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Let F be a field, let G be an undirected graph on n vertices, and let

SF (G) be the class of all F-valued symmetric n × n matrices whose

nonzero off-diagonal entries occur in exactly the positions corre-

sponding to the edges of G. For each graph G, there is an associated

minimum rank class MRF (G) consisting of all matrices A ∈ SF (G)
with rank A = mrF (G). For most graphs G with connectivity 1 or 2,

we give explicit decompositions of matrices in MRF (G) into sums

of minimum rank matrices of simpler graphs (usually proper sub-

graphs) related toG. Our results can be thought of as generalizations

of well-known formulae for theminimum rank of a graphwith a cut

vertex andof a graphwitha2-separation.Weconcludebyalso show-

ing that for these graphs, matrices in MRF (G) can be constructed

from matrices of simpler graphs; moreover, we give analogues for

positive semidefinite matrices.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The minimum rank problem in combinatorial matrix theory is concerned with determining the

minimum possible rank over all symmetric matrices with a specified zero/nonzero off-diagonal
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pattern. Our aim in this paper is to also determine the structure of all matrices attaining the mini-

mum rank for a large number of patterns.

In order to state this problemprecisely, we introduce the relevant graph-theoretic notation. Let F be

a field and let Sn be the set of all symmetric n× nmatrices over F . Given A ∈ Sn, define G(A) = (V, E)
to be the (simple, undirected) graph with vertex set V = {1, 2, . . . , n} and edge set E = {{i, j}|aij �=
0, i �= j}. Given any graph G on n vertices, let

SF(G) = {A ∈ Sn | G(A) = G}

mrF(G) = min{rank A | A ∈ SF(G)}

MR
F(G) = {A ∈ SF(G) | rank A = mrF(G)}.

All of our results and most of our arguments do not depend on the field F , so we often suppress it

in later use of these definitions. We adopt the convention of including the F in statements of the-

orems to emphasize field independence while excluding the F from proofs except where the par-

ticular field becomes of importance. The minimum ranks of many graphs are well-known (see, e.g.,

www.aimmath.org/pastworkshops/matrixspectrum.html) and in examples we will usually state the

minimum rank of a graph without explanation.

Much less is known about MRF(G). For the field F2 of two elements, MRF2(G) is given explicitly

for a few small graphs in Lemma 16 and Proposition 17 of [3]. For many graphs G, it is well understood

how to construct matrices in MRF(G) by considering appropriate subgraphs. The next two examples

illustrate this for graphs with connectivity one and two.

Example 1.1. Let �� be the bowtie graph obtained by identifying two K3’s at a vertex.

Clearly a matrix in MRF(K3) is the all-ones matrix

⎡⎢⎢⎢⎣
1 1 1

1 1 1

1 1 1

⎤⎥⎥⎥⎦ and it is natural to embed this matrix in

two 5 × 5 matrices and add them to obtain a matrix in MRF(��). Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then rank (A + B) = 2 = mrF(G) so that A + B ∈ MRF(��). Note that A ∈ MRF(G1) and

B ∈ MRF(G2) where G1 is and G2 is and

mrF(G1) = mrF(G2) = 1.

This motivates the following definition.

Definition 1.2. Given a proper subgraph H of a graph G, let H̃ be the graph with vertex set V(G) and
edge set E(H).
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So if H is the subgraph of the bowtie graph in Example 1.1, then H̃ is the graph G2 above.

Note that for any graph G with subgraph H, since H and H̃ differ only by some number of isolated

vertices, mr(H) = mr(H̃). Wewill often label matrices with a∼when they are paddedwith rows and

columns of zeros, and in this case the∼does not constitute an operator symbol butmerely emphasizes

a relation between a matrix and a corresponding subgraph.

Example 1.3. Let G be the graph

.

Let GA be the graph and let GB be the graph . Then mrF(G) = 3 =

1 + 2 = mrF(GA) + mrF(GB) for any field F . Letting

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 1 0 1 1 0

0 0 1 0 1 1

0 1 0 1 1 0

0 1 1 1 1 + 1 1

0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
we have A + B ∈ MRF(G), A ∈ MRF(G̃A), B ∈ MRF(G̃B). This is another instance of a decom-

position of a matrix in MRF(G) into minimum rank matrices of subgraphs with smaller minimum

rank.

Thedecompositions inExamples1.1 and1.3areobviousas is thecase inmany further suchexamples.

What is missing in these examples is an explanation of how and under what circumstances such

decompositions can be obtained. We will give explicit decompositions of matrices in MRF(G) for all
graphs with connectivity equal to 1 or 2 (note that the decomposition is obvious for disconnected

graphs). Consequently, one can think of our results as a way to reduce the study of minimum rank

matrices of a graph to the study of minimum rank matrices of 3-connected graphs.

2. Prior results

Our results canbeviewedasgeneralizing two fundamental results giving formulae for theminimum

rank of a graph with a cut vertex and the minimum rank of a graph with a 2-separation.

Definition 2.1. Let G1 and G2 be graphs with at least two vertices, each with a non-isolated vertex

labeled v. The vertex-sum at v of G1 and G2 is the graph on |G1| + |G2| − 1 vertices obtained by

identifying the vertex v in G1 with the vertex v in G2. The vertex v is called a cut vertex of G.
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Definition 2.2. Let F be a field. The rank-spread of a vertex v of a graph G, denoted rFv (G), is the

difference between the minimum rank of G over F and the minimum rank of G − v over F . i.e.,

rFv (G) = mrF(G) − mrF(G − v).

The following theorem was originally published with proofs over the real field by Hsieh in [7], and

independently by Barioli et al. (see Theorem 2.3 in [1]). Proofs given over any field can be found in

[5] (see Theorem 7 where an equivalent version in terms of maximum nullity is given) or in [3] (see

Appendix B).

Theorem 2.3. Let G1 and G2 be graphs on at least two vertices each with a vertex labeled v and let G be

the vertex-sum at v of G1 and G2. Let F be any field. Then

mrF(G) = min{mrF(G1) + mrF(G2),mrF(G1 − v) + mrF(G2 − v) + 2}.
Equivalently,

rFv (G) = min{rFv (G1) + rFv (G2), 2}.
Amore complex result applies to graphswith connectivity 2.Wefirst recall the followingdefinitions

from [5].

Definition 2.4. Let G = (V, E) be a graph with V = {1, 2, ..., n} which we allow to have parallel

edges. We denote by F2 the field with only two elements. If F is a field unequal to F2, we define SF(G)
as the set of all F-valued symmetric n × n matrices A = [ai,j] with

1. ai,j = 0 if i �= j and i and j are not adjacent,

2. ai,j �= 0 if i �= j and i and j are connected by exactly one edge,

3. ai,j ∈ F if i �= j and i and j are connected by multiple edges, and

4. ai,i ∈ F for all i ∈ V .

We define SF2(G) as the set of all F2-valued symmetric n × nmatrices A = [ai,j] with

1. ai,j �= 0 if i �= j and i and j are connected by an odd number of edges,

2. ai,j = 0 if i �= j and i and j are connected by an even number of edges, and

3. ai,i ∈ F2 for all i ∈ V .

Definition 2.5. A 2-separation of a graph G = (V, E) is a pair of subgraphs (GA, GB) satisfying the

following: V(GA) ∪ V(GB) = V , | V(GA)∩ V(GB) |= 2, E(GA)∪ E(GB) = E, and E(GA)∩ E(GB) = ∅.
The main result of [5] (see Theorem 14 and Corollary 15) is:

Theorem 2.6. Let (GA, GB) be a 2-separation of G with R = {r1, r2} = V(GA)∩V(GB). Let HA and HB be

obtained from GA and GB , respectively, by inserting an edge between r1 and r2. Let GA and GB be obtained

from GA and GB , respectively, by identifying r1 and r2, or in other words, by inserting edges between one

vertex and the neighbors of the other and then deleting the latter.

Then mrF(G) = min{mrF(GA) + mrF(GB),

mrF(HA) + mrF(HB),

mrF(GA) + mrF(GB) + 2,

mrF(GA − r1) + mrF(GB − r1) + 2,

mrF(GA − r2) + mrF(GB − r2) + 2,

mrF(GA − R) + mrF(GB − R) + 4}.
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Example 2.7. Continuing with Example 1.3, the graphs appearing in Theorem 2.6 are:

GA : GB :

HA : HB :

GA : GB :

GA − r1 : GB − r1 :

GA − r2 : GB − r2 :

GA − R : GB − R :

Simple calculations show that

mr(GA) + mr(GB) = 1 + 2 = 3,

mr(HA) + mr(HB) = 1 + 3 = 4,

mr(GA) + mr(GB) + 2 = 0 + 2 + 2 = 4,

mr(GA − r1) + mr(GB − r1) + 2 = 1 + 2 + 2 = 5,

mr(GA − r2) + mr(GB − r2) + 2 = 1 + 2 + 2 = 5,

mr(GA − R) + mr(GB − R) + 4 = 0 + 2 + 4 = 6.

So in this example, the minimum is attained uniquely by the first term.

Example 2.8. The following graphs with accompanying 2-separations show that each term in Theo-

rem 2.6 is necessary. To the left of each we show the term that attains the minimum uniquely.

mr(HA) + mr(HB) :
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mr(GA) + mr(GB) + 2 :

mr(GA − r1) + mr(GB − r1) + 2 :

mr(GA − R) + mr(GB − R) + 4 :

Note that a graph for the term we omitted, mr(GA − r2) + mr(GB − r2) + 2, can be obtained by

switching the labeling of the vertices r1 and r2 in the graph used for the termmr(GA − r1)+mr(GB −
r1)+2. Also, since it is not obvious, we note that theminimum rank for the connected 16 vertex graph

is 10.

We will also make use of the following lemma from [5] (see Lemma 10 where it is stated in terms

of maximum nullity) and two propositions from [8].

Lemma 2.9. Let F be a field, let G = (V, E) be a graph, and let R = {r1, r2} ⊆ V. Let G be obtained from

G by identifying the vertices of R. Then

mrF(G) � mrF(G) + 2.

Proposition 2.10 (Nylen). Let F be a field, let G be a graph, and let v a vertex of G. Then

mrF(G − v) � mrF(G) � mrF(G − v) + 2.

Equivalently,

0 � rFv (G) � 2.

Proposition 2.11 (Nylen). Let F be a field, let G be a graph on n vertices, and let A ∈ MRF(G). Then for

any i ∈ {1, 2, . . . , n}, rank A(i) = rank A or rank A(i) = rank A − 2; i.e., rank A(i) = rank A − 1 is

impossible.
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3. Decompositions for graphs with a cut vertex

In this section we generalize Theorem 2.3. We show that minimum rank matrices of a graph with

a cut vertex decompose in two different ways and that these correspond to the two different possible

minima in Theorem 2.3.

