
UNIVERSITY OF CALIFORNIA, SAN DIEGO

High Dimensional Spectral Graph Theory and Non-backtracking
Random Walks on Graphs

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Mark Kempton

Committee in charge:

Professor Fan Chung Graham, Chair
Professor Ronald Graham
Professor Shachar Lovett
Professor Jeffrey Remmel
Professor Jacques Verstraëte
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ABSTRACT OF THE DISSERTATION

High Dimensional Spectral Graph Theory and Non-backtracking
Random Walks on Graphs

by

Mark Kempton

Doctor of Philosophy in Mathematics

University of California, San Diego, 2015

Professor Fan Chung Graham, Chair

This thesis has two primary areas of focus. First we study connection

graphs, which are weighted graphs in which each edge is associated with a d-

dimensional rotation matrix for some fixed dimension d, in addition to a scalar

weight. Second, we study non-backtracking random walks on graphs, which are

random walks with the additional constraint that they cannot return to the im-

mediately previous state at any given step.

Our work in connection graphs is centered on the notion of consistency, that

is, the product of rotations moving from one vertex to another is independent of the

path taken, and a generalization called ε-consistency. We present higher dimen-

sional versions of the combinatorial Laplacian matrix and normalized Laplacian
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matrix from spectral graph theory, and give results characterizing the consistency

of a connection graph in terms of the spectra of these matrices. We generalize

several tools from classical spectral graph theory, such as PageRank and effective

resistance, to apply to connection graphs. We use these tools to give algorithms

for sparsification, clustering, and noise reduction on connection graphs.

In non-backtracking random walks, we address the question raised by Alon

et. al. ([3]) concerning how the mixing rate of a non-backtracking random walk

to its stationary distribution compares to the mixing rate for an ordinary random

walk. Alon et. al. address this question for regular graphs. We take a different

approach, and use a generalization of Ihara’s Theorem to give a new proof of

Alon’s result for regular graphs, and to extend the result to biregular graphs.

Finally, we give a non-backtracking version of Pólya’s Random Walk Theorem for

2-dimensional grids.
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Chapter 1

Introduction

1.1 Preliminaries and Notation

In this section, we will introduce the preliminary definitions and ideas that

will be used through the thesis. We will use notation that is standard in graph

theory. We will begin by defining a graph G, which is a pair of sets (V,E), where

V = V (G) is called the vertex set, and E = E(G) is some subset of the collection

of two element subsets of V . The set E is referred to as the edge set of G. Less

formally, the vertex set V is some set of objects, and the edge set E specifies

which of these objects is connected by an edge. Unless otherwise stated, we will

assume throughout that V and E are finite sets, and we will denote the number of

vertices with n, and the number of edges with m. We will typically denote an edge

{u, v} ∈ E simply as uv. If uv ∈ E, we say that the vertices u and v are adjacent

and write u ∼ v, and we say that the edge uv is incident to the vertices u and v.

Unless otherwise specified, all graphs used are simple (meaning no multiple edges

between two vertices, and no loops on single vertices) and undirected. When we

refer to directed graphs, then the edge set E is a set of ordered pairs of vertices

(u, v).

We will also have occasion to discuss weighted graphs, which are graphs in

which each edge uv is associated with a weight wuv. For our purposes, the weight

wuv will be a positive real number, and we require that wuv = wvu. A simple

(unweighted) graph can be thought of as a weighted graph in which wuv = 1 for

1
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all uv ∈ E. We define the degree of a vertex v, denoted dv, by dv =
∑

u∼v wuv.

For an unweighted graph this is simply the number of edges incident to v. If the

degree of every vertex in the graph G is the same, say dv = k for all v ∈ V , then

we say that V is k-regular. For a subset S ⊂ V , we define the volume of S as

vol(S) =
∑

v∈S dv.

A walk on a graph is a sequence of vertices (v1, v2, · · · , vk) where vi ∼ vi+1

for i = 1, ..., k− 1. A path is a walk in which every vertex is distinct. The distance

between two vertices u and v in G is the number of edges in a shortest path between

u and v. The diameter of a graph G is the largest distance between any pair of

distinct vertices in G. We say that G is connected if there is a path between any

two distinct vertices of G. A graph is called bipartite if there is a partition of the

vertex set into two subsets V = A ∪ B such that A and B are disjoint, and every

edge uv ∈ E has one vertex in A and one vertex in B.

1.2 Spectral Graph Theory

1.2.1 Matrices and Eigenvalues Associated with Graphs

The goal of spectral graph theory is to understand properties of graphs

using tools from linear algebra, particularly using eigenvalues and eigenvectors of

various matrices associated with graphs.

For a graphG on n vertices, define the adjacency matrix to be the symmetric

n× n matrix, with rows and columns indexed by V (G), given by

A(u, v) =

1 if u ∼ v

0 if u 6∼ v

for u, v ∈ V . For a weighted graph, we define A(u, v) = wuv for each edge. To

illustrate the principle of how a matrix can give information about a graph, we

will state the following well-known result from spectral graph theory.

Lemma 1.2.1. Let G be a graph with adjacency matrix A. Then for any two

vertices u, v ∈ V (G), the number of walks of length k from u to v is given by

Ak(u, v), the (u, v) entry of the kth power of the adjacency matrix.
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Define the diagonal degree matrix D to be the n× n diagonal matrix given

by D(v, v) = dv for v ∈ V . The combinatorial Laplacian matrix is

L = D − A.

The normalized Laplacian is

L = D−1/2LD−1/2 = I −D−1/2AD−1/2

and so the entries of L are given by

L(u, v) =


1 if u = v

1√
dudv

if u ∼ v

0 otherwise.

Observe that each of the matrices defined above are symmetric, and thus

have real eigenvalues. One of the main tools for investigating eigenvalues of a

symmetric matrix is the Rayleigh quotient : given a symmetric n × n matrix M

and x 6= 0 ∈ Rn, define

R(x) =
xTMx

xTx
.

Observe that if x is an eigenvector of M for eigenvalue λ then R(x) = λ.

Eigenvalues can be computed by investigating the Rayleigh quotient by way

of the well-known Courant-Fischer Min-Max Theorem.

Theorem 1.2.2 (Courant-Fischer, [28]). Let M be an n × n symmetric matrix

with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then for 1 ≤ k ≤ n,

λk = max
W

dim(W )=k−1

min
x∈W⊥
x 6=0

R(x)

where the maximum ranges over all subspaces W of Rn of dimension k − 1.

We remark that the vector achieving the optimization in the Courant-

Fischer Theorem is an eigenvector associated to λk.

We will now present several facts about these matrices. In general, we will

omit proofs of these well-known facts. Further details can be found in [14]. When
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considering matrices associated with a graph G on n vertices, we will think of a

vector in Rn as a function f : V (G) → R, and A, D, L, and L are operators

on the space of such functions. Observe that the action of A as an operator

on this space is given by (Af)(u) =
∑

v∼uwuvf(v), the action of L is given by

(Lf)(u) =
∑

v∼uwuv(f(u) − f(v)), and the action of L is given by (Lf)(u) =

1√
du

∑
v∼uwuv

(
f(u)√
du
− f(v)√

dv

)
.

We will now turn our attention to the normalized Laplacian matrix. Let

g : V (G)→ R. The Rayleigh quotient for the normalized Laplacian is

R(g) =
gTLg
gTg

=
gTD−1/2LD−1/2g

gTg
.

Define f = D−1/2g, and this becomes

R(g) =
fTLf

fTDf
.

When g is an eigenvector of L, then f is called a harmonic eigenfunction of L,

and we will often refer to the above quantity as simply the Rayleigh quotient of f .

Direct computation shows that

fTLf =
∑

uv∈E(G)

wuv(f(u)− f(v))2

and thus we can see that the Rayleigh quotient for a harmonic eigenfunction f for

the normalized Laplacian is given by

R(f) =

∑
uv∈E(G) wuv(f(u)− f(v))2∑

v∈V (G) f(v)2dv
.

Let the eigenvalues of L be λ0 ≤ λ1 ≤ · · · ≤ λn−1. It can be easily verified

(see [14]) that λ0 = 0 and λn−1 ≤ 2. Thus L (as well as L) is positive-semidefinite.

The Courant-Fischer Theorem yields the following important characterization of

λ1.

λ1 = inf
f⊥D1
f 6=0

∑
uv∈E(G) wuv(f(u)− f(v))2∑

v∈V (G) f(v)2dv

where 1 denotes the constant vector all of whose entries are 1. It is easily seen that

λ1 > 0 if and only if G is connected. The fact can be generalized in the sense that
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λ1 gives an estimate on the connectivity of G, by way of the classic result known

as the Cheeger Inequality, which we now present.

For a subset S ⊂ V (G), let E(S, S̄)| denote the set of edges in E(G) that

have one vertex in S and one vertex in S̄, the complement of S. Define the Cheeger

ratio of S, denoted hG(S), by

hG(S) =
|E(S, S̄)|

min{vol(S), vol(S̄)}
.

The Cheeger constant of the graph G is defined to be

hG = min
S⊂V

vol(S)≤ 1
2

vol(G)

hG(S).

The Cheeger constant of G is also sometimes called the conductance of G, or the

isoperimetric constant of G. Finding the Cheeger constant of a graph is analogous

to the classical isoperimetric problem of geometry, in the sense that it measures

the boundary of a subset of the vertex set (the set of edges leaving that subset)

against the measure of the subset itself (the total volume of the subset). In this

way, the Cheeger constant gives a notion of how well connected the graph is: a

small Cheeger constant means there is some subset with relatively few edges leaving

it, and so a community could be disconnected from the rest of the graph by the

removal of a few edges, and a high Cheeger constant means that no such clustered

community exists, so that the edges are fairly evenly spread out, and the graph is

well connected.

The Cheeger Inequality states that λ1 gives an estimate of the Cheeger

constant. It was first proved for regular graphs, using the adjacency matrix by

Tanner in [52] and Alon and Milman in [4]. A general proof using the normalized

Laplacian, and without any regularity condition can be found in [14].

Theorem 1.2.3 (Cheeger Inequality). Let G be a graph, let hG denote the Cheeger

constant of G, and let λ1 be the second smallest eigenvalue of the normalized Lapla-

cian matrix of G. Then
h2
G

2
≤ λ1 ≤ 2hG.
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We end this section with an important result known as the Alon-Boppana

bound which gives a lower bound for the second largest eigenvalue of the adjacency

matrix of a regular graph. The version we give here is due to Nilli in [40].

Theorem 1.2.4 ([40]). If G is a d-regular graph with diameter 2(k + 1), then the

second largest eigenvalue λ of the adjacency matrix of G satisfies

λ ≥ 2
√
d− 1− 2

√
d− 1− 1

k + 1
.

1.2.2 Random Walks on Graphs

Several important applications of spectral graph theory are in the study of

random walks on graphs. A random walk on a graph G is a walk (v1, ..., vk) in which

vi+1 is chosen uniformly at random from among the neighbors of vi. Random walks

on graphs have been studied extensively, and [38] and [14] provide good surveys of

what is known.

Given a graph G, define the n × n matrix P = D−1A, where D is the

diagonal degree matrix of G and A is the adjacency matrix of G as defined in the

previous section. So

P (u, v) =


1
du

if u ∼ v

0 if u 6∼ v.

Then it is clear the P is the transition probability matrix for a random walk on the

graph G, that is, P (u, v) is the probability of moving from vertex u to vertex v in

one step of the random walk. Thus, given a probability distribution on the vertices

of G, f : V (G)→ R (thought of as a row vector in Rn) satisfying, f(v) ≥ 0 for all

v and
∑

v∈V (G) f(v) = 1, then the product fP gives the expected distribution after

one step of the random walk. Note that the transition probability matrix for k steps

of a random walk is simply given by P k. Note that if P is not symmetric, but is

similar to a symmetric matrix D−1/2AD−1/2 = I−L. Thus the spectral properties

of the normalized Laplacian L are directly related to the spectral properties of P .

Indeed, the eigenvalues of P are real, and if we order them as µ1 ≥ µ2 ≥ · · · ≥ µn,

then it is easy to see that µ1 = 1 with eigenvector 1, and µn ≥ −1. By Perron-

Frobenius theory, if the matrix P is irreducible, then we have that µ2 < 1, and
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if P is aperiodic, then µn > −1. The matrix P being irreducible and aperiodic

corresponds to the graph G being connected and non-bipartite.

We define the stationary distribution for a random walk on G by

π(v) =
dv

vol(G)
.

The stationary distribution has the important property the πP = π, so that a

random walk with initial distribution π will stay at π at each step. An important

fact about the stationary distribution is the following lemma.

Lemma 1.2.5. If G is a finite connected graph that is not bipartite, then for any

initial distribution f0 on V (G), we have

lim
t→∞

(f0P
t)(v) = π(v)

for all v.

In other words, as long as G is connected and non-bipartite, a random

walk will always converge to the graph’s stationary distribution. A proof of this

lemma can be found in [38]. Knowing that a random walk will converge to some

stationary distribution, a fundamental question to consider is to determine how

quickly the random walk approaches the stationary distribution, or in other words,

to determine the mixing rate. In order to make this question precise, we need to

consider how to measure the distance between two distribution vectors.

Several measures for defining the mixing rate of a random walk have been

given (see [14]). Classically, the mixing rate is defined in terms of the pointwise

distance (see [38]). That is, the mixing rate is

µ = lim sup
t→∞

max
u,v

∣∣P t(u, v)− π(v)
∣∣1/t .

Note that a small mixing rate corresponds to fast mixing. Alternatively, the mixing

rate can be considered in terms of the standard L2 (Euclidean) norm,

‖fP t − π‖,

the relative pointwise distance

∆(t) = max
u,v

|P t(u, v)− π(v)|
π(v)

,
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the total variation distance

∆TV (t) = max
A⊂V (G)

max
u∈V (G)

∣∣∣∣∣∑
v∈A

(P t(u, v)− π(v)

∣∣∣∣∣ ,
or the χ-squared distance

∆′(t) = max
u∈V (G)

 ∑
v∈V (G)

(P t(u, v)− π(v))2

π(v)

1/2

.

In general, each of these measures can yield different distances, but spectral bounds

on the mixing rate are essentially the same for each. See [14] for a detailed com-

parison of each.

We will end this section with a known result tying the mixing rate to the

eigenvalues of P .

Theorem 1.2.6 ([38]). Let G be a connected non-bipartite graph with transition

probability matrix P , and let the eigenvalues of P be 1 = µ1 > µ2 ≥ · · · ≥ µn > −1.

Then the mixing rate is max{µ2, |µn|}.

Thus, the smaller the eigenvalues of P , the faster the random walk converges

to its stationary distribution.

1.3 Overview and Main Results

This thesis touches on two main topics: connection graphs as well as non-

backtracking random walks on graphs. A connection graph is a weighted graph

in which each edge is associated with a rotation matrix, in addition to its scalar

weight. A non-backtracking random walk is a random walk with the additional

restriction that we are not allowed to return to the immediately previous vertex

at any given step.

In Chapter 2, we introduce connection graphs and give higher dimensional

versions of the various matrices associated to a graph. We describe the important

notion of consistency in a connection graph and prove a spectral characterization

of consistency. We give analogues for connection graphs to classical tools in spec-

tral graph theory. In particular we define connection PageRank and connection
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resistance in a graph. We generalize a known graph sparsification algorithm to the

case of connection graphs, and use this to also give a noise reduction algorithm for

an inconsistent connection graph.

Chapter 3 generalizes the notion of consistency from Chapter 2 to that

of ε-consistency. Bounds on the spectrum of the connection Laplacian are given

for ε-consistent connection graphs. We tie this to clustering, and use connection

PageRank vectors to generalize a clustering algorithm to connection graphs.

Chapter 4 addresses questions concerning non-backtracking random walks

on graphs. In particular we investigate the mixing rate of non-backtracking random

walks. We present the idea of turning a non-backtracking random walk into a

Markov chain by walking along directed edges of a graph. We prove convergence to

a stationary distribution in this case, and connect the mixing rate to the eigenvalues

of an edge transition probability matrix. We give a non-backtracking Laplacian,

and compare its spectrum to the classical Laplacian. We also discuss a result

called Ihara’s Theorem, and give a weighted version which allows us to compare

the spectrum of the transition matrix for a non-backtracking random walk to that

of an ordinary random walk. In this way, we give an alternate proof to a result

of Alon et. al. ([3]) that in many cases, a non-backtracking random walk on a

regular graph has a faster mixing rate than an ordinary random walk. We further

generalize this result to a class of graphs called biregular graphs. Finally we give

a non-backtracking version of a classical result known as Pólya’s Random Walk

Theorem for an infinite two-dimensional grid.



Chapter 2

Connection Graphs

2.1 Introduction

In this chapter, we consider a generalization of the notion of a graph, called

a connection graph, in which each edge of the graph is associated with a weight

and also a “rotation” (which is a linear orthogonal transformation acting on a d-

dimensional vector space for some positive integer d). The adjacency matrix and

the discrete Laplace operator are linear operators acting on the space of vector-

valued functions (instead of the usual real-valued functions) and therefore can be

represented by matrices of size dn × dn where n is the number of vertices in the

graph.

Connection graphs arise in numerous applications, in particular for data and

image processing involving high-dimensional data sets. To quantify the affinities

between two data points, it is often not enough to use only a scalar edge weight.

For example, if the high-dimensional data set can be represented or approximated

by a low-dimensional manifold, the patterns associated with nearby data points are

likely to be related by certain rotations [45]. There are many recent developments

of related research in cryo-electron microscopy [26, 44], angular synchronization

of eigenvectors [21, 43] and vector diffusion maps [45]. In many areas of machine

learning, high-dimensional data points in general can be treated by various meth-

ods, such as the Principle Component Analysis [30], to reduce vectors into some

low-dimensional space and then use the connection graph with rotations on edges

10
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to provide the additional information for proximity. In computer vision, there has

been a great deal of recent work dealing with trillions of photos that are now avail-

able on the web [2]. The feature matching techniques [39] can be used to derive

vectors associated with the images. Then the information networks of photos can

be built which are exactly connection graphs with rotations corresponding to the

angles and positions of the cameras in use. The use of connection graphs can be

further traced to earlier work in graph gauge theory for computing the vibrational

spectra of molecules and examining the spins associated with vibrations [19].

