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1 Introduction

The paper “Financial Intermediaries as Suppliers of Housing Quality” (Reher 2019), henceforth

FI, describes a structural approach to computing quality-adjusted rent as an alternative to the

hedonic methodology used in that paper. I now describe such an approach and discuss the

associated results. In Section 2, I derive the index and discuss results related to aggregate rent

growth. I turn to cross-sectional results and the implications of this adjustment for official rent

indices in Section 3. Appendices A, B, C have econometric, mathematical, and additional details.

2 Structural Rent Index

There are three advantages to introducing a preference structure. First, a structural method-

ology can be applied to datasets which lack detailed information on hedonic characteristics but

still enable housing units to be ranked by quality (e.g. via property inspection ratings). Second,

a structural approach enables inferences about time variation in absolute quality. For example,

it can account for how dishwashers installed in 2016 may be better (e.g. less noisy) than those

installed in 2010. This is more difficult to do with a hedonic approach because of practical

limitations on the set of observables. Third, a structural approach allows rent growth in differ-

ent quality segments to have a different impact on the resulting index, with weights based on

households’ revealed preference. For example, if supply-driven improvements make high quality

units less expensive, the index weights top-tier rent growth according to households’ implied

willingness to move up the quality ladder.

In terms of underlying logic, a hedonic index holds the distribution of quality fixed, whereas

the structural index holds the average household’s utility fixed and asks how she must be com-

pensated for changes in rent across the quality ladder. In particular, the notion of effective rent

is the expenditure required to obtain a unit of housing utility (i.e. compensating variation). For

reasons of space, I defer details on setup and implementation to Appendix 2. I compute the

structural index using the Trepp data, which is described in FI.
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2.1 Setup

Let i ∈ I index properties. Define housing quality hi as a Cobb-Douglas aggregator of space si

and amenities ai such that log(hi) = µ log(si) + log(ai). As discussed shortly, µ > 0 will govern

preferences for quality. Next, let H denote the highest quality in the market, H ≡ supi∈I {hi},

which I will refer to as absolute quality. Finally, define the unit’s quality segment as ĥi ≡ hi
H
∈

{0, ..., 1}. For example, segment ĥi = 1 corresponds to units in Class A properties.

Households, indexed by j, are endowed with income yj. They have additive random prefer-

ences over their choice of shelter with flow utility

ui,j = log(hi) + εi,j, (1)

where εi,j is a taste shock. Incorporating consumption does not materially change the analysis.1

Online Appendix B shows how these preferences give rise to a discrete choice problem where

households choose a shelter to maximize a geometric average of quality hi, personal appeal εi,j,

and inverse rent.

The structural index aims to track the utilitarian welfare associated with (1) or, equivalently,

the dollar cost required to maintain this welfare at a fixed level. This dollar cost, which I call

“welfare-relevant rent”, is the sum of areas to the left of the Hicksian market demand curve for

each segment ĥ, and its functional form depends on the distribution of εi,j.
2 For the baseline

exercise, εi,j follows a type 1 extreme value, or Gumbel distribution, which implies that the

demand curves in each segment have a constant elasticity of substitution (CES) form.3 The

parameter σ ≡ µ+ 1 governs the shape of the market demand curve. When σ is high, individual

households have less preference for quality and view units in different segments as substitutable.

The following proposition shows how, given σ, one can compute the growth in welfare-

relevant rent using observed the rent and market share of each segment.4 This growth is the

social cost (i.e. compensating variation) associated with a change in the distribution of rent

1See Online Appendix B for details. All proofs are in Online Appendix B.
2Focusing on the market demand curve is standard technique for studying price and welfare in durable

goods markets, such as automobiles. See Anderson, de Palma and Thisse (1992) or Eaton and Kortum (2002)
for examples with CES market demand. Berry, Levinsohn and Pakes (2004) study automobile consumers with
preferences similar to (1) when taste shocks do not imply CES market demand.

3See Online Appendix F. This is a well-known result due to Anderson, de Palma and Thisse (1992).
4As discussed below, there are a number of ways to partition the market into quality segments ĥ. I use official

property inspection scores in my baseline analysis.
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across the quality ladder.5

Proposition 2.1 (Structural Rent Index) The compensating variation associated with a change

in rent from t0 to t is

πSt = exp

∑
ĥ∈H

wĥ,t log

(
Rentĥ,t
Rentĥ,t0

)× [( Rent1,t

Rent10,t

)σ
Share1,t

Share10,t

]− 1
σ−1

≡ DQt ×GQ
− 1
σ−1

t , (2)

where H ⊆ [0, 1] is the set of quality segments, Rentĥ,t and Shareĥ,t are the rent and share of

total units in segment ĥ and year t; the Sato-Vartia weights wĥ,t are a function of Rentĥ,t and

Shareĥ,t; and segment 10 contains units that were in segment 1 in year t0.

The term DQt in (2) depends on the distribution (hence “D”) of rent across the quality

ladder.6 It reflects how rent growth affects the average household differently depending on

whether growth is at the top (ĥ large) or bottom (ĥ small) of the ladder, where each segment’s

weight wĥ,t encodes households’ willingness to move to that segment. Next, GQt is growth (hence

“G”) in absolute quality.7 When rent on top tier units is higher than units that were top tier in

t0 (i.e. Rent1,t large), it reflects an increase in absolute quality (e.g. less noisy dishwashers), and

especially so if households have less preference for quality (i.e. σ large). However, if the relative

share of top tier units is low (i.e. Share1,t small), then then this rent premium does not reflect

absolute quality, but rather a scarcity of newly renovated units. Finally, growth in absolute

quality dampens effective rent because σ > 1, but this effect is (exponentially) discounted by

1
σ−1

: when σ is large, households attach less value to quality, and thus its impact on effective

rent growth is weak.

2.2 Implementation

I compute the structural rent index πSt in (2) using the Trepp data, which cover multifamily

properties over 2010-2016. These data have detailed property improvement records that help me

5Strictly speaking, “compensating variation” is the difference in welfare-relevant rent (i.e. the market’s
minimized cost function) following a change in the observed distribution of rent. I will misuse the term slightly
and refer to the growth in welfare-relevant rent as “compensating variation”.

6The term is standard in price indices with CES market demand and has its origins in Diewert (1976), Sato
(1976), and Vartia (1976). See Feenstra (1994) or Broda and Weinstein (2006) for additional discussion.

7This term relies on a similar insight as Redding and Weinstein (2018), who also exploit the CES first order
condition to obtain an expression for the change in quality. However, Redding and Weinstein (2018) do not
impose a hierarchy of quality and do not allow quality to grow on average.
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identify the index’s key parameter, σ, which I estimate using three strategies: (1) a property-level

strategy utilizing idiosyncratic variation in payment timing; (2) a zip code level version of the

property-level strategy; and (3) a zip code level strategy based on a widely-used GMM estimator

proposed by Feenstra (1994). Due to space constraints, I defer details on these strategies to

Appendix A.1. The average estimate for σ is 6.5, as shown in Table A1. Figure A1 performs an

introspective exercise with photographs to interpret this magnitude.