Theorem 3.1. Let G be the vertex-sum at v of G1 and G2, and let Sk+1 be the star subgraph of G formed by

the degree k vertex v and all of its neighbors. Let F be any field and let A ∈ MRF(G).

1. If rank A = rank A(v), then A ∈ MRF(G̃1) + MRF(G̃2) andmrF(G) = mrF(G1) + mrF(G2).

2. If rank A = rank A(v)+2, thenA ∈ MRF(G̃1 − v)+MRF(G̃2 − v)+MRF (̃Sk+1)andmrF(G) =
mrF(G1 − v) + mrF(G2 − v) + 2.

Example 3.2. As an illustration of the above theorem, consider the graphs

noting that G is the vertex-sum at vertex 3 of G1 and G2. Now consider the matrices in MR(G)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0

0 −1 −1 0 0

1 −1 1 1 1

0 0 1 1 1

0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 1 1

0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since rank A = rank A(3), statement 1 of the theorem applies, and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0

0 −1 −1 0 0

1 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the two matrices are respectively in MR(G̃1) and MR(G̃2). Also note mr(G) = 3 = 2 + 1 =
mr(G1) + mr(G2).

Since rank B = rank B(3) + 2, statement 2 of the theorem applies, and

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 0 0

0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where the threematrices are respectively inMR(G̃1 − v),MR(G̃2 − v) andMR(S5)where v is vertex

3. Again note mr(G) = 3 = 0 + 1 + 2 = mr(G1 − v) + mr(G2 − v) + 2.

Proof. Let G be as stated in the theorem with A ∈ MR(G) given. Labeling the vertices of G appropri-

ately A =

⎡⎢⎢⎢⎣
a xT1 xT2

x1 C1 0

x2 0 C2

⎤⎥⎥⎥⎦ where each Ci ∈ S(Gi − v) and the first row and column of A correspond to

the vertex v. By Proposition 2.11, either rank A(v) = rank A or rank A(v) = rank A − 2.

Consider the case where rank A(v) = rank A. It follows that

rank A � rank

⎡⎣x1 C1 0

x2 0 C2

⎤⎦ � rank A(v) = rank C1 + rank C2.

Since rank A(v) = rank A, we actually have equality throughout. Thus

⎡⎣x1

x2

⎤⎦ is in the column space of

A(v). Further since A(v) is a block diagonal matrix, each xi is in the column space of Ci. Thus there exist

vectors yi such that xi = Ciyi. Now rewrite the matrix as A =

⎡⎢⎢⎢⎣
a yT1C1 yT2C2

C1y1 C1 0

C2y2 0 C2

⎤⎥⎥⎥⎦ . Note that the first

row of A is a linear combination of the other rows of A. Thus using block Gaussian elimination we see

that a = yT1C1y1 + yT2C2y2. Let

B̃1 =

⎡⎢⎢⎢⎣
yT1C1y1 yT1C1 0

C1y1 C1 0

0 0 0

⎤⎥⎥⎥⎦ and B̃2 =

⎡⎢⎢⎢⎣
yT2C2y2 0 yT2C2

0 0 0

C2y2 0 C2

⎤⎥⎥⎥⎦ .

Then A = B̃1 + B̃2, where rank B̃i = rank Ci and B̃i ∈ S(G̃i), i = 1, 2. By Theorem 2.3,

mr(G) � mr(G1) + mr(G2) = mr(G̃1) + mr(G̃2)

� rank B̃1 + rank B̃2 = rank C1 + rank C2 = rank A = mr(G).

Then we have equality throughout, so mr(G) = mr(G1) + mr(G2) and rank B̃i = mr(G̃i), i = 1, 2.
Then B̃i ∈ MR(G̃i), i = 1, 2, which completes the proof of the first statement of the theorem.

Now consider the case where rank A(v) = rank A − 2. Let

Ẽ1 =

⎡⎢⎢⎢⎣
0 0 0

0 C1 0

0 0 0

⎤⎥⎥⎥⎦ , Ẽ2 =

⎡⎢⎢⎢⎣
0 0 0

0 0 0

0 0 C2

⎤⎥⎥⎥⎦ , and Ẽ =

⎡⎢⎢⎢⎣
a xT1 xT2

x1 0 0

x2 0 0

⎤⎥⎥⎥⎦ .

Note that A = Ẽ1 + Ẽ2 + Ẽ, Ẽi ∈ S(G̃i − v), i = 1, 2, and Ẽ ∈ S (̃Sk+1). By Theorem 2.3 and the

hypothesis,

mr(G) � mr(G1 − v) + mr(G2 − v) + 2 = mr(G̃1 − v) + mr(G̃2 − v) + 2

� rank Ẽ1 + rank Ẽ2 + 2 = rank C1 + rank C2 + 2

= rank A(v) + 2 = rank A = mr(G)
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Thuswehaveequality throughout, somr(G) = mr(G1−v)+mr(G2−v)+2, andmr(G̃i − v) = rank Ẽi,

i = 1, 2, i.e., Ẽi ∈ MR(G̃i − v). Since v is not an isolated vertex in either G1 or G2, rank Ẽ = 2 =
mr(̃Sk+1), and Ẽ ∈ MR(̃Sk+1). Since A = Ẽ1 + Ẽ2 + Ẽ, the proof of the second statement of the

theorem is complete. �

The following corollary gives a method for knowing the possible decompositions given only the

graph and also determines when both decompositions or only one is possible.

Corollary 3.3. Let G, F, v, G1, G2 and Sk+1 be as in Theorem 3.1.

1. If rFv (G1) + rFv (G2) < 2, then

MR
F(G) = MR

F(G̃1) + MR
F(G̃2).

2. If rFv (G1) + rFv (G2) > 2, then

MR
F(G) = MR

F(G̃1 − v) + MR
F(G̃2 − v) + MR

F (̃Sk+1).

3. If rFv (G1) + rFv (G2) = 2, then

MR
F(G) =

(
MR

F(G̃1) + MR
F(G̃2)

)
∪

(
MR

F(G̃1 − v) + MR
F(G̃2 − v) + MR

F (̃Sk+1)
)
.

Looking back at Example 3.2, we see that r3(G1) + r3(G2) = 2 + 0 = 2, so G illustrates statement 3

of the corollary.

Proof. Since

mr(G) = min{mr(G1) + mr(G2),mr(G1 − v) + mr(G2 − v) + 2}
= mr(G1 − v) + mr(G2 − v) + min{rv(G1) + rv(G2), 2},

letting r = rv(G1) + rv(G2) we have

mr(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mr(G1) + mr(G2) < mr(G1 − v) + mr(G2 − v) + 2 if r < 2

mr(G1) + mr(G2) = mr(G1 − v) + mr(G2 − v) + 2 if r = 2

mr(G1 − v) + mr(G2 − v) + 2 < mr(G1) + mr(G2) if r > 2.

(3.1)

We first prove the forward containments. Let A ∈ MR(G). By Proposition 2.11, either rank A =
rank A(v) + 2 or rank A = rank A(v).

Case 1. Suppose rv(G1) + rv(G2) < 2. Since mr(G) �= mr(G1 − v) + mr(G2 − v) + 2, by the contra-

positive of statement 2 of Theorem 3.1 rank A = rank A(v) and A ∈ MR(G̃1) + MR(G̃2).

Case 2. Suppose rv(G1) + rv(G2) > 2. Then mr(G) �= mr(G1) + mr(G2) and by the contrapositive of

statement1ofTheorem3.1 rank A = rank A(v)+2andA ∈ MR(G̃1 − v)+MR(G̃2 − v)+MR(̃Sk+1).

Case 3. Suppose rv(G1) + rv(G2) = 2. Whether rank A = rank A(v) + 2 or rank A = rank A(v), A is in

the union on the right hand side of 3.

Now we verify the reverse containments.
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Case 1. Suppose rv(G1) + rv(G2) � 2 and A ∈ MR(G̃1) + MR(G̃2). Write A = Ã1 + Ã2 with

Ãi ∈ MR(G̃i), i = 1, 2. Then A ∈ S(G). By Eq. (3.1), mr(G) = mr(G1) + mr(G2), so

mr(G) � rank A = rank (Ã1 + Ã2) � rank Ã1 + rank Ã2

= mr(G̃1) + mr(G̃2) = mr(G1) + mr(G2)

= mr(G).

Then rank A = mr(G) and A ∈ MR(G).

Case 2. Now suppose rv(G1)+ rv(G2) � 2 and A ∈ MR(G̃1 − v)+ MR(G̃2 − v)+ MR(̃Sk+1). Write

A = B̃1 + B̃2 + Ẽ with B̃i ∈ MR(G̃i − v), i = 1, 2, and Ẽ ∈ MR(̃Sk+1). Necessarily A ∈ S(G). By Eq.

(3.1),

mr(G) = mr(G1 − v) + mr(G2 − v) + 2

= mr(G̃1 − v) + mr(G̃2 − v) + 2

= rank B̃1 + rank B̃2 + rank Ẽ

� rank (B̃1 + B̃2 + Ẽ) = rank A � mr(G).

Then rank A = mr(G) and A ∈ MR(G). �

4. Decompositions for graphs with a 2-separation

We will now give a decomposition theorem associated with Theorem 2.6. There are twelve mini-

mum rank classes associatedwith the terms on the right hand side of the formula for mrF(G), namely:

MRF(G̃A), MRF(G̃B), MRF(H̃A), MRF(H̃B),

MRF(G̃A), MRF(G̃B), MRF(G̃A − r1), MRF(G̃B − r1),

MRF(G̃A − r2), MRF(G̃B − r2), MRF(G̃A − R), MRF(G̃B − R).

Wewill need all of these and five additional graphs and their minimum rank classes in the statement

of our decomposition theorem. For ease of reference, we restate the definitions of the above graphs

originally given in the statement of Theorem 2.6 as well as define the five additional graphs.

Definition 4.1. Let (GA, GB) be a 2-separation of a graph G and let R = {r1, r2} = V(GA) ∩ V(GB).
To avoid degenerate cases we now assume that GA and GB each have at least 3 vertices. We define the

following graphs associated with G.

1. GA, GB are the multigraphs obtained by identifying r1 and r2 in GA and GB , respectively.
2. HA,HB are the multigraphs obtained from GA and GB , respectively, by inserting one edge r1r2.

