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1 Introduction

Some of the most important problems in health insurance markets stem from adverse selection, or the

tendency of sicker consumers to exhibit higher demand for insurance. Concerns about adverse selection

have motivated a variety of regulatory interventions in the U.S. and around the world, including insur-

ance mandates, penalties for being uninsured, subsidies for purchasing insurance, risk adjustment trans-

fers, benefit regulation, and reinsurance. Policy discussions about how to address adverse selection have

become salient in the U.S. as many public programs have shifted toward providing health insurance via

regulated markets (Gruber, 2017).

But, a deeper look reveals that not all policies combating adverse selection are targeted at the same

problem. Policies such as mandates and subsidies combat selection on the extensive margin (or “against

the market”). This type of selection is characterized by sicker people being more likely to buy insurance.

It leads to higher insurer costs and higher consumer prices and causes some healthy people to opt out.

Policies such as risk adjustment and benefit regulation, on the other hand, combat selection on the inten-

sive margin (or “within the market”). This type of selection is characterized by sicker people being more

likely to purchase more generous plans within the market. Intensive margin selection drives up the price

of generous plans relative to skimpy ones and results in too many consumers choosing skimpy plans. In

some cases, selectionwithin themarketmay be so strong that generous contracts cannot be sustained, and

the market for them unravels entirely (Cutler and Reber, 1998).

Prior work has recognized these two problems and has studied policies targeted at each. However,

this literature has largely considered these two forms of selection in isolation—either assuming all con-

sumers buy insurance and focusing on the intensive margin (e.g., Handel, Hendel and Whinston, 2015),

or assuming all contracts within themarket are identical and focusing on the extensivemargin (e.g., Hack-

mann, Kolstad andKowalski, 2015). By ignoring onemargin or the other, the selection problem is usefully

simplified. In empirical work, it becomes amenable to a sufficient statistics approach based on demand

and cost curves defined in reference to a single price—either the price of insurance or the price difference

between a generous vs. a skimpy plan (Einav, Finkelstein and Cullen, 2010). However, this simplification

does not allow for potential interactions between these two margins of selection.
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In this paper, we generalize the canonical insurancemarket framework to address bothmargins simul-

taneously. The benefit of doing so is not merely a technical curiosity. It has first-order policy importance

in settings like the ACA Marketplaces where both the generosity of coverage and rates of uninsurance

are serious concerns. To see why, consider an insurance mandate—a policy that aims to correct extensive

margin selection by bringing healthy marginal consumers into the market. Our framework shows how a

mandate that succeeds in increasing rates of insurance coveragewill likelyworsen selection on the intensive

margin. Intuitively, themandate bringsmore healthy/low-cost consumers into themarket. Because these

new consumers tend to select the lower-price (and lower-quality) plans, the risk pools of those plans will

get even healthier. In equilibrium, these plans will further reduce prices, siphoning additional consumers

away from higher-quality plans on the intensive margin, causing prices for high-quality coverage to spi-

ral upwards. These two offsetting effects (improving take-up and inducing within-market unraveling)

represent a clear example of the intensive/extensive margin interactions that are the focus of our paper.1

One of ourmain contributions is to provide a graphical demand-cost framework that lets economists

visualize (and teach) the two-margin selection problem in a transparent way. To do so, we build on the

influential work of Einav, Finkelstein and Cullen (2010) and Einav and Finkelstein (2011), who show how

to visualize selection markets in terms of demand, average cost, and marginal cost curves. We generalize

their model to allow for two plans—amore generousH plan and a less generousL plan—plus an outside

option of uninsurance (U ). Although stylized, our vertical model captures the core intuition of the two

selection margins: an intensive margin difference in generosity (H vs. L) and an extensive margin option

to exit the market (by choosing U ). It also captures the key feature of adverse selection: that higher-risk

consumers have greater willingness to pay for generous coverage—both for H relative to L, and for L

relative to U . Our vertical model is the simplest framework that captures these features, and is useful for

developing intuition around a potentially multi-dimensional problem by allowing the market to be rep-

resented in standard two-dimensional graphs with familiar demand and cost curves. Equilibrium prices,

market shares, and social surplus can all be easily visualized. We also show the extent to which the core
1Recent theoretical insights from Azevedo and Gottlieb (2017) and empirical findings from Saltzman (2017) indicate that

this is an important omission in contexts like the ACAMarketplaces. We similarly find that these interactions are first-order
for plan choices and welfare.
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intuitions hold as various assumptions on the model are relaxed, including, for example, allowing for

horizontal differentiation across plans.

