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Abstract

We give a clustering algorithm for connection graphs, that is, weighted graphs in which each edge is
associated with a d-dimensional rotation. The problem of interest is to identify subsets of small Cheeger
ratio and which have a high level of consistency, i.e. that have small edge boundary and the rotations
along any distinct paths joining two vertices are the same or within some small error factor. We use
PageRank vectors as well as tools related to the Cheeger constant to give a clustering algorithm that
runs in nearly linear time.

1 Introduction

In this paper, we study connection graphs, which are generalizations of weighted graphs in which each
edge is associated with both a positive scalar weight and a d-dimensional rotation matrix for some fixed
positive integer d. The Laplacian of a connection graphs are higher dimensional versions of the normalized
Laplacian matrix, which are linear operators acting on the space of vector-valued functions (instead of the
usual real-valued functions).

Connection graphs arise in applications involving high dimensional data sets where some data points are
related by rotation matrices. Some early usage of connection graphs can be traced back to work in graph
gauge theory for computing the vibrational spectra of molecules and examining spins associated with vibra-
tions [9]. There have been more recent developments of related research in principal component analysis
[13], cryo-electron microscopy [11, 15], angular synchronization of eigenvectors [10, 14], and vector diffusion
maps [16]. In computer vision, there has been a great deal of work dealing with the many photos that are
available on the web, in which information networks of photos can be built. The edges of the associated
connection graphs correspond to the rotations determined by the angles and positions of the cameras used
[1]. Recently, related work has been done on a synchronization problem, for which the connection Laplacian
acts on the space of functions which assign an orthogonal matrix to each vertex [4].

For high dimensional data sets, a central problem is to uncover lower dimensional structures in spite
of possible errors or noises. An approach for reducing the effect of errors is to consider the notion of
inconsistency, which quantifies the difference of accumulated rotations while traveling along distinct paths
between two vertices. In many applications, it is desirable to identify edges causing the inconsistencies, or to
identify portions of the graph that have relatively small inconsistency. In [8], an algorithm is given, utilizing
a version of effective resistance from electrical network theory, that deletes edges of a connection graph in
such a way that reduces inconsistencies. In this paper, rather than deleting edges, our focus is on identifying
subsets of a connection graph with small inconsistency. The notion of ε-consistency of a subset of the vertex
set of a connection graph will be introduced, which quantifies the amount of inconsistency for the subset to
within an error ε. This can be viewed as a generalization of the notion of consistency.

One of the major problems in computing is to design efficient clustering algorithms for finding a good cut
in a graph. That is, it is desirable to identify a subset of the graph with small edge boundary in comparison
to the overall volume of the subset. Many clustering algorithms have been derived including some with
quantitative analysis (e.g., [2, 3]). As we are looking for ε-consistent subsets, it is natural that clustering
and the Cheeger ratio should arise in examining local subsets of a graph. In this paper, we will combine
the clustering problem and the problem of identifying ε-consistent subsets. In particular, we will give an
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algorithm that uses PageRank vectors to identify a subset of a connection graph which has a small cut, given
that there is a subset with small cut that is ε-consistent.

The notion of PageRank was first introduced by Brin and Page [5] in 1998 for Google’s web search
algorithms. It has since proven useful in graph theory for quantifying relationships between vertices in a
graph. Algorithms from [2] and [3] utilize PageRank vectors to locally identify good cuts in a graph. In [8],
a vectorized version of PageRank is given for connection graphs. Here we use these connection PageRank
vectors in a manner similar to [3] to find good cuts under the assumption of an ε-consistent subset.

A Summary of the Results The results in this paper can be summarized as follows:

• We define the notion of ε-consistency and establish several inequalities relating ε-consistency with the
smallest eigenvalue of the connection Laplacian and the Cheeger ratio of subsets of a connection graph.

• We define connection PageRank vectors and establish several inequalities relating the sharp drops in
the connection PageRank vectors to the Cheeger ratio and the ε-consistency of the subsets.

• We give an algorithm that outputs a subset of the vertices (if one exists) which is a good cut and which

intersects an ε-consistent subset in large way. The run time of the algorithm is O
(
d2x log2m

φ2

)
, where

m is the number of edges, d is the dimension of the rotations, φ is the target Cheeger ratio, and x is
the target volume.

The remainder of the paper is organized as follows: In Section 2, we give some of the basic definitions
of a connection graph, the connection Laplacian, and the notion of consistency, as well as some useful
facts on consistency from [8]. In Section 3 we introduce the notion of ε-consistency which generalizes the
notion of consistency, and gives some results relating ε-consistency of a connection graph to the spectrum
of the normalized connection Laplacian. In Section 4 we examine subsets of a connection graph that are
ε-consistent, and relate the spectrum of the normalized Laplacian to the Cheeger ratio of such subsets. In
Section 5, we utilize connection PageRank vectors in the study of ε-consistent subsets, and present a local
partition algorithm for a connection graph, completed with complexity analysis.

2 Preliminaries

2.1 The Normalized Connection Laplacian

Suppose G = (V,E,w) is an undirected graph with vertex set V , edge set E, and edge weights wuv = wvu > 0
for edges (u, v) in E. Let F(V,R) denote the space of all functions f : V → R. The usual adjacency matrix
A, combinatorial Laplacian matrix L, and normalized Laplacian L, are all operators on the space F(V,R).
(See, for example, [6] for definitions of A, L, and L.) For undefined terminology, the reader is referred to [8].