Many information networks arising from massive data sets exhibit the small

world phenomenon. Consequently the usual graph distance is no longer very useful.

It is crucial to have the appropriate metric for expressing the proximity between

two vertices. Previously, various notions of diffusion distances have been defined

[45] and used for manifold learning and dimension reduction. Here we consider two

basic notions, the connection PageRank and the connection resistance, (which are

generalizations of the usual PageRank and effective resistance). Both the connec-

tion PageRank and connection resistance can then be used to measure relationships

between vertices in the connection graph. To illustrate the usage of both metrics,

we derive edge ranking using the connection PageRank and the connection re-

sistance. In the applications to cryo-electron microscopy, the edge ranking can

help eliminate the superfluous or erroneous edges that appear because of various

“noises”. We here will use the connection PageRank and the connection resistance

as tools for the basis of algorithms that can be used to construct a sparsifier which

has fewer edges but preserves the global structure of the connection network.

The notion of PageRank was first introduced by Brin and Page [12] in 1998

for Google’s Web search algorithms. Although the PageRank was originally de-

signed for the Web graph, the concepts work well for any graph for quantifying

the relationships between pairs of vertices (or pairs of subsets) in any given graph.

There are very efficient and robust algorithms for computing and approximating

PageRank [5, 10, 29, 11]. In this paper, we further generalize the PageRank for

connection graphs and give efficient and sharp approximation algorithms for com-

puting the connection PageRank, similar to the algorithm presented in [11].
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The effective resistance plays a major role in electrical network theory and

can be traced back to the classical work of Kirchhoff [34]. Here we consider a gen-

eralized version of effective resistance for the connection graphs. To illustrate the

usage of connection resistance, we examine a basic problem on graph sparsification.

Graph sparsification was first introduced by Benczúr and Karger [9, 31, 32, 33] for

approximately solving various network design problems. The heart of the graph

sparsification algorithms is the sampling technique for randomly selecting edges.

The goal is to approximate a given graph G on n vertices by a sparse graph G̃,

called a sparsifier, with fewer edges on the same set of vertices such that every cut

in the sparsifier G̃ has its size within a factor (1± ε) of the size of the correspond-

ing cut in G for some constant ε. Spielman and Teng [47] constructed a spectral

sparsifier with O(n logc n) edges for some large constant c. In [50], Spielman and

Srivastava gave a different sampling scheme using the effective resistances to con-

struct an improved spectral sparsifier with only O(n log n) edges. In this paper, we

will construct the connection sparsifier using the weighted connection resistance.

Our algorithm is similar to the one found in [50].

In recent work of Bandeira, Singer, and Spielman in [8], they study the O (d)

synchronization problem in which each vertex of a connection graph is assigned a

rotation in the orthogonal group O (d). Our work differs from theirs in that here

we examine the problem of assigning a vector in Rd to each vertex, rather than an

orthogonal matrix in O (d), (see the remark following the proof of Theorem 2.2.2).

In other words, our connection Laplacian is an operator acting on the space of

vector-valued functions. However, their work is closely related to our work in this

paper. In particular, they define the connection Laplacian, and use its spectrum

to give a measure of how close a connection graph is to being consistent.

2.2 The Connection Laplacian

For positive integers m,n and d, we consider a family of matrices, denoted

by F(m,n, d; R) consisting of all md × nd matrices with real-valued entries. A

matrix in F(m,n, d; R) can also be viewed as a m × n matrix whose entries are
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represented by d × d blocks. A rotation is a matrix that is used to perform a

rotation in Euclidean space. Namely, a rotation O is a square matrix, with real

entries, satisfying OT = O−1 and det(O) = 1. The set of d × d rotation matrices

form the special orthogonal group SO (d). It is easy to check that all eigenvalues

of a rotation O are of norm 1. Furthermore, a rotation O ∈ SO (d) with d odd has

an eigenvalue 1 (see [25]).

2.2.1 The Connection Laplacian

Suppose G = (V,E,w) is an undirected graph with vertex set V , edge set E

and edge weights wuv = wvu > 0 for edges (u, v) in E. Suppose each oriented edge

(u, v) is associated with a rotation matrix Ouv ∈ SO (d) satisfying OuvOvu = Id×d.

Let O denote the set of rotations associated with all oriented edges in G. The

connection graph, denoted by G = (V,E,O,w), has G as the underlying graph.

The connection matrix A of G is defined by:

A(u, v) =

wuvOuv if (u, v) ∈ E,

0d×d if (u, v) 6∈ E

where 0d×d is the zero matrix of size d × d. In other words, for |V | = n, we view

A ∈ F(n, n, d; R) as a block matrix where each block is either a d × d rotation

matrix Ouv multiplied by a scalar weight wuv, or a d×d zero matrix. The matrix A
is symmetric as OT

uv = Ovu and wuv = wvu. The diagonal matrix D ∈ F(n, n, d; R)

is defined by the diagonal blocks D(u, u) = duId×d for u ∈ V . Here du is the

weighted degree of u in G, i.e., du =
∑

(u,v)∈E wuv.

The connection Laplacian L ∈ F(n, n, d; R) of a graph G is the block matrix

L = D−A. Recall that for any orientation of edges of the underlying graph G on n

vertices and m edges, the combinatorial Laplacian L can be written as L = BTWB

where W is a m × m diagonal matrix with We,e = we, and B is the edge-vertex

incident matrix of size m× n such that B(e, v) = 1 if v is e’s head; B(e, v) = −1

if v is e’s tail; and B(e, v) = 0 otherwise. A useful observation for the connection

Laplacian is the fact that it can be written in a similar form. Let B ∈ F(m,n, d; R)
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be the block matrix given by

B(e, v) =


Ouv v is e’s head,

−Id×d v is e’s tail,

0d×d otherwise.

Also, let the block matrix W ∈ F(m,m, d; R) denote a diagonal block matrix

given by W(e, e) = weId×d. We remark that, given an orientation of the edges, the

connection Laplacian also can alternatively be defined as

L = BTWB.

This can be verified by direct computation.

We have the following useful lemma regarding the Dirichlet sum of the

connection Laplacian as an operator on the space of vector-valued functions on

the vertex set of a connection graph.

Lemma 2.2.1. For any function f : V → Rd, we have

fLfT =
∑

(u,v)∈E

wuv ‖f(u)Ouv − f(v)‖2
2 (2.1)

where f(v) here is regarded as a row vector of dimension d. Furthermore, an

eigenpair (λi, φi has λi = 0 if and only if φi(u)Ouv = φi(v) for all (u, v) ∈ E.

Proof. For equation 2.1, observe that for a fixed edge e = (u, v),

fBT (e) = f(u)Ouv − f(v).

Thus,

fLfT = (fBT )W(BfT )

= (fBT )W(fBT )T

=
∑

(u,v)∈E

w(u, v) ‖f(u)Ouv − f(v)‖2
2 .

Also, L is symmetric and therefore has real eigenfunctions and real eigen-

values. The spectral decompositions of L is given by

LG(u, v) =
nd∑
i=1

λiφi(u)Tφi(v).
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By Equation (2.1), λ1 ≥ 0 and λi = 0 if and only if φi(u)Ouv = φi(v) for all

{u, v} ∈ E and the lemma follows.

2.2.2 Consistency

For a connection graph G = (V,E,O,w), we say G is consistent if for any

cycle c = (vk, v1, v2, . . . , vk) the product of rotations along the cycle is the identity

matrix, i.e. Ovkv1

∏k−1
i=1 Ovivi+1

= Id×d. In other words, for any two vertices u and

v, the products of rotations along different paths from u to v are the same. In the

following theorem, we give a characterization for a consistent connection graph by

using the eigenvalues of the connection Laplacian.

Theorem 2.2.2. Let G be a connected connection graph on n vertices having con-

nection Laplacian L of dimension nd, and let L be the Laplacian of the underlying

graph G. The following statements are equivalent.

(i) G is consistent.

(ii) The connection Laplacian L of G has d eigenvalues of value 0.

(iii) The eigenvalues of L are the n eigenvalues of L, each of multiplicity d.

(iv) For each vertex u in G, we can find Ou ∈ SO (d) such that for any edge (u, v)

with rotation Ouv, we have Ouv = O−1
u Ov.

Proof. (i) =⇒ (ii). For a fixed vertex u ∈ V and an arbitrary d-dimensional vector

x̂, we can define a function f̂ : V → Rd, by defining f̂(u) = x̂ initially. Then we

assign f̂(v) = f̂(u)Ouv for all the neighbors v of u. Since G is connected and G is

consistent, we can continue the assigning process to all neighboring vertices without

any conflict until all vertices are assigned. The resulting function f̂ : V → Rd

satisfies f̂Lf̂T =
∑

(u,v)∈E wuv

∥∥∥f̂(u)Ouv − f̂(v)
∥∥∥2

2
= 0. Therefore 0 is an eigenvalue

of L with eigenfunction f̂ . There are d orthogonal choices for the initial choice of

x̂ = f̂(u). Therefore we obtain d orthogonal eigenfunctions f̂1, ..., f̂d corresponding

to the eigenvalue 0.

(ii) =⇒ (iii). Let us consider the underlying graph G. Let fi : V →
R denote the eigenfunctions of L corresponding to the eigenvalue λi for i ∈ [n]
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respectively. Let f̂k, for k ∈ [d], be orthogonal eigenfunctions of L for the eigenvalue

0. By Lemma 2.2.1, each f̂k satisfies f̂k(u)Ouv = f̂k(v). Our proof of this part

follows directly from the following claim.

Claim 2.2.3. Functions fi ⊗ f̂k : V → Rd for i ∈ [n], k ∈ [d] are the orthogonal

eigenfunctions of L corresponding to eigenvalue λi where fi ⊗ f̂k(v) = fi(v)f̂k(v).

Proof. First, we need to verify that functions fi ⊗ f̂k are eigenfunctions of L. We

note that

[fi ⊗ f̂kL](u) = d(u)fi ⊗ f̂k(u)−
∑
v∼u

wvufi ⊗ f̂k(v)Ovu

= d(u)fi(u)f̂k(u)−
∑
v∼u

wvufi(v)f̂k(v)Ovu

= d(u)fi(u)f̂k(u)−
∑
v∼u

wvufi(v)f̂k(u)

=

(
d(u)fi(u)−

∑
v∼u

wvufi(v)

)
f̂k(u).

Since fi is an eigenfunction of L corresponding to the eigenvalue λi, we have

fiL = λifi, i.e. (
d(u)fi(u)−

∑
v∼u

wvufi(v)

)
= λifi(u).

Thus,

[fi ⊗ f̂kL](u) = λifi(u)f̂k(u) = λifi ⊗ f̂k(u)

and fi ⊗ f̂k, 1 ≤ i ≤ n, 1 ≤ k ≤ d are the eigenfunctions of L with eigenvalue λi.

To prove the orthogonality of fi ⊗ f̂k’s, we note that if k 6= l,

〈fi ⊗ f̂k, fj ⊗ f̂l〉 =
∑
v

〈fi ⊗ f̂k(v), fj ⊗ f̂l(v)〉

=
∑
v

fi(v)fj(v)〈f̂k(v), f̂l(v)〉

= 0
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since 〈f̂k(v), f̂l(v)〉 = 0 for k 6= l. For the case of k = l but i 6= j, we have

〈fi ⊗ f̂k, fj ⊗ f̂l〉 =
∑
v

fi(v)fj(v)〈f̂k(v), f̂k(v)〉

=
∑
v

fi(v)fj(v)

= 0

because of 〈fi, fj〉 = 0 for i 6= j. The claim is proved.

(iii) =⇒ (iv). Since 0 is an eigenvalue of L, we can let f̂1, . . . , f̂d be d

orthogonal eigenfunctions of L corresponding to the eigenvalue 0. By Lemma

2.2.1, f̂k(u)Ouv = f̂k(v) for all k ∈ [d], uv ∈ E. For two adjacent vertices u and v,

we have, for i, j = 1, ..., d,

〈f̂i(u), f̂j(u)〉 =〈f̂i(u)Ouv, f̂j(u)Ouv〉 = 〈f̂i(v), f̂j(v)〉

Therefore, f̂1(v), . . . , f̂d(v) must form an orthogonal basis of Rd for all v ∈ V . So

for v ∈ V , define Ov to be the matrix with rows f̂1(v), ..., f̂d(v), and if necessary

normalize and adjust the signs of these vectors to guarantee that Ov ∈ SO (d).

Then Ov is an orthogonal matrix for each d, and for an edge uv ∈ E, OuOuv = Ov,

which implies Ouv = O−1
u Ov.

(iv) =⇒ (i). Let C = (v1, v2, ..., vk, v1) be a cycle in G. Then

Ovkv1

k−1∏
i=1

Ovivi+1
= O−1

vk
Ov1

k−1∏
i=1

O−1
vi
Ovi+1

= Id×d.

Therefore G is consistent. This completes the proof of the theorem.

We note that item (iv) in the previous result is related to the O (d) synchro-

nization problem studied by Bandeira, Singer, and Spielman in [8]. This problem

consists of finding a function O : V (G)→ O (d) such that given the offsets Ouv in

the edges, the function satisfies Ouv = O−1
u Ov. The previous theorem shows that

this has an exact solution if G is consistent. Particularly, [8] investigates how well

a solution can be approximated even when the connection graph is not consistent.

Their formulation gives a measure of how close a connection graph is to being

consistent by looking at the operator on the space of functions O : V (G) −→ O (d)
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given by
∑

u∼v wuv ‖OuOuv −Ov‖2
2. In order to investigate this, they also consider

the operator on the space of vector valued functions f : V (G) −→ Rd given by∑
u∼v wuv ‖fuOuv − fv‖2

2, which is what we are using to investigate the connection

Laplacian.

2.2.3 Random Walks on Connection Graphs

Consider the underlying graph G of a connection graph G = (V,E,O,w).

A random walk on G is defined by the transition probability matrix P where

Puv = wuv/du denotes the probability of moving to a neighbor v at a vertex u. We

can write P = D−1A, where A is the weighted adjacency matrix of G and D is the

diagonal matrix of weighted degree.

In a similar way, we can define a random walk on the connection graph G by

setting the transition probability matrix P = D−1A. While P acts on the space of

real-valued functions, P acts on the space of vector-valued functions f : V → Rd.

Theorem 2.2.4. Suppose G is consistent. Then for any positive integer t, any

vertex u ∈ V and any function ŝ : V → Rd satisfying ŝ(v) = 0 for all v ∈ V \{u},
we have ‖ŝ(u)‖2 =

∑
v ‖ŝ Pt(v)‖2 .

Proof. The proof of this theorem is straightforward from the assumption that G
is consistent. For p̂ = ŝ Pt, note that p̂(v) is the summation of all d dimensional

vectors resulted from rotating ŝ(u) via rotations along all possible paths of length

t from u to v. Since G is consistent, the rotated vectors arrive at v via different

paths are positive multiples of the same vector. Also the rotations maintain the

2-norm of vectors. Thus,
‖p̂(v)‖2
‖ŝ(u)‖2

is simply the probability that a random walk in

G arriving at v from u after t steps. The theorem follows.
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2.3 Connection PageRank and Connection Re-

sistance

2.3.1 Connection PageRank

The PageRank vector is based on random walks. Here we consider a lazy

walk on G with the transition probability matrix Z = I+P
2

. In [5], a PageRank

vector prα,s is defined by a recurrence relation involving a seed vector s (as a

probability distribution) and a positive jumping constant α < 1 (or transportation

constant). Namely, prα,s = αs+ prα,s(1− α)Z.

For the connection graph G, the PageRank vector p̂rα,ŝ : V → Rd is defined

by the same recurrence relation involving a seed vector ŝ : V → Rd and a positive

jumping constant α < 1:

p̂rα,ŝ = αŝ+ (1− α)p̂rα,ŝZ

where Z = 1
2

(Ind×nd + P) is the transition probability matrix of a lazy random walk

on G. An alternative definition of the PageRank vector is the following geometric

sum of random walks:

p̂rα,ŝ = α
∞∑
t=0

(1− α)t ŝ Zt = αŝ+ (1− α)p̂rα,ŝZ. (2.2)

By Theorem 2.2.4 and Equation (2.2), we here state the following useful fact

concerning PageRank vectors for a consistent connection graph.

Proposition 2.3.1. Suppose that a connection graph G is consistent. Then for

any u ∈ V , α ∈ (0, 1) and any function ŝ : V → Rd satisfying ‖ŝ(u)‖2 = 1 and

ŝ(v) = 0 for v 6= u, we have
∥∥p̂rα,ŝ(v)

∥∥
2

= prα,χu(v). Here, χu : V → R denotes

the characteristic function for the vertex u, so χu(v) = 1 for v = u, and χu(v) = 0

otherwise. In particular,
∑

v∈V

∥∥p̂rα,ŝ(v)
∥∥

2
= ‖prα,χu‖1 = 1.

Proof. Since function ŝ satisfies ‖ŝ(u)‖2 = 1 and ŝ(v) = 0 for v 6= u, by Theorem

2.2.4, for a fixed v ∈ V , [ŝZt](v) are all equal to each other for all t > 0. By the
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geometric sum expression of PageRank vector, we have

∥∥p̂rα,ŝ(v)
∥∥

2
=

∥∥∥∥∥α
∞∑
t=0

(1− α)t [ŝZt](v)

∥∥∥∥∥
2

= α

∞∑
t=0

(1− α)t
∥∥[ŝZt](v)

∥∥
2

= α

∞∑
t=0

(1− α)t [χuZ
t](v)

= prα,χu(v).