3. For i = 1, 2, Stari(G) = (V(G), Ei) where Ei is the set of all edges incident to vertex ri.

Star12(G) = Star1(G) ∪ Star2(G).
4. TStar1(G) is the graph obtained from Star1(G) by inserting an edge between every neighbor of

r1 in G (excluding r2) and r2. TStar2(G) is the graph obtained from Star2(G) by inserting an edge

between every neighbor of r2 in G (excluding r1) and r1.

The T in the preceding definition refers to the fact that we are twinning vertices; we are making r2
a twin of r1 in forming TStar1(G) and vice versa in forming TStar2(G).

It is well known that if G is a star on 4 or more vertices and M ∈ MR(G) then mii = 0 for every

pendant vertex i (see, e.g., [2]). In the settings wewill encounter, theminimum rank classes associated
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with the latter two “star classes” will also have restricted diagonal entries, so for these we modify the

definitions at the beginning of the paper appropriately.

Definition 4.2. Let

SF
0(Star12(G)) = {M ∈ SF(G) | mjj = 0; j �= r1, r2}

SF
0(TStari(G)) = {M ∈ SF(G) | mjj = 0; j �= r1, r2}, i = 1, 2

mrF0(Star12(G)) = min{rank A | A ∈ SF
0(Star12(G))}

mrF0(TStari(G)) = min{rank A | A ∈ SF
0 (TStari(G))}, i = 1, 2

MRF
0(Star12(G)) = {A ∈ SF

0 (Star12(G)) | rank A = mrF0(Star12(G))}
MRF

0(TStari(G)) = {A ∈ SF
0(TStari(G)) | rank A = mrF0(TStari(G))}, i = 1, 2.

Proposition 4.3. Let F be a field. Let (GA, GB) be a 2-separation of a graph G, assume that GA and GB
each have at least 3 vertices, let R = {r1, r2} = V(GA) ∩ V(GB) and assume that neither r1 nor r2 is a cut

vertex of G. Then

mrF(Stari(G)) = 2, mrF0(TStari(G)) = 2, and mrF0(Star12(G)) � 4.

Proof. Since r2 is not a cut vertex of G, r1 is adjacent to a vertex in V(GA) \ R and a vertex in V(GB) \ R.

Then P3 is induced in Star1(G) and in TStar1(G), so eachhasminimumrank at least 2. Similarly Star2(G)
and TStar2(G) each have minimum rank at least 2.

For i = 1 or 2, Stari(G) is a star so mr(Stari(G)) � 2. If we label the graph G so that r1, r2 occur

first, there is a matrix of either the form⎡⎢⎢⎣
0 0 xT

0 0 0

x 0 0

⎤⎥⎥⎦ or

⎡⎢⎢⎣
1 1 xT

1 0 0

x 0 0

⎤⎥⎥⎦
in S(Star1(G)). Then depending on whether or not r1r2 ∈ E(G), either⎡⎢⎢⎣

0 0 xT

0 0 xT

x x 0

⎤⎥⎥⎦ or else

⎡⎢⎢⎣
1 1 xT

1 1 xT

x x 0

⎤⎥⎥⎦
is in S0(TStar1(G)) and both have rank atmost 2. Somr0(TStar1(G)) � 2 and similarlymr0(TStar2(G))
� 2.

Finally, there is a matrix of the form⎡⎢⎢⎣
a b xT

b c yT

x y 0

⎤⎥⎥⎦
in S0(Star12(G)), and its rank is at most 4. �

The following theorem which generalizes Theorem 2.6 is our main result. We show that mini-

mum rank matrices of graphs with a 2-separation decompose in essentially six different ways, each

corresponding to one of the six possible minima in Theorem 2.6.
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Theorem 4.4. Let F be a field. Given G as in Definition 4.1 and that neither r1 nor r2 is a cut vertex, let

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A x1 x2 0

xT1 a b yT1

xT2 b c yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ MR

F(G)

where the vertices are labeled so that A ∈ SF(GA − R), B ∈ SF(GB − R),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x1 0 0

xT1 a b yT1

0 b 0 0

0 y1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ SF(Star1(G)), and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x2 0

0 0 b 0

xT2 b c yT2

0 0 y2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ SF(Star2(G)).

I. If

rank A + rank B = rank [A x1 x2] + rank [y1 y2 B],
then either M ∈ MRF(G̃A) + MRF(G̃B) andmrF(G) = mrF(GA) + mrF(GB)
or M ∈ MRF(H̃A) + MRF(H̃B) andmrF(G) = mrF(HA) + mrF(HB).

II. If

rank A + rank B = rank [A x1] + rank [y1 B] < rank [A x1 x2] + rank [y1 y2 B] (EI1)

then M ∈ MRF(G̃A − r2) + MRF(G̃B − r2) + MRF(Star2(G))
and mrF(G) = mrF(GA − r2) + mrF(GB − r2) + 2.

III. If

rank A + rank B = rank [A x2] + rank [y2 B] < rank [A x1 x2] + rank [y1 y2 B] (EI2)

then M ∈ MRF(G̃A − r1) + MRF(G̃B − r1) + MRF(Star1(G))
and mrF(G) = mrF(GA − r1) + mrF(GB − r1) + 2.

IV. If either

rankM = rank A + rank B + 4, (E1)

or

rank A + rank B < rank [A x1] + rank [y1 B] < rank [A x1 x2] + rank [y1 y2 B], (I1)

or

rank A + rank B < rank [A x2] + rank [y2 B] < rank [A x1 x2] + rank [y1 y2 B], (I2)

then M ∈ MRF(G̃A − R) + MRF(G̃B − R) + MRF
0(Star12(G))

and mrF(G) = mrF(GA − R) + mrF(GB − R) + 4.

V. If

rank A + rank B < rank [A x1] + rank [y1 B] = rank [A x1 x2] + rank [y1 y2 B], (IE1)

rank A + rank B < rank [A x2] + rank [y2 B] = rank [A x1 x2] + rank [y1 y2 B], (IE2)
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and

rankM �= rank A + rank B + 4

then

M ∈ MR
F(G̃A) + MR

F(G̃B) + MR
F
0(TStar1(G)),

M ∈ MR
F(G̃A) + MR

F(G̃B) + MR
F
0(TStar2(G)),

and

mrF(G) = mrF(GA) + mrF(GB) + 2.

Example 4.5. Let F be a field with char F �= 2. Let G be the graph in Example 1.3 with the same

2-separation (GA, GB). The following matrix is an example where part I applies.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 2 1 1 1 0

1 1 2 0 1 1

0 1 0 1 1 0

0 1 1 1 2 1

0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Notice that A = M[1], and B = M[4, 5, 6]. Also x1, x2 appear as columns in A, while y1, y2 appear in

B. Thus M satisfies the hypothesis of part I.

In this case M ∈ MRF(G̃A) + MRF(G̃B) and M can be decomposed as shown in Example 1.3.

Example 4.6. The following graph and matrix provide another example where part I applies.

M =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 0

1 0 0 −1

1 0 0 −1

0 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
The 2-separation is G − {4} and G − {1}. The matrices A and B are both 1 × 1 matrices corresponding

toM[1] and M[4], respectively. It is easily verified M satisfies the hypothesis of part I.

In this case M ∈ MRF(H̃A) + MRF(H̃B) and can be decomposed into the following matrices

corresponding to H̃A and H̃B , each of which is isomorphic to K3 ∪ K1.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 −1 −1 −1

0 −1 −1 −1

0 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Example 4.7. Let F be a field with char F �= 2. The following graph andmatrix give an example where

part II applies.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0

1 1 2 1 1 1 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 2 1 1 1 0 0

0 1 1 0 1 1 0 1 1 0

0 0 0 0 1 0 1 1 0 0

0 0 0 0 1 1 1 2 1 1

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We have rankM = 6 = mr(G). The 2-separation is the graph induced by the first 6 vertices and the

graph induced by the last 6 vertices excluding edge {56} as in Example 2.8. The matrices A and B are

respectively M[1, 2, 3, 4] and M[7, 8, 9, 10]. In this case x1 appears as a column of A and y1 appears

in B. Thus the equality in (EI1) is satisfied. Further x2 is not in the column space of A, which justifies

the inequality in (EI1).

The conclusion states that M can be decomposed into 3 matrices corresponding to the graphs

G̃A − r2, G̃B − r2, and Star2(G). The graphs and corresponding matrices are given below.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 2 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 0 0

0 0 0 0 1 0 1 2 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 1 1 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Example 4.8. Let F be a field with char F �= 2. The following graph and matrix provide an example

where part IV applies.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

1 0 1 2 1 0 0 1 0 1 0 0 0 0 0 0

1 1 0 1 2 1 0 0 0 1 1 0 0 0 0 0

0 1 0 1 0 2 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0

0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 1 1 1 2 1 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We have rankM = 10 = mr(G). The 2-separation is illustrated in Example 2.8. Note that A =
M[1, 2, 3, 4, 5, 6, 7, 8, 9] and B = M[12, 13, 14, 15, 16]. The matrix B has 3 distinct columns, and

the second column is the sum of the first and third columns. Thus rank B = 2. Since y1, y2, the first

column of B, and the third column of B form a linearly independent set, rank [y1 y2 B] = 4. Therefore

rank B < rank [y1 B] < rank [y1 y2 B] and (I1) follows.

The conclusion states that M can be decomposed into Ã =

⎡⎢⎢⎢⎢⎢⎢⎣
A 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦, B̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 B

⎤⎥⎥⎥⎥⎥⎥⎦, and

S = M − Ã − B̃ corresponding to G̃A − R, G̃B − R, and Star12(G), respectively.

Example 4.9. Let F be a field with char F �= 2. The following graph and matrix provide an example

where part V applies.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 1 0 1 0 0

1 0 2 −1 1 0

0 1 −1 2 0 1

0 0 1 0 1 1

0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We have rankM = 4 = mr(G). The 2-separation is the four cycle induced by {1, 2, 3, 4} and the

path with edges {35, 56, 64}. Note that the matrices A and B corresponding to this 2-separation are

both the 2 × 2 all 1’s matrix. Thus rank A = rank B = 1. Neither x1 nor x2 is in the column space

of A justifying the inequality in both (IE1) and (IE2). Also x1 + x2 is in the column space of A and

y1 + y2 is in the column space of B justifying the equality in both (IE1) and (IE2). Lastly we note that

rankM = 4 �= rank A + rank B + 4 = 6.

