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Abstract

We present two conjectures related to strong embeddings of a graph into a surface. The first conjecture
relates equivalence of integer quadratic forms given by the Laplacians of graphs, 2-isomorphism of 2-
connected graphs, and strong embeddings of graphs. We prove various special cases of this conjecture,
and give evidence for it. The second conjecture, motivated by ideas from physics and number theory,
gives a lower bound on the number of strong embeddings of a graph. If true, this conjecture would imply
the well-known Strong Embedding Conjecture.

1 Introduction

A major outstanding problem in graph theory is the cycle double cover conjecture which states the following:

Cycle Double Cover Conjecture. For any bridgeless graph G, there is a list of cycles of G such that
each edge of G is in precisely two of the cycles.

The cycle double cover conjecture was stated in the 1970’s by Szekeres in [12] and by Seymour in [11].
They observe that any minimal counterexample to the conjecture must be a cubic (3-regular) graph. Seymour
further points out that one way to produce a cycle double cover of a graph is via a strong embedding of the
graph into some surface. For an embedding to be strong means that each face of the embedding is a disk
and corresponds to a simple cycle in the graph. The precise definitions will be given in section 2. A strong
embedding gives rise to a cycle double cover since, given a strong embedding of a graph into some surface,
each edge will be incident to two faces, each face being a cycle, so the list of faces from the embedding is a
cycle double cover.

Seymour cites a conjecture, attributed to Tutte, that any bridgeless cubic graph has a strong embedding
into a surface of its minimal genus. This conjecture turns out to be false due to an example of Xuong from
1977 in [16], which we will present in section 2, figure 2. This example is a 3-regular graph of genus one, but
which has the property that all embeddings into the torus are not strong. However, this does not preclude
the existence of a strong embedding of the graph into a surface of higher genus, and indeed this graph has a
strong embedding into a surface of genus two. It is thus natural to conjecture the weaker strong embedding
conjecture:

Strong Embedding Conjecture. Every 2-connected graph has a strong embedding into some orientable
surface.

The strong embedding conjecture is still enough to imply the cycle double cover conjecture, and indeed,
in 1985, Jaeger [7] showed that the strong embedding conjecture and the cycle double cover conjecture are
equivalent.

The purpose of this paper is to present two conjectures related to strong embeddings of graphs. The
first conjecture relates three notions of equivalence of graphs, one motivated by an aritmetic condition,
one coming from a geometric condition, and one relating a combinatorial condition. Motivated by ideas
from physics and number theory, our arithmetic condition invloves equivalence of quadratic forms over the
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integers given by Laplcians of graphs. Motivated by an interesting connection between duals of planar graphs
with congruent Laplacians over Z, we believe this arithmetic condition is related to a geometric equivalence
condition which involves graph duals with respect to minimal strong embeddings. These dual graphs also
arise as Feynman diagrams of the matrix model for 2D quantum gravity. As an intermediate step we use a
combinatorial graph equivalence relation that has been well studied, namely the concept of 2-isomorphism
of graphs, which was shown to be equivalent to integer congruence of the Laplacians by Watkins in [13] and
[14]. The precise statement of the conjecture is in section 2. The combinatorial implications of quadratic
form equivalence are also discussed in [6].

Our second conjecture, motivated by ideas from physics and number theory, conjectures a lower bound
on the total number of strong embeddings of a graph. The lower bound involves the number of ways to
orient the graph such that the convex hull of the columns of the resulting incidence matrix are maximal.
The precise statement of the conjecture is in section 5. This conjecture would imply the strong embedding
conjecture, and hence the cycle double cover conjecture.