Thus, ∑
v∈V

∥∥p̂rα,ŝ(v)
∥∥

2
= ‖prα,χu‖1 = 1.

We will call such a PageRank vector p̂rα,ŝ a connection PageRank vector

on u.

We next examine the problem of efficiently computing connection PageRank

vectors. For graphs, an efficient sublinear algorithm is given in [11], in which

PageRank vectors are approximated by realizing random walks of some bounded

length. We here develop a version of their algorithm to apply to connection graphs.

Our proof follows the template of their analysis, but uses the connection random

walk.

For our analysis of the algorithm, we will need the following well known

concentration inequalities.

Lemma 2.3.2. (Multiplicative Chernoff Bounds) Let Xi be i.i.d. Bernoulli random

variable with expectation µ each. Define X =
∑n

i=1Xi. Then

• For 0 < λ < 1, Pr(X < (1− λ)µn) < exp(−µnλ2/2).

• For 0 < λ < 1, Pr(X > (1 + λ)µn) < exp(−µnλ2/4).

• For λ ≥ 1, Pr(X > (1 + λ)µn) < exp(−µnλ/2).

Theorem 2.3.3. Let G = (V,E,O,w) be a connection graph and fix a vertex

v ∈ V . Let 0 < ε < 1 be an additive error parameter, 0 < ρ < 1 a multiplicative
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p̂ = ApproximatePR1(v, ŝ, α, ε, ρ)

1. Initialze p̂ = 0 and set k = log 1
1−α

(4
ε
) and r = 1

ερ2
32d log(n

√
d).

2. For r times do:

a. Run one realization of the lazy random walk on G starting at

the vertex v : At each step, with probablilty α, take a

‘termination’ step by returning to v and terminating, and with

probability 1− α, randomly choose among the neighbors of the

current vertex. At each step in the random walk, rotate ŝ(v)

by the rotation matrix along the edge. The walk is artificially

stopped after k steps if it has not terminated already.

b. If the walk visited a node u just before making a termination

step, then set p̂(u) = p̂(u) + ŝ(v)
∏j

i=1Ovivi+1
, where

(v = v1, v2, ..., vj−1, vj = u) is the path taken in the random

walk.

3. Replace p̂ with 1
r
p̂.

4. Return p̂.



22

approximation parameter, and 0 < α < 1 a teleportation probablilty. Let ŝ : V →
Rd be a function satisfying ||ŝ(v)||2 = 1 and ŝ(u) = 0 for u 6= v. Then with

probablility at least 1−Θ
(

1
n2

)
, the algorithm ApproximatePR1 produces a vector p̂

that satisfies ∥∥p̂(u)− p̂rα,ŝ(u)
∥∥

2
< ρ

∥∥p̂rα,ŝ(u)
∥∥

2
+
ε

4

for vertices u of V for which
∥∥p̂rα,ŝ(u)

∥∥
2
≥ ε

4
, and satisfying ‖p̂(u)‖2 < ε

2
for

vertices u for which
∥∥p̂rα,ŝ(u)

∥∥
2
≤ ε

4
. The running time of the algorithm is

O
(
d3 log(n

√
d) log(1/ε)

ερ2 log(1/(1−α))

)
.

Proof. We have from Equation 2.2 that

p̂rα,ŝ = αŝ
∞∑
t=0

(1− α)tZt.

We observe the the tth term in this sum is the contribution to the PageRank vector

given by the walks of length t. We will approximate this by looking at walks of

length at most k. Define

p̂
(k)
α,ŝ = αŝ

k∑
t=0

(1− α)tZt.

We then observe that by choosing k large enough so that (1 − α)k < ε
4
, we have∥∥∥p̂rα,ŝ − p̂

(k)
α,ŝ

∥∥∥
2
< ε

4
. The choice of k = log 1

1−α
(4
ε
) will guarantee this.

The output of the algorithm p̂ gives an approximation to p̂
(k)
α,ŝ by realizing

walks of length at most k. The algorithm does so by taking the average count over

1
ερ2

32d log(n
√
d) trials. Note that p̂

(k)
α,ŝ(u) is the expected value of the contribution

of an instance of the random walk of length k. We will take an arbitrary entry of

p̂(u), say p̂(u)(j), and compare it to p̂
(k)
α,ŝ(u)(j). Assuming that for at least one j

we have p̂
(k)
α,ŝ(u)(j) > ε/4d, then we get by the multiplicative Chernoff bound that

Pr
(
p̂(u)(j) < (1 + ρ)p̂

(k)
α,ŝ(u)(j)

)
< exp(−2 log(n

√
d))

and

Pr
(
p̂(u)(j) < (1− ρ)p̂

(k)
α,ŝ(u)(j)

)
< exp(−2 log(n

√
d)).

which implies

Pr
(
|p̂(u)(j)− p̂(k)

α,ŝ(u)(j)| > ρp̂
(k)
α,ŝ(u)(j)

)
< 2 exp(−2 log(n

√
d)).
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Note that this difference will be the same for all the entries of p̂(u), therefore,

Pr
(∥∥∥p̂(u)− p̂(k)

α,ŝ(u)
∥∥∥

2
> ρ

∥∥∥p̂(k)
α,ŝ(u)

∥∥∥
2

)
< 2d exp(−2 log(n

√
d)) =

2

n2
.

In a similar manner, if p̂
(k)
α,ŝ(u)(j) ≤ ε

4d
then by the Chernoff bound

Pr
(
p̂(u)(j) >

ε

2d

)
< exp

(
−2 log(n

√
d)
)
,

so Pr
(
‖p̂(u)‖2 >

ε
2

)
< d exp

(
−2 log(n

√
d)
)

= 1
n2 .

For the running time, note that the algorithm performs 1
ερ2

32d log(n
√
d)

rounds, where each round simulates a walk of length at most log 1
1−α

(4
ε
), where

each walk multiplies ŝ(v) by the d × d rotation matrices. Thus the running time

is O
(
d3 log(n

√
d) log(1/ε)

ερ2 log(1/(1−α))

)
.

We remark that there is another algorithm that computes an approximate

PageRank vector called ApproximatePR that has a different type of error bound.

The specifics of the algorithm as well as its run-time analysis can be found in [16]

and a version for connection graphs is found in [59]. For completeness, we will

state their algorithm here, as well as the theorem providing its analysis, as this

algorithm will be used in the next chapter. For the algorithm we need the following

subroutine called Push and Lemma 2.3.4.

Push(u, α) :

Let p̂′ = p̂ and r̂′ = r̂, except for these changes:

1. Let p̂′(u) = p̂(u) + αr̂(u) and r̂′(u) = 1−α
2
r̂(u).

2. For each vertex v such that (u, v) ∈ E:

r̂′(v) = r̂(v) +
(1− α)wuv

2du
r̂(u) Ouv.

Lemma 2.3.4. Let p̂′ and r̂′ denote the resulting vectors after performing operation

Push(u) with p̂ and r̂. Then p̂′ + p̂rα,r̂′ = p̂+ p̂rα,r̂.
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(p̂, r̂) = ApproximatePR(ŝ, α, ε)

1. Let p̂(v) = 0 and r̂(v) = ŝ(v) for all v ∈ V .

2. While ‖r̂(u)‖2 ≥ εdu for some vertex u:

Pick any vertex u where ‖r̂(u)‖2 ≥ εdu and apply operation

Push(u, α).

3. Return p̂ and r̂.

Theorem 2.3.5. For a vector ŝ with
∑

v∈V ‖ŝ(v)‖2 ≤ 1, and a constant 0 < ε < 1,

the algorithm ApproximatePR(ŝ, α, ε) computes an approximate PageRank vector

p̂ = p̂rα,ŝ−r̂ such that the residual vector r̂ satisfies
‖r̂(v)‖2
dv
≤ ε, for all v ∈ V and∑

v:‖p̂(v)‖2>0 dv ≤
1
εα

. The running time for the algorithm is O
(
d2

εα

)
.

2.3.2 Connection Resistance

Motivated by the definition of effective resistance in electrical network the-

ory, we consider the following block matrix Ψ = BL+
GBT ∈ F(m,m, d; R) where

L+ is the pseudo-inverse of L. Note that for a matrix M , the pseudo-inverse of M

is defined as the unique matrix M+ satisfying the following four criteria [25, 41]:

(i) MM+M = M ; (ii) M+MM+ = M+; (iii) (MM+)∗ = (MM+); and (iv)

(M+M)∗ = M+M .

We define the connection resistance Reff(e) as Reff(v, u) = ‖Ψ(e, e)‖2. Note

that block Ψ(e, e) is a d × d matrix. We will show that in the case that the con-

nection graph G is consistent Reff(u, v) is reduced to the usual effective resistance

Reff(u, v) of the underlying graph G. In general, if the connection graph is not con-

sistent, the connection resistance is not necessarily equal to its effective resistance

in the underlying graph G.

Our first observation is the following Lemma.

Lemma 2.3.6. Suppose G is a consistent connection graph, where the underlying

graph is connected. For two vertices u, v of G, let puv = (v1 = u, v2, ..., vk = v)



25

be any path from u to v in G. Define Opuv =
k−1∏
j=1

Ovjvj+1
. Let L be the connection

Laplacian of G and L be the discrete Laplacian of G respectively. Then

L+(u, v) =

L+(u, v)Opuv i 6= j,

L+(u, v)Id×d i = j.

Proof. We first note that the matrix Opuv is well-defined since G is consistent.

Also note that if u and v are adjacent, then Opuv = Ouv. Also observe that for

L(u, v) = L(u, v)Opuv since if uv is not an edge, L(u, v) = 0, and if u, v is an edge,

Opuv = Ouv. To verify L+ is the pseudoinverse of L, we just need to verify that

L+(u, v) satisfies all of the four criteria above.

To see (i) LL+L = L, we consider two vertices u and v and note that

(LL+L)(u, v) =
∑
x,y

L(u, x)L+(x, y)L(y, v)

=
∑
x,y

L(u, x)L+(x, y)L(y, v)OpuxOpxyOpyv

=
∑
x,y

L(u, x)L+(x, y)L(y, v)Opuv

where the last equality follows by consistency. Since L+ is the pseudoinverse of L,

we also have LL+L = L which implies that

L(u, v) =
∑
x,y

L(u, x)L+(x, y)L(y, v).

Thus,

(LL+L)(u, v) = L(u, v)Opuv = L(u, v)

and the verification of (i) is completed.

The verification of (ii) is quite similar to that of (i), and we omit it here.

To see (iii) (LL+)∗ = (LL+), we also consider two fixed vertices vi and vj.

Note that

(LL+)(u, v) =
∑
x

L(u, x)L+(x, v)

=
∑
x

L(u, x)L+(x, v)OpuxOpxv

=
∑
x

L(u, x)L+(x, v)Opuv .
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On the other side,

(LL+)(v, u) =
∑
x

L(v, x)L+(x, u)Opvu

=
∑
x

L(v, x)L+(x, u)OT
puv .

Since L+ is the pseudoinverse of L, we also have (LL+)∗ = LL+ which implies that∑
x

L(u, x)L+(x, v) =
∑
x

L(v, x)L+(x, u)

and thus (LL+)∗ = (LL+).

The verification of (iv) (L+L)∗ = L+L is also similar to (iii), and we omit

it here. For all above, the lemma follows.

By using the above lemma, we examine the relation between the connection

resistance and the effective resistance for a consistent connection graph by the

following theorem.

Theorem 2.3.7. Suppose G = (V,E,O,w) is a consistent connection graph whose

underlying graph G is connected. Then for any edge (u, v) ∈ G, we have

Reff(u, v) = Reff(u, v).

Proof. Let L be the connection Laplacian of G and L the Laplacian of the under-

lying graph G. Let us fix an edge e = (u, v) ∈ G. By the definition of effective

resistance, Reff(u, v) is the maximum eigenvalue of the following matrix

Ψ(e, e) =
[
Ovu −Id×d

] [ L+(u, u) L+(u, v)

L+(v, u) L+(v, v)

][
Ouv

−Id×d

]

where Ouv is the rotation from u to v. By Lemma 2.3.6, we have

L+(u, u) = L+(u, u)Id×d,

L+(u, v) = L+(u, v)Opuv ,

L+(v, v) = L+(v, v)Id×d,

L+(v, u) = L+(v, u)Opvu = L+(u, v)Opvu .
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Thus, by the definition of matrix Ψ,

Ψ(e, e) =
(
L+
u,u + L+

v,v

)
Id×d − L+

u,v (OpvuOuv +OvuOpuv) .

Note that OpuvOvu = OuvO
T
uv = I and similarly OvuOpvu = I, so

Ψ(e, e) =
(
L+(u, u) + L+(v, v)− 2L+(u, v)

)
Id×d.

Note that (L+(u, u) +L+(v, v)− 2L+(u, v)) is exactly the effective resistance of e,

so

‖Ψ(e, e)‖2 = L+(u, u) + L+(v, v)− 2L+(u, v) = Reff(u, v).

Thus, the theorem is proved.

2.4 Sparsification and Noise Reduction

2.4.1 Edge Ranking Using Effective Resistance

A central part of a graph sparsification algorithm is the sampling technique

for selecting edges. It is crucial to choose the appropriate probabilistic distribution

which can lead to a sparsifier preserving every cut in the original graph. In [50],

the measure of how well the sparsifier preserves the cuts is given according to

how well the sparsifier preserves the spectral properties of the original graph. We

follow the template of [50] to present a sampling algorithm that will accomplish

this. The following algorithm Sample is a generic sampling algorithm for a graph

sparsification problem. We will sample edges using the distribution proportional

to the weighted connection resistances.

Theorem 2.4.1. For a given connection graph G and some positive ξ > 0, we

consider G̃ = Sample(G, p′, q), where p′e = weReff(e) and q = 4nd(log(nd)+log(1/ξ))
ε2

.

Suppose G and G̃ have connection Laplacian LG and LG̃ respectively. Then with

probability at least 1− ξ, for any function f : V → Rd, we have

(1− ε)fLGf
T ≤ fLG̃f

T ≤ (1 + ε)fLGf
T . (2.3)

Before proving Theorem 2.4.1, we need the following two lemmas, in par-

ticular concerning the matrix Λ = W1/2BL+
GBTW1/2.
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(G̃ = (V, Ẽ, O, w̃)) = Sample(G = (V,E,O,w), p′, q)

1. For every edge e ∈ E, set pe proportional to p′e.

2. Choose a random edge e of G with probability pe, and add e to G̃
with edge weight w̃e = we

qpe
.

Take q samples independently with replacement, summing weights

if an edge is chosen more than once.

3. Return G̃.

Lemma 2.4.2. The matrix Λ is a projection matrix, i.e. Λ2 = Λ.

Proof. Observe that

Λ2 = (W1/2BL+
GB

TW1/2)(W1/2BL+
GB

TW1/2)

= W1/2BL+
GLGL+

GB
TW1/2

= W1/2BL+
GB

TW1/2

= Λ.

Thus, the lemma follows.

To show that G̃ = (V, Ẽ, O, w̃) is a good sparsifier for G satisfying (2.3), we

need to show that the quadratic forms fLG̃f
T and fLGf

T are close. By applying

similar methods as in [50], we reduce the problem of preserving fLGf
T to that

of gΛgT for some function g. We consider a diagonal matrix S ∈ F(m,m, d; R),

where the diagonal blocks are scalar matrices given by S(e, e) = w̃e
we
Id×d = Ne

qpe
Id×d

and Ne is the number of times an edge e is sampled.

Lemma 2.4.3. Suppose S is a nonnegative diagonal matrix such that ‖ΛSΛ− ΛΛ‖2 ≤
ε. Then, ∀f : V → Rd, (1 − ε)fLGf

T ≤ fLG̃f
T ≤ (1 + ε)fLGf

T , where LG̃ =

BTW1/2SW1/2B.

Proof. The assumption is equivalent to

sup
f∈Rmd,f 6=0

∣∣fΛ(S− I)ΛfT
∣∣

ffT
≤ ε
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Restricting our attention to vectors in im
(
BTW1/2

)
,

sup
f∈im(BTW1/2),f 6=0

∣∣fΛ(S− I)ΛfT
∣∣

ffT
≤ ε

Since Λ is the identity on im
(
BTW1/2

)
, fΛ = f for all f ∈ im

(
BTW1/2

)
. Also,

every such f can be written as f = gBTW1/2 for g ∈ Rnd. Thus,

sup
f∈im(BTW1/2),f 6=0

∣∣fΛ(S− I)ΛfT
∣∣

ffT

= sup
f∈im(BTW1/2),f 6=0

∣∣f(S− I)fT
∣∣

ffT

= sup
g∈Rnd,gBTW1/2 6=0

∣∣gBTW1/2SW1/2BgT − gBTWBgT
∣∣

gBTWBgT

= sup
g∈Rnd,gBTW1/2 6=0

∣∣gLG̃g
T − gLGg

T
∣∣

gLGgT
≤ ε

Rearranging yields the desired conclusion for all g ∈ Rnd.

We also require the following concentration inequality in order to prove

our main theorems. Previously, various matrix concentration inequalities have

been derived by many authors including Achiloptas [1], Cristofies-Markström [20],

Recht [42], and Tropp [53]. Here we will use the simple version that is proved in

[54].

Theorem 2.4.4. Let X1, X2, . . . , Xq be independent symmetric random k× k ma-

trices with zero means, Sq =
∑

iXi, ‖Xi‖2 ≤ 1 for all i a.s. Then for every t > 0

we have

Pr
[
‖Sq‖2 > t

]
≤ kmax

(
exp

(
− t2

4
∑

i ‖Var (Xi)‖2

)
, exp

(
− t

2

))
.

A direct consequence of Theorem 2.4.4 is the following corollary.