The second piece of information needed to compute πSt is a sorting variable to partition

units into quality segments ĥ. I partition the market using official property inspection ratings

conducted by the Mortgage Bankers Association and Commercial Real Estate Finance Council

(MBA/CREFC), although the results are similar when sorting properties by effective age.8

2.3 Results

Figure 1 summarizes growth in the structural rent index πSt and various related indices over 2010-

2016. The baseline CES index saw real growth of 0.2% compared to 1.4% growth in average rent,

which implies that improving quality can account for 86% of 2010-2016 real rent growth.9 As

before, the effect is stronger when benchmarking to an age adjusted index similar to that used

by statistical agencies. Discounted growth in absolute quality, GQ
− 1
σ−1

t , accounts for 73% of the

wedge between age adjusted and structural rent growth.10 This is consistent with descriptions

of an “amenities arms race” in the apartment industry.11

In Appendix C, I show how to use a quasi hedonic methodology to infer growth in absolute

quality, which can be applied to an arbitrary price index formula. This approach uses the same

intuition from Proposition 2.1 that growth in absolute quality can be inferred from the premium

of top tier units over units that were top tier in the base period. These non-CES indices all have

real growth rates between 0.1% and 0.2%.

8This rating captures a property’s quality relative to the top of its market, and it is regularly collected as
part of the multifamily mortgage servicing protocol with the intent of minimizing agency frictions. Markets are
defined as a geographic zone of competition and are between a county and an MSA in size. See FI for more
details, including evidence that the MBA/CREFC rating does not suffer misreporting bias.

9The Trepp data are at the property-level, and so I weight properties by the number of units.

10Explicitly, fixing GQ
− 1
σ−1

t = 1 leads to growth of 1.3% compared to 0.2% when using its estimated value.
Growth in absolute quality therefore accounts for 1.3−0.2

1.7−1.3 = 73% of the wedge between age adjusted and structural
rent growth.

11See the Washington Post article “An amenities arms race heats up in the apartment industry” (Orton, 2017).
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Figure 1: Summary of Structural Rent Index
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Note: This figure plots average annual growth in real rent over 2010-2016 for various rent indices. Unadjusted
denotes average rent. Age Adjusted rent growth performs an age adjustment similar to that used by statistical
agencies and is described in Appendix 3.3. Baseline denotes the structural index from (2). Data are from Trepp.

3 Implications of Accounting for Quality Improvements

I discuss implications of this quality adjustment for inequality in housing costs, official rent

indices, and asset pricing in real estate.

3.1 Implications for Inequality in Housing Consumption

This extension asks how effective rent has varied by income. My focus is on heterogeneity across

geographic markets and submarkets.12 The structural index is the more natural tool for this

exercise because it better accommodates heterogeneous valuations of quality, which would arise

due to, say, non-homothetic preferences. I use the Trepp data because of its detailed information

on property location.

For part of this analysis, I allow the preference parameter σ to vary in the cross-section.13

Following Jaravel (2018), I partition the sample into brackets by zip code real income and then

12Markets are typically between a county and MSA in size, and submarkets are between a zip code and a
county, per the MBA/CREFC property inspection guidelines.

13Appendix B.1 provides a microfoundation based on the notion that space si, unlike amenities ai, is a necessity.

5



reestimate σ for each bracket.14 The results in Table A2 show that the highest income zip codes

have the lowest value of σ (4.9) and thus the highest willingness to pay for quality. Next, I parti-

tion the set of zip codes into an above and below median cohort according to average income over

2010-2016. Then I recompute πSt for the two cohorts using each zip code z’s estimated preference

parameter σz. One should interpret πSt as welfare-relevant rent for the average household in a

given cohort.

Figure 2 plots real growth in real unadjusted rent and the structural index πSt over 2010-2016

by income cohort. Beginning with the left column, unadjusted real rent growth was, coinciden-

tally, 1.3% for both cohorts. The middle column accounts for differences in quality, but constrains

preferences to be the same. Whereas improving quality can explain all of real rent growth for

the high income cohort, quality actually fell somewhat in low income markets. The right col-

umn relaxes the constraint on preferences, after which welfare-relevant rent growth falls by an

additional 0.9 pps for the high income cohort. Altogether, household surplus from improving

quality was 2.5 pps greater in high income markets, of which 64% (1.6 pps) was due to material

changes in quality and 36% (0.9 pps) was due to greater preferences for it. The joint importance

of quality and preferences is consistent with a model where investors make improvements where

the equilibrium price of quality is highest.

Figure 3 obtains a similar finding when partitioning by within-MSA income, either averaged

over 2010-2016 or as measured initially in 2010. The divergence in the gains from quality is

strongest when partitioning by initial income, consistent with a view of “super gentrification”

and the Guerrieri, Hartley and Hurst (2013) model of endogenous provision of amenities.

3.2 Implications for Asset Pricing

This extension studies how improvements vary by initial real estate valuations in a market. Ac-

cording to the logic of standard asset pricing, the cap rate (i.e. dividend-price ratio) should

convey information about a unit’s future rent (i.e. dividend) growth (Campbell and Shiller

1988).15 To test this hypothesis, I sort zip codes − which I will call submarkets in this extension

14Income is measured using average adjusted gross income from the IRS. The real income brackets are 0-30%,
30-65%, and 65%-100%. I estimate σ with each of the three methodologies described in Appendix A and average
across them.

15The cap rate equals the ratio of net operating income to appraised property value and is therefore similar
to a dividend-price ratio.
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Figure 2: Structural Rent Index by Income
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Note: This figure plots average 2010-2016 growth in unadjusted and structural rent indices for properties in zip
codes with high or low income. High is defined as having average household income over 2010-2016 above the
median across zip codes, and low is defined conversely. The leftmost column plots unadjusted average rent growth.
The rightmost column plots growth in the baseline CES index in (2.1) using each zip code’s estimated demand
parameter σz. The middle column fixes σz at the average value for the low income cohort. Data are from Trepp.

− within each MSA according to the 2010 cap rate on multifamily properties and then com-

pute quality-adjusted rent growth over 2010-2016 for zip codes with an above or below average

value. The results in Figure 4 show how quality-adjusted rent growth was substantially lower

in submarkets with a high initial cap rate (i.e. dividend-price ratio). This is consistent with

rational expectations and the view that cheap properties necessitated substantial improvement

to command their observed rent. By contrast, quality-adjusted rent growth was actually higher

than observed growth in submarkets where the initial cap rate was lower. Panel (b) of Figure

4 sorts submarkets by house price decline during the 2006-2009 collapse and reveals a similar

result: submarkets where property values fell by more during the crash saw subsequently greater

improvements in housing quality.
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Figure 3: Structural Rent Index by Income Partition
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Note: This figure plots average 2010-2016 growth in unadjusted and structural rent indices for properties in zip
codes with a high or low value of the indicated variable. High is defined as above median, and low is defined
conversely. Overall Income denotes average household income over 2010-2016. MSA Relative Income denotes
average household income over 2010-2016 after demeaning by the surrounding MSA. Initial MSA Relative Income
denotes average household income in 2010 after demeaning by the surrounding MSA. The structural index is the
baseline CES index in (2.1) using each zip code’s income-based demand parameter σz. Data are from Trepp.

