as well and
there exists a vector w such that y, = Bw. Then we have

A xy Au+hx; O

X7 a b Z'B
ulA+hx] b ¢ w'B

0 Bz  Bw B

Since y, € C(B), the inequality of (IE) implies that x, ¢ C(A). Therefore h # 0.
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A 0 Au O
— 0 0 0 O
Let MA =
u™A 0 uTAu 0
0 0 0 O
00 0 0
— 00 0 0
Mg = , and
00 (W—hz)TB(w — hz) (w— hz)"B
00 B(w — hz) B
0 xp hX1 0
Xl a b Z'B

N=M-—My;—Ms =
hxI b ¢ —u'Au— (w — hz)"B(w — hz) hz'B
0 Bz hBz 0

Since Au = —hx1+x; and B(w —hz) = —hy; +y2,byLemma4.12,M:A € S(ﬁ), andM:B € S(G;;).
Also note N € Sy(TStar1(G)). Substituting y; = Bz and Bw = Bv + kBz into M’(2), we find

A 0 0
M'2) = |0 c— uTAu — 2hb + h?a (W' — hz")B
0 B(w — hz) B

Since M’(2) has rank equal to rank A+rank B, it follows that c—uTu—2hb+h%a = (w—hz)TB(w—hz).
Thus ¢ — uTAu — (W — hz)"B(w — hz) = 2hb — ha.

0 X1 hX] 0
X a b Z'B
Substituting this into N we obtain N = . Row and column reducing N we
hxI b 2hb — h%a hz'B

0 Bz hBz 0

obtain ! , Which has rank 2.

0 Bz 0 0

The remainder of the proof of Case 2 is the same as the end of the proof of Case 1.

If we had begun the proof by considering the second given inequality to conclude that either
X2 ¢ C(A) ory, ¢ C(B), an entirely similar proof yields the conclusion

M e .4 %(Cy) + .4%(Cy) + 4 %0(TStarz (G)).
This concludes the proof. [J

Given any minimum rank matrix M corresponding to a graph G as in Definition 4.1, Theorem 4.4
explains how M can be decomposed (except for rare exceptions as in Example 4.10) as a sum of mini-
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mum rank matrices of simpler graphs related to G. We now ask the question, is it possible to build the
class of minimum rank matrices of G (.#%(G)) by summing the classes of minimum rank matrices of

simpler graphs related to G? Again, except for rare exceptions, the answer is yes and is given by the
next theorem.

Definition 4.15. Let F be afield. Let G, be the class of all connected graphs with a 2-separation (G 4, Gg)
as in Definition 4.1, and assume neither r; nor r; is a cut vertex as in the hypothesis of Theorem 4.4. A
particular graph may appear more than once in G, because it may have several such two separations.
So properly each graph in G, is a graph with two labeled vertices 1, 1o, all other vertices unlabeled,
and a specified 2-separation (G 4, Gg). Let

%11 ={G € G | mr"(G) = mr" (G) + mr’(Gp)}

%12 =1{G € G| m" (G) = mr" (H) + mr" (Hg)}

@ =1{GeG | mr'(G) =mr' (G4 —r2) + mr' (Gs — r2) + 2}

3 ={G e G| m'(G) =mif (G4 — 1) + mrf (Gg — 1) + 2}

% = {G e Gy | mrf(G) = mrf (G4 — R) + mrf (Gz — R) + 4}

@ = {G € ¢ | mi' (G) = mr" (C) + mr" (Gp) +2)
For each G € G, let

JG) ={ie{1.1,1.2,2,3,4,5} |G € %}.

Now define the following matrix classes for G € G,

D11(G) = .4 %" (G) + .#%" (Gp)

D12(G) = .4 %" (Ha) + .4%" (Hg)
Dy(G) = MF (G — 1) + 4% (Cg — 1) + .07 (Stary(G))
D3(G) = A (Ca—11) + 4% (Cg —11) + .4 %" (Star1 (G))
D4(G) = 4% (G4 — R) + 4% (Gs — R) + .07 (Star12(G))

Ds(G) = (7 (Cy) + 4% (Cg) + .47 (TStar, (G)))
U (2% (Cy) + 4% (Cg) + .0 (TStar, (G))).