Corollary 2.4.5. Suppose X1, X2, . . . , Xq are independent random symmetric k×k
matrices satisfying

1. for all 1 ≤ i ≤ q, ‖Xi‖2 ≤M a.s.,
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2. for all 1 ≤ i ≤ q, ‖Var (Xi)‖2 ≤M ‖E [Xi]‖2.

Then for any ε ∈ (0, 1) we have

Pr

[∥∥∥∥∥∑
i

Xi −
∑
i

E [Xi]

∥∥∥∥∥
2

> ε
∑
i

‖E [Xi]‖2

]
≤ k exp

(
−ε

2
∑

i ‖E [Xi]‖2

4M

)
.

Proof. Let us consider the following independent random symmetric matrices

Xi − E [Xi]

M

for 1 ≤ i ≤ q. Clearly they are independent symmetric random k × k matrices

with zero means satisfying ∥∥∥∥Xi − E [Xi]

M

∥∥∥∥
2

≤ 1

for 1 ≤ i ≤ q. Also we note that

Var

(
Xi − E [Xi]

M

)
= Var

(
Xi

M

)
=

Var (Xi)

M2
.

Thus, by applying the Theorem 2.4.4 we have

Pr

[∥∥∥∥∑iXi − E [Xi]

M

∥∥∥∥
2

> t

]
= Pr

[∥∥∥∥∥∑
i

Xi −
∑
i

E [Xi]

∥∥∥∥∥
2

> tM

]

≤ kmax

(
exp

(
− t2M2

4
∑

i ‖Var (Xi)‖2

)
, exp

(
− t

2

))
. (2.4)

Note that by condition (2) we obtain∑
i

‖Var (Xi)‖2 ≤M
∑
i

‖E [Xi]‖2 .

Thus if we set

t =
ε
∑

i ‖E [Xi]‖2

M
,

the left term in the right hand side of Equation (2.4) can be bounded as follows.

t2M2

4
∑q

i=1 ‖Var (Xi)‖2

≥ (ε
∑q

i=1 ‖E [Xi]‖2)
2

4M
∑q

i=1 ‖E [Xi]‖2

=
ε2
∑q

i=1 ‖E [Xi]‖2

4M
.

Thus, the corollary follows.
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Proof (of Theorem 2.4.1). Our algorithm samples edges from G independently with

replacement, with probabilities pe proportional to weReff(e). Note that sampling q

edges from G corresponds to sampling q columns from Λ. So we can write

ΛSΛ =
∑
e

Λ(·, e)S(e, e)Λ(·, e)T =
∑
e

Ne

qpe
Λ(·, e)Λ(·, e)T =

1

q

q∑
i=1

yiy
T
i

for block matrices y1, . . . , yq ∈ Rnd×d drawn independently with replacements from

the distribution y = 1√
pe

Λ(·, e) with probability pe. Now, we can apply Corollary

2.4.5. The expectation of yyT is given by E
[
yyT
]

=
∑

e pe
1
pe

Λ(·, e)Λ(·, e)T = Λ

which implies that
∥∥E [yyT ]∥∥

2
= ‖Λ‖2 = 1. We also have a bound on the norm of

yiy
T
i :
∥∥yiyTi ∥∥2

≤ maxe

(
‖Λ(·,e)TΛ(·,e)‖

2

pe

)
= maxe

(
weReff(e)

pe

)
. Since the probability pe

is proportional to weReff(e), i.e. pe = weReff(e)∑
e weReff(e)

=
‖Λ(e,e)‖2∑
e‖Λ(e,e)‖2

, we have
∥∥yiyTi ∥∥2

≤∑
e ‖Λ(e, e)‖2 ≤

∑
e Tr (Λ(e, e)) = Tr (Λ) ≤ nd. To bound the variance observe

that ∥∥Var (yyT )∥∥
2

=
∥∥∥E [yyTyyT ]− (E [yyT ])2

∥∥∥
2

≤
∥∥E [yyTyyT ]∥∥

2
+
∥∥∥(E [yyT ])2

∥∥∥
2
.

Since the second term of the right hand of above inequality can be bounded by∥∥∥(E [yyT ])2
∥∥∥

2
=

∥∥Λ2
∥∥

2
(as property (1))

= ‖Λ‖2

= 1,

it is sufficient to bound the term
∥∥E [yyTyyT ]∥∥

2
. By the definition of expectation,

we observe that

∥∥E [yyTyyT ]∥∥
2

=

∥∥∥∥∥∑
e

pe
1

p2
e

Λ(·, e)Λ(·, e)TΛ(·, e)Λ(·, e)T
∥∥∥∥∥

2

=

∥∥∥∥∥∑
e

1

pe
Λ(·, e)Λ(e, e)Λ(·, e)T

∥∥∥∥∥
2

.
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This implies that∥∥E [yyTyyT ]∥∥
2

= max
f∈im(W1/2B)

∑
e

1

pe

fTΛ(·, e)Λ(e, e)Λ(·, e)Tf
fTf

= max
f∈im(W1/2B)

∑
e

1

pe

fTΛ(·, e)Λ(e, e)Λ(·, e)Tf
fTΛ(·, e)Λ(·, e)Tf

fTΛ(·, e)Λ(·, e)Tf
fTf

≤ max
f∈im(W1/2B)

∑
e

‖Λ(e, e)‖2

pe

fTΛ(·, e)Λ(·, e)Tf
fTf

.

Recall that the probability pe is proportional to weReff(e), i.e.

pe =
weReff(e)∑
eweReff(e)

=
‖Λ(e, e)‖2∑
e ‖Λ(e, e)‖2

,

we have

∥∥E [yyTyyT ]∥∥
2
≤

∑
e

‖Λ(e, e)‖2

(
max

f∈im(W1/2B)

∑
e

fTΛ(·, e)Λ(·, e)Tf
fTf

)
=

∑
e

‖Λ(e, e)‖2 ‖Λ‖2

=
∑
e

‖Λ(e, e)‖2

≤
∑
e

Tr (Λ(e, e))

= Tr (Λ)

≤ nd.

Thus, ∥∥Var (yyT )∥∥
2
≤ nd+ 1 ≤ 2nd

∥∥E [yyT ]∥∥
2
.

To complete the proof, by setting q = 4nd(log(nd)+log(1/ξ))
ε2

and the fact that

dimension of yyT is nd, we have

Pr

[∥∥∥∥∥1

q

q∑
i=1

yiy
T
i − E

[
yyT
]∥∥∥∥∥

2

> ε

]
≤ nd exp

(
−
ε2
∑q

i=1

∥∥E [yiyTi ]∥∥2

4nd

)

≤ nd exp

(
− ε

2q

4nd

)
≤ ξ
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for some constant 0 < ξ < 1. Thus, the theorem follows.

In [36], a modification of the algorithm from [50] is presented. The over-

sampling Theorem in [36] can further be modified for connection graphs and stated

as follows.

Theorem 2.4.6 (Oversampling). For a given connection graph G and some pos-

itive ξ > 0, we consider G̃ = Sample(G, p′, q), where p′e = weReff(e), t =
∑

e∈E p
′
e

and q = 4t(log(t)+log(1/ξ))
ε2

. Suppose G and G̃ have connection Laplacian LG and LG̃

respectively. Then with probability at least 1 − ξ, for all f : V → Rd, we have

(1− ε)fLGf
T ≤ fLG̃f

T ≤ (1 + ε)fLGf
T .

Proof. In the proof of Theorem 2.4.1, the key is the bound on the norm
∥∥yiyTi ∥∥2

.

If p′e ≥ weReff(e), the norm
∥∥yiyTi ∥∥2

is bounded by
∑

e∈E p
′
e. Thus, the theorem

follows.

Now let us consider a variation of the connection resistance denoted by

Reff(e) = Tr (Ψ(e, e)). Clearly, we have Reff(e) = Tr (Ψ(e, e)) ≥ ‖Ψ(e, e)‖2 =

Reff(e) and
∑

eweReff(e) =
∑

e Tr (Λ(e, e)) = Tr (Λ) ≤ nd. Using Theorem 2.4.6,

we have the following.

Corollary 2.4.7. For a given connection graph G and some positive ξ > 0, we

consider G̃ = Sample(G, p′, q), where p′e = weReff(e) and q = 4nd(log(nd)+log(1/ξ))
ε2

.

Suppose G and G̃ = Sample(G, p′, q) have connection Laplacian LG and LG̃ re-

spectively. Then with probability at least 1-ξ, for all f : V → Rd, we have

(1− ε)fLGf
T ≤ fLG̃f

T ≤ (1 + ε)fLGf
T .

We note that edge ranking can be accomplished using the quantities known

as Green’s values, which generalize the notion of effective resistance by allowing a

damping constant. An edge ranking algorithm for graphs using Green’s values was

studied extensively in [16]. Here we will define a generalization of Green’s values

for connection graphs.

For i = 0, ..., nd − 1, let φ̂i be the ith eigenfunction of the normalized

connection Laplacian D−1/2LD−1/2 corresponding to eigenvalue λi. Define

Gβ =
nd−1∑
i=0

1

λi + β
φ̂Ti φ̂i.
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We remark that Gβ can be viewed as a generalization of the pseudo-inverse of

the normalized connection Laplacian. Define the PageRank vector with a jumping

constant α as the solution to the equation

p̂rβ,ŝ =
β

2 + β
ŝ+

2

2 + β
p̂rβ,ŝZ.

with β = 2α/(1 − α). These PageRank vectors are related to the matrix Gβ via

the following formula that is straightforward to check,

p̂rβ,ŝ
β

= sD−1/2GβD1/2.

Now for each edge e = {u, v} ∈ E, we define the connection Green’s value ĝβ(u, v)

of e to be the following combination of PageRank vectors:

ĝβ(u, v) = β(χu − χv)D−1/2GβD−1/2(χu − χv)T

=
p̂rβ,χu(u)

du
−

p̂rβ,χu(v)

dv
+

p̂rβ,χv(v)

dv
−

p̂rβ,χv(u)

du
.

This gives an alternative to the effective resistance as a technique for ranking

edges. It could be used in place of the effective resistance in the edge sparsification

algorithm.

2.4.2 Noise Reduction in Connection Graphs

In forming a connection graph, the possibility arises of there being erroneous

data or errors in measurments, or other forms of “noise.” This may be manifested

in a resulting connection graph that is not consistent, where it is expected that

it would be. It is therefore desirable to be able to identify edges whose rotations

are causing the connection graph to be inconsistent. We propose that a possible

solution to this problem is to randomly delete edges of high rank in the sense of

the edge ranking. In this section we will obtain bounds on the eigenvalues of the

connection Laplacian resulting from the deletion of edges of high rank. This will

have the effect of reducing the smallest eigenvalue, thus making the connection

graph “closer” to being consistent, as seen in Theorem 2.2.2.

To begin, we will derive a result on the spectrum of the connection Laplacian

analogous to the result of Chung and Radcliffe in [15] on the adjacency matrix of

a random graph.
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Theorem 2.4.8. Let G be a given fixed connection graph with Laplacian L. Delete

edges ij ∈ E(G) with probability pij. Let Ĝ be the resulting connection graph, and

L̂ its connection Laplacian, and L = E(L̂). Then for ε ∈ (0, 1), with probability at

least 1− ε
|λi(L̂)− λi(L)| ≤

√
6∆ ln(2nd/ε)

where ∆ is the maximum degree, assuming ∆ ≥ 2
3

ln(2nd/ε).

To prove this we need the concentration inequality from [15].

Lemma 2.4.9. Let X1, ...Xm be independent random n × n Hermitian matrices.

Moreover, assume that ‖Xi − E(Xi)‖2 ≤M for all i, and put v2 = ‖
∑

Var (Xi)‖2.

Let X =
∑
Xi. Then for any a > 0,

Pr(‖X − E(X)‖2 > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
.

Proof of Theorem 2.4.8. Our proof follows ideas from [15]. For ij ∈ E(G)

define Aij to be the matrix with the rotation Oij in the i, j position, and Oji = OT
ij

in the j, i position, and 0 elsewere. Define random variables hij = 1 if the edge

ij is deleted, and 0 otherwise. Let Aii be the diagonal matrix with Id×d in the

ith diagonal position and 0 elsewere. Then note that L̂ = L +
∑

i,j∈E hijAij −∑n
i=1

∑
j∼i hijAii and L = L +

∑
i,j∈E pijAij −

∑n
i=1

∑
j∼i pijAii, therefore

L̂− L =
∑
i,j∈E

(hij − pij)Aij −
n∑
i=1

∑
j∼i

(hij − pij)Aii

To use Lemma 2.4.9 we must compute the variances. We have

Var
(
(hij − pij)Aij

)
= E

(
(hij − pij)2(Aij)2

)
= Var (hij − pij) (Aii + Ajj)

= pij(1− pij)(Aii + Ajj)

and in a similar manner

Var
(
(hij − pij)Aii

)
= pij(1− pij)Aii.



36

Therefore

v2 =

∥∥∥∥∥∑
i,j∈E

pij(1− pij)(Aii + Ajj) +
n∑
i=1

∑
i∼j

pij(1− pij)Aii

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
n∑
i=1

(
n∑
j=1

pij(1− pij)

)
Aii

∥∥∥∥∥
2

= 2 max
i

n∑
j=1

pij(1− pij)

≤ 2 max
i

n∑
j=1

pij ≤ 2∆.

Each Aij clearly has norm 1, so we can take M = 1. Therefore by Lemma 2.4.9,

taking a =
√

6∆ ln(2nd/ε), we see that

Pr
(∥∥∥L̂− L

∥∥∥
2
> a
)
≤ 2nd exp

(
− a2

2v2 + 2Ma/3

)
≤ 2nd exp

(
−6∆ ln(2nd/ε)

6∆

)
= ε

By a consequence of Weyl’s Theorem (see, for example, [28]), since L̂ and L are

Hermitian, we have
∣∣∣λi(L̂)− λi(L)

∣∣∣ ≤ ∥∥∥L̂− L
∥∥∥

2
. The result then follows.

We now present an algorithm to delete edges of a connection graph with

the goal of decrerasing the smallest eigenvalue of the connection Laplacian.

(H = (V,E ′, O, w′)) = ReduceNoise(G = (V,E,O,w), p′, q, α)

1. Select q edges in q rounds. In each round one edge is selected.

effective resistence. Then the chosen edge is assigned a weight

w′e = we/(qpe).

2. Delete αq = q′ edges in q′ rounds. In each round one edge is

deleted. Each edge e is chosen with probability p′e proportional to

the weight w′e.

3. Return H, the connection graph resulting after the edges are

deleted.
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Our analysis of this algorithm will combine Theorem 2.4.1 and Theorem

2.4.8. Given a connection graph G, define λG to be the smallest eigenvalue of its

conncection Laplacian.

Theorem 2.4.10. Let ξ, ε, δ ∈ (0, 1) be given. Given a connection graph G with

m edges, m > q = 4nd(log(nd)+log(1/ξ))
ε2

, α <, let H be the connection graph resulting

from the ReduceNoise algorithm. Then with probability at least (1 − ξ)(1 − δ) the

subgraph H satisfies

λH ≤ (1− α + ε)λG +
√

6∆ ln(2nd/δ)

provided the maximum degree ∆ satisfies ∆ ≥ 2
3

ln(2nd/δ).

Proof. We first note that with ξ, ε, and q as specified, the edge selection procedure

described in step 1 of the algorithm is the same procedure as described in the

algorithm Sample and in Theorem 2.4.1. Let G̃ be the weighted graph resulting

from the edge selection, and let LG̃ be its connection Laplacian. Then by Theorem

2.4.1 we know that with probability at least ξ, for any f : V → Rd we have

(1− ε)fLGf
T ≤ fLG̃f

T ≤ (1 + ε)fLGf
T . (2.5)

Now let H be the connection graph resulting after the deletion process in

step 2 of the algorithm, and let LH be its connection Laplacian. We note the H is a

random conncetion graph resulting from the deletion of edges of a fixed connection

graph, as described in Theorem 2.4.8. Let LH be the matrix of expected values of

the entries of LH, LH = E(LH). Note that the deletion procedure deletes αq of the

q edges from G̃ with probability proportional to the weight on each edge, so that

the expected value LH = LG − αLG̃. From equation 2.5 it follows that

fLGf
T − (1 + ε)αfLGf

T ≤ f(LG − αLG̃)fT ≤ fLGf
T − (1− ε)αfLGf

T

and thus

fLGf
T − (1 + ε)αfLGf

T ≤ fLHf
T ≤ fLGf

T − (1− ε)αfLGf
T .

In particular, it follows that

fLHf
T

ffT
≤ (1− α + ε)

fLGf
T

ffT
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for any f : V → Rd, and therefore that

λ0(LH) ≤ (1− α + ε)λ0(LG).

Finally, by Theorem 2.4.8, we have, given any δ > 0, with probability at least

ξ(1− δ),
λH < (1− α + ε)λG +

√
6∆ ln(2nd/δ).
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Chapter 3

A Clustering Algorithm for

Connection Graphs

3.1 Introduction

For high dimensional data sets, a central problem is to uncover lower di-

mensional structures in spite of possible errors or noises. An approach for reducing

the effect of errors is to consider the notion of inconsistency, which quantifies the

difference of accumulated rotations while traveling along distinct paths between

two vertices. In many applications, it is desirable to identify edges causing the

inconsistencies, or to identify portions of the graph that have relatively small in-

consistency. In [17], an algorithm is given, utilizing a version of effective resistance

from electrical network theory, that deletes edges of a connection graph in such a

way that reduces inconsistencies. In this paper, rather than deleting edges, our

focus is on identifying subsets of a connection graph with small inconsistency. The

notion of ε-consistency of a subset of the vertex set of a connection graph will be

introduced, which quantifies the amount of inconsistency for the subset to within

an error ε. This can be viewed as a generalization of the notion of consistency.