As in Einav, Finkelstein and Cullen (2010), there is a tight link between our model and the estima-

tion of sufficient statistics used to characterize equilibrium and welfare. Econometric identification is

analogous, though exogenous price variation along two margins is required—for example, independent

variation in the price of a skimpy plan and in the price of a generous plan.2

After developing the graphical framework, we use it to show how policies and regulatory actions that

counteract selection on one margin can interact with the other. The relevance of these “cross-margin”

interactions is the key conceptual take-away of our paper. We show that a mandate’s impact on plan

generosity is, in fact, an instance of a broader phenomenon that encapsulates many relevant policy in-

terventions currently in place in insurance markets. These include plan benefits requirements, network

adequacy rules, risk adjustment, reinsurance, subsidies, and behavioral interventions like plan choice ar-

chitectures or auto-enrollment. Each involves a potential trade-off. Policies that aim to address intensive

margin selection tend to worsen extensive margin selection, and vice-versa.

The graphical model helps show why these cross-margin interactions occur. The key insight is that

for each plan, either its demand or average cost curve is not a price-invariant model primitive (as is true in

a two-option model) but an equilibrium object that depends on the other plan’s price. Policies that target

one selectionmargin typically influencemarket prices (e.g., themandate lowersPL relative toPH), which

in turn shifts demand or cost curves that determine the other margin (e.g., the lower PL reduces demand

forH). This cross-plan dependence of demand and average costs is the key missing piece when the two

margins are analyzed separately. We show how the geometry of the demand/cost curves generates this

dependence. We also develop amore general non-graphical versionof ourmodel that allows for horizontal

differentiation and use it to show that many of the key intuitions will hold with a modest amount of

horizontal differentiation (i.e. consumers on the margin betweenH and U ).

With the intuition andprice theory inplace,we analyze themodel’s insights empirically usingdemand

and cost estimates from Massachusetts’ CommCare program, a subsidized insurance exchange that was
2Or alternatively, variation in amarket-wide subsidy for selecting any plan and independent variation in the price difference

between bare bones and generous plans.
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a precursor to the state’s ACA health insurance Marketplace. We draw on demand and cost estimates

from Finkelstein, Hendren and Shepard (2019) to simulate equilibrium in counterfactuals where we vary

benefit design rules, mandate penalties, and risk adjustment strength.3 Beyond demonstrating how our

framework can be used, the empirical exercise generates several policy insights. The size of the unintended

cross margin effects can be quite large. We find that a strong mandate sufficient to move all consumers

into insurance—increasing enrollment by around 25 percentage points—can reduce the market share of

generous plans bymore than 15 percentage points, or 35% of baselinemarket share. In the other direction,

strengthening risk adjustment transfers until the market “upravels” to include only generous coverage

can substantially reduce market-level consumer participation—in our setting by as much as 15 percentage

points or 60% of the baseline uninsurance rate. With the additional assumption that consumer choices

reveal plan valuations, we find that the cross-margin welfare impacts can be similarly large (and often

first-order).

Further, we show that in some settings, cross-margin interactions are critical for determining optimal

policy. When intensive margin policies (such as risk adjustment) are weak, it can be optimal to also have

weak extensive margin policies (such as an uninsurance penalty). But when intensive margin policies are

strong, on the other hand, it can be optimal to also have strong extensive margin policies. These results

show that in these markets, regulators are operating in a world of the second-best and must consider in-

teractions between the two margins of selection in order to determine constrained optimal policy. This

is true whether optimality is viewed from a formal social surplus perspective or reflects a political prefer-

ence over rates of insurance coverage on the one hand and insurance quality on the other. While we stop

short of prescribing the optimal policy in a given market, our results indicate that when extensive margin

policies become stronger, intensive margin policies should often strengthen (and vice versa).

Our paper contributes to a growing literature on adverse selection in health insurance markets. Our

main contribution is to provide a graphical model that unites two key strands of this literature. The first

strand focuses on extensive margin selection and stems from the seminal work of Akerlof (1970).4 The
3Finkelstein, Hendren and Shepard (2019) use a regression discountinuity design to document significant adverse selection

both into the market and within the market between a narrow-network, lower-quality option and a set of wider-network,
higher-quality plans.