The remainder of this paper is organized as follows. In section 2, we give the precise definitions for strong
embeddings, quadratic forms, and 2-isomorphism, and all the relevent background information, as well as
state Conjecture 1. In section 3, we will show that the arimetic and combinatorial conditions are equivalent.
In section 4 that Conjecture 1 holds for the case of planar graphs. We will also present further evidence for
why we think this conjecture holds more generally, and give examples showing that weaker versions of the
conjecture cannot hold. Section 5 describes a procedure for producing a convex polytope from an orientation
on a graph, and presents Conjecture 2, which gives a lower bound on the number of strong embeddings of
a graph (thus implying the strong embedding conjecture). In section 6 will try to give a physical intuition
to the volume of the polytope, which we hope will eventually give a physics interpretation of Conjecture
2. Finally, in section 7, we will discuss hypergeometric exponential sums associated to graphs, which give
further invariants for equivalence classes of 2-connected graphs under 2-isomorphism, and may provide tools
for investigating the strong embedding conjecture.

2 Strong embeddings, quadratic forms, and 2-isomorphism

2.1 Strong embeddings

Definition 1. An embedding of a graph in a surface is called a 2-cell embedding if each face (component
of the complement of the image of the embedded graph) is homeomorphic to an open 2-disk. It is strong if
the closure of each face is homeomorphic to a closed 2-disk. In other words, the boundary of each face of
a strong embedding is a simple cycle. Figure 1 shows a strong and non-strong embedding of the complete
graph K5 into the torus.
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Figure 1: Two embeddings of K5 into a torus. The first is not strong, the second is.

Note that for a strong embedding to exist G must be 2-connected (i.e., removal of any single vertex cannot
disconnect the graph), and the following discussion will be limited to 2-connected graphs. Denote by g(G)
the minimum genus of a surface into which there exists a 2-cell embedding of G, and by ḡ(G) the minimum
genus of a surface into which there exists a strong embedding of G. For planar graphs ḡ(G) = g(G) = 0, but
there exist graphs for which ḡ(G) > g(G). An example due to Xuong [16] has g(G) = 1, but ḡ(G) = 2 (see
Figure 2). Furthermore, Mohar in [8] gives more examples of cubic graphs with ḡ(G) > g(G), and in fact
gives an infinite family of graphs where g(G) and ḡ(G) become arbitrarily far apart.
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(b) An embedding of G into a torus
that is not strong.

Figure 2: An example due to Xuong [16] with g(G) < ḡ(G).

While it is straightforward to see that g(G) ≤ |E| <∞ for any graph G, the situation for ḡ(G) is much
more difficult. The strong embedding conjecture discussed above says that ḡ(G) is finite for all 2-connected
graphs.

Given a 2-cell embedding i of a graph G into an orientable surface, we define the dual graph, G∗i , to be
the (multi-)graph whose vertex set is the faces of the embedding, and where two vertices in G∗i have an edge
for every edge of G incident to each of the corresponding faces. When the embedding i of G is strong, the
condition that the closure of each face is a simple cycle is equivalent to saying that the dual graph G∗i has
no loops on a single vertex.

2.2 Quadratic forms over Z
Given a graph G on n vertices, consider its combinatorial Laplacian, L = D − A, where D is the diagonal
degree matrix, and A is the adjacency matrix of G. It is well-known that the combinatorial Laplacian is
positive semi-definite, and can be decomposed as L = BBt, where B is the incidence matrix of G with
respect to some arbitrary orientation of the edges. As a square matrix, L can be interpreted as a quadratic
form in n variables.

Definition 2. We say L(G) ∼= L(H) over Z if there exists M ∈ GL(n,Z) such that

ML(G)M t = L(H).

Note that if two graph G and H are isomorphic, then G and H have congruent Laplacians via a permu-
tation matrix M . Another related equivalence is similarity, namely ML(G)M−1 = L(H) for some invertible
M . If L(G) and L(H) are similar, then the graphs G and H are cospectral, that is, they have the same
Laplacian spectrum. Cospectral graphs have been extensively studied in spectral graph theory, but there is
no known combinatorial characterization of cospectrality.

Congruence over the integers, also called unimodular congruence for Laplacian matrices was considered
by Watkins in the 1990s. In [13] and [14], Watkins gives a combinatorial characterization of congruence of
Laplacians over the integers. We will present this characterization in section 3, and before doing so, we will
need some definitions in the following section.