Now suppose each oriented edge (u, v) is also associated with a rotation matrix Ouv ∈ SO (d) satisfying
OuvOvu = Id×d. Here SO (d) denotes the special orthogonal group of dimension d, namely, the group of all
d × d matrices S satisfying S−1 = ST and det(S) = 1. Let O denote the set of rotations associated with
all oriented edges in G. The connection graph, denoted by G = (V,E,O,w), has G as the underlying graph.
The connection adjacency matrix A of G is defined by:

A(u, v) =

{
wuvOuv if (u, v) ∈ E,
0d×d if (u, v) 6∈ E

where 0d×d is the zero matrix of size d× d. We view A as a block matrix where each block is either a d× d
rotation matrix Ouv multiplied by a scalar weight wuv, or a d× d zero matrix. The matrix A is an operator
on the space F(V,Rd) = {f : V → Rd}. The matrix A is symmetric as OTuv = Ovu and wuv = wvu.

The connection Laplacian L of a graph G is defined by

L = D− A
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where D is the diagonal matrix defined by the diagonal blocks D(u, u) = duId×d for u ∈ V . Here du is the
weighted degree of u in G, i.e., du =

∑
(u,v)∈E wuv. The connection Laplacian is an operator on F(V,Rd),

where its action on a function f : V → Rd is given by

Lf(v) =
∑
u∼v

wuv (f(v)− f(u)Ouv) .

(The elements of F(V,Rd) are sometimes viewed as row vectors so that f(u)Ouv is the product of matrix
multiplication of f(u) and Ouv.)

Recall that for any orientation of edges of the underlying graph G on n vertices and m edges, the
combinatorial Laplacian L can be written as L = BTWB where W is a m × m diagonal matrix with
We,e = we, and B is the edge-vertex incident matrix of size m × n such that B(e, v) = 1 if v is e’s head;
B(e, v) = −1 if v is e’s tail; and B(e, v) = 0 otherwise. A useful observation for the connection Laplacian is
the fact that it can be written in a similar form. Let B be the md× nd block matrix given by

B(e, v) =


Ouv v is e’s head,

−Id×d v is e’s tail,

0d×d otherwise.

Let the block matrix W denote the diagonal block matrix given by W(e, e) = weId×d where W is actually
of size md×md. Then it can be verified by direct computation that, given an orientation of the edges, the
connection Laplacian also can alternatively be defined as

L = BTWB.

We define the normalized connection Laplacian L̂ to be the operator on F(V,Rd) given by

L̂ = D−1/2LD−1/2 = Ind×nd − D−1/2AD−1/2.

We remark that L and L̂ are symmetric, positive semi-definite matrices. Using the Courant-Fischer Theorem
(see, for example, [12]), we can investigate the eigenvalues of L̂ by examining the Rayleigh quotient

R(g) =
gL̂gT

ggT

where g : V → Rd is thought of as a 1× nd row vector. Defining f = gD−1/2, we see that

R(g) =
fLfT

fDfT
=

∑
(u,v)∈E

wuv ‖f(u)Ouv − f(v)‖22∑
v∈V

dv ‖f(v)‖22
.

It is not hard to see that R(f) ≤ 2. In particular, letting 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λnd denote the eigenvalues of
L̂, we see that λk ≤ 2 for all k.

2.2 Consistency

For a connection graph G = (V,E,O,w), we say that G is consistent if

inf
f :V→Rd

‖f‖2=1

∑
(u,v)∈E

wuv‖f(u)Ouv − f(v)‖22 = 0.

An equivalent definition for consistency is that there exists a function f : V → Rd assigning a vector
f(u) ∈ Rd to each vertex u ∈ V such that for all edges uv ∈ E, f(v) = f(u)Ouv. Therefore for any two vertices
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u, v in a consistent graph, any two distinct paths starting and ending at u and v, P1 = (u = u1, u2, ..., uk = v)
and P2 = (u = v1, v2, ..., vl = v), then the product of rotations along either path is the same. That is,

k−1∏
i=1

Ouiui+1
=

l−1∏
j=1

Ovjvj+1
.

For any cycle C = (v1, v2, ..., vk, vk+1 = v1) of the underlying graph, the product of rotations along the cycle

C is the identity, i.e.
∏k
i=1Ovivi+1 = Id×d.

For ease of notation, given a cycle C = (v1, v2, ..., vk, vk+1 = v1), define OC =
∏k
i=1Ovivi+1

, and for a

path joining distinct vertices u and v, Puv = (u = v1, v2, ..., vk = v), define OPuv
=
∏k−1
i=1 Ovivi+1

. Therefore
consistency can be characterized by saying OC = Id×d for any cycle C, or given any two vertices u and v of
G, then OPuv

= OP ′uv
for any two paths Puv, P

′
uv connecting u and v.

In [8], a spectral characterization of consistency for a connection graph is given in terms of the eigenvalues
of the connection Laplacian L. We note that an easy modification of the argument in [8] yields the similar
statements for the normalized connection Laplacian. Namely, let L̂ be the normalized connection Laplacian
of the connection graph G, let L be the normalized Laplacian of the underlying graph G. For a connected
connection graph G, the following statements are equivalent:

(i) G is consistent.

(ii) The normalized connection Laplacian L̂ of G has eigenvalue 0.

(iii) The eigenvalues of L̂ are the n eigenvalues of L, each of multiplicity d.

(iv) For each vertex u in G, we can find Ou ∈ SO(d) such that for any edge (u, v) with rotation Ouv, we
have Ouv = O−1

u Ov.