4Recent theoretical advances in this strand include Hendren (2013) and Mahoney and Weyl (2017) and empirical applica-
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second strand focuses on intensivemargin selection, studying either consumer sorting across a fixed set of

contracts within a market5 or how consumer selection is endogenously reflected in the characteristics of

the contracts offered.6

Themost directly connected work is a prior theoretical contribution byAzevedo andGottlieb (2017)

that points out the potential cross-margin effects of a mandate in a setting with vertically differentiated

contracts that differ in their coinsurance rates. Our framework maintains the vertical assumption of

Azevedo andGottlieb (2017) while allowing differentiation to bemore flexible (i.e. based on factors other

than cost-sharing) in a two-contract setting. Similar to Azevedo and Gottlieb (2017), our paper also takes

a step toward bridging the gap between the Akerlof (1970) and Einav, Finkelstein andCullen (2010) fixed-

contracts approach and the Rothschild and Stiglitz (1976) endogenous-contracts approach to modeling

adverse selection in insurance markets by allowing some contracts to death spiral out of existence in equi-

librium while others remain available. This possibility that policies can affect which contracts are ulti-

mately offered in equilibrium is a key feature of our model that was originally highlighted by Rothschild

and Stiglitz (1976) but that is generally overlooked by the Einav, Finkelstein and Cullen (2010) workhorse

model. Finally, Saltzman (2017) provides a complementary analysis (concurrent with ours) that investi-

gates cross-margin effects using a structural model estimated with ACA data from California.

Our insights about cross-margin interactions are relevant for active policy debates in the ACA and

other insurance settings. For example, recently states have been given increasing flexibility to weaken

ACA Essential Health Benefits or risk adjustment transfers (intensive margin policies)—with the stated

goal being to lower plan prices and reduce uninsurance (a cross-margin effect). On the other hand, state

efforts to simplify enrollment (Domurat,Menashe andYin, 2018) or enactmandate penalties (all extensive

margin policies) may create unintended consequences on the intensive margin. More broadly, our model

is also relevant to other settings with two selection margins, including the Medicare program (with its

Medicare Advantage option), employer programswith a plan choice decision and a participation decision

tions by Bundorf, Levin andMahoney (2012), Hackmann, Kolstad and Kowalski (2015), Tebaldi (2017), and others.
5See e.g., Handel, Hendel andWhinston (2015); Shepard (2016)
6See e.g., Glazer andMcGuire (2000); Veiga andWeyl (2016); Carey (2017); Lavetti and Simon (2018); Geruso, Layton and

Prinz (2019). Geruso and Layton (2017) provides an overview comparing the fixed- and endogenous-contracts approaches to
modeling intensive margin selection.
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(e.g., CalPERS), national health insurance systems with an opt-out (e.g., Germany), and other selection

markets with both an extensive and intensive margin choice.

The rest of the paper is organized as follows. Section 2 presents the graphical vertical model. Section

3 applies the model to show two-margin impacts of various policies. Sections 4-6 apply the model with

simulations: section 4 discusses methods; section 5 shows price and enrollment results; and section 6

shows welfare results. Section 7 concludes.

2 Model

Our goal in this section is to develop a theoretical and graphicalmodel that depicts insurancemarket equi-

librium and welfare in the spirit of Einav, Finkelstein and Cullen (2010) (“EFC”), while allowing for the

possibility that interventions affecting selection on one margin may affect selection on another. This re-

quires an insurance plan choice set with at least three options. Consider two fixed contracts, j = {H,L},

whereH is more generous than L on some metric, and an outside option, U . In the focal application of

our model to the ACA’s individual markets, U represents uninsurance.

Each plan j ∈ {H,L} sets a single community-rated price Pj that (along with any risk adjustment

transfers—see below)must cover its costs. Consumersmake choices based on these prices and on the price

of the outside option, PU = M .7 In our focal example,M is a mandate penalty. The distinguishing fea-

ture ofU is that its price is exogenously determined; it does not adjust based on the consumers who select

into it. This is natural for the case where U is uninsurance or a public plan like Traditional Medicare.8

P = {PH , PL, PU} is the vector of prices in the market.

In themost general formulation, demand in thismarket cannot be easily depicted in two-dimensional

figures. Tomake the cross-margin effects of interest clearer, we impose a vertical model of demand, which

assumes contracts are identically preference-ranked across consumers. Although the strict vertical assump-

tion is not necessary for many of our main insights to hold, it captures the key features of the issues raised

by simultaneous selection on two margins in a simple way that allows for graphical representation. In
7Below,we allow that consumersmay receive a subsidy,S, so that choices are basedonpost-subsidyprices,P consj = Pj−S.
8We adapt the model to the case of Medicare in Appendix B.2.
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the next subsections, we present the vertical model, then add the cost curves, and finally show how to

find equilibrium and welfare. Throughout the paper, we discuss the implications of relaxing the vertical

demand assumption for our findings.