2.3 2-isomorphism

Definition 3. For i = 1, 2, let Gi be a connected graph with at least 3 vertices, two of which are xi and yi.
We say the graph obtained from the disjoint union G1 ∪ G2 by identifying x1 ≡ x2, y1 ≡ y2 is related by a
2-switch to the graph obtained from G1 ∪ G2 by identifying x1 ≡ y2, y1 ≡ x2. A 2-switch is illustrated in
Figure 3.

Two graphs are called 2-switch equivalent if one can be obtained from the other via a sequence of 2-
switches. Two graphs G and H are called cycle equivalent or cycle isomorphic if there is a bijection between
the edge sets E(G) and E(H) that maps cycles to cycles. In 1933, Whitney [15] proved the well-known
Whitney 2-isomorphism theorem which states that if G and H are 2-connected graphs, then G and H are

3



•

• •

•

•
(a) G1

• •

•

•

(b) G2

•

• •

• •

•

•

(c) G

•

• •

••

••
(d) H

Figure 3: The graph G and H are each formed by identifying two vertices of G1 wtih two vertices of G2, but
in different orders. Hence G and H are related by a 2-switch.

cycle isomorphic if and only if they are 2-switch equivalent. Therefore for 2-connected graphs, both these
equivalences can then be referred to as 2-isomorphism. Note in particular that two 3-connected graphs are
2-isomporphic if and only if they are isomorphic.

Remark. Notice also that two graphs are 2-isomorphic if the associated cycle matroids of the two graphs are
isomorphic as matroids. In [10], it is shown that the computational complexity of the matroid isomorphism
problem is polynomial time equivalent to the graph isomorphism problem. Due to recent work of Babai
[1], graph isomorphism can be solved in quasipolynomial time. Hence 2-isomorphism can also be solved in
quasipolynomial time.

2.4 Conjecture 1

The first goal of this paper is to present a conjecture which relates congruence over the integers (an arithmetic
condition we will call (A)), 2-isomorphism (a combinatorial condition we will call (C)), and a geometric
condition (G) that equates duals of minimal strong embeddings.

Denote by G∗i the dual of G with respect to some 2-cell embedding i of G into a surface. Denote by IG
the set of all minimal strong embeddings of G, that is, embeddings of G into a surface of genus ḡ(G).

Conjecture 1. The following are equivalent for 2-connected graphs G and H:

(A) L(G) ∼= L(H) over Z.

(C) G and H are 2-isomorphic.

(G) There exists a bijection φ : IG → IH such that G∗i is isomorphic to H∗φ(i), for every i ∈ IG.

In section 3, we will prove that (A) and (C) are equivalent, so the conjecture is that the dual graph
condition (G) is equivalent to each of these. In section 4, we will show that (C) is equivalent to (G) for
the case of planar graphs, and we will give evidence for why we think the conjecture holds more generally,
including examples that show that weaker forms of the conjecture do not hold in general.

3 Quadratic form equivalence and 2-isomorphism

In this section, we prove that conditions (A) and (C) are equivalent. That is, if G and H are 2-connected
graphs, then they have equivalent quadratic forms over the integers if and only if they are 2-isomorphic. We
will present the proof given by Watkins in [13] and [14], with some modifications to put more emphasis on
the incidence matrix of the graph.

Theorem 1 (Watkins). Two 2-connected graphs G and H on n vertices, with Laplacians L1 and L2 respec-
tively, are 2-isomorphic if and only if there exists some M ∈ GL(n,Z) such that ML1M

t = L2.

Lemma 1. Let G be a graph on n vertices with a 2-separation, and H be the graph obtained after performing
a 2-switch on that separation. Then there is a matrix M ∈ GL(n,Z) such that ML1M

t = L2.
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Proof. Let x and y denote the vertices of the 2-separation, and define

M =


I 0 0 0
0 1 0 1T

0 0 1 1T

0 0 0 −I


where the middle two rows are indexed by x and y, and 1 denotes the vector of all ones. It is clear that
M ∈ GL(n,Z), and direct computation shows that ML1M

t = L2. See [14] for details.