2.3 The Cheeger Ratio

Given a subset of the vertex set, S ⊂ V , we define E(S, S̄) to be the set of all edges having one endpoint in
S and the other endpoint outside of S. We define the volume of S, denoted vol(S), by vol(S) =

∑
v∈S dv.

We define the Cheeger ratio of S, denoted hG(S), by

hG(S) =
|E(S, S̄)|

vol(S)
.

The Cheeger constant (sometimes called the conductance) of a graph G is

hG = min

{
h(S) : S ⊂ V, vol(S) ≤ 1

2
vol(G)

}
.

Determining the Cheeger constant of a graph can be thought of as a discrete version of the classical isoperi-
metric problem from geometry. One of the classic results in spectral graph theory (see, for example, [6]) is
the Cheeger Inequality, which relates the Cheeger constant of a graph to the eigenvalues of its normalized
Laplacian. Given a graph G with normalized Laplacian L with eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, the
Cheeger Inequality states that

h2
G

2
≤ λ2 ≤ 2hG.

We will be giving results analogous to the Cheeger inequality for ε-consistent connection graphs, and the
Cheeger ratio will play a critical role in our algorithm and its analysis in Section 5.
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3 ε-consistency

We say a connection graph G is ε-consistent if, for every simple cycle C = (v1, v2, ..., vk, vk+1 = v1) of

the underlying graph G, we have ‖OC − Id×d‖2 ≤ ε where OC =
∏k
i=1Ovivi+1 . That is, the product

of rotations along any cycle is within ε of the identity in the 2-norm. An equivalent formulation is as
follows. Given vertices u and v, and two distinct paths from u to v, P1 = (v1 = u, v2, ...., vk = v) and

P2 = (u1 = u, u2, ..., ul = v), define OP1
=
∏k−1
i=1 Ovivi+1

and OP2
=
∏l−1
i=1Ouiui+1

. Then G is ε-consistent

if and only if ‖OP1
−OP2

‖2 ≤ ε. This follows from the observation that OC = OP1
O−1
P2

= OP1
OTP2

and the
fact that the 2-norm of a rotation matrix is 1. For ease of notation, we will simply use ‖ · ‖ to denote the `2
norm ‖ · ‖2.

We observe that the triangle inequality implies that any connection graph is 2-consistent, and that a
consistent connection graph is 0-consistent. We generalize the first part of the above mentioned result
from [8] with the following theorem, which bounds the d smallest eigenvalues of the normalized connection
Laplacian for an ε-consistent connection graph.

Theorem 1. Let G be an ε-consistent connection graph whose underlying graph is connected. Let L̂ be the
normalized connection Laplacian and let 0 ≤ λ1 ≤ · · · ≤ λnd be the eigenvalues of L̂. Then for i = 1, ..., d,

λi ≤
ε2

2
.

Proof. We will define a function f : V → Rd whose Rayleigh quotient will bound the smallest eigenvalue.
For a fixed vertex z ∈ V , we assign f(z) = x, where x is a unit vector in Rd. Fix a spanning tree T
of G, and define f to be consistent with T . That is, for any vertex v of G assign f(v) as follows. Let
Pzv = (z = v1v2...vk = v) be the path from z to v in T . Then let f(v) = f(z)OPzv . Notice that ‖f(v)‖ = 1
for all v ∈ V . We will examine the Rayleigh quotient of this function. Notice that for uv an edge of T , we
have

‖f(u)Ouv − f(v)‖ = ‖f(v)− f(v)‖ = 0

by construction. For any other edge uv of G, consider the cycle obtained by taking the path Pvu = (v =
v1v2...vk = u) in T , and adding in the edge uv. Then by construction of f and the ε-consistency condition,
we have

‖f(u)Ouv − f(v)‖ = ‖f(v)OPvuOuv − f(v)‖

=

∥∥∥∥∥f(v)

(
k−1∏
i=1

Ovivi+1
Ovkv1 − I

)∥∥∥∥∥
≤ ε ‖f(v)‖ = ε.

Therefore

λ1 ≤ R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v
dv||f(v)||2

≤

∑
(u,v)∈E

wuvε
2

∑
v
dv

=
ε2

2
.

The initial choice of the unit vector x ∈ Rd in the construction of f was arbitrary. We thus have d
orthogonal choices for the initial assignment of x, which leads to d orthogonal functions satisfying this
inequality. Therefore, by the Courant-Fischer Theorem, λ1, ..., λd all satisfy this bound.

The following result concerns the second block of d eigenvalues of L̂ for an ε-consistent connection graph,
and gives an analog to the upper bound in the Cheeger inequality.
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Theorem 2. Let L̂ be the normalized connection Laplacian of the ε-consistent connection graph G, with
eigenvalues λ1 ≤ · · · ≤ λnd, and let hG denote the Cheeger constant of the underlying graph. Then for
i = d+ 1, ..., 2d,

λi ≤ 2hG +
ε2

2
.

Proof. Let f1, ..., fd be the orthogonal set of vectors defined in the proof of Theorem 1, each withR(f) ≤ ε2/2.
Then ‖f(v)‖2 = 1 for all v. Given A ⊂ V and B = Ā, define gi : V → Rd by

gi(v) =

{
1

volAfi(v) for v ∈ A
− 1

volB fi(v) for v ∈ B

For ease of notation we will simply write g and f for gi and fi. Note that if both u, v ∈ A, then ‖g(u)Ouv −
g(v)‖2 =

∥∥ 1
volAf(u)Ouv − 1

volAf(v)
∥∥2 ≤ 1

(volA)2 ε
2. Similarly, if both u, v ∈ B, ‖g(u)Ouv−g(v)‖2 ≤ 1

(volB)2 ε
2.