Theorem 4.16. Let G € Gy. Then
w7 (G) = ( U D,-(G)) N sF(G).
i€J(G)

Proof. First note that J(G) # ) by Theorem 2.6.
Let M € .#%(G). We show M € Ui¢jc)D;.
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Since the hypotheses in the five statements of Theorem 4.4 are mutually exclusive and exhaustive,
M satisfies the hypothesis of exactly one of the statements. Call this statement R.
Case 1. Suppose R € {ILIILIV,V}. For notational convenience we define

2 ifR=1
if R =1II
I(R) =
4 ifR=1V
5 ifR=V.

By Theorem 4.4, G € ¢jr) and M € Dy). Thus I(R) € J(G) and M € Ujgjc)Di.
Case 2. Suppose R = 1. By Theorem 44 G € 11 U%2and M € Dy U Dy, If {1.1,1.2} C J(G),
M € UigDi. If 1.2 ¢ J(G), mr(G) < mr(H4) + mr(Hp). Since R = I we must have mr(G) =
mr(G4) + mr(Gg) and M € Dy ;. Thus 1.1 € J(G) and M € Ujgj)D;. Similarly, if 1.1 ¢ J(G),
M € Uigj)Di.

Therefore .#%(G) < Uigj)Di N S(G), since #%(G) € S(G).

LetM € (Uigj)Di(G)) NS(G). Then M is in atleast one of D1 1 (G) NS(G), D1.2(G)NS(G), D2(G)N
S(G), D3(G) N S(G), D4(G) NS(G), D5(G) N S(G).

Suppose 1.1 € J(G) and M € D11(G) N S(G). . ~ - s
Then mr(G) = mr(G,) + mr(Gp) and there exist My € .##%(G4) and Mg € .#%(Gg) such that
M = M4 + Mg € S(G). Then
mr(G) < rankM < rank M4 + rank Mg
= mr(G4) + mr(Gg)
= mr(G4) + mr(Gg) = mr(G).
Then rank M = mr(G) soM € .#%(G).
Suppose 1.2 € J(G) and M € D12(G) N S(G).

Then mr(G) = mr(H,4) + mr(Hy) and there exist M4 € .#%(H,) and M € .#%(Hg) such that
M = M4 + Mg € S(G). Then

—~—

mr(G) < rank M < rank M4 + rank My
= mr(H,) + mr(Hg)
= mr(Hy4) + mr(Hg) = mr(G).
Then rank M = mr(G) soM € .#%(G).
Suppose 2 € J(G) and M € D,(G) N S(G).

Then mr(G) = mr(G4 — ry) + mr(Gg — 1) + 2 and there exist M, € .///%(Gj\—/rz), Mg €

M%(Gg — 1) and My € .# %(Starz(G)) such that
M = M4 + M + My € S(G). Then similar to the previous cases and by Proposition 4.3

mr(G) < rankM < rank M4 + rank Mg + rank M;

=mr(Gy — 1) + mr(G;\—_/rz) + mr(Stary(G))
=mr(G4 —rp) + mr(Gg — rp) + 2 = mr(G).
Then rank M = mr(G) soM € .#%(G).
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Suppose 3 € J(G) and M € D3(G) N S(G).
This case follows by replacing 2 with 1 in the previous case.

Suppose 4 € J(G) and M € D4(G) N S(G).

