### WELL-BEING AND URBAN PLANNING. PUBLIC SERVICES, NATURAL VENTILATION AND BIODIVERSITY IN BARCELONA

Montserrat Pallares-Barbera, Jordi Duch, Martí Boada, Sònia Sànchez-Mateo, Jaume Marlès-Magre, Rossend Pujolar

Association of American Geographers Meeting Ecologies of Well-being III 3429 Session

Thursday 11<sup>th</sup> April/2013, 1.40PM Westin Hotel Venue Santa Monica C Level 3

## Structure of the talk

- Problem and motivations of the problem
- Objectives and structural question
- Case study
- Methodology
- Concluding questions

## Insolation



45\_December21\_9h



90\_December21\_9h



## Services



## Green Distribution in



## Well-being and urban planning

- Cities: Past and present
- Agglomeration
- Shocks
- Urban services
- Natural ventilation
- Urban biodiversity

### **Quality of Life and Well-being**

- Quality of life is identified as the satisfaction of desires associated with human needs and wants;
- Well-being as a general state of wellness.

#### Determinants of the cities in the nineteenth to beginning twentieth centuries

Density, malnutrition, agglomeration, overworking, infected water, illiteracy → Causes

Mortality, ignorance, illness, unhappiness, uncultured, unsociability → Consequences Shocks to the system:

Cities experienced a **high incoming population** during the industrial revolution

Mortality increased and life span decreased

Population density increased

### **Determinants of the cities at the beginning of the twenty-one century**

Density, agglomeration, pollution, climate change, global warming — Causes

Scale diseconomies, intensive use of energy, personal discomfort → Consequences Shocks to the system:

Cities are the <u>central node</u> of the twenty-one cultural paradigm, attracting population and economic activity

Consequences of <u>economic downturns</u> and global warming and <u>climate change</u> would increase population pressure and would change <u>personal comfort</u>

Social well-being would decrease

## Objective and Structural Questions

. How urban planning and, in particular, the <u>location of urban services</u>, the conditions of <u>natural ventilation</u> and <u>biodiversity</u> levels affect well-being

### Why

- -To which extend provision of services improve well-being
- -To which extend <u>urban grid facilitates natural ventilation</u> (insolation and winds)
- -To which extend urban grid and natural ventilation would increase efficiency in energy saving
- -To which extend biodiversity improve well-being
- -We want to answer the question of 'who gets welfare and where do they get it' -(Spatial justice)
- -We want to get further elements to incorporate in future planning practices -(Policy making)

#### How

-Barcelona case is studied using location analysis and spatial analysis, and implemented in ArcGis

## Working Hypothesis

- Urbanism can be used as a well-being redistribution tool
- -Planning <u>services to population</u> is a necessary condition to improve social well being
- The <u>Cerdà Grid</u> improves a more <u>natural ventilation</u> system which facilitates <u>personal comfort</u>, and <u>energy efficiency saving</u> than the North-South grid, such as New York, Chicago or Washington
- -Increasing levels of <u>biodiversity</u> would rise <u>personal comfort</u>, and would mitigate <u>climate change effects</u> in cities

### Population and population density in cities, per Sq Km 26978 10.015.000 8.015.000 \*11,535 Boston New York 6.015.000 Philadelphia Chicago Paris 32465 4.015.000 London Barcelona \*4,923 \*4,266 2.015.000 15,926 \*1,105 \*13,365 \* 6,515 897 \* 1071 15.000

Sources: Barcelona Institut d'Estadística de Catalunya (Idescat) and Centre d'Estudis Demogràfics;

1870

Boston http://www.bpl.org/research/govdocs/boststats.htm;

1850

1790

1810

1830

Chicago http://tigger.uic.edu/depts/ahaa/imagebase/chimaps/mcclendon.html; London http://www.demographia.com/dm-lon31.ht/0; New York http://www.demographia.com/dm-nyc.htm; Paris;

1930

1950

1970

1990

2010

Philadelphia http://physics.bu.edu/~redner/projects/population/cities/philadelphia.html.