The conclusion of part V states that M can be decomposed into 3 matrices corresponding to

The matrices are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0

1 1 0 1 0 0

0 0 0 0 0 0

1 1 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −1 0 0

0 0 0 0 0 0

1 0 2 −1 1 0

−1 0 −1 0 −1 0

0 0 1 −1 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Example 4.10. Wenote that in rare instances the decompositionmay be trivial. Consider the following

graph and matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 0

1 1 1 1

1 1 1 1

0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
with 2-separation consisting of the clique induced by vertices {1, 2, 3} and the path with edges

{24, 34}. The matrices A and B are both 1 × 1 matrices corresponding toM[1] andM[4], respectively.
It is easily verified M satisfies the hypothesis of part V.

The conclusion of part V states that M can be decomposed into 3 matrices corresponding to

The only matrix in either MR(G̃A) or MR(G̃B) is the zero matrix which leads to the trivial decompo-

sition, M = 0 + 0 + M.

We require several lemmas before giving the proof of Theorem 4.4. The next one follows immedi-

ately from Theorem 2.6, but we give an independent proof that aligns with the proof we will give of

Theorem 4.4.
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Lemma 4.11. Let F be any field. Given G, GA, GB,HA,HB, GA, GB as in Definition 4.1,

mrF(G) �min{mrF(GA) + mrF(GB),

mrF(HA) + mrF(HB),

mrF(GA) + mrF(GB) + 2,

mrF(GA − r1) + mrF(GB − r1) + 2,

mrF(GA − r2) + mrF(GB − r2) + 2,

mrF(GA − R) + mrF(GB − R) + 4}.
Proof. If r1r2 ∈ E(G), we assume that r1r2 ∈ E(GA).

1. Let

M1 =
⎡⎢⎢⎣
A x1 x2

xT1 a b

xT2 b c

⎤⎥⎥⎦ ∈ S(GA) with rankM1 = mr(GA)

and

M2 =
⎡⎢⎢⎣
h 0 yT1

0 k yT1

y1 y2 B

⎤⎥⎥⎦ ∈ S(GB) with rankM2 = mr(GB).

Then

M =

⎡⎢⎢⎢⎢⎢⎣
A x1 x2 0

xT1 a + h b yT1

xT2 b c + k yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A x1 x2 0

xT1 a b 0

xT2 b c 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 h 0 yT1

0 0 k yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ S(G)

whether or not r1r2 ∈ E(G). Then

mr(G) � rankM � rankM1 + rankM2 = mr(GA) + mr(GB).

2. Let

M1 =
⎡⎢⎢⎣
A x1 x2

xT1 a b

xT2 b c

⎤⎥⎥⎦ ∈ S(HA) with rank M1 = mr(HA)

and

M2 =

⎡⎢⎢⎢⎣
r s yT1

s t yT2

y1 y2 B

⎤⎥⎥⎥⎦ ∈ S(HB) with rank M2 = mr(HB)

(so s �= 0).
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Subcase 1. r1r2 /∈ E(G).
Then r1r2 ∈ E(HA) so b �= 0.

Let

M = s

⎡⎢⎢⎢⎢⎢⎣
A x1 x2 0

xT1 a b 0

xT2 b c 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ − b

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0

0 r s yT1

0 s t yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎦ .

Then M ∈ S(G) and mr(G) �rankM �rankM1+rank M2 = mr(HA) + mr(HB).

Subcase 2. r1r2 ∈ E(G).
Then there is a double edge between r1 and r2 in HA. For F �= F2, b may or may not be 0, while for

F = F2, b = 0. Since s �= 0, there is a nonzero k such that kb + s �= 0. Let

M = k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A x1 x2 0

xT1 a b 0

xT2 b c 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 r s yT1

0 s t yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Then M ∈ S(G) and mr(G) �rankM �rankM1+rank M2 = mr(HA) + mr(HB).

3. The multigraph G, obtained from G by identifying r1 and r2, is the vertex sum at v of GA and GB .
By Lemma 2.9 and Theorem 2.3, mr(G) � mr(G) + 2 � mr(GA) + mr(GB) + 2.

4. Let

M1 =
⎡⎢⎣ A x2

xT2 c1

⎤⎥⎦ ∈ S(GA − r1) with rankM1 = mr(GA − r1)

and

M2 =
⎡⎢⎣c2 yT2

y2 B

⎤⎥⎦ ∈ S(GB − r1) with rankM2 = mr(GB − r1).

Then

M =

⎡⎢⎢⎢⎢⎢⎣
A x2 0

xT2 c1 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0 0 0

0 c2 yT2

0 y2 B

⎤⎥⎥⎥⎦ ∈ S(G − r1)

and by Proposition 2.10, mr(G) � mr(G − r1) + 2 �rank M + 2 �rank M1+ rank M2 + 2 =
mr(GA − r1) + mr(GB − r1) + 2.

By the same argument, mr(G) � mr(GA − r2) + mr(GB − r2) + 2.

5. We have mr(G) � mr(G− r1) + 2 � mr(G− r1 − r2) + 4 = mr(G− R) + 4 = mr((GA − R) ∪
(GB − R)) + 4 = mr(GA − R) + mr(GB − R) + 4. �
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Lemma 4.12. Let F be a field, let G be a graph on 3 or more vertices, let u, v be vertices of G and let G be

the multigraph obtained by identifying u and v. Let

M =

⎡⎢⎢⎢⎣
A x y

xT a b

yT b c

⎤⎥⎥⎥⎦ ∈ SF(G)

where the last 2 rows and columns are associated with u and v. Then for any nonzero h,k and any

scalar a′,

M =
⎡⎢⎣ A hx + ky

hxT + kyT a′

⎤⎥⎦ ∈ SF(G)

Proof. Let i �= u, v be a vertex of G. Then

hxi + kyi is

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if neither iu nor iv is an edge of G

nonzero if exactly one of iu, iv is an edge of G

0 or nonzero if iu, iv are both edges of G and F �= F2

0 if iu, iv are both edges of G and F = F2.

It follows thatM ∈ SF(G). �

Lemma 4.13. Let F be a field. Given G as in Definition 4.1, let

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A x1 x2 0

xT1 a b yT1

xT2 b c yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ MR

F(G),

K1 =

⎡⎢⎢⎢⎢⎢⎣
A x1 0

xT1 a yT1

0 y1 B

⎤⎥⎥⎥⎥⎥⎦ , and K2 =

⎡⎢⎢⎢⎢⎢⎣
A x2 0

xT2 c yT2

0 y2 B

⎤⎥⎥⎥⎥⎥⎦ .

If rank [A x1] + rank [y1 B] < rank [A x1 x2] + rank [y1 y2 B],
then K1 ∈ MRF(G − r2), rank K1 = rankM − 2, and mrF(G) = mrF(G − r2) + 2,

while if rank [A x2] + rank [y2 B] < rank [A x1 x2] + rank [y1 y2 B],
then K2 ∈ MRF(G − r1), rank K2 = rankM − 2, and mrF(G) = mrF(G − r1) + 2.

Proof. It suffices to prove the first claim. Then either rank [A x1] < rank [A x1 x2] or else rank [y1 B] <
rank [y1 y2 B]. Without loss of generality assume rank [A x1] < rank [A x1 x2]. Since x2 /∈ C([A x1]),
rank K1 < rankM. By Propositions 2.11 and 2.10,

mr(G − r2) � rank K1 = rankM − 2 = mr(G) − 2 � mr(G − r2).

Therefore mr(G − r2) = rank K1 = rankM − 2 = mr(G) − 2 and K1 ∈ MR(G − r2). �
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Lemma 4.14. Let F be a field. Given G as in Definition 4.1, let

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A x1 x2 0

xT1 a b yT1

xT2 b c yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ MR

F(G).

Then rankM − rank A − rank B equals 4, 2, 1, or 0.

Proof. Let K1 be as in Lemma 4.13. By Proposition 2.11, rank K1 is either rankM or rankM − 2.

Case 1. rank K1 = rankM − 2

Then K1 ∈ MR(G− r2) and again by Proposition 2.11 the rank K1 − rank

⎡⎣A 0

0 B

⎤⎦ is either 0 or 2. Then

rankM − rank A − rank B = (rankM − rank K1) +
⎛⎝rank K1 − rank

⎡⎣A 0

0 B

⎤⎦⎞⎠
which is either 2 + 0 or 2 + 2; i.e., 2 or 4.

Case 2. rank K1 = rankM

Then rank K1 − rank

⎡⎣A 0

0 B

⎤⎦ is 0,1, or 2 and

rankM − rank A − rank B = rank K1 − rank

⎡⎣A 0

0 B

⎤⎦
which is 0,1, or 2. �

Proof. (Of Theorem 4.4)

The five hypotheses of I, II, III, IV, V are mutually exclusive and exhaustive.

We adopt the same convention as in the proof of Lemma 4.11 that if r1r2 ∈ E(G) then r1r2 ∈ E(GA).

I. Assume that rank A + rank B = rank [A x1 x2] + rank [y1 y2 B]. It follows that x1, x2 ∈ C(A) and
y1, y2 ∈ C(B). Then there are vectors u1, v1, u2, v2 such that x1 = Au1, y1 = Bv1, x2 = Au2, y2 = Bv2

and hence M =

⎡⎢⎢⎢⎢⎢⎢⎣
A Au1 Au2 0

uT1A a b vT1B

uT2A b c vT2B

0 Bv1 Bv2 B

⎤⎥⎥⎥⎥⎥⎥⎦ . It is straightforward thatM is row and column equivalent to

R =

⎡⎢⎢⎢⎢⎢⎣
A 0 0 0

0 a − uT1Au1 − vT1Bv1 b − uT1Au2 − vT1Bv2 0

0 b − uT2Au1 − vT2Bv1 c − uT2Au2 − vT2Bv2 0

0 0 0 B

⎤⎥⎥⎥⎥⎥⎦ .
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So rankM = rank R = rank A + rank B + rank T where

T =
⎡⎣a − uT1Au1 − vT1Bv1 b − uT1Au2 − vT1Bv2

b − uT2Au1 − vT2Bv1 c − uT2Au2 − vT2Bv2

⎤⎦ .

We now explain why rank T is 0 or 1. If the off-diagonal entry of T is 0 then since M ∈ MR(G), the
two diagonal entries of T must be 0. And if the off-diagonal entry of T is nonzero then since a and c

could be chosen tomakedet T = 0 and sinceM ∈ MR(G) itmust be the case that theywere so chosen.

Case 1. T is the zero matrix. Then rankM = rank A + rank B and a = uT1Au1 + vT1Bv1, b = uT1Au2 +
vT1Bv2 (= uT2Au1 + vT2Bv1) and c = uT2Au2 + vT2Bv2.