Lemma 2. Suppose ML1M
t = L2 for some M ∈ GL(n,Z), then 1 = (1, ..., 1)t is an eigenvector of M t,

with eigenvalue 1 or −1.

Proof. By basic properties of graph Laplacians, L21 = 0. Thus ML1M
t1 = 0, which implies L1M

t1 = 0
since M is invertible. As G is connected, the multiplicity of 0 as an eigenvalue of L1 is 1. Thus we must
have M t1 = λ1 for some complex number λ. As M t ∈ GL(n,Z), it is then clear that λ ∈ Z. We have also
(M t)−11 = λ−11. As (M t)−1 ∈ GL(n,Z), we have λ−1 ∈ Z as well. Thus λ = 1 or λ = −1.

Lemma 3. If B1, B2 are incidence matrices for G, H respectively, then MB1 is an incidence matrix for H
as well.

Proof. Let E1, E2 denote the number of edges of G and H, respectively. By assumption, there exists
M ∈ GL(n,Z), such that ML1M

t = L2. We can multiply M by −I if necessary, to make sure that 1 is an
eigenvector of M t, with eigenvalue 1. Choose arbitrary labeling and orientations of all edges of G and H,
and consider the corresponding vertex-edge incidence matrices B1, B2 of size n×E1 and n×E2, respectively.
Let F := MB1. We have BiB

t
i = Li, i = 1, 2, and FF t = L2. Note that any column of B1 is of the form

±(0, ..., 1, 0, ..., 0,−1, 0, ...0), so 1tF = 1tMB1 = 1tB1 = 0, so F is an integral matrix all of whose column
sums are equal to 0. Suppose some column of F is a zero vector, say, without loss of generality, the first
column of F is the zero vector. Then we have

∑n
k=1MikB1k1 = 0, for all 1 ≤ i ≤ n. Suppose the u, v-th

places of the first column of B1 are nonzero, then the identity gives Miu = Miv, for all 1 ≤ i ≤ n. Namely,
M has two different columns which are equal. This is not possible since M is invertible. Thus, any column
of F is nonzero, and we therefore have for any 1 ≤ k ≤ E1,

n∑
i=1

F 2
ik ≥ 2 (1)

which takes the equal sign if and only if the k-th column of F is of the form ±(0, ..., 1, 0, ..., 0,−1, 0, ...0).
Indeed, since L1 and L2 are equivalent as integral quadratic forms, then (1) must take the equal sign for

all 1 ≤ k ≤ E1. Thus,

E2 =
1

2
trL2 =

1

2

E1∑
k=1

n∑
i=1

F 2
ik = E1 (2)

So G and H have the same number of edges, which we will denote now as E, and furthermore, each
column of F has the form ±(0, ..., 1, 0, ..., 0,−1, 0, ...0).

For any 1 ≤ u 6= v ≤ n, as L2uv =
∑E
k=1B2ukB2vk, L2uv = −1 if and only if there exists some (necessarily

unique) k, such that the k-th column of B2 is nonzero precisely at the u, v-th places. As FF t = L2, by
the previous lemma, the same applies to F . Thus, for any column of B2, there exists a column of F , which
is equal to the column up to a sign. As F and B2 have the same number of columns, then F and B2 are
identical up to re-labeling and re-orienting the edges. Thus the lemma follows

Proof of Theorem 1. First, assume that G and H are 2-isomorphic. Then we know that H can be obtained
from G by a sequence of 2-switches. Applying Lemma 1 to each successive 2-switch, we obtain the desired
matrix.

For the other direction, let B1 be the incidence matrix of G, and by Lemma 3, we have F = MB1 is an
incidence matrix for H. Now a cycle in G corresponds to a vector c ∈ {0,±1}|E(G)| in the kernel of B, and
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hence in the kernel of F , so it is a cycle in H too. This means that the bijection between E(G) and E(H)
arising from pairing columns of B1 and of F preserves cycles, and hence is a cycle equivalence, which we
have remarked is equivalent to 2-isomphism for 2-connected graphs.