3.3 Relationship to Official Rent Indices

This section relates the results to what one would obtain from an age adjustment procedure

similar to that used by statistical agencies.16 Following Gallin and Verbrugge (2007), I define

the age adjustment regression as

log (Renti,t) = γ
(
Agei,t;Xi,t

)
+ ui,t, (3)

where Renti,t, Agei,t, and Xi,t are, respectively, a unit’s rent, the age of the property, and a vector

of structural features.17 Then, one computes a unit’s age adjusted rent as RentAi,t ≡ Renti,te
− ∂γ
∂Agei,t

16Age is the primary attribute the Bureau of Labor Statistics (BLS) corrects for when computing the Rent
of Primary Residence (Ptacek 2013). The other corrections pertain to the changes in the inclusion of parking or
utilities in rent, and the addition of a new room or central air conditioning.

17The function γ
(
Agei,t;Xi,t

)
approximates that used by the BLS as closely as possible given a different

dataset. It includes age, its square, and its interaction with: the number of units in the property and an indicator
for whether the property is over 85 years old. Since I do not observe a unit’s location and thus neighborhood
features in the AHS data, I estimate (5) as a panel regression and include a property fixed effect. When using
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Figure 4: Forecasting Quality Growth with Submarket Indicators
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Note: This figure plots average 2010-2016 growth in adjusted and structural rent indices for properties in zip
codes with a high or low value of the indicated variable. High is defined as above the average of the surrounding
MSA, and low is defined conversely. House Price Decline 2006-09 denotes the change in the zip code level Zillow
Home Value Index between 2006 and 2009. Cap Rate 2010 denotes the average ratio of net operating income to
appraised value in the zip code in 2010. The structural index is the baseline CES index in (2.1). Data are from
Trepp.

and aggregates RentAi,t across units to produce an average rent πAt that is benchmarked to the

reference period,

πAt =

∑
i∈I RentAi,t∑
i∈I Renti,t0

, (4)

I next relate the results to what one would obtain from an age adjustment procedure similar

to that used by statistical agencies.18 I show age adjustments used to construct official indices

can be biased upward and decompose the bias into two terms. The first term relates to the rate

at which housing units depreciate, and the second relates to growth in absolute quality.

the Trepp data, I weight observations in (5) by number of units because the data are at the property-level.
18Age is the primary attribute the Bureau of Labor Statistics (BLS) corrects for when computing the Rent

of Primary Residence (Ptacek 2013). The other corrections pertain to the changes in the inclusion of parking or
utilities in rent, and the addition of a new room or central air conditioning.
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First, following Gallin and Verbrugge (2007), I define the age adjustment regression as

log (Renti,t) = γ
(
Agei,t;Xi,t

)
+ ui,t, (5)

where Renti,t, Agei,t, and Xi,t are, respectively, a unit’s rent, the age of the property, and a vector

of structural features.19 Then, one computes a unit’s age adjusted rent as RentAi,t ≡ Renti,te
− ∂γ
∂Agei,t

and aggregates RentAi,t across units to produce an average rent πAt that is benchmarked to the

reference period, similarly to the expression for the hedonic index.

πAt =

∑
i∈I RentAi,t∑
i∈I Renti,t0

, (6)

The remainder of this section theoretically compares the structural and age adjusted rent

indices πSt and πAt . Beginning with the setup described above, consider the following exercise.

Suppose a unit’s equilibrium rent is a function of its quality hi,t.

log (Renti,t) = ai + P log (hi,t) + ui,t (7)

= ai + P
[
log
(
ĥi,t

)
+ log (Ht)

]
+ ui,t,

where the notation is the same as in the paper with the addition of time subscripts, and ui,t is

an iid shock. In particular, Ht is the highest quality in the market at t, which I call absolute

quality, and ĥi,t ≡ hi,t
Ht

is the relative quality of unit i. The parameter P is the equilibrium slope

of the quality ladder, or price of quality. A unit’s relative quality is also a function of its age,

log
(
ĥi,t

)
= −δAgei,t + vi,t, (8)

where δ is the rate of natural depreciation, and vi,t is not necessarily iid. The intuition is similar

for more complicated depreciation schedules than (8). For the sake of argument, suppose all

parameters in (7)-(8) are known, but quality hi,t is not observed. Let Ẽ denote a cross-sectional

19The function γ
(
Agei,t;Xi,t

)
approximates that used by the BLS as closely as possible given a different

dataset. It includes age, its square, and its interaction with: the number of units in the property and an indicator
for whether the property is over 85 years old. Since I do not observe a unit’s location and thus neighborhood
features in the AHS data, I estimate (5) as a panel regression and include a property fixed effect. When using
the Trepp data, I weight observations in (5) by number of units because the data are at the property-level.
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expectations operator: Ẽ [zi,t] = E [zi,t|t]. Then the age adjusted index (6) can be rewritten

πAt = eδP
Ẽ [Renti,t]

Ẽ [Renti,t−1]
. (9)

The relationship between πSt and πAt is described by the following proposition.

Proposition 3.1 (Bias in Age Adjusted Rent) Suppose the total number of housing units

is held fixed. Then age adjusted rent growth πAt is biased upward compared to the structural rent

index πSt according to

πAt
πSt

=

(
Ht

Ht0

)P
× Ẽ [Renti,t]

Ẽ [Renti,t × e−P∆vi,t ]
. (10)

The result in (10) decomposes bias in an age adjustment into two terms.20 The intuition for

the first term in (10) is that an age adjustment accounts for relative quality, not absolute quality.

A top-tier unit 2010 may have lost no or very little quality by 2014, but it will still rent at a

discount compared to a unit renovated to top-tier standards in 2014 if there is growth in absolute

quality, H2014 > H2010. The intuition for the second term is that age is an imperfect proxy for

quality in the presence of improvement activity. To see this, first note from the depreciation

process (8) that an improvement would generate a large disturbance term ∆νi,t > 0. Furthermore,

because improvements move a unit up the quality ladder, there is positive covariance between

∆νi,t and Renti,t. Together, these two features would make the second term in (10) greater than

1, leading to upward bias.

20The proof of Proposition 3.1 is as follows:

Proof Let R̄t0 and Ū denote aggregate rent expenditure and welfare at t0. Let R̄t denote the minimized cost
function in t from Lemma B.2 when target utility is Ū . By definition, R̄t is the aggregate expenditure required
to maintain welfare at Ū . Since the number of units is unchanged, R̄t equals aggregate expenditure at t when
holding each unit’s quality fixed at its t0 level,

R̄t = Ẽ
[
Ri,te

P [∆ log(ĥi,t)+∆ log(Ht)]
]

(11)

= Ẽ
[
Ri,te

P (δ−∆vi,t−∆ log(Ht))
]
,

where the second line uses (8). Define πt ≡ R̄t
R̄t0

. From the proof of Proposition 1 from the paper, πSt = πt.

Dividing each side of (11) by R̄t0 gives expression in (10),

πAt
πSt

=

(
Ht

Ht0

)P
× Ẽ [Renti,t]

Ẽ [Renti,t × e−P∆vi,t ]
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Recall that this exercise assumes knowledge of all parameters. If δP is unknown but es-

timated through OLS, then classical measurement error from the fact that age is an imperfect

measure for relative quality would bias the estimated δP toward zero. This attenuation bias

would partially offset the upward bias in (10).