Thenmr(G) = mr(G4—R)+mr(Gz—R)+4and there exist M4 € .#%(G4 — R),Mg € .#%(Gg — R)
and Myp € .#%o(Star12(G)) such that

M = M4 + Mg + My3 € S(G). Then similar to the previous cases and by Proposition 4.3

mr(G) < rankM < rank M4 + rank Mg + rank My,
= mr(G4 — R) + mr(Ggs — R) + mro(Star2(G))
< mr(G4 — R) + mr(Gg — R) + 4 = mr(G).
Then rank M = mr(G) soM € .#%(G).

Suppose 5 € J(G) and M € D5(G) N S(G).

Then mr(G) = mr(G,) + mr(Gg) + 2 and there exist MA € ///](GA) Mg € ///J(GB) and M; €
M Ry (TStar(G)) or .4 %y(TStary(G)) such that M = MA + Mg + M; € S(G). We suppose M{ €
M %o (TStary (G)) and note that the argument is similar if My € .# %, (TStar;(G)). Then similar to the
previous cases and by Proposition 4.3

mr(G) < rankM < rankm + rank Mg + rank M;
= mr(G.) + mr(Gg) + mro(TStar; (G))
= mr(G,) + mr(Gg) + 2 = mr(G).

Thenrank M = mr(G) soM € .#%(G).

Thus in every case, M € .#%(G) and so .#%(G) D (Uigj)Di(G)) N S(G).
Therefore .7 %(G) = (Uigjc)Di(G)) N S(G). O

Example 4.17. Let G be

4 5 6

as in Example 1.3. We use Theorem 4.16 and Corollary 3.3 to determine the structure of every minimum

rank matrix with graph G.LetM € .#%(G).Let G 4 be <&and Ggbe M
B

Then (G4, Gp) is a 2-separation of G, mr(G) = mr(G4) + mr(Gp) and no other term in Theorem 2.6
achieves the minimum rank (see Example 2.7). By Theorem 4.16, .#%(G) = (. W R(GA)+ ///J(GB)) N
S(G) = //1%’(6,4) + //1%’(65) Thus there exist M, € .#%(G4) and Mg € .#%(Gg) such that
M = MA + Mp. Further, GB is a vertex sum of
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@

(2) (3)
Gy = A and Gy = A .
@ ® ® O,

Since r5(Gy) = 0 and r5(Gy) = 0 by Corollary 3.3, ///J(EZ;) = #%(G) + ///Q(EE) Thus there
exist M; € .#%(G;) and Mz € ///](Gz) such that Mz = My + My. Thus M = M4 + M; + Mz The
minimum rank of each of G 4, G, and G, is one. Since every rank one matrix has the form =£xx’,

aq 0
ay b
M=+|® [z a3 000] 0 [0 b, 0 by bs 0]
0 by
0 bs
_0_ _0_
"o
0
+ < [00C30C5C5]-
0
Cs
L C6 |

Thus every matrix in .#%(G) can be constructed using the form given above.

Example 4.18. Let G be the house graph

It is then easy to check that J(G) = {1.2, 5}. By Theorem 4.16,

MR(G) =R (Hy) + .4 %(Hg)
U (#%(Ga) + #%(Gp) + 4 Zo(TStar1(G)))
U (#%(Ga) + 4% (Gp) + .#%o(TStar2(G)))) N S(G)
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Case 1. M = M4 + My where M4 € .#%(H,) and My € .# % (Hg).

Since H 4 is the union of a cllque on 3 vertices and 2 isolated vertices, any matrix in .#%(H ) can
be expressed as :I:aa where a’ = [a; a3 a3 0 0], all a; # 0. To finish this case we need to decompose
.4 %(Hg) where Hyg is

To obtain aminimum rank matrix for Hz the 2,3 entry must be nonzero and thus decomposing .# % (Hz)
is equivalent to decomposing //{%‘(C4 U Kq). .