For u ∈ A and v ∈ B, we have ‖g(u)Ouv − g(v)‖2 =
∥∥ 1

volAf(u)Ouv + 1
volB f(v)

∥∥2 ≤
(

1
volA + 1

volB

)2
by the

triangle inequality.
Therefore

R(g) =

∑
(u,v)∈E

wuv‖g(u)Ouv − g(v)‖2∑
v∈V
‖g(v)‖2dv

≤
1
2 volA 1

(volA)2 ε
2 + 1

2 volB 1
(volB)2 ε

2 +
(

1
volA + 1

volB

)2 |E(A,B)|∑
v∈A

1
(volA)2 dv +

∑
v∈B

1
(volB)2 dv

=
1
2ε

2
(

1
volA + 1

volB

)
+
(

1
volA + 1

volB

)2 |E(A,B)|
1

volA + 1
volB

≤ 1

2
ε2 + 2hG(A).

Therefore we have d orthogonal vectors g1, ..., gd satisfying this bound, each orthogonal to f1, ..., fd which
clearly satisfy the bound, so the result follows.

We remark that the paper of Bandeira, Singer, and Spielman [4] gives a different, but related notion of
“almost consistent” for a connection graph which they call the frustration constant, denoted ηG, defined by

ηG = min
f :V→Sd−1

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v
dv||f(v)||2

where Sd−1 denotes the unit sphere in Rd. So the frustration constant restricts only to functions whose
entries have norm 1, and as remarked in [4], computation of λ1(L̂) is a relaxation of the computation of ηG.
The proof of Theorem 1 only utilized functions f : V → Rd whose entries have norm 1, so the proof shows
that if G is an ε-consistent connection graph, then

ηG ≤
ε2

2
.

4 Consistent and ε-consistent Subsets

In this section, we will consider the case where a connection graph has been created in which some subset of
the data is error-free (or close to it), leading to a consistent or ε-consistent induced subgraph. We will define
functions on the vertex set in such a way that the Rayleigh quotient will keep track of the edges leaving
the consistent subset. In this way, we will obtain bounds on the spectrum of the normalized connection
Laplacian involving the Cheeger ratio of such subsets.
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Theorem 3. Let G be a connection graph of dimension d with normalized connection Laplacian L̂, and
S ⊂ V a subset of the vertex set that is ε-consistent for given ε ≥ 0. Then for i = 1, ..., d,

λi(L̂) ≤ ε2

2
+ hG(S).

Proof. Fix a spanning tree T of the subgraph induced by S. Define f as follows. For a fixed vertex u of S,
define f(u) = x where ||x|| = 1, and for v ∈ S, define f to be consistent with the subtree T . For v 6∈ S,
define f(v) = 0. Fix an edge uv ∈ E and note that for u, v 6∈ S, ||f(u)Ouv − f(v)|| = 0, for u, v ∈ S,
||f(u)Ouv − f(v)|| = ||f(v) (OPvu

Ouv − I) || < ε, and for u ∈ S, v 6∈ S, ||f(u)Ouv − f(v)|| = 1. Therefore

R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v
dv||f(v)||2

<

∑
uv∈E
u,v∈S

wuvε
2

vol(S)
+

∑
uv∈E

u∈S,v 6∈S

wuv

vol(S)

≤ ε2

2
+ hG(S).

There are d orthogonal choices for the initial choice of x leading to d orthogonal vectors satisfying this bound,
so by the Courant-Fisher Theorem, the result follows.

In the next result, we consider the situation where most of the edges are close to being consistent except
for some edges in the edge boundary of a subset.

Theorem 4. Suppose G is an ε1-consistent graph for some ε1 > 0, and suppose that S ⊂ V is a set such
that the subgraphs induced by S and S̄ are both ε2-consistent, with 0 ≤ ε2 < ε1, and vol(S) ≤ 1

2 vol(G). Let

L̂ be the normalized connection Laplacian. Then for i = 1, ..., d,

λi(L̂) <
ε22
2

+
ε21
2
hG(S)

Proof. We will construct a function f : V → Rd whose Rayleigh quotient will bound λ1. Fix a spanning tree
T of S and T ′ of S̄, and fix a vertex w ∈ S. Choose a unit vector x ∈ Rd, and assign f(w) = x. For v ∈ S,
assign f(v) for each vertex v ∈ S such that f(v) = f(u)Ouv moving along edges uv of T . Now choose an
arbitrary edge e = yz ∈ E(S, S̄) such that y ∈ S and z ∈ S̄. Assign f(z) = f(y)Oyz. Assign the remaining
vertices of S̄ so that f(v) = f(u)Ouv moving along edges uv of T ′. Note that f is consistent with both T
and T ′.

Let us examine the Dirichlet sum
∑
uv∈E wuv||f(u)Ouv − f(v)||2. Consider an edge f = uv ∈ E(S, S̄),

f 6= e. We may, without loss of generality, assume that both S and S̄ are connected. (If one or both is not,
then we may alter our definition of f to be consistent along even more edges). Therefore, there is a cycle,
C = v1v2...vkv1 where v1 = u, vk = v, C contains the edges e and f , and all other edges have endpoints
lying in either S or S̄. By construction, f(v) = f(u)OPuv

, so by the ε-consistency condition, we have

||f(u)Ouv − f(v)|| = ‖f(v)OPvu
Ouv − f(v)‖

=

∥∥∥∥∥f(v)

(
k−1∏
i=1

Ovivi+1
Ovkv1 − I

)∥∥∥∥∥
≤ ε1||f(v)|| = ε1.