Remark. The hypothesis that G and H be 2-connected is not really necessary, but we are only interested
in the 2-connected case for the purposes of our conjecture. In fact, [14] has a slightly more general definition
of 2-switch equivalence, and gives a version for Theorem 1 for all pairs of connected finite simple graphs.

Remark. S. Friedland [5] showed that the quadratic form Qα(G) represented by L(G) +αI determines the
graph G (up to isomorphism) for sufficiently large α > 0. On the other hand, it is easy to see that Qα(G)
is far from sufficient when α < 0. Theorem 1 shows that the untranslated Laplacian (α = 0) exhibits a
unique interesting behavior, by giving a complete combinatorial characterization of this arithmetic invariant
of graphs.

4 Graph embeddings and 2-isomorphism

We have seen that the arithmetic (A) and combinatorial (C) conditions are equivalent, so the conjecture
relates these to a geometric condition (G). We can show that the conjecture holds for planar graphs.

Theorem 2. If G and H are 2-connected planar graphs, then G and H are 2-isomorphic if and only if there
is a bijection between the set of embeddings of G and the set of embeddings of H that preserves the dual
graph.

Proof. Assume that we have such a bijection that preserves duals. Pick a planar embedding of G and a
matching planar embedding of H such that the duals G∗ and H∗ are two embeddings of the same graph.
It is well-known that two embeddings of a planar graph have 2-isomorphic duals, hence G and H are 2-
isomorphic.

For the other direction, it suffices to produce a bijection for two planar graphs G and H related by a
single 2-switch, say at x and y. We do this as follows.

Given an embedding of G into the sphere, using the Jordan closed curve theorem we can find a canonical
curve γ through x and y that separates the sphere to two regions. We then cut the sphere along γ and glue
one region back after a 180◦ rotation, yielding an embedding of H (see Figure 4).

One can verify that this operation does not change whether two regions neighbor each other, thus the
dual graph remains unchanged.

•
• •

••
•

γ → •
• •

••
•

γ

Figure 4: The canonical cut curve γ giving a region whose rotation accomplishes a 2-switch.

Intuitively, it seems that our proof that (C) =⇒ (G) for planar graphs should be generalizable to 2-
connected graphs of higher genus. This may involve some more involved topological arguments to construct
the cononical cut curve γ for minimal strong embeddings on a higher genus surface. This is a work in
progress.

4.1 Rigidity of the conjecture

In this section, we will discuss the rigitiy of our conjecture. Namely, we will discuss why each of the conditions
we have placed in each equivalence is necessary, and discuss why several weaker conjectures do not hold.
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• Congruence in (A) must be over Z: e.g. the conjecture holds for neither congruence over R, Q, nor
over all p-adic integers Zp.

• Embeddings in (G) must be strong; the conjecture fails to hold when using all embeddings of G into a
surface of genus g(G). In the graphs pictured below, the graph on the right has more embeddings into
the torus, but both have the same number of strong ones.
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• We need to consider all minimal strong embeddings in (G); one pair of minimal strong embeddings
with isomorphic dual graphs does not suffice. In the pair of graphs pictured below, there is a pair
of embeddings such that the dual graphs are isomorphic, but there is no bijection between sets of
embeddings for which all dual graphs are isomorphic. Observe also that these graphs are not 2-
isomorphic since any 2-switch on either of them leaves the graph unchanged.
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• We must consider only minimal strong embeddings. The conjecture fails to hold if we consider all
strong embeddings of the graph. The two graphs below are 2-switch equivalent, and the conjectured
bijection between minimal strong embeddings exists for this pair of graphs, however, such a bijection
does not exist between the sets of all strong embeddings of the graphs.
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5 A partial quantification of the strong embedding conjecture

Partially inspired by Conjecture 1, the aim of the following is to present a conjecture regarding a lower
bound of the number on minimal strong embeddings, using the incidence matrix B.