1890

1910



### Barcelona. Mortality in the first floor level



Average life expectancy between richer and poorer classes was 38.83 and 19.68 years of age, respectively (men, average between years 1837 and 1847; Cerdà, 1867)

Source. Canedo Arnedo, M. **Geohistòria ambiental de la Barcelona del segle XIX**. Master Research Project. Universitat Autònoma de Barcelona. Geography Department, 2010. (1) García Fària, 1894, p. 26-27.

## Provision of Services to Population

### Service provision in the Old Barcelona

- 10 midwifes and 69 surgeon doctors (Cerdà, 1867)
- 3 markets, 2 of them fisheries (Pescadería del Mercado del Borne, 425 m2, and Pescadería del Mercado de Isabel II, 900 m2), and 1 of them of general groceries (Mercado de la Plaza de Isabel II, 3,525 m2).

### Planning equipment for the new Barcelona

| Type of services        | Number | Number of blocks<br>Occupancy |
|-------------------------|--------|-------------------------------|
| Parks                   | 8      | 38                            |
| Markets                 | 10     | 10                            |
| Hospitals               | 3      | Outside the city              |
| Schools                 | 33     | 33                            |
| Government Institutions | 12     | 25                            |

## Service location made by Cerdà. The optimization model General model:

Given 
$$\{a_i\}_{i=1}^n$$
  $\{d_{ij}\}_{i,j=1}^n$   
Choose  $\{y_j\}_{j=1}^n$   $\{x_{ij}\}_{i,j=1}^n$   
Where  $y_j \in \{0,1\}$   $x_{ij} \in \{0,1\}$   
In order to minimize Z equal to 
$$\sum_{i=1}^n \sum_{j=1}^n a_i d_{ij} y_j x_{ij}$$
Subject to 
$$\sum_{j=1}^n y_j = p$$
 
$$\sum_{j=1}^n y_j x_{ij} = 1, \forall i$$

- Where,
- $a_i$  = quantity of population in node i,
- i = origin of population,
- j = possible service location,
- p = number of services,
- d<sub>ii</sub> = the shortest distance between node i and node j,
- $x_{ii} = 1$  if population of node i is assigned to j, 0 otherwise,
- $x_{ii} = 1$  if a service is located in node j, 0 otherwise.

### **School service areas**



| ulation within each school time interv | val |
|----------------------------------------|-----|
|----------------------------------------|-----|

| Interval time in minutes | Population | %   | Cummulative |
|--------------------------|------------|-----|-------------|
| < 5                      | 41,297     | 27  | 27          |
| 5 - 10                   | 75,259     | 49  | 76          |
| 10,1 - 15                | 27,263     | 18  | 94          |
| > 15                     | 8,656      | 6   | 100         |
|                          |            |     |             |
| Total                    | 152,475    | 100 |             |

### Park service areas, 5, 10 and 20 minutes



### Population and parks

| Population served by parks |            |     |              |
|----------------------------|------------|-----|--------------|
| Interval in time minutes   | Population | %   | Cumulative % |
| < 5                        | 42,588     | 28  | 28           |
| 5 - 10                     | 60,116     | 39  | 67           |
| 10,1 - 20                  | 47,888     | 32  | 99           |
| >20                        | 1,883      | 1   | 100          |
|                            |            |     |              |
| total                      | 152,475    | 100 |              |

#### **Market service areas**





Table 2: Population within each market time-interval

|                          | Population | %     | <b>Cumulative %</b> |
|--------------------------|------------|-------|---------------------|
| Interval time in minutes |            |       |                     |
| 1–5                      | 19,444     | 13.0  | 13.0                |
| 6–11                     | 54,268     | 36.0  | 49.0                |
| 12–24                    | 70,691     | 46.0  | 95.0                |
| >24                      | 8,072      | 5.0   | 100.0               |
| Total                    | 152,475    | 100.0 |                     |
|                          |            |       |                     |