In a similar manner, we have that ||f(u)Ouv − f(v)|| ≤ ε2 for each edge uv with both u and v in S or
both in S̄.
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Therefore

λ1 ≤ R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v
dv||f(v)||2

≤

∑
(u,v)∈E

wuvε
2
2∑

v
dv

+

∑
u∼v

u∈S,v∈S̄

wuvε
2
1∑

v
dv

≤ ε22|E(G)|
vol(G)

+
ε21|E(S, S̄)|

2 vol(S)

=
ε22
2

+
ε21
2
hG(S).

We have d orthogonal choices for the initial assignment of x, which leads to d orthogonal vectors satisfying
this inequality. Therefore λ1, ..., λd all satisfy this bound.

Our next result is similar to Theorem 2, but in a setting similar to the previous theorem.

Theorem 5. Let G be a connection graph, and suppose S ⊂ V is a set such that the subgraphs induced
by S and S̄ are ε-consistent, with vol(S) ≤ 1

2 vol(G). Let L̂ be the normalized connection Laplacian with
eigenvalues λ1 ≤ · · · ≤ λnd. Then for i = d+ 1, ..., 2d,

λi ≤
ε2

2
+ 2hG(S).

Proof. Let f1, ...fd be d orthogonal vectors defined as in the proof of the preceding theorem. Each of these

has R(fi) ≤ ε2

2 + 2hG(S) and ||f(v)||2 = 1 for all v. Define gi : V → Rd by

gi(v) =

{
1

volS fi(v) for v ∈ S
− 1

vol S̄
fi(v) for v ∈ S̄.

For ease of notation we will simply write g and f for gi and fi. Then

R(g) =

∑
u∼v wuv‖g(u)Ouv − g(v)‖22∑

v∈V ‖g(v)‖2dv

≤

1
2

(
1

volS + 1
vol S̄

)
ε2 +

∑
u∼v

u∈S,v∈S̄

wuv‖ 1
volS f(u)Ouv + 1

vol S̄
f(v)‖

1
volS + 1

vol S̄

≤ ε2

2
+

(
1

volS
+

1

vol S̄

)
|E(S, S̄)| ≤ ε2

2
+ 2hG(S).

We have d orthogonal vectors g1, ..., gd satisfying this bound, and observe that each is orthogonal to the
vectors f1, ..., fd. Therefore the result follows.

We remark that this theorem is a stronger result than Theorem 2, as the hypothesis does not require
that the full graph be ε-consistent. That is, the result still holds even if the edges going from S to S̄ involve
inconsistencies that cause the full graph to fail to be ε-consistent.

5 Identifying Subsets

In this section, we follow ideas from [2] and [3] to relate connection PageRank vectors to the Cheeger ratio
of ε-consistent subsets of a connection graph. We will give an algorithm, which runs in time nearly linear in
the size of the vertex set, which outputs a subset of the vertex set (if one exists) which has small Cheeger
ratio and is ε-consistent.
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5.1 PageRank Vectors and ε-consistent Subsets

We define, for S ⊂ V , f(S) =
∑
v∈S ||f(v)||2. Given a vertex v of G, define a connection characteristic

function χv to be any vector satisfying ||χv(v)||2 = 1 and χv(u) = 0 for u 6= v. Likewise, for a subset S of
V , define a characteristic function χS to be a function such that ||χS(v)||2 = 1 for v ∈ S, and χS(v) = 0 for
v 6∈ S.

Recall the definition of connection PageRank (see [8]). Given a seed vector ŝ : V → Rd is the vector
p̂r(α, ŝ) : V → Rd that satisfies

p̂r(α, ŝ) = αŝ+ (1− α) p̂r(α, ŝ)Z

where Z = 1
2 (I+D−1A) is the matrix for the random walk. Define Rα = α(I−(1−α)Z)−1 = α

∑∞
t=0(1−α)tZt

and note that p̂r(α, ŝ) = ŝRα.

Lemma 1. Let S ⊂ V be a subset of the vertex set of a connection graph, and let χS be a characteristic
function for S. Then

‖χSDRα(v)‖ ≤ dv
for all v ∈ V

Proof. First, we will show that ∥∥χSDZk(v)
∥∥ ≤ dv

for all k by induction. For k = 1,

‖χSDZ(v)‖ =
1

2
‖χSD(I + D−1A)(v)‖ ≤ 1

2

dv +
∑
u∈S
u∼v

wuv‖χS(u)Ouv‖

 ≤ dv.
By the induction hypothesis

∥∥χSDZk+1(v)
∥∥ =

∥∥χSDZkZ(v)
∥∥ =

∥∥∥∥∥∑
u∈V

χSDZk(u)Z(u, v)

∥∥∥∥∥
≤
∑
u∈V

∥∥χSDZk(u)
∥∥

2
‖Z(u, v)‖

≤
∑
u∈V

du
1

2
‖I(u, v) + D−1A(u, v)‖

≤ dv
2

+
1

2

∑
u∈V

du

∥∥∥∥1

du
wuvOuv

∥∥∥∥
=
dv
2

+
1

2

∑
u∈V

wuv = dv

so this claim follows by induction.
Then from this claim,

‖χSDRα(v)‖ =

∥∥∥∥∥χSDα
∞∑
k=0

(1− α)kZk
∥∥∥∥∥ ≤ α

∞∑
k=0

(1− α)k
∥∥χSDZk(v)

∥∥ ≤ dv.