Proposition 3.1 lays out two avenues for addressing upward bias in conventional age adjust-

ments. First, collecting and incorporating information on improvement activity could reduce the

measurement error from proxying quality with age. This could be accomplished by interviewing

landlords, as opposed to the current practice of interviewing tenants. Ambrose, Coulson and

Yoshida (2018) argue that reporting lags are an additional rationale for interviewing landlords.

Second, addressing the bias from growth in absolute quality requires additional methodological

tools. Several papers in the price adjustment literature (e.g. Redding and Weinstein 2018) are

making progress on this margin.

References

Ambrose, B. W., Coulson, N. E. and Yoshida, J.: 2018, Housing Rents and Inflation Rates.

Anderson, S. P., de Palma, A. and Thisse, J.-F.: 1992, Discrete Choice Theory of Product

Differentiation, The MIT Press.

Berry, S., Levinsohn, J. and Pakes, A.: 2004, Differentiated Products Demand Systems from a

Combination of Micro and Macro Data: The New Car Market, Journal of Political Economy .

Broda, C. and Weinstein, D. E.: 2006, Globalization and the Gains from Variety, The Quarterly

Journal of Economics .

Campbell, J. Y. and Shiller, R. J.: 1988, The Dividend-Price Ratio and Expectations of Future

Dividends and Discount Factors, Review of Financial Studies .

Diewert, E.: 1976, Exact and Superlative Index Numbers, Journal of Econometrics .

Eaton, J. and Kortum, S.: 2002, Technology, Geography, and Trade, Econometrica .

Feenstra, R. C.: 1994, New Product Varieties and the Measurement of International Prices,

American Economic Review .

12



Gallin, J. and Verbrugge, R.: 2007, Improving the CPI’s Age-Bias Adjustment: Leverage, Dis-

aggregation, and Model Averaging, BLS Working Paper .

Guerrieri, V., Hartley, D. and Hurst, E.: 2013, Endogenous Gentrication and Housing Price

Dynamics, Journal of Public Economics .

Jaravel, X.: 2018, The Unequal Gains from Product Innovations: Evidence from the U.S. Retail

Sector.

Ptacek, F.: 2013, Updating the Rent Sample for the CPI Housing Survey, Monthly Labor Review

.

Redding, S. J. and Weinstein, D. E.: 2018, Measuring Aggregate Price Indexes with Demand

Shocks: Theory and Evidence for CES Preferences, NBER Working Paper .

Reher, M.: 2019, Financial Intermediaries as Suppliers of Housing Quality.

Sato, K.: 1976, The Ideal Log-Change Index Number, Review of Economics and Statistics .

Vartia, Y. O.: 1976, Ideal Log-Change Index Numbers, Scandinavian Journal of Statistics .

13



A Econometric Details

This appendix has econometric details related to the structural rent index.

A.1 Calculation of Structural Rent Index

Calculating the rent index πSt in (2) requires two pieces of information: (1) a ranking variable

to partition the sample into segments {ĥ}, and, relatedly, an identifier for which units are top-

end in period t and thus have quality Ht; and (2) the preference parameter σ. I obtain these

objects from the Trepp dataset and compute πSt over 2010-2016. As described in Reher (2019),

this dataset covers a geographically representative sample of multifamily properties, and it is

particularly appealing for this exercise due to its detailed information on property upgrades,

inspection ratings, and renovations which are collected as part of the multifamily mortgage

servicing process.

First, to rank properties I use the MBA/CREFC property inspection rating. This rating

captures a property’s quality relative to a newly built unit and is obtained as part of the standard

multifamily mortgage servicing protocol. The resulting index is robust to alternative partitioning

variables such as the property’s effective age. Importantly, because ĥ does not directly appear

in (2), this rating only needs to identify a property’s rank and does not need to be accurate in

the cardinal sense.

To classify top-end properties I use a combination of renovation and inspection data. I

classify a unit as having quality Ht in period t if it is in a property that was newly built or

renovated and first on the market in year t, and if it also was ranked in the top MBA/CREFC

quality segment after construction or renovation.21 Under the assumption that top-end units

in year t−1 retain their absolute quality Ht−1 through at least year t, one can use the number

of units with quality Ht (i.e. in segment 1 at t) and Ht−1 (i.e. in segment 10 at t) and their

respective revenue shares in year t to compute GQt according to the expression in (2).22 To

account for the possibility that renovations and construction only occur in certain areas in year

21There is typically a 1-year lag between completion of construction and renovation and being rent-ready.
22Specifically, I compute ∆GQs for all s = 1, ..., t and then take their product to obtain GQt. That is, I chain

growth in absolute quality. When taking (2) to the data, I will use the theoretically equivalent expression for

growth in absolute quality, GQt =
(

Expend1,t

Expend10,t

)σ (
Share1,t
Share10,t

)1−σ
, where Expendĥ,t is the share of aggregate rent

expenditure on segment ĥ. Doing so reduces measurement error from unit level rent. Feenstra (1994) also relies
on expenditure shares when possible, since they are subject to less measurement error.

14



t, I also compute GQt within each zip code-year bin and then average across zip codes that year,

which yields very similar results.23

Second, I must estimate σ, which I do using three methodologies: a property-level credit

supply shock using idiosyncratic variation in payment timing, a zip code level version of the

property-level shock, and the Feenstra (1994) GMM estimator. I now describe these three

methodologies. Before doing so, Table A1 summarizes the estimated σ from each of them.

The average estimate is 6.5, and Figure A1 helps interpret this magnitude by performing an

introspective exercise.

Table A1: Estimated Preferences for Quality

Estimated σ
Specification: Property IV Zip Code IV GMM

Estimate 6.5 6.9 6.1
Confidence Interval [2.8, 18.2] [1.2, 19.6] [4.1, 9.4]

Note: This table shows the estimated elasticity of substitution σ for various methodologies. Property IV, Zip
Code IV, and GMM are discussed in Sections A.1.1, A.1.2, and A.1.3 below. Bootstrapped 95% confidence
intervals are shown in brackets. Data are from Trepp.

Table A2 summarizes the estimates after partitioning the sample into income cohorts as

described in Appendix 3.1. The highest income zip codes have the lowest value of σ (4.9) and

thus the highest willingness to pay for quality.24

23Growth in the rent index πSt is 1.5% as opposed to 1.7% under the baseline.
24There is an apparent non-monotonicity in σ with respect to income bracket. This likely reflects the fact that

σ is both the inverse willingness to pay for quality and the market level substitutability across segments. The
estimated σ in very low income zip codes may be small if the data reveal limited movement across segments. By
analogy, with CRRA preferences there is not a distinction between the coefficient of relative risk aversion and the
inverse intertemporal elasticity of substitution.
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Table A2: Estimated Preferences for Quality by Income

Estimated σ
Specification: Property IV Zip Code IV GMM

Full Sample 6.5 6.9 6.1

By Real Income 2010-2016:
Bottom 30% 5.7 14.9 8.6
Middle 35% 17.9 25.0 5.0
Upper 35% 4.7 3.7 6.2

Note: This table shows the estimated elasticity of substitution σ for various methodologies and income groups.
Property IV, Zip Code IV, and GMM are discussed in Sections A.1.1, A.1.2, and A.1.3 below. Data are from
Trepp.
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Figure A1: Example Willingness to Pay for Quality