So M =

⎡⎢⎢⎢⎢⎢⎢⎣
A Au1 Au2 0

uT1A uT1Au1 + vT1Bv1 uT1Au2 + vT1Bv2 vT1B

uT2A uT2Au1 + vT2Bv1 uT2Au2 + vT2Bv2 vT2B

0 Bv1 Bv2 B

⎤⎥⎥⎥⎥⎥⎥⎦ .

Let M̃A =

⎡⎢⎢⎢⎢⎢⎣
A Au1 Au2 0

uT1A uT1Au1 uT1Au2 0

uT2A uT2Au1 uT2Au2 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ , M̃B =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0

0 vT1Bv1 vT1Bv2 vT1B

0 vT2Bv1 vT2Bv2 vT2B

0 Bv1 Bv2 B

⎤⎥⎥⎥⎥⎥⎦ .

Then M = M̃A + M̃B , rank M̃A = rank A and rank M̃B = rank B.

Subcase 1. vT1Bv2 = 0.

Then uT1Au2 = b �= 0 if and only if r1r2 ∈ E(G) if and only if r1r2 ∈ E(G̃A). Then M̃A ∈ S(G̃A) and

M̃B ∈ S(G̃B). By Lemma 4.11,

mr(GA) + mr(GB) � mr(G) = rankM = rank A + rank B

= rank M̃A + rank M̃B � mr(G̃A) + mr(G̃B) = mr(GA) + mr(GB).

It follows that rank M̃A = mr(G̃A) and rank M̃B = mr(G̃B) so M̃A ∈ MR(G̃A), M̃B ∈ MR(G̃B) and

M ∈ MR(G̃A) + MR(G̃B). Furthermore mr(G) = mr(GA) + mr(GB).

Subcase 2. vT1Bv2 �= 0.

Then M̃B ∈ S(H̃B). We claim that M̃A ∈ S(H̃A) also. For if r1r2 /∈ E(G), r1r2 ∈ E(H̃A) and uT1Au2 =
−vT1Bv2 �= 0. If r1r2 ∈ E(G), there is a double edge between r1 and r2 in H̃A. Here uT1Au2 may be zero

or nonzero for any F �= F2. But if F = F2,

1 = b = uT1Au2 + vT1Av2 = uT1Au2 + 1

and uT1Au2 = 0. So in either case M̃A ∈ S(H̃A). By Lemma 4.11,

mr(HA) + mr(HB) � mr(G) = rankM = rank A + rank B

= rank M̃A + rank M̃B � mr(H̃A) + mr(H̃B) = mr(HA) + mr(HB).

It follows that rank M̃A = mr(H̃A) and rank M̃B = mr(H̃B) so M̃A ∈ MR(H̃A), M̃B ∈ MR(H̃B), and
M ∈ MR(H̃A) + MR(H̃B). Furthermore mr(G) = mr(HA) + mr(HB).

Case 2. Now assume rank T = 1. Then rankM = rank A + rank B + 1. Let
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M̃A =

⎡⎢⎢⎢⎢⎢⎢⎣
A Au1 Au2 0

uT1A a − vT1Bv1 b − vT1Bv2 0

uT2A b − vT2Bv1 c − vT2Bv2 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , M̃B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 vT1Bv1 vT1Bv2 vT1B

0 vT2Bv1 vT2Bv2 vT2B

0 Bv1 Bv2 B

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Then M = M̃A + M̃B , rank M̃B = rank B and rank M̃A = rank A + 1 since M̃A is row and column

equivalent to A ⊕ T . So

mr(G) = rankM = rank A + 1 + rank B = rank M̃A + rank M̃B, (E2)

Subcase 1. vT1Bv2 = 0.

Then b − vT1Bv2 = b and whether or not b = 0, M̃A ∈ S(G̃A) and M̃B ∈ S(G̃B). Then by (E2) and

Lemma 4.11,

mr(G) = rank M̃A + rank M̃B � mr(G̃A) + mr(G̃B) = mr(GA) + mr(GB) � mr(G).

Then we have M̃A ∈ MR(G̃A), M̃B ∈ MR(G̃B) and mr(G) = mr(GA) + mr(GB).

Subcase 2. vT1Bv2 �= 0.

Then M̃B ∈ MR(H̃B). If r1r2 /∈ E(G), r1r2 ∈ E(H̃A); also b = 0 ⇒ b− vT1Bv2 �= 0 and M̃A ∈ S(H̃A). If
r1r2 ∈ E(G), there is a double edge between r1 and r2 in H̃A. We only need to check the case in which

F = F2 and in that case b = 1 = vT1Bv2 ⇒ b − vT1Bv2 = 0. So MA ∈ S(H̃A). Again by (E2) and

Lemma 4.11,

mr(G) = rank M̃A + rank M̃B � mr(H̃A) + mr(H̃B) = mr(HA) + mr(HB) � mr(G).

Now M̃A ∈ MR(H̃A), M̃B ∈ MR(H̃B) and mr(G) = mr(HA) + mr(HB).
II. Now assume (EI1):

rank A + rank B = rank [A x1] + rank [y1 B] < rank [A x1 x2] + rank [y1 y2 B].
Because of the inequality, we can apply Lemma 4.13 to conclude

K1 =

⎡⎢⎢⎢⎣
A x1 0

xT1 a yT1

0 y1 B

⎤⎥⎥⎥⎦ ∈ MR(G − r2), rank K1 = rankM − 2,

and mr(G) = mr(G − r2) + 2.

The equality implies that x1 ∈ C(A) and y1 ∈ C(B). Write x1 = Au1 and y1 = Bv1 so that

K1 =

⎡⎢⎢⎢⎣
A Au1 0

uT1A a vT1B

0 Bv1 B

⎤⎥⎥⎥⎦ .

Since K1 is row and column equivalent to

R1 =

⎡⎢⎢⎢⎣
A 0 0

0 a − uT1Au1 + vT1Bv1 0

0 0 B

⎤⎥⎥⎥⎦ , rank K1 = rank R1.

Also, since K1 is a minimum rank matrix, we must have a − uT1Au1 − vT1Bv1 = 0. Then rankM =
rank K1 + 2 = rank R1 + 2 = rank A + rank B + 2. Now let
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M̃A =

⎡⎢⎢⎢⎢⎢⎢⎣
A Au1 0 0

uT1A uT1Au1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , M̃B =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 vT1Bv1 0 vT1B

0 0 0 0

0 Bv1 0 B

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and S2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 x2 0

0 0 b 0

xT2 b c yT2

0 0 y2 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then M̃A ∈ S(G̃A − r2), rank M̃A = rank A, M̃B ∈ S(G̃B − r2), rank M̃B = rank B, S2 ∈ S(Star2(G)),
andM = M̃A + M̃B + S2. Also, since r1 is a cut vertex for G − r2 and G − r2 is the vertex sum at r1 of

GA − r2 and GB − r2, we have by Theorem 2.3, mr(G − r2) � mr(GA − r2) +mr(GB − r2). Therefore,

mr(G) = mr(G − r2) + 2 � mr(GA − r2) + mr(GB − r2) + 2

= mr(G̃A − r2) + mr(G̃B − r2) + 2 � rank M̃A + rank M̃B + 2

= rank A + rank B + 2 = rankM = mr(G).

Somr(G) = mr(GA−r2)+mr(GB−r2)+2, rank M̃A = mr(G̃A − r2), and rank M̃B = mr(G̃B − r2).

Thus M̃A ∈ MR(G̃A − r2) and M̃B ∈ MR(G̃B − r2).

Finally, by Proposition 4.3, mr(Star2(G)) = 2 so rank S2 = 2. Then S2 ∈ MR(Star2(G)). Since
M = M̃A + M̃B + S2, the proof is complete.

III. The only difference between (EI1) and (EI2) is that the roles of x1, x2 and of y1, y2 are both

reversed. So the result in III follows from that of II.

For convenience we let GA = GA − R and GB = GB − R.

IV.We first show that any of (E1), (I1), (I2) imply that

mr(G) = mr(GA) + mr(GB) + 4, A ∈ MR(GA), and B ∈ MR(GB).

First, assume (E1), that rankM = rank A + rank B + 4. Since A ∈ S(GA) and B ∈ S(GB), mr(G) =
rankM = rank A + rank B + 4 � mr(GA) + mr(GB) + 4 � mr(G), where the last inequality follows

from Lemma 4.11. So equality holds, and A ∈ MR(GA), and B ∈ MR(GB).
Next, assume that (I1) holds:

rank A + rank B < rank [A x1] + rank [y1 B] < rank [A x1 x2] + rank [y1 y2 B].
By Lemma 4.13, K1 ∈ MR(G − r2), rank K1 = rankM − 2, and mr(G) = mr(G − r2) + 2. Now either

rank [A x1] > rank A or else rank [y1 B] > rank B; equivalently, x1 /∈ C(A) or y1 /∈ C(B). Applying

Proposition 2.11, rank

⎡⎣A 0

0 B

⎤⎦ = rank K1(r1) = rank K1 − 2. Then

mr(G) = rankM = rank K1 + 2 = rank A + rank B + 4 � mr(GA) + mr(GB) + 4 � mr(G),

and again equality holds, A ∈ MR(GA) and B ∈ MR(GB).
The case inwhich (I2) holds is similar, so any of (E1), (I1), (I2) implymr(G) = mr(GA)+mr(GB)+4,

A ∈ MR(GA), and B ∈ MR(GB).
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Now write M = Ã + B̃ + S where Ã =

⎡⎢⎢⎢⎢⎢⎣
A 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦, B̃ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 B

⎤⎥⎥⎥⎥⎥⎦, and S =

⎡⎢⎢⎢⎢⎢⎣
0 x1 x2 0

xT1 a b yT1

xT2 b c yT2

0 y1 y2 0

⎤⎥⎥⎥⎥⎥⎦.

Since A∈ MR(GA) and B ∈ MR(GB), we have Ã∈ MR(G̃A) and B̃∈ MR(G̃B). Now S ∈ S0(Star12(G))
and clearly rank S � 4. Let S′ be any matrix in MR0(Star12(G)), and let M′ = Ã+B̃+S′ ∈ S(G). Then

mr(G) � rankM′ � rank Ã + rank B̃ + rank S′ � rank A + rank B + 4 = mr(G)

which implies rank S′ = 4. Therefore mr0(Star12(G)) = 4 and S ∈ MR0(Star12(G)). Then M ∈
MR(G̃A) + MR(G̃B) + MR0(Star12(G)). We arrive at the same conclusion if (I2) holds, so this con-

cludes the proof of IV.