One of the major problems in computing is to design efficient clustering

algorithms for finding a good cut in a graph. That is, it is desirable to identify a

subset of the graph with small edge boundary in comparison to the overall volume

39
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of the subset. Many clustering algorithms have been derived including some with

quantitative analysis (e.g., [5, 6]). As we are looking for ε-consistent subsets, it

is natural that clustering and the Cheeger ratio should arise in examining local

subsets of a graph. In this paper, we will combine the clustering problem and the

problem of identifying ε-consistent subsets. In particular, we will give an algorithm

that uses PageRank vectors to identify a subset of a connection graph which has

a small cut, given that there is a subset with small cut that is ε-consistent.

The notion of PageRank was first introduced by Brin and Page [12] in 1998

for Google’s web search algorithms. It has since proven useful in graph theory

for quantifying relationships between vertices in a graph. Algorithms from [5] and

[6] utilize PageRank vectors to locally identify good cuts in a graph. In [17], a

vectorized version of PageRank is given for connection graphs. Here we use these

connection PageRank vectors in a manner similar to [6] to find good cuts under

the assumption of an ε-consistent subset.

3.2 Generalizing Consistency

We define the normalized connection Laplacian L̂ to be the operator on

F(V,Rd) given by

L̂ = D−1/2LD−1/2 = Ind×nd − D−1/2AD−1/2.

We remark that L and L̂ are symmetric, positive semi-definite matrices. Using the

Courant-Fischer Theorem (see, for example, [28]), we can investigate the eigenval-

ues of L̂ by examining the Rayleigh quotient

R(g) =
gL̂gT

ggT

where g : V → Rd is thought of as a 1 × nd row vector. Defining f = gD−1/2, we

see that

R(g) =
fLfT

fDfT
=

∑
(u,v)∈E

wuv ‖f(u)Ouv − f(v)‖2
2∑

v∈V
dv ‖f(v)‖2

2

.

It is not hard to see that R(f) ≤ 2. In particular, letting 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λnd

denote the eigenvalues of L̂, we see that λk ≤ 2 for all k.
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3.2.1 ε-consistency

For a connection graph G = (V,E,O,w), we say that G is consistent if

inf
f :V→Rd
‖f‖2=1

∑
(u,v)∈E

wuv‖f(u)Ouv − f(v)‖2
2 = 0.

As seen in the previous chapter, an equivalent definition for consistency is that

there exists a function f : V → Rd assigning a vector f(u) ∈ Rd to each vertex

u ∈ V such that for all edges uv ∈ E, f(v) = f(u)Ouv. Therefore for any two

vertices u, v in a consistent graph, any two distinct paths starting and ending at

u and v, P1 = (u = u1, u2, ..., uk = v) and P2 = (u = v1, v2, ..., vl = v), then the

product of rotations along either path is the same. That is,

k−1∏
i=1

Ouiui+1
=

l−1∏
j=1

Ovjvj+1
.

For any cycle C = (v1, v2, ..., vk, vk+1 = v1) of the underlying graph, the product of

rotations along the cycle C is the identity, i.e.
∏k

i=1 Ovivi+1
= Id×d.

For ease of notation, given a cycle C = (v1, v2, ..., vk, vk+1 = v1), define

OC =
∏k

i=1Ovivi+1
, and for a path joining distinct vertices u and v, Puv = (u =

v1, v2, ..., vk = v), define OPuv =
∏k−1

i=1 Ovivi+1
. Therefore consistency can be char-

acterized by saying OC = Id×d for any cycle C, or given any two vertices u and v

of G, then OPuv = OP ′uv for any two paths Puv, P
′
uv connecting u and v.

In this section, we will generalize the notion of consistency, and general-

ize the theorem from the previous chapter giving a spectral characterization of

consistency.

We say a connection graph G is ε-consistent if, for every simple cycle

C = (v1, v2, ..., vk, vk+1 = v1) of the underlying graph G, we have ‖OC − Id×d‖2 ≤ ε

where OC =
∏k

i=1Ovivi+1
. That is, the product of rotations along any cycle

is within ε of the identity in the 2-norm. An equivalent formulation is as fol-

lows. Given vertices u and v, and two distinct paths from u to v, P1 = (v1 =

u, v2, ...., vk = v) and P2 = (u1 = u, u2, ..., ul = v), define OP1 =
∏k−1

i=1 Ovivi+1
and

OP2 =
∏l−1

i=1 Ouiui+1
. Then G is ε-consistent if and only if ‖OP1 −OP2‖2 ≤ ε. This

follows from the observation that OC = OP1O
−1
P2

= OP1O
T
P2

and the fact that the
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2-norm of a rotation matrix is 1. For ease of notation, we will simply use ‖ · ‖ to

denote the `2 norm ‖ · ‖2.

We observe that the triangle inequality implies that any connection graph is

2-consistent, and that a consistent connection graph is 0-consistent. We generalize

the first part of the above mentioned result from [17] with the following theorem,

which bounds the d smallest eigenvalues of the normalized connection Laplacian

for an ε-consistent connection graph.

Theorem 3.2.1. Let G be an ε-consistent connection graph whose underlying graph

is connected. Let L̂ be the normalized connection Laplacian and let 0 ≤ λ1 ≤ · · · ≤
λnd be the eigenvalues of L̂. Then for i = 1, ..., d,

λi ≤
ε2

2
.

Proof. We will define a function f : V → Rd whose Rayleigh quotient will bound

the smallest eigenvalue. For a fixed vertex z ∈ V , we assign f(z) = x, where x is a

unit vector in Rd. Fix a spanning tree T of G, and define f to be consistent with T .

That is, for any vertex v of G assign f(v) as follows. Let Pzv = (z = v1v2...vk = v)

be the path from z to v in T . Then let f(v) = f(z)OPzv . Notice that ‖f(v)‖ = 1

for all v ∈ V . We will examine the Rayleigh quotient of this function. Notice that

for uv an edge of T , we have

‖f(u)Ouv − f(v)‖ = ‖f(v)− f(v)‖ = 0

by construction. For any other edge uv of G, consider the cycle obtained by taking

the path Pvu = (v = v1v2...vk = u) in T , and adding in the edge uv. Then by

construction of f and the ε-consistency condition, we have

‖f(u)Ouv − f(v)‖ = ‖f(v)OPvuOuv − f(v)‖

=

∥∥∥∥∥f(v)

(
k−1∏
i=1

Ovivi+1
Ovkv1 − I

)∥∥∥∥∥
≤ ε ‖f(v)‖ = ε.
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Therefore

λ1 ≤ R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v

dv||f(v)||2

≤

∑
(u,v)∈E

wuvε
2

∑
v

dv
=
ε2

2
.

The initial choice of the unit vector x ∈ Rd in the construction of f was arbitrary.

We thus have d orthogonal choices for the initial assignment of x, which leads to d

orthogonal functions satisfying this inequality. Therefore, by the Courant-Fischer

Theorem, λ1, ..., λd all satisfy this bound.

The following result concerns the second block of d eigenvalues of L̂ for

an ε-consistent connection graph, and gives an analog to the upper bound in the

Cheeger inequality.

Theorem 3.2.2. Let L̂ be the normalized connection Laplacian of the ε-consistent

connection graph G, with eigenvalues λ1 ≤ · · · ≤ λnd, and let hG denote the Cheeger

constant of the underlying graph. Then for i = d+ 1, ..., 2d,

λi ≤ 2hG +
ε2

2
.

Proof. Let f1, ..., fd be the orthogonal set of vectors defined in the proof of Theorem

3.2.1, each withR(f) ≤ ε2/2. Then ‖f(v)‖2 = 1 for all v. Given A ⊂ V and B = Ā,

define gi : V → Rd by

gi(v) =


1

volA
fi(v) for v ∈ A

− 1
volB

fi(v) for v ∈ B

For ease of notation we will simply write g and f for gi and fi. Note that if

both u, v ∈ A, then ‖g(u)Ouv − g(v)‖2 =
∥∥ 1

volA
f(u)Ouv − 1

volA
f(v)

∥∥2 ≤ 1
(volA)2

ε2.

Similarly, if both u, v ∈ B, ‖g(u)Ouv − g(v)‖2 ≤ 1
(volB)2

ε2. For u ∈ A and v ∈ B,

we have ‖g(u)Ouv − g(v)‖2 =
∥∥ 1

volA
f(u)Ouv + 1

volB
f(v)

∥∥2 ≤
(

1
volA

+ 1
volB

)2
by the

triangle inequality.
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Therefore

R(g) =

∑
(u,v)∈E

wuv‖g(u)Ouv − g(v)‖2

∑
v∈V
‖g(v)‖2dv

≤
1
2

volA 1
(volA)2

ε2 + 1
2

volB 1
(volB)2

ε2 +
(

1
volA

+ 1
volB

)2 |E(A,B)|∑
v∈A

1
(volA)2

dv +
∑
v∈B

1
(volB)2

dv

=
1
2
ε2
(

1
volA

+ 1
volB

)
+
(

1
volA

+ 1
volB

)2 |E(A,B)|
1

volA
+ 1

volB

≤ 1

2
ε2 + 2hG(A).

Therefore we have d orthogonal vectors g1, ..., gd satisfying this bound, each or-

thogonal to f1, ..., fd which clearly satisfy the bound, so the result follows.

We remark that the paper of Bandeira, Singer, and Spielman [8] gives a

different, but related notion of “almost consistent” for a connection graph which

they call the frustration constant, denoted ηG, defined by

ηG = min
f :V→Sd−1

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v

dv||f(v)||2

where Sd−1 denotes the unit sphere in Rd. So the frustration constant restricts

only to functions whose entries have norm 1, and as remarked in [8], computation

of λ1(L̂) is a relaxation of the computation of ηG. The proof of Theorem 3.2.1 only

utilized functions f : V → Rd whose entries have norm 1, so the proof shows that

if G is an ε-consistent connection graph, then

ηG ≤
ε2

2
.

3.2.2 Consistent and ε-consistent Subsets

In this section, we will consider the case where a connection graph has been

created in which some subset of the data is error-free (or close to it), leading to a

consistent or ε-consistent induced subgraph. We will define functions on the vertex

set in such a way that the Rayleigh quotient will keep track of the edges leaving
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the consistent subset. In this way, we will obtain bounds on the spectrum of the

normalized connection Laplacian involving the Cheeger ratio of such subsets.

Theorem 3.2.3. Let G be a connection graph of dimension d with normalized

connection Laplacian L̂, and S ⊂ V a subset of the vertex set that is ε-consistent

for given ε ≥ 0. Then for i = 1, ..., d,

λi(L̂) ≤ ε2

2
+ hG(S).

Proof. Fix a spanning tree T of the subgraph induced by S. Define f as follows.

For a fixed vertex u of S, define f(u) = x where ||x|| = 1, and for v ∈ S, define f to

be consistent with the subtree T . For v 6∈ S, define f(v) = 0. Fix an edge uv ∈ E
and note that for u, v 6∈ S, ||f(u)Ouv−f(v)|| = 0, for u, v ∈ S, ||f(u)Ouv−f(v)|| =
||f(v) (OPvuOuv − I) || < ε, and for u ∈ S, v 6∈ S, ||f(u)Ouv−f(v)|| = 1. Therefore

R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v

dv||f(v)||2

<

∑
uv∈E
u,v∈S

wuvε
2

vol(S)
+

∑
uv∈E

u∈S,v 6∈S

wuv

vol(S)

≤ ε2

2
+ hG(S).

There are d orthogonal choices for the initial choice of x leading to d orthogonal

vectors satisfying this bound, so by the Courant-Fisher Theorem, the result follows.

In the next result, we consider the situation where most of the edges are

close to being consistent except for some edges in the edge boundary of a subset.

Theorem 3.2.4. Suppose G is an ε1-consistent graph for some ε1 > 0, and suppose

that S ⊂ V is a set such that the subgraphs induced by S and S̄ are both ε2-

consistent, with 0 ≤ ε2 < ε1, and vol(S) ≤ 1
2

vol(G). Let L̂ be the normalized

connection Laplacian. Then for i = 1, ..., d,

λi(L̂) <
ε22
2

+
ε21
2
hG(S)
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Proof. We will construct a function f : V → Rd whose Rayleigh quotient will

bound λ1. Fix a spanning tree T of S and T ′ of S̄, and fix a vertex w ∈ S.

Choose a unit vector x ∈ Rd, and assign f(w) = x. For v ∈ S, assign f(v) for

each vertex v ∈ S such that f(v) = f(u)Ouv moving along edges uv of T . Now

choose an arbitrary edge e = yz ∈ E(S, S̄) such that y ∈ S and z ∈ S̄. Assign

f(z) = f(y)Oyz. Assign the remaining vertices of S̄ so that f(v) = f(u)Ouv moving

along edges uv of T ′. Note that f is consistent with both T and T ′.

Let us examine the Dirichlet sum
∑

uv∈E wuv||f(u)Ouv − f(v)||2. Consider

an edge f = uv ∈ E(S, S̄), f 6= e. We may, without loss of generality, assume

that both S and S̄ are connected. (If one or both is not, then we may alter our

definition of f to be consistent along even more edges). Therefore, there is a cycle,

C = v1v2...vkv1 where v1 = u, vk = v, C contains the edges e and f , and all other

edges have endpoints lying in either S or S̄. By construction, f(v) = f(u)OPuv , so

by the ε-consistency condition, we have

||f(u)Ouv − f(v)|| = ‖f(v)OPvuOuv − f(v)‖

=

∥∥∥∥∥f(v)

(
k−1∏
i=1

Ovivi+1
Ovkv1 − I

)∥∥∥∥∥
≤ ε1||f(v)|| = ε1.

In a similar manner, we have that ||f(u)Ouv − f(v)|| ≤ ε2 for each edge uv

with both u and v in S or both in S̄.

Therefore

λ1 ≤ R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v

dv||f(v)||2

≤

∑
(u,v)∈E

wuvε
2
2∑

v

dv
+

∑
u∼v

u∈S,v∈S̄

wuvε
2
1∑

v

dv

≤ ε22|E(G)|
vol(G)

+
ε21|E(S, S̄)|

2 vol(S)

=
ε22
2

+
ε21
2
hG(S).

We have d orthogonal choices for the initial assignment of x, which leads to d
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orthogonal vectors satisfying this inequality. Therefore λ1, ..., λd all satisfy this

bound.

Our next result is similar to Theorem 3.2.2, but in a setting similar to the

previous theorem.

Theorem 3.2.5. Let G be a connection graph, and suppose S ⊂ V is a set such

that the subgraphs induced by S and S̄ are ε-consistent, with vol(S) ≤ 1
2

vol(G).

Let L̂ be the normalized connection Laplacian with eigenvalues λ1 ≤ · · · ≤ λnd.

Then for i = d+ 1, ..., 2d,

λi ≤
ε2

2
+ 2hG(S).

Proof. Let f1, ...fd be d orthogonal vectors defined as in the proof of the preceding

theorem. Each of these has R(fi) ≤ ε2

2
+ 2hG(S) and ||f(v)||2 = 1 for all v. Define

gi : V → Rd by

gi(v) =


1

volS
fi(v) for v ∈ S

− 1
vol S̄

fi(v) for v ∈ S̄.

For ease of notation we will simply write g and f for gi and fi. Then

R(g) =

∑
u∼v wuv‖g(u)Ouv − g(v)‖2

2∑
v∈V ‖g(v)‖2dv

≤

1
2

(
1

volS
+ 1

vol S̄

)
ε2 +

∑
u∼v

u∈S,v∈S̄

wuv‖ 1
volS

f(u)Ouv + 1
vol S̄

f(v)‖

1
volS

+ 1
vol S̄

≤ ε2

2
+

(
1

volS
+

1

vol S̄

)
|E(S, S̄)| ≤ ε2

2
+ 2hG(S).

We have d orthogonal vectors g1, ..., gd satisfying this bound, and observe that each

is orthogonal to the vectors f1, ..., fd. Therefore the result follows.

We remark that this theorem is a stronger result than Theorem 3.2.2, as

the hypothesis does not require that the full graph be ε-consistent. That is, the

result still holds even if the edges going from S to S̄ involve inconsistencies that

cause the full graph to fail to be ε-consistent.
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3.3 Identifying Subsets

In this section, we follow ideas from [5] and [6] to relate connection PageR-

ank vectors to the Cheeger ratio of ε-consistent subsets of a connection graph. We

will give an algorithm, which runs in time nearly linear in the size of the vertex set,

which outputs a subset of the vertex set (if one exists) which has small Cheeger

ratio and is ε-consistent.

3.3.1 PageRank Vectors and ε-consistent Subsets

We define, for S ⊂ V , f(S) =
∑

v∈S ||f(v)||2. Given a vertex v of G, define

a connection characteristic function χv to be any vector satisfying ||χv(v)||2 = 1

and χv(u) = 0 for u 6= v. Likewise, for a subset S of V , define a characteristic

function χS to be a function such that ||χS(v)||2 = 1 for v ∈ S, and χS(v) = 0 for

v 6∈ S.

Recall the definition of connection PageRank (see [17]). Given a seed vector

ŝ : V → Rd is the vector pr(α, ŝ) : V → Rd that satisfies

pr(α, ŝ) = αŝ+ (1− α)pr(α, ŝ)Z

where Z = 1
2
(I + D−1A) is the matrix for the random walk. Define Rα = α(I −

(1− α)Z)−1 = α
∑∞

t=0(1− α)tZt and note that pr(α, ŝ) = ŝRα.