2.1 Demand

The model’s demand primitives are consumers’ willingness-to-pay (WTP) for each plan. Let Wi,H be

WTP of consumer i for planH , andWi,L beWTP forL, both defined asWTP relative toU (Wi,U ≡ 0).

We make the following two assumptions on demand:

Assumption 1. Vertical ranking: Wi,H > Wi,L for all i

Assumption 2. Single dimension of WTP heterogeneity: There is a single index s ∼ U [0, 1] that orders

consumers based on declining WTP, such thatW ′
L(s) < 0 andW ′

H(s)−W ′
L(s) < 0 for all s.

These assumptions, which are a slight generalization of the textbook vertical model,9 involve two

substantive restrictions on the nature of demand. First, the products are vertically ranked: all consumers

would chooseH over L if their prices were equal and would similarly prefer L to U if their prices were

equal.10 This is a statement about the type of setting to which our model applies. The vertical model

applies best when plan rankings are clear—e.g., a low- vs. high-deductible plan, or a narrow vs. complete

provider network plan. Importantly, these are precisely the settings where intensive margin risk selection

ismost relevant. When plans are horizontally differentiated (such as in the Covered Californiamarket; see

Tebaldi, 2017), it is less likely that high-risk consumers will heavily select into a single plan or type of plan.

In such cases, the existing EFC framework can capture the main way risk selection matters: in vs. out of

the market (the extensive margin). Our model is designed to study the additional issues that arise when

both intensive and extensive margins matter simultaneously. 11

9Our vertical model follows the format of Finkelstein, Hendren and Shepard (2019). It is a generalization of the textbook
vertical model in which products differ on quality (Qj) and consumers differ on taste for quality (βi), so that WTP equals:
Wi,j = βiQj and utility equalsUi,j = Wi,j − Pj = βiQj − Pj .

10See Appendix B.2 for an alternative case where the outside option is preferred toH andL.
11Even in settings without apparent vertical differentiation across plans within the market, our model can be useful in as-

sessing counterfactual policies that might generate this type of differentiation. In particular, our examples below imply that a
regulator encouraging vertically differentiated entrants may generate unintended cross-margin effects on the rates of uninsur-
ance.Further, an apparent lack of vertical differentiation may itself be an equilibrium outcome in a vertical model, reflecting a
situation where generous coverage has already unraveled.
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Second, consumers’WTPforH andL—which in general could vary arbitrarily over twodimensions—

are assumed to collapse to a single-dimensional index, s ∈ [0, 1]. Higher s types have both lowerWL and

a smaller gap betweenWH andWL. Lower s types both care more about having insurance (L vs. U )

and more about the generosity of coverage (H vs. L). This assumption is a natural approximation that

captures the primary pattern of selection in many cases; indeed it holds exactly in a model where plans

differ purely in their coinsurance rate (see, e.g., Azevedo and Gottlieb, 2017). Substantively, Assumption

2 restricts consumer sorting and substitution patterns among options when prices change. The primary

consequence of this assumption is that consumers are only on the margin between adjacent-generosity

options–betweenH andL or betweenL and U . No consumer is on the margin betweenH and U , so if

the price of U (the mandate penalty) increases modestly, the newly insured all buy L (the cheaper plan),

notH . This restriction captures in a strongway the general (and testable) idea that these are themainways

consumers substitute in response to price changes. With this restriction in place (and under a price vec-

tor at which all options are chosen), consumers sort into plans with the highest-WTP types choosingH ,

intermediate types choosing L, and low types choosing U . We show that weakening this assumption—

allowing anH-U margin—does not change the key implications of the model as long as most consumers

exhibit vertical preferences. We describe amore general (non-graphical) model in Appendix A that allows

for both horizontal and vertical differentiation. As we describe below, horizontal differentiation tends

to dampen the cross-margin effects we study. Throughout, we provide supplementary (theoretical and

empirical) results that show the extent to which the relative degree of horizontal differentiation impacts

our main results.

Figure 1 plots a simple linear example ofWH(s) andWL(s) curves that satisfy these assumptions.