(a) Top Tier: $1,600 (b) Above Average General Market: $1,448

(c) Below Average General Market: $971 (d) Bottom Tier: $625

Note: This figure shows the willingness to pay for quality assuming the rent of a unit in the bottom quality
segment is $625 per month, the elasticity of substitution across quality segments is σ = 6.5, and the properties
only differ in their structural quality. The photographs are from the website of a large real estate investor in
the Dallas, TX and San Antonio, TX markets. Panels (a)-(d) show properties corresponding to the 4 bins of
the MBA/CREFC rating used in this paper, respectively. Moving from the top segment to the bottom segment
entails consecutive reductions of 0.6, 2.6, and 2.9 log points of relative quality, respectively. Given the average
estimated σ of 6.5, this implies a willingness to pay of 10% for “highest current market standards” versus “above
average” (i.e. panel (a) vs. panel (b)); 40% for “minimal” versus “general” wear and tear (i.e. panel (b) vs. panel
(c)); and 44% for “no” to “some” or “multiple” life safety violations (i.e. panel (c) vs. panel (d)).
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A.1.1 Estimating σ: Property-Level Credit Supply Shock

This methodology estimates σ insofar as it is the inverse marginal willingness to pay for quality.

Using Lemma B.2, 1
σ

is the elasticity of rent with respect to quality, holding the distribution of

units across quality segments constant, 1
σ

=
∂ log(Rentĥ,t)

∂ log(ĥ)
.

As described in FI, the structure of most multifamily mortgage contracts generates spikes

in improvement activity. Combining this institutional feature with the effectively exogenous

variation in their due date established in FI, I construct an instrument for the change in log

relative quality log(ĥ). Suppose now that the quality of units in property i evolves according to

log (hi,t) = log (hi,t−1) + log
(
Improvementsi,t

)
− δi,t, (A1)

where δi,t is a depreciation shock. As discussed in Reher (2019), having an impending loan due

reduces the probability of making a quality improvement, lowering Improvementsi,t and thus

∆ log (hi,t) in (A1). This is because most multifamily mortgages are balloon loans which require

renewal at the end of every loan term, with a modal term of 10 years. Moreover, refinancing

is generally not an option and must be done through a process of defeasance.25 Because of the

possibility of cheaper borrowing costs after renewal, one would expect that having an impending

loan due covaries negatively with a unit’s change in quality.

Mapping to a regression equation, I estimate the system

log (Renti,z,t) =
1

σ
∆ log

(
Qualityi,z,t

)
+ β0 log

(
Qualityi,z,t−1

)
+ ai + az,t + ui,z,t (A2)

∆ log
(
Qualityi,z,t

)
= β̃0Impendingi,z,t + β1 log

(
Qualityi,z,t−1

)
+ ãi + ãz,t + ũi,z,t, (A3)

where i, z, and t index property, zip code, and year, and Impendingi,z,t indicates if the prop-

erty’s loan is due in t or t+1.26 Relative quality ĥi,z,t is denoted Qualityi,z,t and measured using

the MBA/CREFC rating. The second-stage equation is (A2), and its first stage equation is

(A3). However, I do not include information about the lender because my interest is on aver-

age improvement activity, not its dependence on whether the lender was affected by HVCRE

regulation.

25Defeasance is a fairly complicated process in which the borrower must exchange the loan for another security
of equal maturity, such as a Treasury.

26I weight observations in (A2)-(A3) by number of units because the Trepp data are at the property-level.
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Table A3: Substitutability Across Quality Rungs with Property-Level IV

First Stage Second Stage

Outcome: ∆ log
(
Qualityi,t

)
log (Renti,t)

(1) (2)

Impendingi,t -0.208∗∗

(0.035)
∆ log

(
Qualityi,t

)
0.153∗∗

(0.072)
log
(
Qualityi,t−1

)
-0.805∗∗ 0.132∗∗

(0.008) (0.058)
Estimator OLS 2SLS
Property FE Yes Yes
Zip Code-Year FE Yes Yes
First Stage F 34.661
Number of Observations 67210 67210

Note: Subscripts i and t denote property and year. Columns 1 and 2 estimate (A3) and (A2), respectively.
Qualityi,t is relative quality based on the MBA/CREFC property inspection rating. Impendingi,t indicates if the
investor has a mortgage due in year t or year t + 1. The estimator in column 2 is 2SLS, and the instrument
for ∆ log

(
Qualityi,t

)
is Impendingi,t. Observations are property-years weighted by number of units. The sample

period is 2010-2016. Standard errors are in parentheses. Data are from Trepp.

The zip code-year fixed effect az,t absorbs local demand effects that would otherwise affect

rent. Thus, any violation of the exclusion restriction due to expectations of future growth would

need to require sub-zip code variation in demand. Also, FI show that having an impending loan

due is uncorrelated with interest rate spreads or other measures of credit risk. The property

fixed effects ai absorb amenities.

Column 1 of Table A3 has the results of the first stage regression (A3). Having an impending

loan leads to a deterioration in relative quality. The second stage in column 2 implies σ = 6.5,

based on the point estimate of 0.15 on ∆ log
(
Rel Qualityi,t

)
.27

A.1.2 Estimating σ: Zip Code Level Credit Supply Shock

If CES market demand is a poor approximation, one might be concerned that the previous

strategy does not identify the appropriate parameter because it relies on a highly misspecified

functional form. To address concerns about functional form, I propose a second strategy which

27When computing the bootstrapped standard errors in Table A1 and the heterogeneous preference parameters
in Table A2, I estimate (A2) through a constrained optimization such that the implied value of σ lies in the interval
[1, 25]. This remark also applies when using the zip code level credit supply instrument and the Feenstra (1994)
GMM estimator.
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estimates σ insofar as it is the aggregate elasticity of substitution across quality segments, and

which thus obtains identification through a different functional form that is nonetheless consistent

with the CES market demand structure. The source of variation is similar to the previous

strategy, and the instrument used is a zip code level share of property owners with an impending

loan due.

Using Lemma B.2, the CES market demand curve can be written

log

(
Expendĥ
Expendĥ0

)
=

(
1− 1

σ

)
log

(
Shareĥ
Shareĥ0

)
+

1

σ
log

(
ĥ

ĥ0

)
, (A4)

where, using the notation introduced in Appendix B, Expendĥ is the aggregate share of rent

expenditure on segment ĥ. I then estimate the following system through 2SLS,

log

(
Expendĥ,z,t
Expendĥ0,z,t

)
=

(
1− 1

σ

)
log

(
Shareĥ,z,t
Shareĥ0,z,t

)
+ γXz,t + aĥ + am,t + uĥ,z,t (A5)

log

(
Shareĥ,z,t
Shareĥ0,z,t

)
= β̃0Impendingz,t + γXz,t + ãĥ + ãm,t + ũĥ,z,t (A6)

where z indexes zip codes, t indexes years, m indexes MSAs ĥ indexes quality segments according

to the MBA/CREFC score; ĥ0 is the reference segment, which I set at the lowest quality segment

on the MBA/CREFC rating scale; the segment fixed effects αĥ and α̃ĥ absorb the second term

in (A4); and Impendingz,t is the fraction of units in zip code z whose owner has a loan due in

t or t+1, and it is a zip code level average of the instrument from the property-level system

(A2)-(A3).28 The equation of interest is the second stage (A5), and its first stage is (A6).