Lemma 3.3.1. Let S ⊂ V be a subset of the vertex set of a connection graph, and

let χS be a characteristic function for S. Then

‖χSDRα(v)‖ ≤ dv

for all v ∈ V

Proof. First, we will show that ∥∥χSDZk(v)
∥∥ ≤ dv

for all k by induction. For k = 1,

‖χSDZ(v)‖ =
1

2
‖χSD(I + D−1A)(v)‖ ≤ 1

2

dv +
∑
u∈S
u∼v

wuv‖χS(u)Ouv‖

 ≤ dv.
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By the induction hypothesis∥∥χSDZk+1(v)
∥∥ =

∥∥χSDZkZ(v)
∥∥

=

∥∥∥∥∥∑
u∈V

χSDZk(u)Z(u, v)

∥∥∥∥∥
≤
∑
u∈V

∥∥χSDZk(u)
∥∥

2
‖Z(u, v)‖

≤
∑
u∈V

du
1

2
‖I(u, v) + D−1A(u, v)‖

≤ dv
2

+
1

2

∑
u∈V

du

∥∥∥∥1

du
wuvOuv

∥∥∥∥
=
dv
2

+
1

2

∑
u∈V

wuv = dv

so this claim follows by induction.

Then from this claim,

‖χSDRα(v)‖ =

∥∥∥∥∥χSDα
∞∑
k=0

(1− α)kZk
∥∥∥∥∥ ≤ α

∞∑
k=0

(1− α)k
∥∥χSDZk(v)

∥∥ ≤ dv.

Lemma 3.3.2. Let S ⊂ V be a subset of the vertices such that the subgraph of

G induced by S is ε-consistent. Let χS be some connection characteristic function

for S that is consistent with some spanning subtree T of S. Define f̂S by f̂S(v) =

dv
vol(S)

χS(v). The function f̂S is the expected value for a characteristic function χu

when a vertex u is chosen from S at random with probability du/ vol(S). Then

pr(α, f̂S)(S) ≥ 1− 1− α
α

(h(S) + ε).

Proof. We have
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pr(α, f̂S)(S) =
∑
v∈S

||pr(α, f̂S)(v)|| =
∑
v∈S

‖pr(α, f̂S)(v)‖‖χS(v)‖

≥
∑
v∈S

pr(α, f̂S)(v)χS(v)T = pr(α, f̂S)χTS = f̂SRαχ
T
S

=f̂S

(
I − (1− α)(I − Z)

I − (1− α)Z

)
χTS = 1−

(
f̂S

(1− α)(I − Z)

I − (1− α)Z

)
χTS

=1−
(

(1− α)χSD
α vol(S)

αI

I − (1− α)Z
(I − Z)

)
χTS

=1− 1− α
α vol(S)

(
χSDRαD−1 (D− A)

2

)
χTS

=1− 1− α
2α vol(S)

∑
uv∈E

(
wuv

(
χSDRαD−1(u)Ouv − χSDRαD−1(v)

)
· ((χS(u)Ouv)

T − χS(v)T )
)
.

Here the first inequality follows from the Cauchy-Schwarz Inequality. Note that χS

is a characteristic function, so all the terms in the sum corresponding to u, v 6∈ S
are 0, for v ∈ S and u 6∈ S we are left with just χs(v), and for u, v ∈ S, since S is

ε-consistent and χS was chosen to be consistent with a spanning subtree of S, then

we have χS(u)Ouv−χS(v) has norm less than ε. Applying this, the Cauchy-Schwarz

Inequality, and the triangle inequality to the above, we have

pr(α, f̂S)(S)

≥1− 1− α
2α vol(S)

( ∑
u∼v

v∈S,u∈S̄

wuv
∥∥χSDRαD−1(u)Ouv − χSDRαD−1(v)

∥∥
+
∑
u∼v
u,v∈S

wuv
∥∥χSDRαD−1(u)Ouv − χSDRαD−1(v)

∥∥ ‖χS(u)Ouv − χS(v)‖
)

≥1− 1− α
2α vol(S)

( ∑
u∼v

v∈S,u∈S̄

wuv
(
||χSDRαD−1(u)Ouv||+ ||χSDRαD−1(v)||

)
+
∑
u∼v
u,v∈S

wuv
(
||χSDRαD−1(u)Ouv||+ ||χSDRαD−1(v)||

)
ε
)
.

Using Lemma 3.3.1 we can conclude that

pr(α, f̂S)(S) ≥ 1− 1− α
α vol(S)

(|∂S|+ ε|E(S, S)|) ≥ 1− 1− α
α

(h(S) + ε).
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Theorem 3.3.3. Let S ⊂ V be a subset of the vertex set such that the subgraph

induced by S is ε-consistent. Let χS be some connection characteristic function for

S that is consistent with some spanning subtree T of S. For each vertex v ∈ S,

define χv : V → Rd by χv(v) = χS(v) and χv(u) = 0 for u 6= v. Then for any

α ∈ (0, 1], there is a subset Sα ⊂ S with volume vol(Sα) ≥ vol(S)/2 such that for

any vertex v ∈ Sα, the PageRank vector pr(α, χv) satisfies

pr(α, χv)(S) ≥ 1− 2(h(S) + ε)

α
.

Proof. Let v be a vertex of S chosen randomly from the distribution given by f̂S of

the previous result. Define the random variableX = pr(α, χv)(S̄) and note that the

definition of PageRank and linearity of expectation implies that E[X] = pr(α, f̂S).

Therefore, by the preceding result,

E[X] = pr(α, f̂S)(S̄) ≤ 1− α
α vol(S)

(h(S) + ε) ≤ h(S) + ε

α
.

Define

Sα =

{
v : pr(α, χv)(S) ≥ 1− 2(h(S) + ε)

α

}
.

Then Markov’s inequality implies

Pr[v 6∈ Sα] ≤ Pr[X > 2E[X]] ≤ 1

2
.

Therefore Pr[v ∈ Sα] ≥ 1
2
, so vol(Sα) ≥ 1

2
vol(S).

3.3.2 A Local Partitioning Algorithm

We will follow ideas from [6] to produce an analogue of the Sharp Drop

Lemma. Given any function p : V → Rd, define q(p) : V → Rd by q(p)(u) = p(u)/du

for all u ∈ V . Order the vertices such that ‖q(p)(v1)‖ ≥ ‖q(p)(v2)‖ ≥ · · · ≥
‖q(p)(vn)‖. Define Sj = {v1, ..., vj}. The following lemma will be the basis of our

algorithm.

Lemma 3.3.4 (Sharp Drop Lemma). Let v ∈ V (G) and let p = pr(α, χv) for some

α ∈ (0, 1), let q = q(p) and let φ ∈ (0, 1) be a real number. Then for any index
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j ∈ [1, n], either Sj satisfies

h(Sj) < 2φ,

or there exists some index k > j such that

vol(Sk) ≥ vol(Sj)(1 + φ) and ‖q(vk)‖ ≥ ‖q(vj)‖ −
2α

φ vol(Sj)
.

Proof. Let S ⊂ V be a subset of the vertex set that contains v. We have

pZ(S) =
∑
u∈S

‖pZ(u)‖

=
∑
u∈S

∥∥∥∥1

2
p(u) +

1

2
qA(u)

∥∥∥∥
≤ 1

2

(∑
u∈S

‖p(u)‖+
∑
u∈S

∥∥∥∥∥∑
v∼u

q(v)Ouv

∥∥∥∥∥
)

≤ 1

2

(∑
u∈S

‖p(u)‖+
∑
u∈S

∑
v∼u

‖q(v)‖

)

=
1

2

2
∑
u∈S

‖p(u)‖ −
∑

(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖)


= p(S)− 1

2

∑
(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖) .

Since p = pr(α, χv), we have that p satisfies pZ = αχv + (1− α)pZ, therefore

‖pZ(u)‖ =
1

1− α
‖p(u)− αχv(u)‖ ≥ ‖p(u)‖ − α‖χv(u)‖

for any u. Therefore

pZ(S) ≥ p(S)− α.

Combining these, we see that∑
(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖) ≤ 2α. (3.1)

Now we will consider Sj. If vol(Sj)(1 + φ) > vol(G), then

|E(Sj, S̄j)| ≤ vol(S̄j) ≤ vol(G)

(
1 +

1

1 + φ

)
≤ φ vol(Sj)
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and the result holds. Assume vol(Sj)(1 + φ) ≤ vol(G). Then there exists a unique

index k > j such that

vol(Sk−1) ≤ vol(Sj)(1 + φ) ≤ vol(Sk).

If e(Sj, S̄j) < 2φ vol(Sj), then we are done. If e(Sj, S̄j) ≥ 2φ vol(Sj), then we note

that we can also get a lower bound on e(Sj, S̄k−1), namely

e(Sj, S̄k−1) ≥ e(Sj, S̄j)− vol(Sk−1 \ Sj) ≥ 2φ vol(Sj)− φ vol(Sj) = φ vol(Sj).

Therefore, by equation (3.1)

2α ≥
∑

(u,v)∈E(Sj ,S̄j)

(‖q(u)‖ − ‖q(v)‖)

≥
∑

(u,v)∈E(Sj ,S̄k−1)

(‖q(u)‖ − ‖q(v)‖)

≥ e(Sj, S̄k−1)(‖q(vj)‖ − ‖q(vk)‖)

≥ φ vol(Sj)(‖q(vj)‖ − ‖q(vk)‖).

This implies that ‖q(vj)‖ − ‖q(vk)‖ ≤ 2α/φ vol(Sj), and the result follows.

For our algorithm, we will employ the algorithm ApproximatePR from Chap-

ter 2 to compute an approximate connection PageRank vector. We note that if

p̂ is the approximate connection PageRank vector resulting form ApproximatePR,

then
‖p̂(u)‖
du

≥ ‖pr(α, χv)(u)‖
du

− ε

for all u.

We are now ready to present the algorithm ConnectionPartition that utilizes

PageRank vectors to come up with an ε-consistent subset of small Cheeger ratio.

Theorem 3.3.5. Suppose G is a connection graph with a subset C such that

vol(C) ≤ 1
2

vol(G), and h(C) ≤ α/64γ with α as chosen in the algorithm. As-

sume further that C is ε-consistent for some ε < h(C). Let

Cα =

{
v ∈ C : pr(α, χv)(C̄) ≤ 2(h(C) + ε)

α

}
.
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ConnectionPartition(v, φ, x):

The input into the algorithm is a vertex v ∈ V , a target Cheeger ratio

φ ∈ (0, 1), and a target volume x ∈ [0, 2m].

1. Set γ = 1
8

+
∑2m

k=1
1
k

where m is the number of edges, α = φ2

8γ
,

and δ = 1
16γx

.

2. Compute p = ApproximatePR(v, α, δ) (which approximates

pr(α, χv)).

Set q(u) = p(u)/du for each u and order the vertices v1, ..., vn so

that ‖q(v1)‖ ≥ ‖q(v2)‖ ≥ · · · ≥ ‖q(vn)‖ and for each j ∈ [1, n] define

Sj = {v1, ..., vj}.

3. Choose a starting index k0 such that ‖q(vk0)‖ ≥ 1
γ vol(Sk0 )

.

If no such starting vertex exists, output Fail: No starting vertex.

4. While the algorithm is running:

(a) If (1 + φ) vol(Ski) > vol(G), output Fail: No cut found.

(b) Otherwise, let ki+1 be the smallest index such that

vol(Ski+1
) ≥ (1 + φ) vol(Ski).

(c) If ‖q(vki+1
)‖ ≤ ‖q(vki)‖ − 2α/φ vol(Ski), then output S = Ski

and quit.

Otherwise repeat the loop.
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Then for v ∈ Cα, φ < 1, and x ≥ vol(C), the algorithm ConnectionPartition outputs

a set S satisfying the following properties:

1. h(S) ≤ 2φ.

2. vol(S) ≤ (2/3) vol(G).

3. vol(S ∩ C) ≥ (3/4) vol(S).

Proof.

Claim 3.3.6. There exist an index j such that ‖q(vj)‖ ≥ 1
γ vol(Sj)

.

Proof. Suppose that ‖q(vj)‖ < 1
γ vol(Sj)

for every index j. Since v ∈ Cα, ε < h(C),

and h(C) ≤ α/64γ then we know that

p(C) ≥ pr(α, χv)(C)− δ vol(C)

≥ 1− 2(h(C) + ε)

α
− 1

16γx
vol(C)

≥ 1− 1

16γ
− 1

16γ

= 1− 1

8γ

since x ≥ vol(C).

On the other hand, under our assumption,

p(C) ≤ p(V ) =
n∑
i=1

‖p(vi)‖ =
n∑
i=1

‖q(vi)‖dvi

<
n∑
i=1

dvi
γ vol(Sj)

≤ 1

γ

2m∑
k=1

1

k
.

Putting these together, we have

1− 1

8γ
<

1

γ

2m∑
k=1

1

k
.

With the choice of γ = 1
8

+
∑2m

k=1
1
k

as in the algorithm, this yields a contradiction.

Therefore there exists some index j with ‖q(vj)‖ ≥ 1
γ vol(Sj)

and the claim is proved.



56

It follows from Claim 3.3.6, that the algorithm will not fail to find a starting

vertex.

Let kf be the final vertex considered by the algorithm.

Claim 3.3.7. If k0, ..., kf is a sequence of vertices satisfying both

• ‖q(vki+1
)‖ ≥ ‖q(vki)‖ − 2α

φ vol(Ski )

• vol(Ski+1
) ≥ (1 + φ) vol(Ski)

then

‖q(kf )‖ ≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)
.

Proof. We note that vol(Ski+1
) ≥ (1 + φ)i vol(Sk0), and so we have

‖q(kf )‖ ≥ ‖q(k0)‖ − 2α

φ vol(Sk0)
− 2α

φ vol(Sk1)
− · · · − 2α

φ vol(Skf−1
)

≥ ‖q(k0)‖ − 2α

φ vol(Sk0)

(
1 +

1

1 + φ
+ · · ·+ 1

(1 + φ)f−1

)
≥ ‖q(k0)‖ − 2α

φ vol(Sk0)

1 + φ

φ

≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)

and the claim follows.

Now we will use this claim, the choice of α = φ2/8γ, and the condition on

the starting vertex ‖q(k0)‖ ≥ 1/γ vol(Sk0) to obtain a lower bound on ‖q(kf )‖,

‖q(kf )‖ ≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)

≥ 1

γ vol(Sk0)
− 1

2γ vol(Sk0)

≥ 1

2γ vol(Sk0)
.

As in the proof of Claim 3.3.6, we have that p(C) ≥ 1 − 1
8γ

, and therefore

p(C̄) ≤ 1
8γ
.

Now observe that vol(Skf ∩ C̄) ≤ p(C̄)

‖q(kf )‖
. This follows since

‖q(kf )‖ vol(Skf ∩ C̄) =
∑

v∈Skf∩C̄

‖q(kf )‖dv ≤
∑

v∈Skf∩C̄

‖q(v)‖dv ≤
∑
v∈C̄

‖p(v)‖ = p(C̄).
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Thus

vol(Skf ∩ C̄) ≤ p(C̄)

‖q(kf )‖

≤
2γ vol(Skf )

8γ

=
1

4
vol(Skf ).

Therefore vol(Skf ) ≤ vol(C) + vol(Skf ∩ C̄) ≤ vol(C) + 1
4

vol(Skf ), implying that

vol(Skf ) ≤ 4
3

vol(C). Using that fact that vol(C) ≤ 1
2

vol(G),

vol(Skf ) ≤
4

3
vol(C) ≤ 2

3
vol(G) ≤ vol(G)

1 + φ
.

This last step follows under the assumption that φ ≤ 1/2. We can do this without

loss of generality since the guarantee on h(S) in the theorem is trivial for φ > 1/2.

The above shows that the algorithm will not experience a failure due to the

volume becoming too large, and we have seen that conditions (2) and (3) will be

satisfied by the output.

Finally, to show condition (1), we apply the Sharp Drop Lemma. We

know that kf is the smallest index such that vol(Skf+1) ≥ (1 + φ) vol(Skf ), and

‖q(vkf+1)‖ ≤ ‖q(vkf )‖ − 2α/φ vol(Ski). Therefore the Sharp Drop Lemma guaran-

tees that h(Skf ) < 2φ, and the proof is complete.

Theorem 3.3.8. The running time for the algorithm ConnectionPartition is

O

(
d2x

log2m

φ2

)
.

Proof. The running time is dominated by the computation of the PageRank vector.

According to Theorem ??, the running time for this is O
(
d2

δα

)
. In the algorithm,

we have α = φ2

8γ
, δ = 1

16γx
, and γ = 1

8
+
∑2m

k=1
1
k

= Θ(logm). Therefore α = O( φ2

logm
)

and δ = O( 1
x logm

). Therefore the running time is as claimed.
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Chapter 4

Non-backtracking Random Walks

on Graphs

4.1 Non-backtracking Random Walks

Recall that a random walk on a graph is a sequence (v0, v1, ..., vk) of vertices

vi ∈ V where vi is chosen uniformly at random among the neighbors of vi−1.

Random walks on graphs are well-studied, and considerable literature exists about

them. See in particular [14] and [38] for good surveys, especially in the use of

spectral techniques in studying random walks on graphs.

A random walk on a graph G is a Markov process with transition probabil-

ity matrix P = D−1A, where A denotes the adjacency matrix of G, and D is the

diagonal matrix whose diagonal entries are the degrees of the vertices of G. Given

any starting probability distribution f0 on the vertex set V , the resulting proba-

bility distribution fk after applying k random walk steps is given by fk = f0P
k.

Here we are considering f0 and fk as row vectors in Rn.

A non-backtracking random walk on G is a sequence (v0, v1, ..., vk) of vertices

vi ∈ V where vi+1 is chosen randomly among the neighbors of vi such that vi+1 6=
vi−1 for i = 1, ..., k − 1. In other words, a non-backtracking random walk is a

random walk in which a step is not allowed to go back to the immediately previous

state. A non-backtracking random walk on a graph is not a Markov chain since, in

59
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any given state, we need to remember the previous step in order to take the next

step.