The x-axis is theWTP index s, so WTP declines from left to right as usual. Let sLU(P ) be the extensive-

marginal type who is indifferent between L and U at a given set of prices P . Assuming for now that

PU ≡ M = 0, this cutoff type is defined by the intersection of L’s WTP curveWL and L’s price, where

WL (sLU) = PL. Consumers to the right of sLU go uninsured. Those to the left buy insurance. There-

fore,WL(s) represents the (inverse) demand curve for any formal insurance (H or L). 12

12In the more general case where consumers receive subsidies for purchasing insurance or pay a penalty when choosing U ,
WL(s) and the (inverse) demand curve for insurance will diverge. Specifically,DL(s) = WL(s) + S + M . For simplicity,
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Figure 1: Demand and Consumer Sorting under Vertical Model

$ WH(s)

WL(s)

PL

Buy L Uninsured
	ு௅ݏ

DH(s;PL) 

PH

	௅௎ݏ
Buy H

Demand curve for H (given PL) 
DH = WH(s) – WL(s) + PL

Demand curve for any 
insurance (H or L) = WL(s)

Intensive margin Extensive margin 

s

Consumer 
WTP type

=∆P

Notes: The graph shows demand and consumer sorting under the vertical model. WH(s) andWL(s) are willingness to pay
for theH and L plans. DH(s;PL) is the demand curve forH (as a function of PH ), which depends on the value of PL. See
the body text for additional description.

Let sHL(P ) be the intensive-marginal typewho is just indifferent betweenH andL. This cutoff type

is defined by:

∆WHL(sHL) ≡ WH (sHL)−WL (sHL) = PH − PL (1)

Consumers to the left of sHL buy H because their incremental WTP for H over L—which we label

∆WHL—exceeds the incremental price. With demand forH and forH + L thus determined by these

cutoffs, demand for L equals the difference between the two.13

Rearranging equation (1) yields the (inverse) demand forH , given a fixed PL:

DH(s;PL) ≡ WH(s)−WL(s) + PL (2)

we ignore the subsidy and penalty terms here but fully incorporate consumer subsidies when we use the model to study the
effects of common policies (Section 3) as well as in the empirical exercise (Section 5).

13Formally, the demand functions for the general case whereM 6= 0 are defined by the following equations, where∆P ≡
PH − PL:DH (P ) = sHL (∆P );DL (P ) = sLU (PL −M)− sHL (∆P );DU (P ) = 1− sLU (PL −M).
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Figure 1 shows DH(s;PL) with a dashed line. One can draw DH by noting that it intersects theWH

curve at the cutoff type sLU (sinceWL(sLU) = PL).14 It then proceeds leftward at a slope equal to that

of∆WHL, and its intersection with PH determines sHL.DH(s;PL) is flatter thanWH because its slope

equals that of ∆WHL(s).

Most importantly,DH(s;PL) is not a pure primitive that could be identified off of exogenous price

variation, but insteaddepends onbothWTPprimitives (WH ,WL) and, critically, onPL. Because demand

forH depends on the price ofL, policies targeted at altering the allocation of consumers on the extensive

margin of insurance/uninsurance can affect the sorting of consumers across the intensive H/L margin

if these policies affect the price of L. The dependency of demand for H on the price of L generates an

interaction between the intensive and extensive margins, a key theme of this paper.

2.2 Costs

The model’s cost primitives are expected insurer costs for consumers of type s in each plan j.15 These

“type-specific costs” are defined as: Cj (s) = E [Cij | si = s]. Cj (s) is analogous to “marginal cost” in

the EFC model—so called because it refers to consumers on the margin of purchasing at a given price.

However, to avoid confusion in our model where there are two purchasing margins, we refer toCj(s) as

type-specific costs, or simply costs. In addition, we defineCU (s) as the expected costs of uncompensated

care of type-s consumers if they were uninsured. Along with adverse selection, external uncompensated

care costs motivate subsidy and mandate policies.

Plan-specific average costs are defined as the average of Cj(s) for all types who buy plan j at a given

set of prices: ACj(P ) = 1
Dj(P )

∫
s∈Dj(P )

Cj(s)ds, where (abusing notation slightly) s ∈ Dj(P ) refers

to s-types who buy plan j at prices P .
14DH is not defined to the right of sLU , since ifPH falls further than its level at this point, nobody buysL. As a result, the

demand curve forH thereafter equalsWH(s).
15A key insight of the EFC model is that—while costs may vary widely across consumers of a given WTP type—it is suffi-

cient for welfare to consider the cost of the typical consumer of each type. The reason is that with community rated pricing,
consumers sort into plans based only onWTP. There is no way to segregate consumers more finely thanWTP type, and since
insurers are risk-neutral, only the expected cost within type matters. We note, however, that this argument breaks down when
leaving the world of community rated prices, as pointed out by Bundorf, Levin andMahoney (2012), Geruso (2017), and Lay-
ton et al. (2017). Our model (like the model of EFC) thus cannot be used to assess the welfare consequences of policies that
allow for consumer risk-rating.
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Figure 2: Cost Curves under Vertical Model