Let G = (V,E) be a 2-connected finite simple graph. For each choice of its edge orientations, we consider
the Newton polytope (convex hull) of the columns of B, together with the zero vector, and denote it by
PB . Let n = |V | and m = |E|. Clearly PB is a full rank polytope on the hyperplane x1 + ... + xn = 0
in Rn. We are interested in the Euclidean volume of this convex polytope. For convenience, we take the
following normalization for the volume: pick any row of B and delete it from B. Then we are left with
column vectors of the reduced matrix. The Newton polytope of these column vectors and the zero vector
is a full rank polytope in Rn−1, that is the projection of PB onto one of the coordinate hyperplanes. We
define the normalized volume V ol(PB) to be the Euclidean volume of this projected polytope, multiplied by
(n − 1)!. Clearly, this normalization is independent of the choice of projection, and the resulting volume is
always a positive integer. See Figure 5 for an example involving two orientations of a cycle on three vertices,
C3.
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(-1,1)

(0,-1)

(1,0)

(a) B =

−1 0 1
1 −1 0
0 1 −1



(-1,1)

(0,-1)

(-1,0)

(b) B =

−1 0 −1
1 −1 0
0 1 1



Figure 5: Two orientations of C3 give two different incidence matrices and two polytopes obtained by deleting
the last row and using the columns as points. The (normalized) volume of the first is 3, and of the second
is 2.

Next, we pick out all the edge orientations of G that maximize the resulting volume V ol(PB), and denote
the collection of these orientations by the set Om. For any two orientations X and Y in Om, we say X ∼= Y
if and only if there exists a sequence of elements in Om, X1 = X,X2, ..., Xs = Y , such that any consecutive
elements Xi, Xi+1 differ by a graph automorphism, a possible reversal of orientations on all the edges, or a
possible reversal of all edge orientations on an isolated directed path, where by isolated directed path, we
mean a subgraph which is itself a directed path, and is connected to the rest of the graph only through its
starting vertex and its ending vertex. Clearly, this is an equivalence relation, and we consider the equivalence
classes Om/ ∼.

On the other hand, given two minimal strong embeddings of G into Σg with chosen surface orientation, we
say they are equivalent if and only if there is an orientation preserving homeomorphism of Σg to itself, such
that the homeomorphism maps the image of G under one embedding to that under the other embedding,
through an automorphism of G. Now we state

Conjecture 2. The number of equivalent classes in Om, is a lower bound of the number of equivalence
classes of minimal strong embeddings.

Remark. Clearly, the above conjecture would imply the strong embedding conjecture.

We have gathered numerous numerical evidence in support of this conjecture. For instance, for any cylce
graph Ck, there is only one embedding of Ck into the plane (or sphere), and the only orientation for which
the volume of the polytope is maximal is the cyclic orientation. (Either direction achieves the maximum, but
these are equivalent under our equivalence relation.) Thus, in this case the number of equivalence classes of
orientations in Om and the number of equivalence classes of strong embeddings are equal. Further examples
that we have checked include the complete graph K5, the complete bipartite graph K3,3, the Xuong graph
of Example 2, and numerous others. The graph pictured below is an example where all of the conditions in
our equivalence relation are necessary for the conjecture to hold. We give more details in the appendix.

•

•
•

•
• •

•

8



6 Free fermions on a graph

In this section, we give a physics interpretation of V ol(PB) in Conjecture 2. For a general background on
the physics, one can see [9].

Since L = BBt for any chosen orientation of edges, B has been called the “Dirac matrix” in graph theory.
In the following, we shall make sense of a theory of free fermions on a graph, and show that its partition
function computes precisely the volume of PB .

Let ψE , ψV , respectively, denote functions E → R+, V → R.1 Note that B maps ψE to ψV . In
the conventional continuous case, the Dirac operator is local, in the sense that it acts on germs of sections.
However, in the discrete situation of a graph, B is no longer local in this sense, but instead, it maps functions
on edges to functions on vertexes.