V. By Lemma 4.14, rankM � rank A+ rank B+2. By the inequality of (IE1), either x1 /∈ C(A) or else
y1 /∈ C(B). Without loss of generality say x1 /∈ C(A). The equality of (IE1) implies that x2 ∈ C([A x1])
and y2 ∈ C([y1 B]). Therefore there are vectors u and v and scalars h and k such that x2 = Au + hx1
and y2 = Bv + ky1. By the inequality of (IE2), h and k cannot both be 0. Now

M =

⎡⎢⎢⎢⎢⎢⎢⎣
A x1 Au + hx1 0

xT1 a b yT1

uTA + hxT1 b c vTB + kyT1

0 y1 Bv + ky1 B

⎤⎥⎥⎥⎥⎥⎥⎦
and it is straightforward to show thatM is row and column equivalent to

M′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A x1 0 0

xT1 a b − xT1u − ah yT1

0 b − uTx1 − ha c − uTAu + h2a − 2hb vTB + (k − h)yT1

0 y1 Bv + (k − h)y1 B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since x1 /∈ C(A) we know that the rank of the matrix

M′(2) =

⎡⎢⎢⎢⎢⎢⎣
A 0 0

0 c − uTAu + h2a − 2hb vTB + (k − h)yT1

0 Bv + (k − h)y1 B

⎤⎥⎥⎥⎥⎥⎦
is rankM − 2. Since

rank A + rank B � rankM′(2) = rankM − 2 � rank A + rank B,

rankM = rank A + rank B + 2 and rankM′(2) = rank A + rank B.

It follows that rank B = rank

⎡⎣c − uTAu + h2a − 2hb vTB + (k − h)yT1

Bv + (k − h)y1 B

⎤⎦. Thus Bv+(k−h)y1 ∈ C(B)

which implies (k − h)y1 ∈ C(B). Then either k = h or y1 ∈ C(B), so we consider these two

cases.
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Case 1. k = h.

Let M̃A =

⎡⎢⎢⎢⎢⎢⎣
A 0 Au 0

0 0 0 0

uTA 0 uTAu 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ , M̃B =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 vTBv vTB

0 0 Bv B

⎤⎥⎥⎥⎥⎥⎦ , and

N = M − M̃A − M̃B =

⎡⎢⎢⎢⎢⎢⎣
0 x1 hx1 0

xT1 a b yT1

hxT1 b c − uTAu − vTBv hyT1

0 y1 hy1 0

⎤⎥⎥⎥⎥⎥⎦ .

Then since h = k, M′(2) =

⎡⎢⎢⎢⎣
A 0 0

0 c − uTAu + h2a − 2hb vTB

0 Bv B

⎤⎥⎥⎥⎦. Since rankM′(2) = rank A + rank B,

it follows that vTBv = c − uTAu + h2a − 2hb ⇒ c − uTAu − vTBv = 2hb − h2a. Thus N =⎡⎢⎢⎢⎢⎢⎢⎣
0 x1 hx1 0

xT1 a b yT1

hxT1 b 2hb − h2a hyT1

0 y1 hy1 0

⎤⎥⎥⎥⎥⎥⎥⎦ which is row and column equivalent to

⎡⎢⎢⎢⎢⎢⎢⎣
0 x1 0 0

xT1 a b − ha yT1

0 b − ha 0 0

0 y1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , which

has rank 2.

Since Au = −hx1 + x2, Bv = −ky1 + y2 = −hy1 + y2, and h is nonzero, by Lemma 4.12,

M̃A ∈ S(G̃A) and M̃B ∈ S(G̃B). Also h �= 0 gives that N ∈ S0(TStar1(G)). Moreover

mr(G) = rankM = rank A + rank B + 2 = rank M̃A + rank M̃B + rank N

� mr(G̃A) + mr(G̃B) + 2 = mr(GA) + mr(GB) + 2 � mr(G)

where the last inequality follows by Lemma 4.11. Thereforemr(GA)+mr(GB)+2 = mr(G), and rank

M̃A = mr(G̃A), rank M̃B = mr(G̃B), and by Proposition 4.3

rank N = mr0(TStar1(G)). In other words,

M̃A ∈ MR(G̃A), M̃B ∈ MR(G̃B), and N ∈ MR0(TStar1(G)).

Case 2: y1 ∈ C(B).
Thus there is a vector z such that y1 = Bz. Since y2 = Bv + ky1 = Bv + kBz, y2 ∈ C(B) as well and

there exists a vector w such that y2 = Bw. Then we have

M =

⎡⎢⎢⎢⎢⎢⎢⎣
A x1 Au + hx1 0

xT1 a b zTB

uTA + hxT1 b c wTB

0 Bz Bw B

⎤⎥⎥⎥⎥⎥⎥⎦ .

Since y2 ∈ C(B), the inequality of (IE2) implies that x2 /∈ C(A). Therefore h �= 0.

Please cite this article in press as:W. Barrett et al., Decompositions of minimum rankmatrices, Linear Algebra Appl.

(2012), doi:10.1016/j.laa.2011.12.036

http://dx.doi.org/10.1016/j.laa.2011.12.036


26 W. Barrett et al. / Linear Algebra and its Applications xxx (2012) xxx–xxx

Let M̃A =

⎡⎢⎢⎢⎢⎢⎢⎣
A 0 Au 0

0 0 0 0

uTA 0 uTAu 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

M̃B =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 (w − hz)TB(w − hz) (w − hz)TB

0 0 B(w − hz) B

⎤⎥⎥⎥⎥⎥⎥⎦ , and

N = M − M̃A − M̃B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x1 hx1 0

xT1 a b zTB

hxT1 b c − uTAu − (w − hz)TB(w − hz) hzTB

0 Bz hBz 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

SinceAu = −hx1+x2 and B(w−hz) = −hy1+y2, by Lemma4.12, M̃A ∈ S(G̃A), and M̃B ∈ S(G̃B).
Also note N ∈ S0(TStar1(G)). Substituting y1 = Bz and Bw = Bv + kBz into M′(2), we find

M′(2) =

⎡⎢⎢⎢⎣
A 0 0

0 c − uTAu − 2hb + h2a (wT − hzT )B

0 B(w − hz) B

⎤⎥⎥⎥⎦ .

SinceM′(2)has rank equal to rank A+rank B, it follows that c−uTu−2hb+h2a = (w−hz)TB(w−hz).
Thus c − uTAu − (w − hz)TB(w − hz) = 2hb − h2a.

Substituting this into N we obtain N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x1 hx1 0

xT1 a b zTB

hxT1 b 2hb − h2a hzTB

0 Bz hBz 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Row and column reducing N we

obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x1 0 0

xT1 a b − ha zTB

0 b − ha 0 0

0 Bz 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, which has rank 2.

The remainder of the proof of Case 2 is the same as the end of the proof of Case 1.

If we had begun the proof by considering the second given inequality to conclude that either

x2 /∈ C(A) or y2 /∈ C(B), an entirely similar proof yields the conclusion

M ∈ MR(G̃A) + MR(G̃B) + MR0(TStar2(G)).

This concludes the proof. �

Given any minimum rank matrix M corresponding to a graph G as in Definition 4.1, Theorem 4.4

explains howM can be decomposed (except for rare exceptions as in Example 4.10) as a sum of mini-
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mum rank matrices of simpler graphs related to G. We now ask the question, is it possible to build the

class of minimum rank matrices of G (MR(G)) by summing the classes of minimum rank matrices of

simpler graphs related to G? Again, except for rare exceptions, the answer is yes and is given by the

next theorem.

Definition 4.15. Let F be afield. LetG2 be the class of all connected graphswith a 2-separation (GA, GB)
as in Definition 4.1, and assume neither r1 nor r2 is a cut vertex as in the hypothesis of Theorem 4.4. A

particular graph may appear more than once in G2 because it may have several such two separations.

So properly each graph in G2 is a graph with two labeled vertices r1, r2, all other vertices unlabeled,
and a specified 2-separation (GA, GB). Let

C1.1 = {G ∈ G2 | mrF(G) = mrF(GA) + mrF(GB)}
C1.2 = {G ∈ G2 | mrF(G) = mrF(HA) + mrF(HB)}
C2 = {G ∈ G2 | mrF(G) = mrF(GA − r2) + mrF(GB − r2) + 2}
C3 = {G ∈ G2 | mrF(G) = mrF(GA − r1) + mrF(GB − r1) + 2}
C4 = {G ∈ G2 | mrF(G) = mrF(GA − R) + mrF(GB − R) + 4}
C5 = {G ∈ G2 | mrF(G) = mrF(GA) + mrF(GB) + 2}

For each G ∈ G2 let

J(G) = {i ∈ {1.1, 1.2, 2, 3, 4, 5} | G ∈ Ci}.
Now define the following matrix classes for G ∈ G2,

D1.1(G) = MR
F(G̃A) + MR

F(G̃B)

D1.2(G) = MR
F(H̃A) + MR

F(H̃B)

D2(G) = MR
F(G̃A − r2) + MR

F(G̃B − r2) + MR
F(Star2(G))

D3(G) = MR
F(G̃A − r1) + MR

F(G̃B − r1) + MR
F(Star1(G))

D4(G) = MR
F(G̃A − R) + MR

F(G̃B − R) + MR
F
0(Star12(G))

D5(G) = (MR
F(G̃A) + MR

F(G̃B) + MR
F
0(TStar1(G)))

∪ (MR
F(G̃A) + MR

F(G̃B) + MR
F
0(TStar2(G))).

Theorem 4.16. Let G ∈ G2. Then

MR
F(G) =

(
∪

i∈J(G)
Di(G)

)
∩ SF(G).

Proof. First note that J(G) �= ∅ by Theorem 2.6.

Let M ∈ MR(G). We showM ∈ ∪i∈J(G)Di.
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Since the hypotheses in the five statements of Theorem 4.4 are mutually exclusive and exhaustive,

M satisfies the hypothesis of exactly one of the statements. Call this statement R.

Case 1. Suppose R ∈ {II,III,IV,V}. For notational convenience we define

I(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if R = II

3 if R = III

4 if R = IV

5 if R = V.

By Theorem 4.4, G ∈ CI(R) andM ∈ DI(R). Thus I(R) ∈ J(G) andM ∈ ∪i∈J(G)Di.