The MSA-year fixed effect am,t and its first-stage counterpart in (A6) restrict variation

within MSA m in which z is located and year t. The zip code controls include measures of

investors’ financial condition and local demand.29 Since all variation comes from within MSA-

year bins, one can think of (A5)-(A6) as comparing the timing of when most investors in a zip

code took out their loan. Thus, the instruments are predetermined as of time t and do not

28Specifically, ĥ0 corresponds to a raw MBA/CREFC rating of 3, 4, or 5. I group these three segments together
because they are the lowest collective segment observed in all zip codes and years. See Appendix B of FI for full
details on the interpretation of MBA/CREFC ratings.

29Financial controls are the average interest rate spread, securitization rate, and log term for loans on units in
zip code z and year t. Demand controls are the log average income, log population, and fraction of households
with social security benefits, capital gains, dividend income, and children in z and t, all based on IRS tax returns.
See the footnote to Table A4 for more details on how these variables are proxied using the IRS data.
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Table A4: Local Demand, Financial Condition, and the Timing of Loan Renewal

Outcome: Impendingz,t

log (Incomez,t) 0.002
(0.005)

log
(
Populationz,t

)
-0.002
(0.002)

Stock Ownershipz,t -0.228
(0.166)

Family Householdsz,t 0.110
(0.088)

Social Security Benefitsz,t -0.060
(0.060)

Capital Gains Incomez,t 0.209
(0.190)

Rate Spreadz,t 0.117
(0.145)

Securitizedz,t 0.000
(0.004)

log (Termz,t) -0.037∗∗

(0.003)
MSA-Year FE Yes
R-squared 0.210
Number of Observations 9282

Note: Subscripts z and t denote zip code and year. Impendingz,t is the fraction of units whose investor has a
mortgage due in year t or t+1. Incomez,t is average income per tax return. Populationz,t is number of tax returns.
Stock Ownershipz,t is the fraction of households with dividend income. Family Householdsz,t is the fraction of
returns with a child tax credit. Social Security Benefitsz,t is the fraction of returns with social security income.
Capital Gains Incomez,t is the fraction of returns with capital gains. Rate Spreadz,t is the average difference
between the loan’s current interest rate and the average loan interest rate the year of origination or renewal.
Securitizedz,t is the fraction of units whose loan was securitized within 3 months of origination. Termz,t is the
average loan term in months. The sample period is 2010-2016. Standard errors are in parentheses.

capture contemporaneous demand shocks. However, it is plausible that the timing of borrowing

decisions and the resulting interest rate reflected expectations about future demand in a given zip

code with an MSA. These expectations would be reflected ex post in measures of local demand,

or ex ante in the loan’s rate spread or initial securitization status. To investigate this possibility,

I project the instrument Impendingz,t onto the control vector Xz,t. The results in Table A4 show

that the only significant partial correlation with Impendingz,t is the mechanical effect of having

a shorter term. This finding suggests that, within the same MSA-year bin, Impendingz,t does

not reflect expectations about local demand.

Table A5 has the results of (A5)-(A6). Column 1 has the estimates from the first stage (A6).

21



Table A5: Substitutability Across Quality Rungs with Zip Code Level IV

First Stage Second Stage

Outcome: log
(

Shareĥ,z,t
Shareĥ0,z,t

)
log
(

Expendĥ,z,t
Expendĥ0,z,t

)
(1) (2) (3) (4)

Impendingz,t -0.538∗∗

(0.173)

log
(

Shareĥ,z,t
Shareĥ0,z,t

)
0.884∗∗ 0.857∗∗ 0.856∗∗

(0.143) (0.138) (0.146)
MSA-Year FE Yes Yes Yes Yes
Segment FE Yes Yes Yes Yes
Credit Controls Yes No Yes Yes
Demand Controls Yes No No Yes
First Stage F 9.596 10.677 9.683
Number of Observations 11574 11574 11574 11574

Note: Subscripts ĥ, z, and t denote quality segment, zip code, and year. Column 1 estimates (A6) and columns
2-4 estimate (A5). Quality segments are based on relative quality from the MBA/CREFC property inspection

rating. Segment ĥ0 is the lowest available in all zip codes and years. Impendingz,t is the fraction of units whose
property has a loan due in year t or t+ 1. Expendĥ,z,t and Shareĥ,z,t are the aggregate share of rent expenditure

and number of units in segment ĥ within a given zip code-year. The estimator in columns 2-4 is 2SLS and the

instrument for log
(

Shareĥ,z,t
Shareĥ0,z,t

)
is Impendingz,t. Credit and demand controls are those from Table A4. The sample

period is 2010-2016. Standard errors are in parentheses. Data are from Trepp.

Consistent with the property-level specification, zip codes where more property owners have an

impending loan due see fewer units in segments ĥ > ĥ0, recalling that the reference segment ĥ0

is the lowest on the MBA/CREFC rating scale. In these zip codes, there is a compositional shift

toward lower quality units. The second stage results in columns 2-4 show how this compositional

shift affected relative expenditure shares under the CES market demand curve (A4). The point

estimate of 0.86 in column 4 implies σ of around 6.9, similar to the result of the property-level

specification.30

A.1.3 Estimating σ: Feenstra GMM

Feenstra (1994) proposes an estimator for σ in the context of time-varying quality. It exploits the

panel structure of the data to provide an identification condition. This approach is potentially

problematic in my dataset because it requires a large number of time periods to produce consistent

estimates. That said, I estimate σ using this method as well.

30Explicitly, σ = 1
1−0.86 .
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To summarize the methodology briefly, one begins with the market demand curve implied

by Lemma B.2 and previously expressed in (A4),

log

(
Expendĥ,t
Expendĥ0,t

)
=

1

σ
log

(
ĥ

ĥ0

)
+

(
1− 1

σ

)
log

(
Shareĥ,t
Shareĥ0,t

)
+ νĥ,t (A7)

where, using the notation introduced in Appendix B, Expendĥ is the aggregate rent expenditure

share on segment ĥ and νĥ,t is a demand shifter.31 Like with the zip code credit supply methodol-

ogy, ĥ0 is the reference segment, which I set at the lowest quality segment on the MBA/CREFC

rating scale.