We first formally write down the Langrangian L = ψVBψE . In order to match the physical degrees
of freedom2 on edges and on vertices, we should regard two field configurations (values of ψV and ψE) as
equivalent if ψVBψE become equal. For ψV , this amounts to saying that any constant configuration is
equivalent to the zero configuration. For ψE , this is slightly more complicated, as each loop of G gives rise
to a nontrivial element in the kernel of B. Therefore, we adopt the following instruction on performing the
path integral: For each spanning tree T of G, components of ψE |T are all independent degrees of freedom
on the edges. We integrate over all possible configurations of ψE |T , and ψV up to the constant shift. As it
is a fermion integral, by standard Grassmann integration we have∫

eLdψE |T dψV = det(B|T ) (3)

where it is easy to show that det(B|T ) = 1 or −1.
For each T , B|T maps the configuration space of ψE |T 3 to a cone in Rn−1, over the face formed by the

corresponding column vectors. Note that the sign of det(B|T ) depends on how we label the columns (and
the vertices), whereas the Dirac operator should be independent of this choice. Thus, we use the convention
that the labeling of columns in the integration measure is always in a way such that this determinant is
positive. Note that 1 = det(B|T ) is the normalized volume of the polytope spanned by the column vectors
of T and the zero vector.

In addition, if we have two trees T1 and T2, and two configurations ψE1 and ψE2, such that

B|T1
(ψE1|T1

) = B|T2
(ψE2|T2

), (4)

then these two edge configurations couple in exactly the same way to vertex degrees of freedom, thus, we
should only count for them once in the path integral. Note that equation 4 means the associated cones of
T1 and T2 have overlap in the interior. Thus, in defining the full fermion path integral, we only sum over
trees T , such that the associated cones are minimal, in the sense that the interior of the cones do not overlap
with any other cone constructed in this way by a spanning tree that does not contain the original cones. To
justify this procedure, we start with the following canonical triangulation of PB into simplexes:

Lemma 4. Connecting the origin 0 with all (other) vertices of PB, gives a triangulation of PB into simplexes.

Proof. Take any face F of PB , F is itself a convex polytope, all of whose vertices are vertices of PB . If
0 /∈ F , then the subspace spanned by F does not contain 0, thus for any cycle C in the graph G, not all
the column vectors corresponding to its edges can lie in F . Therefore, the collection of edges whose column
lie in F form a forest subgraph of G. On the other hand, F has dimension n − 2, so the forest has to be a
spanning tree, thus F is itself a simplex.

Now suppose 0 ∈ F . Suppose all column vectors corresponding to its edges lie in F . We denote by
FC the convex hull of these vectors and 0. Then FC ⊂ F , and the subspace spanned by FC intersecting
F is FC . Connecting 0 with all of these column vectors of edges of C gives a triangulation of FC into
simplexes. Then one easily sees by induction that, further connecting 0 with all other vectors on F extends
this triangulation to a triangulation of F by polytopes. Next, connecting 0 with all other vectors of PB

1One may think of them as the simplest spinor sections on the graph G.
2i.e. the number of independent variables.
3i.e. the space of all possible ψE |T .
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extends this triangulation of F , into a triangulation of PB by polytopes. These new polytopes have the
property that column vectors corresponding to edges of C no longer can all lie on any one polytope entirely.

Thus, we obtain a triangulation of PB by connecting 0 with all vectors of PB . Suppose C1 is any cylce in
G. Repeating the above argument for C1, we see that this exact same triangulation also prohibits all edge
columns of C1 to lie on any single polytope. Therefore, any polytope of the triangulation corresponds to a
forest, and thus, by the same dimension argument as in the beginning of the proof, the forest is a spanning
tree, and so the polytope is a simplex.

