

The Vision Behind MLPerf: A broad ML benchmark suite for measuring the performance of ML software frameworks, ML hardware accelerators, and ML cloud and edge platforms

Vijay Janapa Reddi

(representing the viewpoints of many, many, people)

Samsung Technology Forum in Austin
October 16th

"A New Golden Age for Computer Architecture: **Domain-Specific Hardware/Software Co-Design**,

Enhanced Security, Open Instruction Sets, and Agile Chip Development"

John Hennessy and David Patterson

"A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution" Jeff Dean, David Patterson, Cliff Young

The (Rapid) Rise of ML

- The number of ML papers published Arxiv each year is growing exponentially
- The pace of growth is on par and if not exceeding the rate of Moore's Law scaling

Al to Compute: 300,000x Increase in Compute

"... since 2012 the amount of compute used in the largest AI training runs has been increasing exponentially with a 3.5 month-doubling time (by comparison, Moore's Law had an 18-month **doubling period**). Since 2012, this metric has grown by more than 300,000x (an 18-month doubling period would yield only a 12x increase). Improvements in compute have been a key component of Al progress, so as long as this trend continues, it's worth preparing for the implications of systems far outside today's capabilities."

Deep Learning has Reinvigorated Hardware

 $GPUs \rightarrow AlexNet$, Speech.

TPUs → Many Google applications: AlphaGo and Translate, WaveNet speech.

⇒ Rapidly fueling the renaissance of the hardware industry, including startups

The New York Times

Big Bets on A.I. Open a New Frontier for Chip Start-Ups, Too

By Cade Metz

Jan. 14, 2018

Today, at least 45 start-ups are working on chips that can power tasks like speech and self-driving cars, and at least five of them have raised more than \$100 million from investors. Venture capitalists invested more than \$1.5 billion in chip start-ups last year, nearly doubling the investments made two years ago, according to the research firm CB Insights.

How do we **compare** the hardware?

How do we compare the hardware, today?

Answer is "surprisingly badly."

- Example: single-benchmark measurement of throughput
 - Synthetic training data
 - Measure performance, ignoring accuracy
- Poor reproducibility
 - No means to effectively reproduce the same results
 - Hard to compare numbers across different models, inputs and datasets
- "ResNet-50" is not a precise specification, but it's what everyone reports.

How do we **design** better hardware?

How do we design better hardware? More MACS?!

- Model performance cannot be evaluated using raw hardware performance (MACs)
- Model latency varies across different levels of MAC capability
- Latency ultimately impacts or dictates the experience

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

The Three Cornerstones for ML Performance

Can we do better?

Agenda

- Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- What is MLPerf?
 - O How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Are there lessons we can borrow? Yes!

A1: Look to successful history in benchmark suites: **SPEC** and **TPC**.

A2: Draw on experiences of those who have done ML benchmarking.

SPEC Impact

- Settled arguments in the marketplace (grow the pie)
- Resolved internal engineering debates (better investments)
- Cooperative ⇒ nonprofit Corporation with 22 members
- Universities join at modest cost and help drive innovation
- Became standard in marketplace, papers, and textbooks
- Needed to revise suite regularly to maintain usefulness:
 SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006, SPEC2017

Coincides with (caused?) the Golden Age of microprocessors...

Can we start a new Golden Age for ML Systems?

Agenda

- ✓ Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- What is MLPerf?
 - Output Description
 Output Descript
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Supporting Organizations

	Alibaba Group	AMD	arm	Bai 都百度 Baidu	cādence * Cadence	Cerebras	Cisco	•	500+ discussion group members
	CRAY	$rac{dec{v}}{dt}$	Enflame	Esperanto Technologies	Google	groq	HUAWEI	•	Researchers from 7 institutions
	Cray	Dividiti	Enflame Tech	Esperanto	Google	Groq	Huawei		7 11136164610113
	(intel) Al	медитек	Graphics A Servers business	MYTHIC	■ NetApp	NVIDIA.	One Convergence	•	28 Companies
	Intel	MediaTek	Mentor Graphics	Mythic	NetApp	NVIDIA	One Convergence		
	rpa2ai Accounted & Michaelen	S SaṃbaNova	SAMSUNG Exyrios	∑ SI G OPT	SYNOPSYS.	TENSYR driving dayloyment	COMPUTING		
: :	Rna2ai	Sambanova	Samsung S.I.SI	Sigont	Synonsys	Tensyr	Wave Computing		• MLPerf ₂

Supporting Research Institutions

Harvard University Stanford University

University of University of Arkansas, Littlerock California, Berkeley

y of University of erkeley Minnesota University of Texas, University of Toronto
Austin

MLPerf Goals

- Accelerate progress in ML via fair and useful measurement
- Serve both the commercial and research communities
- Enable fair comparison of competing systems
- Encourage innovation to improve the state-of-the-art of ML
- Enforce replicability to ensure reliable results
- Use representative workloads, reflecting production use-cases
- Keep benchmarking effort affordable (so all can play)

MLPerf Philosophy: Agile Benchmark Development

- Rapidly iterate the benchmark suite
 - Remain relevant in the very fast moving machine learning field
 - Correct inevitable mistakes during the fast-paced benchmark formulation
 - Scale problems to match faster hardware, and better systems
- At least initially, revise annually?
 MLPerf18, MLPerf19, ...
- Like SPEC, have quarterly deadlines and then publish searchable results

Agile Benchmarking (Training) Timeline (in 2018)

May	First general meeting		
June	Added benchmarks (volunteers!)		
July	Chartered working groups: on-prem, Cloud, submitters, special topics		
August	WGs report solid progress; inference WG chartered		
September	More WG progress		
October	First v0.5 submissions, with review period		
November	First results published!		