Lemma 2. Let S ⊂ V be a subset of the vertices such that the subgraph of G induced by S is ε-consistent.
Let χS be some connection characteristic function for S that is consistent with some spanning subtree T of
S. Define f̂S by f̂S(v) = dv

vol(S)χS(v). The function f̂S is the expected value for a characteristic function χu
when a vertex u is chosen from S at random with probability du/ vol(S). Then

p̂r(α, f̂S)(S) ≥ 1− 1− α
α

(h(S) + ε).
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Proof. We have

p̂r(α, f̂S)(S) =
∑
v∈S
|| p̂r(α, f̂S)(v)|| =

∑
v∈S
‖ p̂r(α, f̂S)(v)‖‖χS(v)‖

≥
∑
v∈S

p̂r(α, f̂S)(v)χS(v)T = p̂r(α, f̂S)χTS = f̂SRαχTS

= f̂S

(
I − (1− α)(I − Z)

I − (1− α)Z

)
χTS = 1−

(
f̂S

(1− α)(I − Z)

I − (1− α)Z

)
χTS

= 1−
(

(1− α)χSD
α vol(S)

αI

I − (1− α)Z
(I − Z)

)
χTS

= 1− 1− α
α vol(S)

(
χSDRαD−1 (D− A)

2

)
χTS

= 1− 1− α
2α vol(S)

∑
uv∈E

wuv
(
χSDRαD−1(u)Ouv − χSDRαD−1(v)

)
((χS(u)Ouv)

T − χS(v)T ).

Here the first inequality follows from the Cauchy-Schwarz Inequality. Note that χS is a characteristic
function, so all the terms in the sum corresponding to u, v 6∈ S are 0, for v ∈ S and u 6∈ S we are left with
just χs(v), and for u, v ∈ S, since S is ε-consistent and χS was chosen to be consistent with a spanning
subtree of S, then we have χS(u)Ouv − χS(v) has norm less than ε. Applying this, the Cauchy-Schwarz
Inequality, and the triangle inequality to the above, we have

p̂r(α, f̂S)(S) ≥1− 1− α
2α vol(S)

( ∑
u∼v

v∈S,u∈S̄

wuv
∥∥χSDRαD−1(u)Ouv − χSDRαD−1(v)

∥∥
+
∑
u∼v
u,v∈S

wuv
∥∥χSDRαD−1(u)Ouv − χSDRαD−1(v)

∥∥ ‖χS(u)Ouv − χS(v)‖
)

≥1− 1− α
2α vol(S)

( ∑
u∼v

v∈S,u∈S̄

wuv
(
||χSDRαD−1(u)Ouv||+ ||χSDRαD−1(v)||

)
+
∑
u∼v
u,v∈S

wuv
(
||χSDRαD−1(u)Ouv||+ ||χSDRαD−1(v)||

)
ε
)
.

Using Lemma 1 we can conclude that

p̂r(α, f̂S)(S) ≥ 1− 1− α
α vol(S)

(|∂S|+ ε|E(S, S)|) ≥ 1− 1− α
α

(h(S) + ε).

Theorem 6. Let S ⊂ V be a subset of the vertex set such that the subgraph induced by S is ε-consistent.
Let χS be some connection characteristic function for S that is consistent with some spanning subtree T of
S. For each vertex v ∈ S, define χv : V → Rd by χv(v) = χS(v) and χv(u) = 0 for u 6= v. Then for any
α ∈ (0, 1], there is a subset Sα ⊂ S with volume vol(Sα) ≥ vol(S)/2 such that for any vertex v ∈ Sα, the
PageRank vector p̂r(α, χv) satisfies

p̂r(α, χv)(S) ≥ 1− 2(h(S) + ε)

α
.

Proof. Let v be a vertex of S chosen randomly from the distribution given by f̂S of the previous result.
Define the random variable X = p̂r(α, χv)(S̄) and note that the definition of PageRank and linearity of

expectation implies that E[X] = p̂r(α, f̂S). Therefore, by the preceding result,

E[X] = p̂r(α, f̂S)(S̄) ≤ 1− α
α vol(S)

(h(S) + ε) ≤ h(S) + ε

α
.

10



Define

Sα =

{
v : p̂r(α, χv)(S) ≥ 1− 2(h(S) + ε)

α

}
.

Then Markov’s inequality implies

Pr[v 6∈ Sα] ≤ Pr[X > 2E[X]] ≤ 1

2
.

Therefore Pr[v ∈ Sα] ≥ 1
2 , so vol(Sα) ≥ 1

2 vol(S).

5.2 A Local Partitioning Algorithm

We will follow ideas from [3] to produce an analogue of the Sharp Drop Lemma. Given any function
p : V → Rd, define q(p) : V → Rd by q(p)(u) = p(u)/du for all u ∈ V . Order the vertices such that
‖q(p)(v1)‖ ≥ ‖q(p)(v2)‖ ≥ · · · ≥ ‖q(p)(vn)‖. Define Sj = {v1, ..., vj}. The following lemma will be the basis
of our algorithm.