Define P (k) to be the n× n transition probability matrix for a k-step non-

backtracking random walk on the vertices. That is P (k)(u, v) is the probability

that a non-backtracking random walk starting at vertex u ends up at vertex v

after k steps. Note that P (1) = P where P = D−1A is the transition matrix

for an ordinary random walk on G. However, P (k) is not simply P k since a non-

backtracking random walk is not a Markov chain.

The focus of this chapter will be to analyze various aspects of non-backtracking

random walks in comparison to ordinary random walks. In particular, we will com-

pare the mixing rate for a non-backtracking random walk to a classical random

walk. This problem was addressed for regular graphs in [3]. Their main result is

that, in many case, a the mixing rate for a non-backtracking random walk is faster

than for an ordinary random walk. Their proof involves the enumeration of non-

backtracking walks on a graph via a recurrence relation involving the adjacency

matrix. They thus obtain an expression for the transition probability matrix for

a non-backtracking random walk as a polynomial in the adjacency matrix of the

graph. In this way, they analyze directly the mixing rate. We will take a different

approach, viewing the problem in terms of walks along edges of the graph, and

give an alternate proof of the result on regular graphs in [3], and generalize the

result to a wider class of graphs. In the final section, we will review the classical

Pólya’s Theorem for random walk on grids, and give a non-backtracking version.

4.1.1 Walks on Directed Edges

The difficulty in the analysis of non-backtracking random walks is that this

process is not a Markov chain, making the k step transition probability matrix

harder to determine. However, this process can be turned into a Markov chain by

replacing each edge in E with two directed edges (one in each direction), and given

a state at a directed edge (u, v), choose the next state uniformly among directed

edges (v, x) where x 6= u. Denote the set of directed edges with
−→
E . The transition
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probability matrix for this process we will call P̃ . Observe that

P̃ ((u, v), (x, y)) =


1

dv−1
if v = x and y 6= u

0 otherwise.

Note that P̃ is a 2m× 2m matrix. Note also that P̃ k is the transition matrix for

a walk with k steps on the directed edges.

Lemma 4.1.1. Given any graph G, the matrix P̃ as defined above is doubly

stochastic.

Proof. Observe first that the rows of the matrix P̃ sum to 1, as it is a transition

probability matrix. In addition, the columns of P̃ sum to 1. To see this, consider

the column indexed by the directed edge (u, v). The entry of this column corre-

sponding to the row indexed by (x, y) is 1
dy−1

if y = u and if v 6= x. Since y = u

this is equal to 1
du−1

. Otherwise, the entry is 0. Thus the column sum is∑
x∼u
x 6=v

1

du − 1
=
du − 1

du − 1
= 1

as claimed.

Define the distribution π̃ :
−→
E → R by

π̃ =
1

vol(G)

where 1 is the vector of length 2m with each entry equal to 1.

Proposition 4.1.2. Let f̃0 :
−→
E → R be any distribution on the directed edges of

G. If the matrix P̃ is irreducible and aperiodic, then

f̃0P̃
k −→ π̃

as k →∞.

Proof. It follows from Lemma 1 that π̃ is a stationary distribution for P̃ . This

follows because, since the columns of P̃ sum to 1, we have

π̃P̃ = π̃.

Therefore, if the sequence f̃0P̃
k converges, it must converge to π̃. Now, P̃ being

irreducible and aperiodic are precisely the conditions for this to converge.
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Let f be a probability distribution on the vertices of G. Then f can be

turned into a distribution f̃ on
−→
E as follows. Define

f̃((u, v)) =
1

du
f(u).

Conversely, given a distribution g̃ on
−→
E , define a distribution g on the vertices by

g(u) =
∑

(u,v)∈
−→
E

g̃(u, v).

Thus, given any starting distribution f0 : V → R on the vertex set of

G, we can compute the distribution after k non-backtracking random walk steps

fk : V → R as follows. First compute the distribution f̃0 on the directed edges as

above, then compute f̃k = f̃0P̃
k, then fk is given by fk(u) =

∑
v∼u f̃k(u, v). The

following proposition tells us that this converges to the same stationary distribution

as an ordinary random walk on a graph.

Proposition 4.1.3. Given a graph G and a starting distribution f0 : V → R on

the vertices of G, define fk = f0P
(k) to be the distribution on the vertices after

k non-backtracking random walk steps. Define the distribution π : V → R by

π(v) = dv
vol(G)

(note that this is the stationary distribution for an ordinary random

walk on G). Then if the matrix P̃ is irreducible and aperiodic, then for any starting

distribution f0 on V , we have

fk −→ π as k →∞.

Proof. As described above, take the distribution f0 on vertices to the correspond-

ing distribution f̃0 on directed edges. Then define f̃k = f̃0P̃
k. Then by the

proposition above, f̃k converges to π̃. Now π̃ = 1
volG

, and observe that π(u) =∑
v∼u

1
vol(G)

=
∑

v∼u π̃((u, v)). So pulling the distribution π̃ on directed edges back

to a distribution on the vertices yields π. Thus the result follows.

Definition 4.1.4. The χ-squared distance for measuring convergence of a random

walk is defined by

∆′(t) = max
y∈V (G)

 ∑
x∈V (G)

(P̃ t(y, x)− π̃(x))2

π̃(x)

1/2

.
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Notice that since π̃ = 1/ vol(G),

∆′(t)2 = max
y

1

2m
‖(χyP̃ t − π̃)‖2

= max
y

1

2m
‖(χy − π̃)P̃ t‖2

Theorem 4.1.5. Let µ1 = 1, µ2, ...µ2m be the eigenvalues of P̃ . Then the con-

vergence rate for the non-backtracking random walk with respect to the χ-squared

distance is bounded above by maxi 6=1 |µi|.

Proof. We have

∆′(t)2 = max
y

1

2m
‖(χy − π̃)P̃ t‖2.

Observe that χu− π̃ is orthogonal π̃, which is the eigenvector for µ1, so we see that

∆′(t) ≤ 1

2m
max
i 6=1
|µi|t.

Therefore,

lim
t→∞

(∆′(t))1/t ≤ max
i 6=1
|µi|.

4.1.2 The Directed Laplacian

The transition probability matrix P̃ for the walk on directed edges can be

thought of as a transition matrix for a random walk on a directed line graph of

the graph G. In this way, theory for random walks on directed graphs can be

applied to analyze non-backtracking random walks. Random walks on directed

graphs have been studied by Chung in [13] by way of a directed version of the

normalized graph Laplacian matrix. In [13], the Laplacian for a directed graph is

defined as follows. Let P be the transition probability matrix for a random walk

on the directed graph, and let φ be its Perron vector, that is, φP = φ. Then

let Φ be the diagonal matrix with the entries of φ along the diagonal. Then the

Laplacian for the directed graph is defined as

L = I − Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

2
.
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This produces a symmetric matrix that thus has real eigenvalues. Those eigenval-

ues are then related to the convergence rate of a random walk on the directed graph.

In particular, the convergence rate is bounded above by 2λ−1
1 (− log minx φ(x)),

where λ1 is the second smallest eigenvalue of L (see Theorem 7 of [13]).

Applying this now to non-backtracking random walks, define P̃ as before.

Then as seen above, φ is the constant vector with φ(v) = 1/ vol(G) for all v. Then

the directed Laplacian for a non-backtracking walk becomes

L̃ = I2m =
P̃ + P̃ ∗

2
.

Then Theorem 1 of [13], applied to the matrix L̃ as defined, gives the Rayleigh

quotient for a function f :
−→
E → C by

R̃(f) =
f ∗L̃f
f ∗f

=
1

2

∑
(u,v)∈

−→
E (G)

∑
(v,w)
w 6=u

(f(u, v)− f(v, w))2 P̃ ((u, v), (v, w))

∑
(u,v)∈

−→
E (G)

f(u, v)2
.

From this it is clear that L̃ is positive semidefinite with smallest eigenvalue λ0 = 0.

If 0 = λ0 ≤ λ1 ≤ · · · ≤ λ2m−1 are the eigenvalues of L̃, then Theorem 7 from [13]

implies that the convergence rate for the corresponding random walk is bounded

above by
2 log vol(G)

λ1

.

We remark that for an ordinary random walk on an undirected graph G,

the convergence rate is also on the order of 1/λ1(L), where L now denotes the

normalized Laplacian of the undirected graph G. Note that

λ1(L) = inf
f :V (G)→R
f⊥D1

R(f)

where R(f) =

∑
uv∈E(G)(f(u)− f(v))2∑

v∈V (G) f(v)2dv
denotes the Rayleigh quotient with respect

to L, and

λ1(L̃) = inf
f :
−→
E (G)→R
f⊥1

R̃(f)

with R̃ given above.
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The following result shows that the Laplacian bound does not give an im-

provement for non-backtracking random walks over ordinary random walks.

Proposition 4.1.6. Let G be any graph, and let L be the normalized graph Lapla-

cian and L̃ the non-backtracking Laplacian defined above. Then we have

λ1(L̃) ≤ λ1(L).

Proof. Let f : V (G) → R be the function orthogonal to D1 that achieves the

minimum in the Rayleigh quotient for L. So

∑
v∈V (G)

f(v)dv = 0 and λ1(L) =

∑
uv∈E(G)(f(u)− f(v))2∑

v∈V (G) f(v)2dv
.

Define f ′ :
−→
E → R by f ′(u, v) = f(u). Observe that∑

(u,v)∈
−→
E (G)

f ′(u, v) =
∑

(u,v)∈
−→
E (G)

f(u) =
∑

u∈V (G)

f(u)du = 0.

So f ′ is orthogonal to 1. Therefore

λ1(L̃) ≤ R̃(f ′) =
1

2

∑
(u,v)∈

−→
E (G)

∑
(v,w)
w 6=u

(f ′(u, v)− f ′(v, w))2 P̃ ((u, v), (v, w))

∑
(u,v)∈

−→
E (G)

f ′(u, v)2

=
1

2

∑
(u,v)

∑
(v,w)
w 6=u

(f(u)− f(v))2 1
dv−1∑

(u,v)

f(u)2

=
1

2

∑
(u,v)

(f(u)− f(v))2

∑
u∈V (G)

f(u)2du

=

∑
{u,v}∈E(G)

(f(u)− f(v))2

∑
u∈V (G)

f(u)2du
= R(f) = λ.
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4.2 A Weighted Ihara’s Theorem

4.2.1 Ihara’s Theorem

The transition probability matrix P̃ defined above is a weighted version of

an important matrix that comes up in the study of zeta functions on finite graphs.

We define B to be the 2m× 2m matrix with rows and columns indexed by the set

of directed edges of G as follows.

B((u, v), (x, y)) =

1 if v = x and y 6= u

0 otherwise.

The matrix B can be thought of as a non-backtracking edge adjacency ma-

trix, and the entries of Bk describe the number of non-backtracking walks of length

k from one directed edge to another, in the same way that the entries of powers of

the adjacency matrix, Ak, count the number of walks of length k from one vertex

to another. The expression det(I − uB) is closely related to zeta functions on

finite graphs which. A result known as Ihara’s Theorem further relates such zeta

functions to a determinant expression involving the adjacency matrix. While we

will not go into zeta functions on finite graphs in this paper, the following result

equivalent to Ihara’s theorem will be of interest to us.

Ihara’s Theorem. For a graph G, let B be the matrix defined above, let A denote

the adjacency matrix, D the diagonal degree matrix, and I the identity. Then

det(I − uB) = (1− u2)m−n det(I − uA+ u2(D − I)).

Numerous proofs of this result exist in the literature. We remark that the

expressions det(I −uB) is the characteristic polynomial of B evaluated at 1/u. In

this way the complete spectrum of the matrix B is given by the reciprocals of the

roots of the polynomial (1− u2)m−n det(I − uA+ u2(D − I)).

4.2.2 A Weighted Ihara’s Theorem

In this section, we will follow the main ideas of the proof of Ihara’s theorem

found in [35] to try to obtain a weighted version of this result.
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To each vertex x ∈ V (G) we assign a weight w(x) 6= 0, and let W be the

n × n diagonal matrix given by W (x, x) = w(x). Now define S to be the 2m × n
matrix whose rows are indexed by the directed edges of G and whose columns are

indexed by the vertices of G, given by

S((u, v), x) =

1 if v = x

0 otherwise

and define S̃ = SW . So S is the endpoint incidence operator, and S̃ is the weighted

version of S. Define T to be the n× 2m matrix given by

T (x, (u, v)) =

1 if u = x

0 otherwise

and define T̃ = WT . So T is the starting point incidence operator. We will also

define τ to be the 2m × 2m matrix giving the reversal operator that switches a

directed edge with its opposite. That is,

τ((a, b), (c, d)) =

1 if b = c, a = d

0 otherwise

and define τ̃ to be the weighted version of τ , that is

τ̃((a, b), (c, d)) =

w(b)2 if b = c, a = d

0 otherwise

Finally, define the 2m× 2m matrix P by

P̃ ((a, b), (c, d)) =

w(b)2 if b = c, a 6= d

0 otherwise.

We remark that if we take w(x) = 1/
√
dx − 1 for each x ∈ V (G), then P̃ is

exactly the transition probability matrix for a non-backtracking random walk on

the directed edges of G.

Now, a straightforward computation verifies that
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P̃ = S̃T̃ − τ̃ (4.1)

and

T̃ S̃ = WAW. (4.2)

We will define Ã = WAW .

From (4.1) and (4.2) we obtain the following equations.

(I − uP̃ )(I − uτ̃) = I − uS̃T̃ + u2S̃T̃ τ̃ − u2τ̃ 2 (4.3)

(I − uτ̃)(I − uP̃ ) = I − uS̃T̃ + u2τ̃ S̃T̃ − u2τ̃ 2 (4.4)

We define D̃ to be the diagonal n × n matrix D̃(x, x) =
∑

v∼xw(x)2w(v)2

and observe that T̃ τ̃ S̃ = D̃. It then follows that(
(I − uP̃ )(I − uτ̃) + u2τ̃ 2

)
S̃ = S̃

(
I − uÃ+ u2D̃

)
(4.5)

T̃
(

(I − uτ̃)(I − uP̃ ) + u2τ̃ 2
)

=
(
I − uÃ+ u2D̃

)
T̃ (4.6)

Remark. In the proof in [35], they use τ rather than τ̃ , and τ 2 = I, so that

S and T will factor through τ 2, so that the u2τ 2 term stays on the right hand

side of the above equations. Here we have τ̃ 2 is a 2m × 2m diagonal matrix with

τ̃ 2((u, v), (u, v)) = w(u)2w(v)2. This difference from [35] is one of the primary

difficulties in generalizing this result.

We will now perform a change of basis to see how the operator (I−uP̃ )(I−
uτ̃) + u2τ̃ 2 behaves with respect to the decomposition of the space of functions

f :
−→
E → C as the direct sum of Image S̃ and Ker S̃T . To this end, fix any basis

of the subspace Ker S̃T , and let R be the 2m × (2m − n) matrix whose columns

are the vectors of that basis (note that S̃ has rank n). Define M =
[
S̃ R

]
. This

will be our change of basis matrix. To obtain the inverse of M , form the matrix[
(S̃T S̃)−1S̃T

(RTR)−1RT

]
and observe that

[
(S̃T S̃)−1S̃T

(RTR)−1RT

] [
S̃ R

]
=

[
(S̃T S̃)−1S̃T S̃ (S̃T S̃)−1S̃TR

(RTR)−1RT S̃ (RTR)−1RTR

]
=

[
In 0

0 I2m−n

]
.
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Therefore we have that M−1 =

[
(S̃T S̃)−1S̃T

(RTR)−1RT

]
.

Applying this change of basis, direct computation, applying (4.3) and (4.5),

yields

[
(S̃T S̃)−1S̃T

(RTR)−1RT

](
(I − uP̃ )(I − uτ̃) + u2τ̃ 2

) [
S̃ R

]

=

[
I − uÃ+ u2D̃ −uT̃R + u2T̃ τ̃R

0 I

]
.

(4.7)

Thus, a weighted form of Ihara’s Theorem can be stated as follows.

Theorem 4.2.1. Given a graph G and a positive weight w(x) > 0 assigned to each

vertex x, then with P̃ , τ̃ , Ã, and D̃ as defined above, we have

det
(

(I − uP̃ )(I − uτ̃) + u2τ̃ 2
)

= det(I − uÃ+ u2D̃).

4.2.3 Regular Graphs

Applying the results of the previous section to regular graphs yields a dif-

ferent proof of the results from [3] on the mixing rate of non-backtracking random

walks on regular graphs.

Let G be a regular graph where each vertex has degree d. Then choosing

w(x) = 1/
√
d− 1 for all x yields gives us that P̃ is the transition probability matrix

for the non-backtracking random walk on G. We remark that, from the previous

section, we have τ̃ = 1
d−1

τ , τ̃ 2 = 1
(d−1)2

I, Ã = 1
d−1

A, and D̃ = d
(d−1)2

I. Therefore,

the decomposition in (4.7) becomes

(I − uP̃ )(I − uτ̃) ∼

I − u
d−1

A+ u2

d−1
I ∗

0
(

1− u2

(d−1)2

)
I

 .
Noting that τ̃ can be thought of as block diagonal with m blocks of the

form

[
0 1/(d− 1)

1/(d− 1) 0

]
, then taking determinants, we find that

det(I −uP̃ )

(
1− u2

(d− 1)2

)m
=

(
1− u2

(d− 1)2

)2m−n

det

(
I − u

d− 1
A+

u2

d− 1
I

)
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and hence

det(I − uP̃ ) =

(
I −

(
u

d− 1

)2
)m−n∏

λ

(
1− λ

d− 1
u+

1

d− 1
u2

)
where the product ranges over all the eigenvalues λ of the adjacency matrix A. As

remarked above, det(I − uP̃ ) is the characteristic polynomial of P̃ evaluated at

1/u, so setting this to zero and taking reciprocals, we see that the eigenvalues of

P̃ are

± 1

d− 1
,
λ±

√
λ2 − 4(d− 1)

2(d− 1)

for λ ranging over the eigenvalues of A and ±1/(d − 1) each having multiplicity

m − n. We remark that the expression
λ+
√
λ2−4(d−1)

2(d−1)
is precisely the expression

derived by Alon et al. in [3] for the mixing rate of a non-backtracking random

walk on a regular graph, and we may proceed with the analysis of the convergence

rate in the same way they do. The convergence rate is given by the second largest

eigenvalue of P̃ , which will be obtained setting λ to be the second largest eigenvalue

of A. Let µ be this eigenvalue. Note that for 2
√
d− 1 ≤ λ ≤ d we have

λ

2(d− 1)
<
λ+

√
λ2 − 4(d− 1)

2(d− 1)
≤ λ

d
.