Remark. It is easy to see that any column vector of an edge is a vertex of PB .
So any of these simplexes corresponds to a spanning tree, and thus has volume equal to 1. Note that all

these simplexes in the triangulation are polytopes corresponding to minimal cones: for if not, there exists
another cone over a polytope of column vectors of a spanning tree, such that its intersection with the original
cone is a proper subcone, which has to be again a cone over a polytope of column vectors of a spanning tree,
thus the proper subcone has normalized volume equal to 1, a contradiction to convexity. On the other hand,
for any spanning tree, the polytope of its vertices and zero is contained in PB , thus it is covered by the union
of polytopes corresponding to minimal cones. Therefore, any spanning tree with a minimal cone gives one
of the simplexes in the canonical triangulation, and conversely, any spanning tree whose associated cone is
not minimal does not correspond to one of the simplexes in the canonical triangulation. This implies that
our sum over spanning trees that show up in the canonical triangulation covers the configuration space with
no repetition.

Therefore, we have the following: ∫
eLdψEdψV = V ol(PB). (5)

7 Exponential sums

Given a graph G, let B = (bij) be its |V |× |E| incidence matrix with respect to a particular edge orientation
(also called the Dirac matrix). Fix a finite field Fq; B gives rise to a hypergeometric exponential sum

SB =
∑

x1,...,x|V |∈F∗q

e

2πi
q

(
|E|∑
j=1

tj
|V |∏
i=1

x
bij
i

)

An example is given by the famous Kloosterman sums, achieved by taking B to be the Dirac matrix for a
cyclically oriented cycle graph. The sum is independent of the choice of vertex and edge labelings, up to a
permutation of the parameters tj .

A direct computation shows that SB depends on B only up to a GL(|V |,Z) transformation. Consider the
set of all possible exponential sums associated to a graph in this way. From our arithmetic characterization of
2-isomorphism, one shows that this set gives an invariant of 2-connected graphs, that are preserved under 2-
switchings (or cycle equivalence). From number theory, one expects SB to determine B up to the GL(|V |,Z)
transformation, therefore there are good reasons to expect that this set of exponential sums gives a very
strong invariant of the 2-isomorphic class of graphs.

Next, as explained earlier, it is clear that 2-isomorphic graphs should have the same minimal strong
embeddings as detected by the dual graphs, one can then expect that most information regarding those dual
graphs can be extracted from these exponential sums. This provides a much more refined invariant of the
graph than V ol(PB).

On the other hand, exponential sums like these were very fruitfully studied by many people e.g. A.
Weil, Grothendieck-Deligne, using deep tools from arithmetic algebraic geometry, via `-adic sheaves. [4]
provides a general introduction. More specifically, sums of our kind can be studied through these ideas, via
the additional help of GKZ theory [3]. In particular, by `-adic GKZ theory, the rank of (the `-adic sheaf
corresponding to) SB is given by volume of the Newton polytope of columns of B, together with the zero
vector (normalized so that the unit simplex has volume one), the (Frobenius) weight is |V | − 1 [2], and
therefore a sharp upper bound estimate on the absolute value of generic exponential sums is given by

|SB | ≤ qweight/2 × rank.
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For example, take the cycle graph Cn, clockwise or counterclockwise edge orientations correspond to a unique
maximal rank exponential sum, which is exactly the Kloosterman sum in n− 1 variables.
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A Appendix

Denote by G the graph pictured below.

•

•
•

•
• •

•
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This graph is one in which we need all of the conditions in our equivalence relation on orientations on a
graph in order for Conjecture 2 to hold. Figure 6 displays all of the orientations of G for which the volume
of the convex polytope is maximized (fixing the orientation on one edge). Several of these are equivalent up
to automorphism of the graph, e.g. (i) and (j). In other cases, one of these orientations can be obtained
by reversing the orientations on an isolated (directed) path. For example, (b) can be obtained from (a) by
reversing the orientation of the upper central edge (note that a single edge is an isolated path in our defintion).
As a further example, (t) can be obtained from (m) simply be reversing the orientations of an isolated path
of length two. Since each of these orientations achieves the maximum volume, each of these operations stays
in the same equivalence class. Checking each case, it can be verified that this graph has two equivalence
classes under our equivalence relation, namely {a, b, c, g, h, l, q, s} and {d, e, f, i, j, k,m, n, o, p, r, t}. It can
also be seen that G has two inequivalent embeddings in the plane.
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Figure 6: The orientations of G that achieve the maximum volume of the associated polytope.
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