Lemma 3 (Sharp Drop Lemma). Let v ∈ V (G) and let p = p̂r(α, χv) for some α ∈ (0, 1), let q = q(p) and
let φ ∈ (0, 1) be a real number. Then for any index j ∈ [1, n], either Sj satisfies

h(Sj) < 2φ,

or there exists some index k > j such that

vol(Sk) ≥ vol(Sj)(1 + φ) and ‖q(vk)‖ ≥ ‖q(vj)‖ −
2α

φ vol(Sj)
.

Proof. Let S ⊂ V be a subset of the vertex set that contains v. We have

pZ(S) =
∑
u∈S
‖pZ(u)‖ =

∑
u∈S

∥∥∥∥1

2
p(u) +

1

2
qA(u)

∥∥∥∥ ≤ 1

2

(∑
u∈S
‖p(u)‖+

∑
u∈S

∥∥∥∥∥∑
v∼u

q(v)Ouv

∥∥∥∥∥
)

≤ 1

2

(∑
u∈S
‖p(u)‖+

∑
u∈S

∑
v∼u
‖q(v)‖

)
=

1

2

2
∑
u∈S
‖p(u)‖ −

∑
(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖)


= p(S)− 1

2

∑
(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖) .

Since p = p̂r(α, χv), we have that p satisfies pZ = αχv + (1− α)pZ, therefore

‖pZ(u)‖ =
1

1− α
‖p(u)− αχv(u)‖ ≥ ‖p(u)‖ − α‖χv(u)‖

for any u. Therefore
pZ(S) ≥ p(S)− α.

Combining these, we see that ∑
(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖) ≤ 2α. (1)

Now we will consider Sj . If vol(Sj)(1 + φ) > vol(G), then

|E(Sj , S̄j)| ≤ vol(S̄j) ≤ vol(G)

(
1 +

1

1 + φ

)
≤ φ vol(Sj)

and the result holds. Assume vol(Sj)(1 + φ) ≤ vol(G). Then there exists a unique index k > j such that

vol(Sk−1) ≤ vol(Sj)(1 + φ) ≤ vol(Sk).
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If e(Sj , S̄j) < 2φ vol(Sj), then we are done. If e(Sj , S̄j) ≥ 2φ vol(Sj), then we note that we can also get a
lower bound on e(Sj , S̄k−1), namely

e(Sj , S̄k−1) ≥ e(Sj , S̄j)− vol(Sk−1 \ Sj) ≥ 2φ vol(Sj)− φ vol(Sj) = φ vol(Sj).

Therefore, by equation (1)

2α ≥
∑

(u,v)∈E(Sj ,S̄j)

(‖q(u)‖ − ‖q(v)‖)

≥
∑

(u,v)∈E(Sj ,S̄k−1)

(‖q(u)‖ − ‖q(v)‖)

≥ e(Sj , S̄k−1)(‖q(vj)‖ − ‖q(vk)‖)
≥ φ vol(Sj)(‖q(vj)‖ − ‖q(vk)‖).

This implies that ‖q(vj)‖ − ‖q(vk)‖ ≤ 2α/φ vol(Sj), and the result follows.

For our algorithm, we will employ an efficient algorithm for computing an approximate connection PageR-
ank vector called ApproximatePR. The specifics of the algorithm as well as its run-time analysis can be found
in [7] and a version for connection graphs is found in [17]. We will state the relevant result from [17] as the
following:

Theorem 7. For α, ε ∈ (0, 1) and v ∈ V , the algorithm ApproximatePR(v, α, ε) outputs a vector p̂ =
p̂r(α, χv − r̂) such that

‖r̂(v)‖2
dv

≤ ε

for all vertices v. The running time of the algorithm is O
(
d2

εα

)
.

We note that
‖p̂(u)‖
du

≥ ‖ p̂r(α, χv)(u)‖
du

− ε

for all u.
We are now ready to present the algorithm ConnectionPartition that utilizes PageRank vectors to come

up with an ε-consistent subset of small Cheeger ratio.

Theorem 8. Suppose G is a connection graph with a subset C such that vol(C) ≤ 1
2 vol(G), and h(C) ≤

α/64γ with α as chosen in the algorithm. Assume further that C is ε-consistent for some ε < h(C).

Let Cα =
{
v ∈ C : p̂r(α, χv)(C̄) ≤ 2(h(C)+ε)

α

}
. Then for v ∈ Cα, φ < 1, and x ≥ vol(C), the algorithm

ConnectionPartition outputs a set S satisfying the following properties:

1. h(S) ≤ 2φ.

2. vol(S) ≤ (2/3) vol(G).

3. vol(S ∩ C) ≥ (3/4) vol(S).

Proof.

Claim 1. There exist an index j such that ‖q(vj)‖ ≥ 1
γ vol(Sj) .

Proof. Suppose that ‖q(vj)‖ < 1
γ vol(Sj) for every index j. Since v ∈ Cα, ε < h(C), and h(C) ≤ α/64γ then

we know that

p(C) ≥ p̂r(α, χv)(C)− δ vol(C) ≥ 1− 2(h(C) + ε)

α
− 1

16γx
vol(C) ≥ 1− 1

16γ
− 1

16γ
= 1− 1

8γ

12



ConnectionPartition(v, φ, x):
The input into the algorithm is a vertex v ∈ V , a target Cheeger ratio φ ∈ (0, 1), and a target volume
x ∈ [0, 2m].