Case 2. Suppose R = I. By Theorem 4.4 G ∈ C1.1 ∪ C1.2 and M ∈ D1.1 ∪ D1.2. If {1.1, 1.2} ⊆ J(G),
M ∈ ∪i∈J(G)Di. If 1.2 /∈ J(G), mr(G) < mr(HA) + mr(HB). Since R = I we must have mr(G) =
mr(GA) + mr(GB) and M ∈ D1.1. Thus 1.1 ∈ J(G) and M ∈ ∪i∈J(G)Di. Similarly, if 1.1 /∈ J(G),
M ∈ ∪i∈J(G)Di.

Therefore MR(G) ⊆ ∪i∈J(G)Di ∩ S(G), since MR(G) ⊆ S(G).
LetM ∈ (∪i∈J(G)Di(G))∩S(G). ThenM is in at least one ofD1.1(G)∩S(G),D1.2(G)∩S(G),D2(G)∩

S(G),D3(G) ∩ S(G),D4(G) ∩ S(G),D5(G) ∩ S(G).

Suppose 1.1 ∈ J(G) andM ∈ D1.1(G) ∩ S(G).
Then mr(G) = mr(GA) + mr(GB) and there exist M̃A ∈ MR(G̃A) and M̃B ∈ MR(G̃B) such that

M = M̃A + M̃B ∈ S(G). Then

mr(G) � rankM � rank M̃A + rank M̃B
= mr(G̃A) + mr(G̃B)
= mr(GA) + mr(GB) = mr(G).

Then rankM = mr(G) soM ∈ MR(G).
Suppose 1.2 ∈ J(G) andM ∈ D1.2(G) ∩ S(G).
Then mr(G) = mr(HA) + mr(HB) and there exist M̃A ∈ MR(H̃A) and M̃B ∈ MR(H̃B) such that

M = M̃A + M̃B ∈ S(G). Then

mr(G) � rankM � rank M̃A + ˜rankMB

= mr(H̃A) + mr(H̃B)

= mr(HA) + mr(HB) = mr(G).

Then rankM = mr(G) soM ∈ MR(G).

Suppose 2 ∈ J(G) andM ∈ D2(G) ∩ S(G).

Then mr(G) = mr(GA − r2) + mr(GB − r2) + 2 and there exist M̃A ∈ MR(G̃A − r2), M̃B ∈
MR(G̃B − r2) andM1 ∈ MR(Star2(G)) such that

M = M̃A + M̃B + M1 ∈ S(G). Then similar to the previous cases and by Proposition 4.3

mr(G) � rankM � rank M̃A + rank M̃B + rankM1

= mr(G̃A − r2) + mr(G̃B − r2) + mr(Star2(G))

= mr(GA − r2) + mr(GB − r2) + 2 = mr(G).

Then rankM = mr(G) soM ∈ MR(G).
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Suppose 3 ∈ J(G) and M ∈ D3(G) ∩ S(G).
This case follows by replacing 2 with 1 in the previous case.

Suppose 4 ∈ J(G) and M ∈ D4(G) ∩ S(G).

Thenmr(G) = mr(GA−R)+mr(GB−R)+4 and there exist M̃A ∈ MR(G̃A − R), M̃B ∈ MR(G̃B − R)
andM12 ∈ MR0(Star12(G)) such that

M = M̃A + M̃B + M12 ∈ S(G). Then similar to the previous cases and by Proposition 4.3

mr(G) � rankM � rank M̃A + rank M̃B + rankM12

= mr(G̃A − R) + mr(G̃B − R) + mr0(Star12(G))

� mr(GA − R) + mr(GB − R) + 4 = mr(G).

Then rankM = mr(G) so M ∈ MR(G).

Suppose 5 ∈ J(G) and M ∈ D5(G) ∩ S(G).

Then mr(G) = mr(GA) + mr(GB) + 2 and there exist M̃A ∈ MR(G̃A), M̃B ∈ MR(G̃B) and M1 ∈
MR0(TStar1(G)) or MR0(TStar2(G)) such that M = M̃A + M̃B + M1 ∈ S(G). We suppose M1 ∈
MR0(TStar1(G)) and note that the argument is similar ifM1 ∈ MR0(TStar2(G)). Then similar to the

previous cases and by Proposition 4.3

mr(G) � rankM � rank M̃A + rank M̃B + rankM1

= mr(G̃A) + mr(G̃B) + mr0(TStar1(G))

= mr(GA) + mr(GB) + 2 = mr(G).

Then rankM = mr(G) so M ∈ MR(G).

Thus in every case, M ∈ MR(G) and so MR(G) ⊃ (∪i∈J(G)Di(G)) ∩ S(G).
Therefore MR(G) = (∪i∈J(G)Di(G)) ∩ S(G). �

Example 4.17. Let G be

as in Example 1.3.Weuse Theorem4.16 andCorollary 3.3 to determine the structure of everyminimum

rankmatrixwithgraphG. LetM ∈ MR(G). LetGA be andGB be .

Then (GA, GB) is a 2-separation of G, mr(G) = mr(GA) + mr(GB) and no other term in Theorem 2.6

achieves theminimum rank (see Example 2.7). By Theorem 4.16, MR(G) = (MR(G̃A)+MR(G̃B))∩
S(G) = MR(G̃A) + MR(G̃B). Thus there exist M̃A ∈ MR(G̃A) and M̃B ∈ MR(G̃B) such that

M = M̃A + M̃B . Further, G̃B is a vertex sum of
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and .

Since r5(G1) = 0 and r5(G2) = 0 by Corollary 3.3, MR(G̃B) = MR(G̃1) + MR(G̃2). Thus there
exist M̃1 ∈ MR(G̃1) and M̃2 ∈ MR(G̃2) such that M̃B = M̃1 + M̃2. Thus M = M̃A + M̃1 + M̃2. The

minimum rank of each of G̃A, G̃1, and G̃2 is one. Since every rank one matrix has the form ±xxT ,

M = ±

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
a1 a2 a3 0 0 0

]
±

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

b2

0

b4

b5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0 b2 0 b4 b5 0

]

±

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

c3

0

c5

c6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0 0 c3 0 c5 c6

]
.

Thus every matrix in MR(G) can be constructed using the form given above.

Example 4.18. Let G be the house graph

and let M ∈ MR(G). We apply Theorem 4.16 with the 2-separation

It is then easy to check that J(G) = {1.2, 5}. By Theorem 4.16,

MR(G) =(MR(H̃A) + MR(H̃B)

∪ (MR(G̃A) + MR(G̃B) + MR0(TStar1(G)))

∪ (MR(G̃A) + MR(G̃B) + MR0(TStar2(G)))) ∩ S(G)
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Case 1. M = M̃A + M̃B where M̃A ∈ MR(H̃A) and M̃B ∈ MR(H̃B).
Since H̃A is the union of a clique on 3 vertices and 2 isolated vertices, any matrix in MR(H̃A) can

be expressed as ±aaT where aT = [a1 a2 a3 0 0], all ai �= 0. To finish this case we need to decompose

MR(H̃B) where H̃B is

.

Toobtainaminimumrankmatrix for H̃B the2,3entrymustbenonzeroand thusdecomposingMR(H̃B)
is equivalent to decomposing MR(C4 ∪ K1).

Consider the 2-separation G′
A = H̃B −{5} and G′

B = H̃B −{1, 2}. Then again J(H̃B) = {1.2, 5} and
M̃B ∈ D1.2(H̃B) ∪ D5(H̃B).

1. M̃B ∈ D1.2(H̃B).
Since H̃′

A and H̃′
B both consist of the union of a clique on 3 vertices and two isolated vertices

mr(H̃′
A) = mr(H̃′

B) = 1 and M̃B has the form ±bbT ± ccT with bT = [0 b2 b3 b4 0] , all bi �= 0, and

cT = [0 0 c3 c4 c5] , all ci �= 0, with the additional condition ±b3b4 ± c3c4 = 0 since 34 /∈ E(H̃B).
Then M = ±aaT ± bbT ± ccT with this same condition.

2. M̃B ∈ D5(G).

Similar to Example 4.10, mr(G̃′
A) = mr(G̃′

B) = 0 so M̃B ∈ S0(TStar1(H̃B)).
Then rank M̃B = 2 implies that M̃B can be written

M̃B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 a ka 0

0 a b 0 c

0 ka 0 −k2b kc

0 0 c kc 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
for some a, c, k �= 0, and soM = ±aaT ± M̃B , where ±a2a3 + a �= 0.

Case 2. M ∈ MR(G̃A) + MR(G̃B) + MR0(TStar1(G)).
The graphs are:

The only matrix in MR(G̃A) is the zero matrix, and any matrix in MR(G̃B) has the form ±ccT with c

as in Case 1. Since any matrix C ∈ MR0(TStar1(G)) has rank 2, it can be written

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a ka 0 0

a b c d 0

ka c 2kc − k2b kd 0

0 d kd 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, a, c, d, k �= 0.
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So in this caseM = C ± ccT where kd ± c3c4 = 0.
The case in which MR0(TStar1(G)) is replaced by MR0(TStar2(G)) is almost the same.

5. Decompositions of positive semidefinite minimum rank matrices

In this section we establish analogues of Theorems 3.1 and 4.4 for positive semidefinite minimum

rank.

We first provide some needed definitions and previous results.

Definition 5.1. Given a graphG, letS+(G)be the subset ofSR(G) consisting of all positive semidefinite

matrices. The minimum positive semidefinite rank of G is

mr+(G) = min
A∈S+(G)

{rank A}.

Definition 5.2. Given a graph G, let

MR+(G) = {A ∈ S+(G) | rank A = mr+(G)}.
The following is a well known result for positive semidefinite matrices.

Lemma 5.3 (Column inclusion). If A =
⎡⎣ B y

yT c

⎤⎦ is positive semidefinite, then y ∈ C(B).

The following three results appear as Proposition 1.4 in [4] and Corollaries 2.5 and 2.9 in [6].

Lemma 5.4. Let A, B be real symmetric n × n matrices. Then

π(A + B) � π(A) + π(B)

where π(C) denotes the number of positive eigenvalues of C.

Theorem 5.5. Let G be the vertex-sum of G1 and G2. Then

mr+(G) = mr+(G1) + mr+(G2).

Theorem 5.6. Let G = (GA, GB) be a 2-separation of a graph G and let HA and HB be as in Definition 4.1.

Then

mr+(G) = min{mr+(GA) + mr+(GB),mr+(HA) + mr+(HB)}.

We now give the analogues of Theorems 3.1 and 4.4 for positive semidefinite minimum

rank.

Theorem 5.7. If G is the vertex-sum at v of G1 and G2, then

MR+(G) = MR+(G̃1) + MR+(G̃2).