__ Consider the 2-separation G, = Hgz — {5} and Gy = Hg — {1, 2}.Then againJ(Hz) = {1.2, 5} and
Mj € Dy 2(Hp) U Ds(Hp).

1. Mg € D1 (Hp).

Since H); and Hy both consist of the union of a clique on 3 vertices and two isolated vertices
mr(HA) = mr(Hp) = 1and M has the form £bb” = ccT with bT = [0 by b3 b4 0], all b; # 0, and
" =100c3cacs], allg %0, w1th the additional condition 4=b3b4 &= c3c4 = 0 since 34 ¢ E(Hp).

Then M = =aa” & bb" + cc” with this same condition.

2. Mg € Ds(G). ~

Similar to Example 4.10, mr(GA) = mr(GB) = 050 Mg € So(TStary (Hp)).
Then rank Mz = 2 implies that Mz can be written

000 O O
00a ka O
Mg=|0ab 0 ¢
0 ka 0 —kb kc
00c ke O

for some a, ¢, k # 0,andsoM = +aa” + Mg, where +a,a3 + a # 0.

Case2.M € .#%(G4) + .#%(Gp) + .4 %o (TStar1 (G)).
The graphs are:

GA @ % TStar1 )

® 0

The only matrix in //{,%(G 1) is the zero matrix, and any matrix in .///P/Z(GB) has the form £cc with ¢
as in Case 1. Since any matrix C € .# % (TStar;(G)) has rank 2, it can be written

0 a ka 00
ab c do
C=|kac2kc—k*hkdO|, a,c,d k#DO0.

0d kd 00

00 0 00
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So in this case M = C =+ ccT where kd £ c3¢4 = 0.
The case in which .7 % (TStar; (G)) is replaced by .# % (TStary(G)) is almost the same.

5. Decompositions of positive semidefinite minimum rank matrices

In this section we establish analogues of Theorems 3.1 and 4.4 for positive semidefinite minimum
rank.
We first provide some needed definitions and previous results.

Definition 5.1. GivenagraphG,let S (G) be the subset of SR (G) consisting of all positive semidefinite
matrices. The minimum positive semidefinite rank of G is

mry(G) = min {rankA}.
+(G) A€S+(G){ }

Definition 5.2. Given a graph G, let
ME+(G) = {A € S4(G) | rankA = mry(G)}.

The following is a well known result for positive semidefinite matrices.
. . Byl|. . o
Lemma 5.3 (Column inclusion). IfA = . is positive semidefinite, then y € C(B).
y c

The following three results appear as Proposition 1.4 in [4] and Corollaries 2.5 and 2.9 in [6].
Lemma 5.4. Let A, B be real symmetric n x n matrices. Then
w(A+B) < 7 (A) + 7 (B)
where 1t (C) denotes the number of positive eigenvalues of C.
Theorem 5.5. Let G be the vertex-sum of Gy and G,. Then

mry(G) = mry(Gy) + mr4(Gy).

Theorem 5.6. Let G = (G4, Gg) be a 2-separation of a graph G and let H 4 and Hg be as in Definition 4.1.
Then

mr (G) = min{mr4(G4) + mry(Gp), mr4(H4) + mry (Hp)}.

We now give the analogues of Theorems 3.1 and 4.4 for positive semidefinite minimum
rank.

Theorem 5.7. If G is the vertex-sum at v of Gy and G, then

MR+ (G) = M%+(C) + M %1 (C).

Proof. Let G be as stated in the theorem with M € .# % (G) given. Labeling the vertices of G appro-
a xf xg
priately M = | x; C; 0 | where the first row and column of M correspond to the vertex v. Note that

x3 0 Gy
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each G € S (G;—v) since they are principal submatrices of a positive semidefinite matrix. By Lemma

Xt . G
5.3, is in the column space of
0

X2

0
}. Thus there exist vectors y; and y, such that x; = Cyy
G

a yiG yiG

and x, = Coy. Now rewrite the matrixasM = | C;y; C; 0 |.Now consider
Gy 0 G
) YiCy1 +y3Gy2 ¥iCi y3G
C] 0 W1 10
N=|10 = Gy G 0
0 G||y201
0 I Gy2 0 G

Since N is of the form A" BA where Bis positive semidefinite, N is positive semidefinite. ThusN € S.(G).
Furthermore rank N = rank C; + rank C. Since M € .# %4 (G)

rank C; + rank C; < rankM < rank N = rank C; + rank C,.