### Cerdà hospitals allocation of demand within 30 minutes distance



Table 1: Population within each hospital service area

| Interval time in minutes | Population | %     | <b>Cumulative %</b> |
|--------------------------|------------|-------|---------------------|
| 1–9                      | 16,251     | 11.0  | 11.0                |
| 10–19                    | 52,500     | 34.0  | 45.0                |
| 20–30                    | 50,500     | 33.0  | 78.0                |
| >30                      | 33,224     | 22.0  | 100.0               |
| Total                    | 152,475    | 100.0 |                     |

### Natural Ventilation and the Cerdà Grid

#### Streets of the New Barcelona

Area: 1,975 Ha

| Street type/ wide              | Longitude (km) |
|--------------------------------|----------------|
| 20 m                           | 237,7          |
| 30 m                           | 77,5           |
| 50 m                           | 183            |
| Streets with train             | 117,4          |
| Streets Outside<br>Enlargement | 118,8          |
| Perimeter                      | 228,3          |

#### **Streets of the Old Barcelona**

Area: 193,97 Ha

| Street type/ wide | Number of streets |
|-------------------|-------------------|
| <3 m              | 200               |
| 3-6 m             | 400               |

- One of the Cerdà's objectives was to positioning the grid in order to get maximum sunshine and natural ventilation for housing
- -More sustainable cities
- -Old technique of house ventilation and natural air recycling and cooling inside the house
- He considered the streets as "aerial channels", which had the function for the city what lungs do for humans: "Por lo que toca a salubridad, siguiendo en esta parte a los highienistas, podemos considerar las calles como canales aereos (...) que vienen a ser para las ciudades como lo que para el cuerpo humano son los pulmones." Cerdà, 185, p. 376 (1991)

Orientacion de las calles. La direccion u orientacion de las calles de una nueva ciudad debe considerarse bajo cuatro diferentes conceptos: 1º con respecto á la direccion de los vientos mas saludables que acostumbran reinar por mas tiempo en la localidad; 2º relativamente á la direccion del movimiento de importacion y de exportacion establecido ó que pueda establecerse en lo sucesivo; 3º por lo tocante á la suavidad ó aspereza de las pendientes que deben resultar y 4º por lo que se refiere al facil y conveniente desague de las alcantarillas.

Source: Cerdà, 1855 p. 374 (1991).



## Case Study



## Insolation Summer Solstice (15-15,30h)





## Insolation Winter Solstice (9,00-9,30h)



## Insolation Winter Solstice (15,00-15,30h)





## **Airflow**





Kyushu University: A model of a baseball stadium in Japan, showing the airflow around the stadium. This was created with ArcView, ArcGIS 3D Analyst, and Airflow Analyst.

http://video.esri.com/watch/187/airflow-modeling-in-urban-landscapes

# THE END THANK YOU VERY MUCH

**MONTSERRAT PALLARES-BARBERA** 

## Annex 5

- 1\_ PALLARES-BARBERA, M.; BADIA, A.; DUCH, J. (2011). Cerdà and Barcelona: The need for a new city and service provision. Urbani izziv, volume 22, no. 2, pp.: 122-136. http://urbani-izziv.uirs.si/en/Urbaniizziv/tabid/95/Default.aspx
  - UDC: 911.375.1(460) DOI: 10.5379/urbani-izziv-en-2011-22-02-005
- 2\_ Pallares-Barbera M, Duch J. <u>Barcelona Urban Evolution from 1860</u>.
   http://worldmap.harvard.edu/maps/Barcelona\_urban\_evolution/CRE [Internet]. 2012. <u>Barcelona Urban Evolution since 1860</u>
- 3\_ Pallares-Barbera M, Duch J. <u>Urban Planning and service provision in the Cerdà Barcelona Expansion</u>.
   <a href="http://worldmap.harvard.edu/maps/Barcelona\_Cerda\_1860/CRD">http://worldmap.harvard.edu/maps/Barcelona\_Cerda\_1860/CRD</a>
   <a href="mailto:Internet">[Internet</a>]. 2012. <u>Barcelona\_Cerda\_1860Abstract</u></a>