For λ < 2
√
d− 1, µ is complex, and we obtain

|µ|2 =

∣∣∣∣∣λ+
√
λ2 − 4(d− 1)

2(d− 1)

∣∣∣∣∣
2

=

(
λ

2(d− 1)

)2

+

(√
4(d− 1)− λ2

2(d− 1)

)2

=
1

d− 1

so |µ| = 1√
d−1

.

We remark that in this case that λ < 2
√
d− 1, a classic result of Nilli ([40])

related to the Alon-Boppana Theorem implies that we are never too far below

this bound. Indeed, the result states that if G is d-regular with diameter at least

2(k + 1), then λ ≥ 2
√
d− 1− 2

√
d−1−1
k+1

. We can thus state the result from [3].

Theorem 4.2.2. Let G be a non-bipartite, connected d-regular graph on n vertices

for d ≥ 3, and let ρ and ρ̃ denote the mixing rates of simple and non-backtracking

random walk on G, respectively. Let λ be the second largest eigenvalue of the

adjacency matrix of G in absolute value.
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If λ ≥ 2
√
d− 1, then

d

2(d− 1)
≤ ρ̃

ρ
≤ 1.

If λ < 2
√
d− 1 and d = no(1), then

ρ̃

ρ
=

d

2(d− 1)
+ o(1).

4.2.4 Biregular Graphs

A graph G is called (c, d)-biregular if it is bipartite and each vertex in one

part of the bipartition has degree c, and each vertex of the other part has degree

d. In the weighted Ihara’s Theorem, we have τ̃ 2((u, v), (u, v) = 1
(du−1)(dv−1)

, so in

the case where G is (c, d)-biregular, then we have τ̃ 2 = 1
(c−1)(d−1)

I. So since τ̃ 2 is

a multiple of the identity, as with regular graphs, in the decomposition (4.7), the

u2τ̃ 2 term can be taken to the other side of the equation. Note that D̃ is diagonal

with D̃(u, u) =
∑

v∼u
1

(du−1)(dv−1)
= c

(c−1)(d−1)
if u has degree c, or d

(c−1)(d−1)
if u

has degree d. Then D̃ − τ̃ 2 is diagonal with entry c
(c−1)(d−1)

− 1
(c−1)(d−1)

= 1
d−1

or

d
(c−1))(d−1)

− 1
(c−1)(d−1)

= 1
c−1

. Hence the decomposition (4.7) becomes

(I − uP̃ )(I−uτ̃) ∼I − u
[

0 1
c−1

M

1
d−1

MT 0

]
+ u2

[
1
d−1

I 0

0 1
c−1

I

]
∗

0
(

1− u2

(c−1)(d−1)

)
I



where A =

[
0 M

MT 0

]
is the adjacency matrix of G.

Note that τ̃ is similar to a block diagonal matrix with blocks of the form[
0 1/(c− 1)

1/(d− 1) 0

]
, so taking the determinant above we obtain

det(I − uP̃ )

(
1− u2

(c− 1)(d− 1)

)
m =

(
1− u2

(c− 1)(d− 1)

)2m−n

× det

(
I − u

[
0 1

c−1
M

1
d−1

MT 0

]
+ u2

[
1
d−1

I 0

0 1
c−1

I

])
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so

det(I − uP̃ ) =

(
1 +

u2

(c− 1)(d− 1)

)m−n
det

(1 + u2

d−1

)
I u

c−1
M

u
d−1

MT
(

1− u2

c−1

)
I



We will look at the matrix

(1 + u2

d−1

)
I u

c−1
M

u
d−1

MT
(

1 + u2

c−1

)
I

. Suppose the first part

in the bipartition of G has size r, and the second part has size s, where without

loss of generality, r > s. By row reduction, this has the same determinant as the

matrix 
(

1 + u2

d−1

)
I u

c−1
M

0
(

1− u2

c−1

)
I − 1

1+ u2

d−1

u2

(c−1)(d−1)
MTM


which is(

1 +
u2

d− 1

)r
det

((
1 +

u2

c− 1

)
I − 1

1 + u2

d−1

1

(c− 1)(d− 1)
MTM

)

=

(
1 +

u2

d− 1

)r−s
det

((
1 +

u2

c− 1

)(
1 +

u2

d− 1

)
I − u2

(c− 1)(d− 1)
MTM

)
.

Now, the above determinant is given by the product of the eigenvalues of

the matrix. Observe that if λ is an eigenvalue of the adjacency matrix A, then λ2

is an eigenvalue of MTM . Therefore, in all we have

det(I − uP̃ ) =

(
1− u2

(c− 1)(d− 1)

)m−n(
1 +

u2

d− 1

)r−s
×
∏
λ

((
1 +

u2

c− 1

)(
1 +

u2

d− 1

)
− λ2u2

(c− 1)(d− 1)

)
where the product ranges over the s largest eigenvalues of A (or in other words,

λ2 ranges of the s eigenvalues of MTM). Therefore the characteristic polynomial

is given by

det(uI − P̃ ) =

(
u2 − 1

(c− 1)(d− 1)

)m−n(
u2 +

1

d− 1

)r−s
×
∏
λ

((
u2 +

1

c− 1

)(
u2 +

1

d− 1

)
− λ2u2

(c− 1)(d− 1)

)
.
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Thus we can explicitly obtain the eigenvalues of P̃ which are ± 1√
(c−1)(d−1)

with

multiplicity m−n each, ± 1√
d−1

i with multiplicity r− s each, as well as the 4 roots

of the polynomial

u4 +

(
1

(c− 1)
+

1

(d− 1)
− λ2

(c− 1)(d− 1)

)
u2 +

1

(c− 1)(d− 1)

for each of the s values of λ. These roots are

±

√
λ2 − (c− 1)− (d− 1)±

√
(λ2 − (c− 1)− (d− 1))2 − 4(c− 1)(d− 1)

2(c− 1)(d− 1)
. (4.8)

We next ask how these eigenvalues compare to the eigenvalues of P =

D−1A =

[
0 1

c
M

1
d
MT 0

]
. Note that for λ an eigenvalue of A, we have

[
0 M

MT 0

][
x

y

]
= λ

[
x

y

]

which implies My = λx and MTx = λy. Then observe[
0 1

c
M

1
d
MT 0

] 1√
c
x

1√
d
y

 =

 1
c
√
d
My

1
d
√
c
MTx

 =
λ√
cd

 1√
c
x

1√
d
y

 ,
so the eigenvalues of P are λ/

√
cd where λ ranges over the eigenvalues of A. Note

that the largest eigenvalue of A is
√
cd.

Let µ equal the expression (4.8) taking the + signs. So µ is the second

largest (in modulus) eigenvalue not of modulus 1. Note that the value of λ at which

µ transitions from real to complex is λ =
√

(c− 1) + (d− 1) + 2
√

(c− 1)(d− 1) =
√
c− 1 +

√
d− 1. Thus, consider the following cases.

If
√
c− 1 +

√
d− 1 ≤ λ ≤

√
cd, then µ is real. Direct computation verifies

that, evaluating the expression (4.8) at λ =
√
cd yields µ = 1 = λ/

√
cd and

µ < λ/
√
cd for λ in this range. Therefore, in this case the eigenvalue of P̃ always

has smaller absolute value than the corresponding eigenvalue of P .

If λ <
√
c− 1 +

√
d− 1, then µ is complex, and direct computation shows,

for any λ in this range,

|µ|2 =
1√

(c− 1)(d− 1)
,



74

so

|µ| = 1

((c− 1)(d− 1))1/4
.

A version of the Alon-Boppana Theorem exists for (c, d)-biregular graphs

as well, proven by Feng and Li in [22] (see also [37]).

Theorem 4.2.3 ([22]). Let G be a (c, d)-biregular graph, and let λ be the second

largest eigenvalue of the adjacency matrix A of G. Then

λ2 ≥
(√

c− 1 +
√
d− 1

)2

−
2
√

(c− 1)(d− 1)− 1

k

where the diameter of G is greater than 2(k + 1).

We can now give a version of Theorem 4.2.2 for (c, d)-biregular graphs.

Theorem 4.2.4. Let G be a (c, d)-biregular graph with c, d ≥ 2. Let ρ = λ2/cd be

the square of the second largest eigenvalue of the transition probability matrix P for

a random walk on G, and let ρ̃ = |µ|2 be the square of the second largest modulus of

an eigenvalue of P̃ . Let λ be the second largest eigenvalue of the adjacency matrix

of G. Then we have the following cases.

If λ >
√
c− 1 +

√
d− 1, then

cd

2(c− 1)(d− 1)

(
1− c− 1 + d− 1

c− 1 + 2
√

(c− 1)(d− 1) + d− 1

)
≤ ρ̃

ρ
≤ 1.

If λ <
√
c− 1 +

√
d− 1 and both c and d are no(1), then

ρ̃

ρ
≤ cd

2(c− 1)(d− 1)
+ o(1).

Proof. For the first case, for the upper bound, we already remarked above that

µ ≤ λ/
√
cd implying ρ̃ ≤ ρ. The lower bound follows from 4.8 ignoring the square

root inside.

For the second case, observe that certainly the diameter is at least logcd n,

so that the condition on the degrees and Theorem 4.2.3 imply that

λ2 ≥ 2
√

(c− 1)(d− 1)(1− o(1)).

We remarked above that in this case, |µ|2 = 1√
(c−1)(d−1)

, so this gives the result.
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4.3 A Non-backtracking Pólya’s Theorem

4.3.1 Pólya’s Theorem

We will now turn our attention to infinite graphs. Suppose G is a graph

with infinitely many vertices. Consider a random walk on G starting at some initial

vertex v0. The random walk on G is called recurrent if the probability that the

walk eventually returns to v0 is 1. If this probability is less than one, the random

walk is called transient. A famous result on recurrence and transience is referred

to as Pólya’s Theorem.

Theorem 4.3.1 (Pólya’s Theorem). A random walk on the infinite grid Zd is

recurrent for d = 1, 2 and transient for d ≥ 3.

Pólya’s Theorem is well know, and numerous proofs exist in the literature.

See for example [46]. The goal of this section will be to obtain a non-backtracking

version for the case d = 2. We remark that for the d = 1 case, a non-backtracking

walk on Z is clearly transient, as a walk returning to its starting vertex on Z
requires backtracking.

Let p(t) denote the probability that a walk returns to its starting vertex

after t steps. The key to the proof of Pólya’s Theorem is to investigate the series

of p(t).

Proposition 4.3.2 (Theorem 1.2 in [46]). If the sum

∞∑
t=0

p(t)

is convergent, then the random walk is transient. Otherwise, it is recurrent.

Therefore, to prove recurrence or transience of a random walk, one approach

is to enumerate the total number of walks of length t on the graph, and enumerate

the total number of walks of length t that return to the initial vertex at step t,

then from this obtain the probability p(t), and analyze the series. For the grid Zd,
it turns out that p(t) ∼ c

(πt)d/2
, (see [46]), and from this, Pólya’s Theorem follows.

With this in mind, we will start by enumerating the total number of closed

non-backtracking walks of a given length.
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4.3.2 Non-backtracking Walks on Infinite Regular Graphs

We consider the matrix A(k) = A(k)(G) by defining A(k)(u, v) to be the

number of non-backtracking walks of length k from vertex u to vertex v. As

described in [3], the matrices A(k) satisfy the recurrence
A(1) = A

A(2) = A2 −D

A(k+2) = AA(k+1) − (D − I)A(k)

where A denotes the adjacency matrix of G. For convenience we will define A(0) =

I. Define the generating function

F (x) =
∞∑
k=0

A(k)xk,

then from this recurrence we can determine the generating function

F (x) = (1− x2)
(
I − xA+ x2(D − I)

)−1
.

Expanding this as a geometric sum, we obtain

F (x) = (1− x2)
∞∑
k=0

(A− (D − I)x)k xk.

Now, if G is d-regular, then D− I = (d− 1)I, and the above can be further

expanded, yielding

F (x) = (1− x2)
∞∑
k=0

k∑
i=0

(−1)i
(
k

i

)
(d− 1)iAk−ixk+i.

Thus, a general formula for A(n) can be obtained by extracting the xn coefficient.

A(n) =[xn]F (x)

=

bn/2c∑
i=0

(−1)i
(
n− i
i

)
(d− 1)iAn−2i

−
bn/2−1c∑
i=0

(−1)i
(
n− i− 2

i

)
(d− 1)iAn−2i−2.
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Therefore, the number of non-backtracking random walks of length n from a vertex

u to a vertex v in a regular graph can be expressed explicitly as

A(n)(u, v) =

bn/2c∑
i=0

(−1)i
(
n− i
i

)
(d− 1)iAn−2i(u, v)

−
bn/2−1c∑
i=0

(−1)i
(
n− i− 2

i

)
(d− 1)iAn−2i−2(u, v).

(4.9)

We remark that the expression Ak(u, v) is simply the total number of walks of

length k from u to v, so we have expressed the number of non-backtracking walks

in terms of the total number of walks.

4.3.3 The Infinite Grid Z2

In this section, we will use the above tools to obtain a non-backtracking

version of Pólya’s Random Walk Theorem for the two-dimensional grid Z2.

Lemma 4.3.3 ((1.68) in [46]). The total number of closed walks of length 2n from

a vertex to itself in Z2 is
(

2n
n

)2
.

We therefore know that, if A is the adjacency operator on Z2, then any

diagonal entry of A2n is
(

2n
n

)2
. Thus if we wish to count the number of closed

non-backtracking walks of length 2n on Z2 from a vertex to itself, then by way of

(4.9), setting d = 4 since Z2 is 4-regular, we obtain the diagonal entry of A(2n).

Proposition 4.3.4. The total number of closed non-backtracking walks of length

2n from a vertex to itself in Z2 is

n∑
i=0

(−3)i
(

2n− i
i

)(
2n− 2i

n− i

)2

−
n−1∑
i=0

(−3)i
(

2n− i− 2

i

)(
2n− 2i− 2

n− i− 1

)2

.

Changing the indices, this can alternatively be expressed as

n∑
k=0

(−3)n−k
(
n+ k

2k

)(
2k

k

)2

−
n−1∑
i=0

(−3)n−1−k
(
n+ k − 2

2k − 2

)(
2(k − 1)

k − 1

)2

.
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It so happens that the expression
n∑
k=0

(−3)n−k
(
n+ k

2k

)(
2k

k

)2

shows up in

the study of the central trinomial coefficients, Tn, which are defined to be the

largest coefficient in the expansion of (1 + x+ x2)n. Formally, that is

Tn = [xn](1 + x+ x2)n.

From the definition, one can derive the formula

Tn =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
.

In a paper of Zhi-Wei Sun ([51]), it is proven that Tn satisfy the following

relationship with the above sum.

Lemma 4.3.5 (Lemma 4.1 of [51]). For any n ∈ N we have

T 2
n =

n∑
k=0

(
n+ k

2k

)(
2k

k

)2

(−3)n−k.

From this we obtain an expression for the number of closed walks from a

vertex to itself on Z2 in terms of the squares of the central trinomial coefficients.

Corollary 4.3.6. For any n ∈ N and any vertex v ∈ Z2, we have

A(2n)(v, v) = T 2
n − T 2

n−1.

The asymptotics of the numbers Tn are investigated in [56].

Lemma 4.3.7 ([56]). The asymptotics for the numbers Tn are given by

Tn =

√
3

2
√
nπ

3n
(

1− 3

16n
+O

(
1

n2

))
.

Corollary 4.3.8. Asymptotically, the number of closed non-backtracking walks

from a vertex to itself on the grid Z2 is given by

A(2n)(v, v) ∼ 2

πn
32n−1.
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Proof. Using Corollary 4.3.6 and Lemma 4.3.7, we have

A(2n) = T 2
n − T 2

n−1

=
3

4πn
32n

(
1 +O

(
1

n

))
− 3

4π(n− 1)
32n−2

(
1 +O

(
1

n

))
=

24n− 27

4πn(n− 1)
32n−2

(
1 +O

(
1

n

))
=

2

πn
32n−1

(
1 +O

(
1

n

))
and the result follows.

We are now ready to give a non-backtracking version of Polya’s Theorem

for Z2.

Theorem 4.3.9. A non-backtracking random walk on the infinite grid Z2 is re-

current.

Proof. Let p(t) denote the probability that a non-backtracking random walk on

Z2 returns to its starting point after t steps. Note that the total number of non-

backtracking random walks of length t is

4 · 3t−1

since there are 4 choices for the first step, and then 3 choices for each subsequent

step since we must exclude the edge that would backtrack. Note also that p(t) = 0

for t odd since a walk on Z2 returning to its starting point must contain an equal

number of steps up as down, and an equal number of steps to the left as to the

right. So we need only consider p(2t). The total number of non-backtracking

walks of length 2t returning to their starting vertex v is given by A(2t)(v, v) so by

Corollary 4.3.8, we obtain p(2t) asymptotically is given by

p(2t) ∼
2
πt

32t−1

4 · 32t−1
=

1

2πt
.

Therefore ∞∑
t=0

p(2t) =
∞∑
t=0

1

2πt

which is divergent. Therefore, by Proposition 4.3.2, the random walk is recurrent.
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