$

s
Buy H Buy L Uninsured

ACL(sLU; sHL)

ACH(sHL)

Average costs in H plan 

Average costs in L plan 
(conditional on sHL)PH

PL

sHL sLU

Causal 
∆Cost

Notes: The graph shows the cost curves forH andL plans under the verticalmodel. CH(s) andCL(s) are the consumer type-
s specific costs. ACH(sHL) and ACL(sLU ; sHL) are the average cost curves forH and L given that the intensive margin
type is sHL and the extensive margin type is sLU . Adverse selectionmakes the price differencePH −PL larger than the causal
cost difference.

We illustrate the construction of these cost curves in Figure 2. We show a case where cost curvesCH

and CL are downward sloping, indicating adverse selection. The gap between the two curves for a given

s-type equals the difference in plan spending if the s-type consumer enrolls inH vs. L. We refer to this as

the “causal” plan effect, since it reflects the true difference in insurer spending for a given set of people.16

We start by deriving ACH(P ), the average cost curve for the H plan. To avoid ambiguity later, it

is helpful to redefine the argument of ACH as the marginal type that buys H at price P , sHL(P ). We

use this notation in Figure 2. ACH integrates over individual costs (CH) from the left: For sHL = 0,

the only consumers enrolled inH are the very sickest consumers. For these consumers, s = 0, implying

thatACH(sHL = 0) = CH(s = 0). Then, as sHL increases, moving right along the horizontal axis,H

includes more relatively healthy consumers, resulting in a downward sloping average cost curve. Eventu-
16As in EFC, the causal plan effect reflects both a difference in coverage (e.g., lower cost sharing) conditional on behavior,

and any behavioral effect (or moral hazard) of the plans.
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ally, when sHL = 1 and all consumers are enrolled in H , ACH(sHL = 1) is equal to the average cost

inH across all consumers. BecauseH only has one marginal consumer type (the intensive margin), the

derivation ofACH(sHL) is identical to that of the average cost curve in EFC. For each value of sHL, there

is only one possible value of ACH . This implies that the curve can be calculated directly from a market

primitive (by integrating overCH(s)) and is not an equilibrium object.

The average cost curve for L, on the other hand, is more complicated because it is an average over

a range of consumers, s ∈ [sHL, sLU ], with two endogenous margins. For each value of sLU that de-

fines sorting between U and L, there are many possible values ofACL, depending on consumer sorting

betweenH and L. This fact makes it impossible to plot a single fixed ACL curve as we did with ACH .

Nonetheless, it is possible toplotACL(sLU) conditional onsHL(P ). Wedenote this curveACL(sLU ; sHL)

and illustrate it with a dashed line in Figure 2. There are many such iso-sHL plots ofACL (not pictured)

that holdPH fixed at various levels. The leftmost point of theACL curve depends on the sHL cutoff type

determined by PH . Higher values of sHL imply thatACL(sLU ; sHL) starts from a higher point. Just as

ACH equals CH at s = 0, ACL equals CL at s = sHL. Moving rightward from s = sHL, plan L adds

more relatively healthy consumers, resulting in a downward sloping average cost curve.

In summary, while ACH is fixed and does not depend on the price of L, ACL is an equilibrium

object in that it changes as PH , and therefore sHL, changes. This implies that the average cost of L and

thus the price of L in equilibrium depends on the price ofH . Recognizing such dependencies is critical

for analyzing policy interventions. For example, a subsidy targeted toH that results in a lower (net) PH

and a larger H enrollment (a rightward-shifted sHL) would cause the leftmost point on ACL to shift

down and rightward and would cause the curve to have a less-steep slope. In a competitive market, this

would likely result in a lower PL, causing additional consumers to enter the market.

2.3 Competitive Equilibrium

We consider competitive equilibria where plan prices, P , exactly equal their average costs:

PH = ACH (P ) and PL = ACL (P ) (3)
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In some settings, there will be multiple price vectors that satisfy this definition of equilibrium, including

vectors that result in no enrollment in one of the plans or no enrollment in either plan. Because of this, we

followHandel, Hendel andWhinston (2015) and limit attention to equilibria thatmeet the requirements

of the Riley Equilibrium (RE) notion. A policy satisfies the Riley equilibrium refinement if there exists

no "Riley Deviation policy," a competing policy that if offered, would earn a profit, render the old policy

unprofitable, and forwhich there is no "safe response" thatwould render theRileyDeviationunprofitable.