Agenda

- Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- **⊘** What is MLPerf?
 - O How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Bootstrapping MLPerf 0.5v

- Gathered researchers
 - Baidu (DeepBench)
 - Google (TF benchmarks)
 - Harvard (Fathom)
 - Stanford (DAWNBench)
- Combined the best parts from all of our experiences
- Planned to cover both training and inference; initial focus on training

A Benchmark for Machine Learning from an Academic/Industry Cooperative

Researchers from: Baidu, Google, Harvard, Stanford, and UC Berkeley

Toward the Definition of a ML Task

Task description

An overview of the ML task

Dataset

 A set of inputs and the corresponding ground-truth outputs. The dataset associated with a task also prescribes the input/output data format for the task

Quality metric

 A measure of the model's quality/accuracy that is calculated using the ML task's output(s), the ground-truth output(s) from the dataset and a loss function

Task	Task Description	Dataset	Quality metric	Sample Apps
Recognition	Classify an input into one of many categories. Alternatively, generate a high dimensional embedding that can be used for recognition	Imagenet/COCO Input: RGB image of size XX x YY Output: label index	Top-1 error rate	Face authenticati on, Music recognition

MLPerf **Training** Benchmarks 0.5v

Task	Model	Dataset
Image Classification	ResNet-50	ImageNet
Object Detection	Mask-RCNN SSD	MS-COCO 2017
Translation	Google NMT Transformer	WMT16 WMT17
Recommendation	Neural Collaborative Filtering	MovieLens ml-20m
Reinforcement Learning	Minigo	NA
Speech Recognition	DeepSpeech2*	Librispeech

	MLPerf Cloud Inference					
ML Tasks	Owner	Framework	Model	Dataset		
Image Classification	Guenther	TF and ONNX	Resnet50 1.5v	ImageNet		
Object Detection	Itay Hubara ihubara@habana.ai/ christine.cheng@intel.com	PyTorch	(1) VGG16 (2) SSD-MobileNet	MS-COCO		
Speech Recognition	Gennady/Anton	PyTorch	DeepSpeech2	Librispeech		
Machine Translation	rohit.kalidindi@intel.com	Tensorflow	(1) GNMT http://download.tensorflow.org/mo dels/nmt/10122017/deen_gnmt_ model_4_layer.zip (2) transformer	WMT16		
	adselvar@cisco.com , manasa.kankanala@intel.					

Neural Collaborative Filtering

els/tree/master/research/lm 1b

seq2-CNN

WaveNet

MaskRCNN

MovieLens 20M

(2) Amazon reviews

31

IMDB

LJSpeech

COCO

https://github.com/tensorflow/mod (1) 1 billion words

PyTorch

PyTorch

TF

Caffe2

N/A

Recommendation

Classification

Text (e.g. Sentiment)

Language Modeling

Image Segmentation

Text To Speech

com

Itay Hubara

Amit Bleiweiss

ihubara@habana.ai

gregdiamos@baidu.com

amit.bleiweiss@intel.com

	MLPerf Edge Inference					
ML Tasks	Owner	Framework	Model	Dataset		
Image Classification	(1) Anton(2) Fei and Mejia, Andres<andres.mejia@intel.com></andres.mejia@intel.com>	(1) TF-Lite (2) Caffe2/ONNX	(1) MobileNets-v1.0 224?? (2) ShuffleNet (https://s3.amazonaws.com/download. onnx/models/opset_6/shufflenet.tar.gz)	ImageNet		
Object Detection	(1) Yuchen (yuchen.zhou@gm.com) (2) Scott Gardner (MN)/ christine.cheng@intel.com	(1) TF (2) TF-Lite	(1) SSD-ResNet50 (2) SSD-MobileNetsV1	(1) VOC (2) COCO		
Speech Recognition	Scott Gardner	TF	DeepSpeech1 (Mozilla)	(1) Librispeech (2) "noisy" validation		
			GNMT			

Tensorflow

Caffe2/ONNX

Tensorflow based on

Machine Translation

Text To Speech

Face Identification

Image Segmentation

Imaga Enhancement

rohit.kalidindi@intel.com

Carole Wu/Fei Sun

<carolejeanwu/feisun@fb.com>

obrigting obong@intal com

David Lee <david.lee@mediatek.com> TF-Lite

http://download.tensorflow.org/models/nmt/10122017/deen_gnmt_model_4_la

yer.zip

WaveNet

SphereFace

SRGAN

MaskRCNN2Go

https://github.com/tenso | (https://github.com/tensorlayer/srgan/re

WMT16

LFW

COCO

32

Agenda

- ✓ Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- **⊘** What is MLPerf?
 - How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

"Science"

"Science" Metrics Methodology

Toward a Unified Metric: Performance and Quality

Performance: how fast is a model for training, inference?