Proof. Let G be as stated in the theorem with M ∈ MR+(G) given. Labeling the vertices of G appro-

priately M =

⎡⎢⎢⎢⎣
a xT1 xT2

x1 C1 0

x2 0 C2

⎤⎥⎥⎥⎦ where the first row and column of M correspond to the vertex v. Note that
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each Ci ∈ S+(Gi −v) since they are principal submatrices of a positive semidefinitematrix. By Lemma

5.3,

⎡⎣x1

x2

⎤⎦ is in the column space of

⎡⎣C1 0

0 C2

⎤⎦. Thus there exist vectors y1 and y2 such that x1 = C1y1

and x2 = C2y2. Now rewrite the matrix as M =

⎡⎢⎢⎢⎣
a yT1C1 yT2C2

C1y1 C1 0

C2y2 0 C2

⎤⎥⎥⎥⎦ . Now consider

N =

⎡⎢⎢⎢⎢⎢⎣
yT1 yT2

I 0

0 I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣C1 0

0 C2

⎤⎥⎦
⎡⎢⎣y1 I 0

y2 0 I

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
yT1C1y1 + yT2C2y2 yT1C1 yT2C2

C1y1 C1 0

C2y2 0 C2

⎤⎥⎥⎥⎥⎥⎦ .

SinceN is of the formATBAwhereB is positive semidefinite,N is positive semidefinite. ThusN ∈ S+(G).
Furthermore rank N = rank C1 + rank C2. Since M ∈ MR+(G)

rank C1 + rank C2 � rankM � rank N = rank C1 + rank C2.

Therefore rankM = rank C1 + rank C2. We note that the first row of M is a linear combination of the

other rows ofM and using block Gaussian elimination we see that a = yT1C1y1 + yT2C2y2; i.e.,M = N.

Let

M̃1 =

⎡⎢⎢⎢⎢⎢⎣
yT1C1y1 yT1C1 0

C1y1 C1 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦ and M̃2 =

⎡⎢⎢⎢⎢⎢⎣
yT2C2y2 0 yT2C2

0 0 0

C2y2 0 C2

⎤⎥⎥⎥⎥⎥⎦ .

Then M = M̃1 + M̃2 and rank M̃i = rank Ci, i = 1, 2. Furthermore

M̃1 =

⎡⎢⎢⎢⎣
yT1 0

I 0

0 0

⎤⎥⎥⎥⎦
⎡⎣C1 0

0 0

⎤⎦ ⎡⎣y1 I 0

0 0 0

⎤⎦ and M̃2 =

⎡⎢⎢⎢⎣
yT2 0

0 0

I 0

⎤⎥⎥⎥⎦
⎡⎣C2 0

0 0

⎤⎦ ⎡⎣y2 0 I

0 0 0

⎤⎦ .

Thus M̃1 and M̃2 are positive semidefinite. By Theorem 5.5

mr+(G) = mr+(G1) + mr+(G2) = mr+(G̃1) + mr+(G̃2)

� rank M̃1 + rank M̃2 = rankM = mr+(G).

Therefore rank M̃i = mr+(G̃i), i = 1, 2 and M̃i ∈ MR+(G̃i), i = 1, 2. ThusMR+(G) ⊂ MR+(G̃1)+
MR+(G̃2).

LetM1 ∈ MR+(G̃1) andM2 ∈ MR+(G̃2). LetM = M1 +M2. Note thatM is positive semidefinite

and in S+(G). Then
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mr+(G) � rankM � rankM1 + rankM2

= mr+(G̃1) + mr+(G̃2)

= mr+(G1) + mr+(G2)

= mr+(G)

where the last equality follows from Theorem 5.5. Thus rankM = mr+(G) so M ∈ MR+(G) and

MR+(G) ⊃ MR+(G̃1) + MR+(G̃2).

Therefore MR+(G) = MR+(G̃1) + MR+(G̃2). �

Definition 5.8. Let G2 be as in Definition 4.15. Let

C1.1+ = {G ∈ G2 | mr+(G) = mr+(GA) + mr+(GB)}
C1.2+ = {G ∈ G2 | mr+(G) = mr+(HA) + mr+(HB)}

For each G ∈ G2 let

J(G) = {i ∈ {1.1, 1.2} | G ∈ Ci+}.
Now define the following matrix classes for G ∈ G2,

D1.1+(G) = MR+(G̃A) + MR+(G̃B)

D1.2+(G) = MR+(H̃A) + MR+(H̃B)

Theorem 5.9. Let G ∈ G2. Then

MR+(G) =
(

∪
i∈J(G)

Di+(G)

)
∩ S+(G).

Proof. First note that J(G) �= ∅ by Theorem 5.6.

Let M ∈ MR+(G). Then M ∈ S+(G). Labeling the vertices of G appropriately,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A x1 x2 0

xT1 a b yT1

xT2 b c yT2

0 y1 y2 B

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Since

⎡⎣ A x1

xT1 a

⎤⎦ and

⎡⎣ A x2

xT2 c

⎤⎦ are principal submatrices of a positive semidefinite matrix, they are also

positive semidefinite matrices. By Lemma 5.3, x1, x2 ∈ C(A). By a similar argument y1, y2 ∈ C(B).
Thus

rank A + rank B = rank [A x1 x2] + rank [y1 y2 B].
Then following the proof of I in Theorem 4.4, in either Case 1 or Case 2 we have

M = M̃A + M̃B and rankM = rank M̃A + rank M̃B.
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Then

π(M̃A) + π(M̃B) � rank M̃A + rank M̃B = rankM = π(M) � π(M̃A) + π(M̃B)

where the last inequality follows from Lemma 5.4. It follows that we have equality throughout and

therefore M̃A and M̃B are both positive semidefinite.

Continuing with the proof of I, we see if vT1Bv2 = 0 then M̃A ∈ S+(GA) and M̃B ∈ S+(GB). Also by

Theorem 5.6

mr+(GA) + mr+(GB) � mr+(G) = rankM = rank M̃A + rank M̃B

� mr+(G̃A) + mr+(G̃B) = mr+(GA) + mr+(GB).

Thus equality holds throughout and

mr+(G) = mr+(GA) + mr+(GB) and M̃A ∈ MR+(G̃A), M̃B ∈ MR+(G̃B).

If vT1Bv2 �= 0 then a similar argument shows that

mr+(G) = mr+(HA) + mr+(HB) and M̃A ∈ MR+(H̃A), M̃B ∈ MR+(H̃B).

We have shown that MR+(G) ⊂ D1.1+(G) ∪ D1.2+(G). If 1.2 /∈ J(G), mr+(G) < mr+(HA) +
mr+(HB). Then necessarily vT1Bv2 = 0 and M ∈ D1.1+(G) ∩ S+(G) = (∪i∈J(G)Di+(G)) ∩ S+(G). If
1.1 /∈ J(G), similarly M ∈ D1.2+(G) ∩ S+(G) = (∪i∈J(G)Di+(G)) ∩ S+(G). Therefore MR+(G) ⊂
(∪i∈J(G)Di+(G)) ∩ S+(G).

Let M ∈ (∪i∈J(G)Di+(G)) ∩ S+(G). Then M is in D1.1+(G) ∩ S+(G) or D1.2+(G) ∩ S+(G).
Suppose 1.1 ∈ J(G) and M ∈ D1.1+(G) ∩ S+(G).
Then mr+(G) = mr+(GA) + mr+(GB) and there exist M̃A ∈ MR+(G̃A) and M̃B ∈ MR+(G̃B) such
that

M = M̃A + M̃B ∈ S+(G). Then

mr+(G) � rankM � rank M̃A + rank M̃B
= mr+(G̃A) + mr+(G̃B)
= mr+(GA) + mr+(GB) = mr+(G).

Then rankM = mr+(G) soM ∈ MR+(G).

Suppose 1.2 ∈ J(G) and M ∈ D1.2+(G) ∩ S+(G).
Then mr+(G) = mr+(HA) + mr+(HB) and there exist M̃A ∈ MR+(H̃A) and M̃B ∈ MR+(H̃B) such
that

M = M̃A + M̃B ∈ S+(G). Then

mr+(G) � rankM � rank M̃A + rank M̃B

= mr+(H̃A) + mr+(H̃B)

= mr+(HA) + mr+(HB) = mr+(G).

Then rankM = mr+(G) soM ∈ MR+(G).

Thus in both cases,M ∈ MR+(G) and so MR+(G) ⊃ (∪i∈J(G)Di+(G)) ∩ S+(G).
Therefore MR+(G) = (∪i∈J(G)Di+(G)) ∩ S+(G). �

6. Conclusion

Our aim in thisworkwas to go beyond the problemof determining theminimum rank of a specified

graph G to understanding the structure of the class of matrices which attain the minimum rank of G.

Please cite this article in press as:W. Barrett et al., Decompositions of minimum rankmatrices, Linear Algebra Appl.

(2012), doi:10.1016/j.laa.2011.12.036

http://dx.doi.org/10.1016/j.laa.2011.12.036


36 W. Barrett et al. / Linear Algebra and its Applications xxx (2012) xxx–xxx

For graphs with a cut vertex, the structure is given by Theorem 3.1 and Corollary 3.3. For graphs with a

2-separation, it is given by Theorems 4.4 and 4.16. Theorems 5.7 and 5.9 give the positive semidefinite

analogues. As a by-product our results have clarified some of the principal results on minimum rank.

There are two terms on the right hand side of the formula in Theorem2.3 formrF(G) because of the two

different ways a matrix in MRF(G) can decompose according to Theorem 3.1. Theorem 4.4 explains

more clearly the reason for the six terms on the right hand side of Theorem 2.6. They arise from the

five mutually exclusive and exhaustive cases in Theorem 4.4 involving equalities and inequalities on

ranks of particular submatrices of a given minimum rank matrix.

More importantly, we expect our results to provide a simpler approach to the inverse eigenvalue

problem for MR(G) (see [2]) for graphs for which Corollary 3.3 and Theorem 4.16 (or the positive

semidefinite analogues) canbeapplied recursively to obtain aparametric representationof allmatrices

inMR(G)as inExample4.17. Thiswill bepossiblenotonly for trees, but formanygraphswith relatively

few edges.

For those graphs G with a complete characterization of MR(G), one can think of extending these

results to other matrices in S(G), for example

{A ∈ S(G) | rank A = mr(G) + 1}.
Such results would conceivably help in solving the inverse eigenvalue problem for S(G).

Finally, we expect that many of these results will extend directly to inertia classes of graphs, a line

of inquiry that some of the co-authors plan to pursue.
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