Then, one specifies the following isoelastic supply curve for a representative property owner

deciding how many units in quality segment ĥ to provide. This representative property owner

aggregates the improvement decisions of individual property owners, giving rise to a supply curve

which I express in terms of revenue, Expendĥ,t,

log

(
Expendĥ,t
Expendĥ0,t

)
= α0 + α log

(
Shareĥ,t
Shareĥ0,t

)
+ αĥ,t. (A8)

One takes differences of the demand and supply curves (A7) and (A8) to obtained the

differenced shocks ∆νĥ,t,∆αĥ,t. These shocks give the moment condition

E
[
∆νĥ,t∆αĥ,t

]
= 0. (A9)

Note that (A9) must apply to each zip code z. Therefore, rearranging (A9) gives the regression

equation

[
∆ log

(
Expendĥ,z,t
Expendĥ0,z,t

)]2

= θ1

[
∆ log

(
Expendĥ,z,t
Expendĥ0,z,t

)
∆ log

(
Shareĥ,z,t
Shareĥ0,z,t

)]
+ ... (A10)

...+ θ2

[
∆ log

(
Shareĥ,z,t
Shareĥ0,z,t

)]2

+ uĥ,z,t,

31The estimator I derive is slightly different than the original proposed by Feenstra (1994) because I reason
on quantity (i.e. number of units) rather than price (i.e. rent). Reasoning on quantity is more appropriate in my
setting because the share of units in each segment must sum to 1, and doing so reduces measurement error from
the fact that I approximate rent as revenue per occupied unit. However, the setup is effectively the same after
replacing “goods” with “quality segments”.
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where the notation is the same as in previous specifications. Intuitively, equation (A10) expresses

the relationship among the second moments of expenditure and unit shares, Expendĥ,z,t and

Shareĥ,z,t. The coefficients θ1 and θ2 encode the elasticity of substitution σ and the supply

elasticity α. In particular,

σ =
1

1 + θ2α
, α =

θ1

2
+

1

2

√
θ2

1 + 4θ2. (A11)

Since uĥ,z,t is a function of the differenced demand and supply shocks ∆νĥ,z,t,∆αĥ,z,t, one

cannot estimate (A10) consistently. However, one can obtain consistent estimates by taking

the average of (A10) across time periods, and estimating the resulting regression equation by

weighted least squares. That is, plimT→∞
∑T

t=0 uĥ,z,t = 0. The resulting estimates of θ1 and θ2

imply σ = 6.1, shown in Table A1.
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B Mathematical Details

This appendix has mathematical details related to the structural rent index.

B.1 Household Preferences: Structural Rent Index

This extension describes households’ problem in greater detail. Reviewing the setup from Section

2, household j selects a unit i and derives additive random utility from the unit’s quality hi

according to the preferences in (1),

ui,j = log (hi) + εi,j.

In the baseline case, εi,j follows a Gumbel, or type 1 extreme value distribution.32 Moreover,

quality is itself a composite of a unit’s space si (e.g. square feet) and other amenities ai (e.g.

granite countertops) according to log (hi) = µ log (si) + log (ai). For simplicity I assume that all

units i in the same quality segment ĥ have the same space sĥ. The next lemma describes how this

preference structure gives rise to the discrete choice problem verbally articulated in Appendix 2.

Lemma B.1 (Discrete Choice) A household with preferences (1) chooses her shelter accord-

ing to

max
i∈I

{
− log (Renti) +

1

µ
log (hi) +

1

µ
εi,j

}
. (B1)

Note that while households do not consume the numeraire, it is straightforward to allow for

non-housing consumption. To do so, I follow Anderson, de Palma and Thisse (1992) and modify

the baseline preferences (1) as follows

ui,j = κ log (cj) + log (hi) + εi,j, (B2)

where cj is household j’s consumption of the numeraire. Maximizing (B2) under the budget

32The cumulative distribution function is Pr [εi,j ≤ ε] = exp
[
− exp

[
−
(
ε
µ̃ + γe

)]]
, where γe = 0.58 is Euler’s

constant and µ̃ is a scaling parameter. In particular, E [εi,j ] = 0 and Var [εi,j ] = µ̃2 π2

6 .
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constraint yj = yhj + cj, where yhj is income available for housing expenditure,

cj =
κ

κ+ 1
yj.

Thus, the analysis is effectively the same after replacing income yj with income net of non-housing

consumption, yhj = 1
κ+1

yj.

The next lemma provides a useful aggregation result which enables Proposition 2.1.

Lemma B.2 (Anderson, De Palma, and Thisse 1992) If εi,j follows a type 1 extreme value

distribution with scaling parameter 1, then the distribution of number units across segments

{Shareĥ} behaves according to

min
{Shareĥ}

∑
ĥ∈H

Shareĥ × Rentĥ s.t. Ū =

H 1
σ

∑
ĥ∈H

ĥ
1
σShare

1− 1
σ

ĥ

 σ
σ−1

, (B3)

where σ = µ+ 1 and H ⊆ [0, 1] is the set of quality segments. Moreover,
∂ log(Rentĥ)
∂ log(ĥ)

= 1
σ

.

If households treat space as a necessity, one can suppose that µ is a decreasing function of

income yj. Thus, as yj rises, households’ relative preference for space versus amenities falls, so

that high income households have low values of σ = µ + 1, matching the estimates from Table

A2.

B.2 Proofs

Proof of Lemma B.1

The preferences in (1) are preserved when multiplying by µ̃ ≡ 1
µ
. Therefore, since rent Renti is

denominated in numeraire per housing unit, a household with yj available to spend on housing

has the following utility, based on (1),

ui,j = log

(
yj

Renti/si

)
+ µ̃ log (ai) + ε̃i,j = log (yj)− log (Renti) + µ̃ log (hi) + ε̃i,j, (B4)
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where the second equality uses log (hi) = µ log (si)+log (ai), and ε̃i,j ≡ µ̃εi,j. From (B4) it follows

that household j selects unit i ∈ I as the solution to

max
i∈I

{
− log (Renti) +

1

µ
log (hi) +

1

µ
εi,j

}
,

as in (B1).

Proof of Lemma B.2

First note that the problem in (B10) is equivalent to its corresponding primal problem,

max
{Shareĥ}

∑
ĥ∈H

h
1
σShare

1− 1
σ

ĥ

 σ
σ−1

s.t. ȳ =
∑
ĥ∈H

Shareĥ × Rentĥ, (B5)

with

Ū = ȳ


∑
ĥ∈H

h× Rentĥ
1−σ

 1
1−σ

−1

≡ ȳR̄−1, (B6)

where R̄ is the minimized cost function associated with the problem in (B10), which was referred

to as “welfare relevant rent” in the text. In particular, using h = ĥH, the solution implies that

the share of aggregate expenditure on segment ĥ is

Expendĥ =
ĥRent1−σ

ĥ∑
ĥ∈H ĥRent1−σ

ĥ

. (B7)

Continuing, it suffices to show that the aggregate demand generated by individual households

solving (B1) behaves according to (B5) for some σ. I work with the normalized preferences in

(B4) from the proof of Lemma B.1, where ε̃i,j ≡ µ̃εi,j follows a Gumbel distribution with scaling

parameter µ̃ ≡ 1
µ
. Then, use equation (3.51) from Anderson, de Palma and Thisse (1992) for

the case when there is the additional quality term µ̃ log (h), to write the probability a household
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chooses a unit in segment h = ĥH as

%ĥ =
ĥ× Rent−µ

ĥ∑
ĥ∈H ĥ× Rent−µ

ĥ

. (B8)

It follows that aggregate demand across households for units in segment ĥ is

Shareĥ =
ȳ

Rentĥ/sĥ
· %ĥ ·

1

sĥ
, (B9)

where sĥ is the space afforded by units in segment ĥ. In particular, the three terms in (B9)

are, respectively: (i) the space demanded by the average household, (ii) the share of households

selecting a housing unit in segment ĥ, and (iii) the inverse space per housing unit.

Finally, using Proposition 3.8 from Anderson, de Palma and Thisse (1992), the aggregate

demand system (B9) equals that of the representative household (B7) if and only if σ = µ + 1.