Therefore rank M = rank C; + rank C;. We note that the first row of M is a linear combination of the
other rows of M and using block Gaussian elimination we see that a = y{C1y1 + ngzyz; i.e,M =N.
Let

yICiyr yIGi 0 yiGya 016
Mi=| Gy; ¢ 0| and Mo=| 0 0 0
0 00 Gy 0 G

Then M = M; + M5 and rank M; = rank G;, i = 1, 2. Furthermore

T T

y1 0 ¥, 0
_ ¢ 0 10 _ G0 01
=10l || andih=|o0ol|| 2" || .
0o|l|looo 0oo|l|looo

00 10

Thus M; and M; are positive semidefinite. By Theorem 5.5

mr4(G) = mr4(Gy) 4+ mry(Gy) = mr1(Gy) + mr4(Gy)
< rank My + rank My = rankM = mry (G).

Therefore rank M; = mr+(5i), i=1,2andM; € .//[,%+(5i), i=1,2.Thus.#%+(G) C //l,%%r(a)—i—
ME4(Gy).

LetMy € # %+ (Gy) and M, € MR+ (Gy).Let M = M; + M>. Note that M is positive semidefinite
and in S (G). Then
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mr4 (G) < rankM < rank M; 4 rank M,
=mr4(Gy) + mry(Gy)
= mr4(G1) + mry(Gy)
= mr4(G)

where the last equality follows from Theorem 5.5. Thus rank M = mr(G) soM € .#%(G) and
ME+(C) D MR+ (Gr) + # %+ (Gy).

Therefore .# %, (G) = # %1 (G1) + 4%+ (Gy). O

Definition 5.8. Let G, be as in Definition 4.15. Let

611+ = {G € Go | mr4(G) = mr4(Gu) + mry(Gp)}
%12+ = {G € Go | mry(G) = mry(Hy) + mry (Hp)}

For each G € G, let
JG) =1{ie{1.1,1.2} |G € €+}.

Now define the following matrix classes for G € G,

D1.14(G) = 4 %4(Go) + 4%+ (GCp)
D1.2+4(G) = A%+ (Hy) + 4%+ (Hp)

Theorem 5.9. Let G € G,. Then
MR+ (G) = ( U Di+(G)) NS+(G).
i€](G)

Proof. First note that J(G) # () by Theorem 5.6.
Let M € #%+(G). Then M € S4(G). Labeling the vertices of G appropriately,

A X1 X2 0
T T
Xy a by
M= " 1

X} b ¢yl

0 yiry2 B

A X A x
Since { . ]:| and |: T 2} are principal submatrices of a positive semidefinite matrix, they are also
X] a X, C

positive semidefinite matrices. By Lemma 5.3, x1, X, € C(A). By a similar argument yq, y, € C(B).
Thus

rank A 4 rank B = rank [A x1 x2] 4 rank [y; y» B].
Then following the proof of I in Theorem 4.4, in either Case 1 or Case 2 we have

M = M, + Mg and rank M = rank M 4 + rank M.
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Then
7 (M) + 7 (Mg) < rank M + rank Mg = rankM = (M) < w(M,) + 7 (Mg)

where the last inequality follows from Lemma 5.4. It follows that we have equality throughout and
therefore M 4 and M are both positive semidefinite. - -

Continuing with the proof of I, we see if V{sz = 0then M, € 5+(G4) and Mp € S4+(Gp). Also by
Theorem 5.6

mr4(Gy) + mry(Gg) = mry(G) = rankM = rank M, + rank Mg

> mry (G4) 4+ mry (Gg) = mry(G4) + mry (Gp).
Thus equality holds throughout and
mry (G) = mr4(G4) + mry(Gg) and My € .#%4(G4), My € 4%+ (Gp).
If vIBv, # 0 then a similar argument shows that
mry (G) = mry (Hy) + mry (Hg) and M, € .#%. (H,), Mg € .# % (Hg).