Quality: how good are a model's predictions?

Important for benchmark to capture **both** performance and quality

Performance and Quality aren't always correlated

Training

- End-to-end training of a ResNet56 CIFAR10 model
- Nvidia P100 machine with 512 GB of memory and 28 CPU cores
- TensorFlow 1.2 compiled from source with CUDA 8.0 and CuDNN 5.1

Performance and Quality aren't always correlated

Inference

- For a given latency target, you can achieve different levels of model quality
- Possible to trade-off model accuracy with complexity
- Model performance
 (inference/s) is insufficient

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

Performance and Quality aren't always correlated

Inference

- Model performance (inference/s) is insufficient
- Possible to trade-off model accuracy with complexity
- Evaluation metric must include a measure of the model quality

https://arxiv.org/pdf/1801.04381.pdf

Important for benchmark to capture **both** performance and quality

What do we mean by performance?

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html

- Model performance cannot be evaluated using raw hardware performance (MACs)
- Model latency varies across different levels of MAC capability
- Latency ultimately impacts or dictates the experience

Training Metric: **Time to reach quality target**

- Quality target is *specific for each benchmark* and *close to state-of-the-art*
 - Updated w/ each release to keep up with the state-of-the-art
- Time includes preprocessing, validation over median of 5 runs
- Available: reference implementations that achieve quality target

"Science" Metrics Methodology

What start/ends do we measure and why?

On-Device OCR: A case study

PhotoOCR Normalized Performance (CPU only)

Phone X (sparse)

Sparse

Dense

Phone Y (sparse)

Phone X (dense)

Phone Y (dense)

PhotoOCR Task Breakdown

Detection

Detection (Non-inference time and Inference time) Non-inference time Inference time Phone X (sparse) 20% Phone Y (sparse) 49% Phone X (dense) 48% Phone Y (dense) 0.00 0.50 1.00 1.50 2.00 Time normalized to Phone X (sparse)

Recognition

Do we account for pre- and post-processing times in the inference run test?

MLPerf Challenges

Cloud (Training E.g.)

- Hyperparameters
- Scale
- Power
- Cost
- Variance
- On-premise vs. cloud
- ..

Edge (Inference E.g.)

- Quantizations
- Sparsity
- Pruning
- Power
- Variance
- Scores
- ...

Agenda

- ✓ Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- **⊘** What is MLPerf?
 - How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Where are we heading now?

- First version: **reference** code, in two frameworks, of each benchmark.
- Resolving or controlling the variance issues.
- Working on the **inference** suite (deferred from first release).
- Getting to **governance**, and an umbrella organization.

Reference Implementations → Call for Submissions

Closed division submissions

- Requires using the specified model
- Limits overfitting
- Enables apples-to-apples comparison
- Simplifies work for HW groups

Open division submissions

- Open division allows using any model
- Encourages innovation
- Ensures Closed division does not stagnate

Agenda

- ✓ Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- **⊘** What is MLPerf?
 - How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Cloud Training Benchmarks

Standard logging

TF, pyTorch, ...

Cloud Inference Benchmarks

Std. test harness, logging

TF saved model, ONNX,

Create industry driven public datasets

Edge Training References

Standard logging

TF, pyTorch, ...

Edge Inference Benchmarks

Std. test harness, logging

TF saved model, ONNX,

• •

Benchmarks and Standardization (MLPerf)

Agenda

- ✓ Why ML needs a benchmark suite?
- Are there lessons we can borrow?
- **⊘** What is MLPerf?
 - How does MLPerf curate a benchmark?
 - What is the "science" behind the curation?
 - Where are we heading now?
- What comes next for MLPerf?

Concluding thoughts...

Recap of "The Vision Behind MLPerf"

- Machine Learning needs benchmarks!
- Goals: agility, both research and development, replicability, affordability
- MLPerf Training: v0.5 deadline is <u>October 31</u>
- MLPerf Inference is under construction

(for rapid iteration to work, we need good input!)

MLPerf needs your help!

- Join the discussion community at MLPerf.org
- Help us by joining a working group:
 Cloud scale, on-premises scale, submitters, special topics, inference.
 Help us design submission criteria, to include the data you want
- Propose new benchmarks and data sets
- Submit your benchmark results!

More at MLPerf.org, or contact info@mlperf.org

v0.5 Submission Deadline: October 31!

Acknowledgements

Peter Mattson

Cliff Young

David Patterson

Carole-Jean Wu

Greg Diamos

... and countless other working group members!