A safe response is a policy offering that does not incur a loss when offered with the other existing policies

in themarket and renders the potential RileyDeviation unprofitable. Whenwe apply these requirements

in our simulations, we find a unique equilibrium for all empirical settings that we simulate.17

Perfect competition is of course an approximation that will be imperfect in many relevant markets.

We maintain this assumption, consistent with much prior work, to simplify the problem and provide a

benchmark for thinking about cross-margin interactions.18

With the outside option of uninsurance, the equilibration process for the prices ofH and L differs

somewhat from the more familiar settings explored by EFC and Handel, Hendel and Whinston (2015).

In those settings, it is assumed that all consumers choose eitherH or L. Assuming full insurance conve-

niently simplifies the equilibrium condition from two expressions to one: Namely, that the differential

average cost must be set equal to the differential price.

To provide intuition for equilibrium in our setting, we build up from the classic case in EFC, which

includes onlyH andU as plan options.19 The EFC equilibrium can be seen in Panel (a) of Figure 3, if one

ignores theWL curve. It is definedby the intersectionofWH andACH , whichdetermines the competitive

equilibrium price. Absent an L plan, any s-type whose WTP forH exceeds the price ofH will buyH

and all other s-types will opt to remain uninsured.
17A detailed discussion of these requirements and an algorithm for empirically identifying the RE are provided in Appen-

dices C.3 and C.4, respectively.
18If there is free entry into both theH and the L contracts, prices will equal average costs in equilibrium, and there will be

no cross-subsidization across theH and L contracts within a single firm. See proofs in Appendix A of Handel, Hendel and
Whinston (2015) and Azevedo and Gottlieb (2017). The intuition is that in such a setting, if one firm tried to cross-subsidize
the adversely selectedH contract with the L contract, another firm would enter the market and provide only the L contract
at a lower price, with no need to cross-subsidize. This intuition would work less well in settings with a single fixed cost of firm
entry, regardless of howmany plans are offered.

19The correct analogy from EFC to our framework is a choice betweenH and U (rather thanH and L) because the key
feature ofU is that its price is exogenously determined, like the lower coverage option in the EFC setting.
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Figure 3: Determination of Equilibrium with H, L, and Outside Option
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Notes: Figures show how competitive equilibrium is determined in the vertical model with H and L plans and an outside
option (uninsured). Panels (a) and (b) show the determination ofPH(PL): a value ofPL implies the extensive margin (sLU ),
which in turn implies the demand curve forH and the equilibriumPH . Panels (c) and (d) show the determination ofPL(PH):
a value of PH implies the intensive margin (sHL), which impliesACL and the equilibrium value of PL.

We next add L to the EFC choice set. To illustrate the equilibrium, we proceed in four steps, corre-

sponding to the four panels in Figure 3. Panels (a) and (b) show howPH is determined, given a fixed price

ofL. Panel (a) shows that the fixed PL implies a given extensive margin cutoff, sLU . Panel (b) shows that

this in turn implies anH plan demand curve,DH(PL) (in dashed black). The intersection ofDH(PL)

14



withH ’s average cost curve determinesPH and the intensive margin cutoff sHL. This process determines

the reaction function P e
H(PL), which is the break-even price ofH for a given price of L.

Panels (c)-(d) of Figure 3 show howPL is determined, given a fixedPH . Panel (c) shows that the fixed

PH implies a given intensive margin cutoff (sHL), which in turn fixes the ACL curve. Panel (d) shows

how the intersection ofACL withWL determines PL and the extensive margin cutoff sLU . This process

determines the reaction functionP e
L(PH), which gives the break-even price ofL for a given fixed price of

H .

In equilibrium, the reaction functions must equal each other: PH = P e
H(PL) and PL = P e

L(PH).

Figure 4 depicts the equilibrium, including theACL andDH curves as dashed lines. These dashed lines

are themselves equilibriumoutcomes, even holding fixed consumer preferences and costs. In otherwords,

thereweremanypossible “iso-sHL”ACL curves andmanypossible “iso-PL”DH curves. The equilibrium

vector of prices are the prices at which demand forL generates the equilibriumDH(P e
L) and this demand

forH simultaneously implies the equilibriumACL(sHL) curve.

2.4 Social Welfare

We now show how our framework can be used to assess the welfare consequences of different policies.