We have shown that ///Q’ijr (G) C D1.1+(G) UDq24(G). 1f1.2 ¢ J(G), mry(G) < mry(Hy) +
mr (Hg). Then necessarily viBv, = 0and M € D1.14(G) N 81 (G) = (Uigy)Di+-(G)) N S (G). If
1.1 ¢ J(G), similarly M € D124(G) N S4(G) = (Uigi)Di+(G)) N S4(G). Therefore .#7%(G) C
(Vig6)Pi+(G)) N §1(G).

Let M € (Uigj6)Di+(G)) N S4(G). Then M is in D1 14 (G) N 84 (G) or D124 (G) NS4 (G).
Suppose 1.1 € J(G) and M € D1.1+(G) N S+ (G). . . . .

Then mr4 (G) = mr4(G,4) + mr4+(Gg) and there exist My € .#%+(G,4) and Mg € .# %4+ (Gp) such
that
M=M,+ Mz e S5+(G). Then

mr4(G) < rankM < rank 1\71:\ + rank Mg
= mr4(G) + mr(Gp)
= mry(Ga) + mry(Gp) = mr4(G).

ThenrankM = mr4+(G) soM € .#%+(G).

Suppose 1.2 € J(G) and M € D134+(G) NS4+ (G). - . - .

Then mry (G) = mr4(Hy) + mr4 (Hp) and there exist My € .#%+(H,) and Mg € .# %+ (Hg) such
that

M = M, + Mg € S, (G). Then

mr4(G) < rankM < rankm + rank Mg
= mry (H) + mr ()
=mr4(Hy) + mry (Hg) = mry(G).
ThenrankM = mr4+(G) soM € .#%+(G).

Thus in both cases, M € .#%(G) and so .7 % (G) D (Uigj)Di+(G)) NS4 (G).
Therefore .#% 1 (G) = (Uigj()Di+-(G)) NS4 (G). O

6. Conclusion

Our aim in this work was to go beyond the problem of determining the minimum rank of a specified
graph G to understanding the structure of the class of matrices which attain the minimum rank of G.
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For graphs with a cut vertex, the structure is given by Theorem 3.1 and Corollary 3.3. For graphs with a
2-separation, it is given by Theorems 4.4 and 4.16. Theorems 5.7 and 5.9 give the positive semidefinite
analogues. As a by-product our results have clarified some of the principal results on minimum rank.
There are two terms on the right hand side of the formula in Theorem 2.3 for mr’ (G) because of the two
different ways a matrix in .# %" (G) can decompose according to Theorem 3.1. Theorem 4.4 explains
more clearly the reason for the six terms on the right hand side of Theorem 2.6. They arise from the
five mutually exclusive and exhaustive cases in Theorem 4.4 involving equalities and inequalities on
ranks of particular submatrices of a given minimum rank matrix.

More importantly, we expect our results to provide a simpler approach to the inverse eigenvalue
problem for .#%(G) (see [2]) for graphs for which Corollary 3.3 and Theorem 4.16 (or the positive
semidefinite analogues) can be applied recursively to obtain a parametric representation of all matrices
in.#%(G) asin Example 4.17. This will be possible not only for trees, but for many graphs with relatively
few edges.

For those graphs G with a complete characterization of .#%(G), one can think of extending these
results to other matrices in S(G), for example

{A € S(G) | rankA = mr(G) + 1}.

Such results would conceivably help in solving the inverse eigenvalue problem for S(G).
Finally, we expect that many of these results will extend directly to inertia classes of graphs, a line
of inquiry that some of the co-authors plan to pursue.
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