That is, the distribution of units across quality segments {Shareĥ} behaves according to the

solution to the problem (B10). In addition, as pointed out by Anderson, de Palma and Thisse

(1992), the value function associated with (B5) is a utilitarian welfare function.

To obtain the marginal willingness to pay, use the demand curve (B7) to write

Rentĥ
Rentĥ0

=

(
h

h0

) 1
σ
(

Shareĥ
Shareĥ0

)− 1
σ

, (B10)

for some reference segment ĥ0, which gives ∂ log(Rent)
∂ log(h)

= ∂ log(Rent)

∂ log(ĥ)
= 1

σ
using h = ĥH. This

completes what needed to be shown.

Proof of Proposition 2.1

By definition, πSt is the growth in the unit cost function R̄t from t0 to t, explicitly πSt ≡ R̄t
R̄t0

.

Using (B6) from the proof of Lemma B.2,

R̄ =

∑
ĥ∈H

ĥHt × Rentĥ,t
1−σ

 1
1−σ

, (B11)
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where ht = ĥHt is the absolute quality of segment ĥ at t. Therefore, write πSt as

πSt =

∑
ĥ∈H

ĥ× Rentĥ
1−σ

 1
1−σ

×
(
Ht

Ht0

)− 1
σ−1

≡ DQt ×GQ
− 1
σ−1

t . (B12)

Next, following Feenstra (1994), use the results of Diewert (1976), Sato (1976), and Vartia

(1976) to rewrite DQt as

DQt = exp

∑
ĥ∈H

wĥ,t log

(
Rentĥ,t
Rentĥ,t0

) , (B13)

where the Sato-Vartia weights are

wĥ,t =

Expendĥ,t−Expendĥ,t0
log(Expendĥ,t)−log(Expendĥ,0)∑

ĥ∈H
Expendĥ,t−Expendĥ,t0

log(Expendĥ,t)−log
(

Expendĥ,t0

) , (B14)

and, as in (B7) from the proof of Lemma B.2, Expendĥ,t is the share of aggregate expenditure

on segment ĥ in t,

Expendĥ =
Shareĥ × Rentĥ∑
ĥ∈H Shareĥ × Rentĥ

. (B15)

Finally, Lemma B.2 implies that the market demand curve has a CES structure, and using

(B10),

Rent1,t

Rent10,t

=

(
Ht

Ht0

) 1
σ
(

Share1,t

Share10,t

)− 1
σ

, (B16)

where Ht0 is absolute quality in t0 and segment 10 ≡
Ht0
Ht

contains units that were in segment 1

in year t0.33 Rearranging (B16) gives growth in absolute quality,

GQt =

(
Rent1,t

Rent10,t

)σ
Share1,t

Share10,t

. (B17)

33While the setup does not feature depreciation, when taking πSt to the data I require that units in segment
10 retained their absolute quality through t, as discussed in Appendix A.1.

29



Combining (B13) and (B17) gives the expression in (2),

πSt = exp

∑
ĥ∈H

wĥ,t log

(
Rentĥ,t
Rentĥ,t0

)× [( Rent1,t

Rent10,t

)σ
Share1,t

Share10,t

]− 1
σ−1

≡ DQt ×GQ
− 1
σ−1

t .
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C Non-CES Rent Indices

This section uses detailed data on property upgrade activity to infer time variation in quality with

minimal structural assumptions. While the CES aggregator is one of the most commonly used

in economics, one might be concerned that the expenditure function from Lemma B.2 is highly

misspecified. To address this concern, this section performs a quasi-hedonic quality adjustment

to correct each segment’s rent for time-varying quality. The corrected rent can then be used in

any non-CES price index formula (e.g. Tornqvist, Paasche, Laspeyres).

Write the rent on unit i in year t as

log (Renti,t) = ai + at + P log (hi,t) + ui,t (C1)

= ai + at + P
[
log
(
ĥi,t

)
+Ht

]
+ ui,t, (C2)

where P is the equilibrium slope of the quality ladder, or price of quality. Let Newi,t indicate if

i is first on the market in t after renovation and is in the top quality segment. I maintain the

assumption from the structural index in Appendix C of the paper that such units retain their

absolute quality for at least one year. Then (C1) implies that rent growth conditional on being

new (Newi,t = 1) or almost-new (Newi,t−1 = 1) is

∆ log (Renti,t) = ∆at + β0︸︷︷︸
P×log(GQt)

Newi,t + β1︸︷︷︸
−P

(
Newi,t × log

(
ĥi,t−1

))
+ ∆ui,t, (C3)

where GQt = Ht
Ht−1

is growth in absolute quality, using the notation from Proposition 1. In words,

the rent growth differential between new and almost-new units reflects new unit quality growth,

after controlling for the previous quality of new units. To measure relative quality, I again use

the MBA/CREFC property inspection rating.34

Using the Trepp dataset, I estimate (C3) year-by-year on units such that

max {Newi,t,Newi,t−1} = 1

and extract the coefficients {β0,t}.35 These point estimates give a sequence of quality growth rates

34Since inspections are rare during the year of renovation, I proxy for ĥi,t−1 using the most recent rating prior
to renovation. Similarly, I proxy for ∆ log (Renti,t) using the most recent available rent data and annualizing.

35I weight observations in (C3) by number of units because the Trepp data are at the property-level.
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in units of log rent, {P × (GQt)}. The identifying assumption is that the renovation decision

Newi,t is orthogonal to unobserved changes in the rental market as contained in ∆ui,t. This

assumption would be violated if, for example, renovations only occur in high-growth areas. To

account for this difficulty, I estimate (C3) with MSA fixed effects and controls for property size.

Thus, the comparison is strictly between units in new and almost-new properties of the same

size and in the same MSA and year. While reducing bias, this approach substantially limits the

available variation to estimate (C3) given the inclusion of so many covariates. Therefore, I use

the James-Stein estimator, which optimally biases the point estimate toward 0.36

Given the estimated sequence of annualized growth rates {P × log (GQt)}, I correct each

unit’s rent according to

RentGQi,t = Renti,t × exp

[
−

t∑
τ=t0

P × log (GQτ )

]
. (C4)

Using (C4), one obtains the corrected rent in each quality segment {RentGQ
ĥ,t
}. Along with the

appropriate data on aggregate expenditure shares {Expendĥ,t}, one can compute effective rent

using any price index formula. Some common formulae used in this paper are

πTornqvist
t = exp

∑
ĥ∈H

Expendĥ,t + Expendĥ,t0
2

log

(
RentGQ

ĥ,t

RentGQ
ĥ,t0

) ,
πPaasche
t = exp

∑
ĥ∈H

Expendĥ,t log

(
RentGQ

ĥ,t

RentGQ
ĥ,t0

) ,
πLaspeyres
t = exp

∑
ĥ∈H

Expendĥ,t0 log

(
RentGQ

ĥ,t

RentGQ
ĥ,t0

) .
Excess-CPI growth in πTornqvist

t , πPaasche
t , and πLaspeyres

t was between 0.1% and 0.2% over 2010-

2016.

36The James-Stein estimator is β̂JS = max
{

1− c
F-statistic , 0

}
· β̂OLS , where β̂OLS is the OLS estimator. For

0 < c < c̄ < 2 and at least three predictor variables, β̂JS dominates β̂OLS under the L2 norm.
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