1. Set γ = 1
8 +

∑2m
k=1

1
k where m is the number of edges, α = φ2

8γ , and δ = 1
16γx .

2. Compute p = ApproximatePR(v, α, δ) (which approximates p̂r(α, χv)).

Set q(u) = p(u)/du for each u and order the vertices v1, ..., vn so that
‖q(v1)‖ ≥ ‖q(v2)‖ ≥ · · · ≥ ‖q(vn)‖ and for each j ∈ [1, n] define Sj = {v1, ..., vj}.

3. Choose a starting index k0 such that ‖q(vk0)‖ ≥ 1
γ vol(Sk0

) .

If no such starting vertex exists, output Fail: No starting vertex.

4. While the algorithm is running:

(a) If (1 + φ) vol(Ski) > vol(G), output Fail: No cut found.

(b) Otherwise, let ki+1 be the smallest index such that vol(Ski+1
) ≥ (1 + φ) vol(Ski).

(c) If ‖q(vki+1)‖ ≤ ‖q(vki)‖ − 2α/φ vol(Ski), then output S = Ski and quit.

Otherwise repeat the loop.

since x ≥ vol(C).
On the other hand, under our assumption,

p(C) ≤ p(V ) =

n∑
i=1

‖p(vi)‖ =

n∑
i=1

‖q(vi)‖dvi

<

n∑
i=1

dvi
γ vol(Sj)

≤ 1

γ

2m∑
k=1

1

k
.

Putting these together, we have

1− 1

8γ
<

1

γ

2m∑
k=1

1

k
.

With the choice of γ = 1
8 +

∑2m
k=1

1
k as in the algorithm, this yields a contradiction. Therefore there exists

some index j with ‖q(vj)‖ ≥ 1
γ vol(Sj) and the claim is proved.

It follows from Claim 1, that the algorithm will not fail to find a starting vertex.
Let kf be the final vertex considered by the algorithm.

Claim 2. If k0, ..., kf is a sequence of vertices satisfying both

• ‖q(vki+1
)‖ ≥ ‖q(vki)‖ − 2α

φ vol(Ski
)

• vol(Ski+1
) ≥ (1 + φ) vol(Ski)

then

‖q(kf )‖ ≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)
.
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Proof. We note that vol(Ski+1) ≥ (1 + φ)i vol(Sk0), and so we have

‖q(kf )‖ ≥ ‖q(k0)‖ − 2α

φ vol(Sk0)
− 2α

φ vol(Sk1)
− · · · − 2α

φ vol(Skf−1
)

≥ ‖q(k0)‖ − 2α

φ vol(Sk0)

(
1 +

1

1 + φ
+ · · ·+ 1

(1 + φ)f−1

)
≥ ‖q(k0)‖ − 2α

φ vol(Sk0)

1 + φ

φ

≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)

and the claim follows.

Now we will use this claim, the choice of α = φ2/8γ, and the condition on the starting vertex ‖q(k0)‖ ≥
1/γ vol(Sk0) to obtain a lower bound on ‖q(kf )‖,

‖q(kf )‖ ≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)

≥ 1

γ vol(Sk0)
− 1

2γ vol(Sk0)

≥ 1

2γ vol(Sk0)
.

As in the proof of Claim 1, we have that p(C) ≥ 1− 1
8γ , and therefore p(C̄) ≤ 1

8γ .

Now observe that vol(Skf ∩ C̄) ≤ p(C̄)

‖q(kf )‖
. This follows since

‖q(kf )‖ vol(Skf ∩ C̄) =
∑

v∈Skf
∩C̄

‖q(kf )‖dv ≤
∑

v∈Skf
∩C̄

‖q(v)‖dv ≤
∑
v∈C̄

‖p(v)‖ = p(C̄).

Thus

vol(Skf ∩ C̄) ≤ p(C̄)

‖q(kf )‖

≤
2γ vol(Skf )

8γ

=
1

4
vol(Skf ).

Therefore vol(Skf ) ≤ vol(C) + vol(Skf ∩ C̄) ≤ vol(C) + 1
4 vol(Skf ), implying that vol(Skf ) ≤ 4

3 vol(C). Using
that fact that vol(C) ≤ 1

2 vol(G),

vol(Skf ) ≤ 4

3
vol(C) ≤ 2

3
vol(G) ≤ vol(G)

1 + φ
.

This last step follows under the assumption that φ ≤ 1/2. We can do this without loss of generality since
the guarantee on h(S) in the theorem is trivial for φ > 1/2.

The above shows that the algorithm will not experience a failure due to the volume becoming too large,
and we have seen that conditions (2) and (3) will be satisfied by the output.

Finally, to show condition (1), we apply the Sharp Drop Lemma. We know that kf is the smallest index
such that vol(Skf+1) ≥ (1 + φ) vol(Skf ), and ‖q(vkf+1)‖ ≤ ‖q(vkf )‖ − 2α/φ vol(Ski). Therefore the Sharp
Drop Lemma guarantees that h(Skf ) < 2φ, and the proof is complete.

Theorem 9. The running time for the algorithm ConnectionPartition is O

(
d2x

log2m

φ2

)
.
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Proof. The running time is dominated by the computation of the PageRank vector. According to Theorem

7, the running time for this is O
(
d2

δα

)
. In the algorithm, we have α = φ2

8γ , δ = 1
16γx , and γ = 1

8 +
∑2m
k=1

1
k =

Θ(logm). Therefore α = O( φ2

logm ) and δ = O( 1
x logm ). Therefore the running time is as claimed.
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