B21D-0405: Modeling CH, emissions from Arctic tundra:
Processes behind emissions pulses and the potential for a negative feedback
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- Project Summary A 4 Modified Model Structure Overview

Existing climate change models contain very limited considerations of greenhouse gas Atmospheric CH, Concentration
emissions from thawing Arctic permafrost, especially the release of methane (CH,),
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Test Case Results

(a) CH, Air Pool Middle Saturated Column (b) CH, Water Pool Middle Saturated Column

a greenhouse gas 20 times more potent than CO, on a 100 year time scale. WA UL S (DAL Ebullition ! 3 0.08 3
The Methane Dynamics Module (MDM) by Zhuang et al. (2004) is frequently cited as evidence of . Surface Water . E E
a strong positive feedback between the carbon cycle of Arctic permafrost and the climate (if no surface water, soil is in direct contact with atmosphere) g l0.06 el
system, including in the IPCC’s 2007 Report. However, the model has never been explicitly Soil Layer (z+1) g | g
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Preliminary simulations for non-Alaskan sites were performed by importing environmental / \ : ﬁ | ﬁ
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emissions. - CH, concentration 0
- Temperature 4 8 12 16 20 24 28 4 8 12 16 20 24 28
Results from the preliminary simulations show that CH, emissions occur primarily through quick ~ 0, concentration Time (years) Time (years)
emissions pulses at the onset of surface soil freezing and thawing. Simulations indicate that \ /
these emissions pulses are due to the inhibition of CH, diffusion by surface soil that is
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(c) CH, Single Pool Middle Saturated Colurmn Fisure 5: Test Cases with

saturated or frozen. Soil Layer (z-1)
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Investigations into the effectiveness of the MDM suggest that the maximum methanogenesis . = Updated Diffusion Scheme
and methanotrophy rates are under-constrained and that the current structure of the MDM Figure 3: Structure of modified MDM The percent of water filled pore space 25 2.3 E_ In all 3 situations, 3 pmol/L of CH,
may be unable to accurately project future CH, emissions. Eliminating some of the determines where the air or water pool interacts with the surrounding layers. = b, = was introduced to the bottom
modifiers and using new data to redefine maximum rates as more constrained can improve In the case of adjacent saturated and unsaturated layers, diffusion rates are 5 50 S 1/3 of led soil col
the ability of the MDM to predict current CH, emissions from Axel Heiberg. : - e : 1.5 E O a Seated 501t cotumn
| . 4 . | determined by the difference between actual and equilibrium concentrations % - where the middle 1/3 is
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Most modifier functions for CH, production and oxidation have been replaced with functions lavers. increases in relative soil water decrease the diffusion coefficient 3 © . ~llg
derived from data collected from Axel Heiberg. Additionally, CH, in each soil layer has been YErs, ' 100 0.5 ot concentrations where diffusion
divided into an air pool and water pool, with interactions between the two pools according & is modeled with an air and water
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saturated and unsaturated layers instead of an instant transition at a particular threshold. : . : : :
y P Functions . is modeled using a single soil
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Results With Previous Versions of MDM o i ———— tundra multiplied Conclusions
T (a) — (b) =" 1.2/l ——Microcosm Derived Dependency | i““ 41— Microcosm Derived Dependency | by a temperature | —
g so . 50 = 8 60 . S C production » Results suggest that CH, emissions from Arctic tundra occur mostly through a
Ns ;g e || Run 1.0 58 . Y modifier. process of rapid CH, emissions pulses that occur at the onset of thawing and
40 | un 0 o i . .
w0 | ‘\ 5 E = S . : (b) Maximum CH, freezing of the surface soil.
= i "y Y { fﬂ L; | = o = 27 1 1 . 0 oo . .
z 0 1‘ ﬁ [ N AN A H 0 _&E’ s 20 S odl < oxidation rate for - These CH, pulses are proposed to be the result of the inhibition of diffusion
g A N oy 2 E g g | tundra multiplied .. : : :
= - 2 2 o 2 ) = 1 caused by the presence of water or ice in the surface soil, as removing this
2 s ~ 02 . by a temperature : : : .. :
S wE = = , | - =, , | | sroduction constraint on diffusion causes the CH, emissions pulses to disappear.
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