We define social welfare in the conventional way, as total social surplus (willingness-to-pay minus social

resource cost). In order to make the figures simpler and more intuitive, we set CU , the social cost of

uninsurance, equal to zero. We nonetheless allow for a positive social cost of uninsurance in our empirical

application below.

To build intuition, we start in Panel (a) of Figure 5 by illustrating the case where L is a pure cream-

skimmer. That is, L has low average costs because it attracts low-cost individuals, but it has no causal

effect on costs, so CL = CH for any individual. For this case, givenWH ,WL, and CL = CH we can

find total social surplus for any allocation of consumers across plans described by the equilibrium cutoff

values seHL and seLU .

Panel (a) of Figure 5 shows that social surplus consists of two pieces. The first piece (ABHG) is the

social surplus for consumers purchasingH , given by the area betweenWH andCL = CH for consumers
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Figure 4: Final Equilibrium
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Notes: The graph shows the final equilibrium under the vertical model with two plans (H and L) and an outside option
(U ). The black dots mark the key intersections defining equilibrium prices and sorting. The intersection of ACL andWL

determines PL and the extensive margin type (sLU ). TheDH curve starts at this extensive margin (where it equalsWH ), and
its intersection with ACH determines PH and the intensive margin type (sHL). This sHL type marks the start of the ACL
curve (where it equalsCL).

with s < sHL. The second piece (EFIH) is the social surplus for consumers purchasingL, given by the

area betweenWL andCL = CH for consumers with s ∈ [sHL, sLU ]. Panel (a) of Figure 5 also illustrates

foregone surplus for the allocation of consumers across plans. Here, the foregone surplus consists of three

components. The first is the foregone surplus due to the fact that consumers with s ∈ [sHL, sLU ] pur-

chased Lwhen they would have generated more surplus by purchasingH , and it is described by the area

betweenWH andWL for these consumers (BCFE). The second component is the foregone surplus

due to the fact that consumers with s > sLU did not purchase insurance when they would have gener-

ated positive surplus by purchasingH , and it is described by the area betweenWH and max{WL, CL}

(CDJF ). We refer to these two components as “intensive margin loss”. The third component is the

foregone surplus due to the fact that consumers with s ∈ [sLU , s
∗
LU ] did not purchase insurance when

they would have generated positive surplus by purchasing L, and it is described by the area betweenWL
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andCL for those consumers.

The figure thus shows how our graphical framework can be used to estimate welfare for any alloca-

tion of consumers acrossH , L, and U . Further, the framework makes it easy to determine the optimal

allocation of consumers between insurance and uninsurance and betweenH andL. In the case of the par-

ticular demand and cost primitives drawn in Panel (a), the optimal allocation of consumers across plans is

for all consumers to be inH . IfH were not available, however, the optimal allocation of consumers across

L and U would consist of all consumers with s < s∗LU purchasing L and all other consumers remaining

uninsured.

In Panel (b) of Figure 5, we apply our framework to the case where it is efficient for some consumers

to be in L rather than inH and for others to remain uninsured. To do this, we change the assumption

thatL is a pure cream-skimmer and instead assume that costs inH are higher than inL for each consumer

and that the cost gap is constant across consumers: ∆CHL(s) ≡ CH(s)− CL(s) = δ > 0. Intuitively,

in this scenario consumers preferH because it provides more or better services—at a higher cost to the

insurer. It is convenient to define a new curveWNet
H (s) = WH(s) − ∆CHL(s), or WTP forH net of

the incremental cost ofH vs. L. Under the assumption that δ is constant,WNet
H (s)will be parallel to and

belowWH . This is shown in Panel (b) of Figure 5: As L’s cost advantage overH increases,WNet
H shifts

further down.20

Given this newWNet
H curve, social welfare is still fully characterized by the three curves,WNet

H ,WL,

andCL, and social surplus and foregone surplus are defined in a similarmanner toPanel (a). Social surplus

still consists of two components. The first is the surplus generated by the consumers enrolled inH , and it

is characterized byABHG, the area betweenWNet
H andCL for consumers with s < sHL.21 This compo-

nent is smaller than it was in Panel (a) due to the fact that nowH has higher costs thanL. In Panel (b) it is

thus less socially advantageous for these consumers to be enrolled inH vs. L. The second component is

the surplus generated by the consumers enrolled inL, and it is characterized exactly as before byEFIH ,

the area betweenWL andCL for consumers with seHL < s < seLU . Foregone surplus is illustrated in the
20Heterogeneity in L’s cost advantage across s types could also be accommodated and would result inWNet

H not being
parallel toWH .

21To see this, note that this gap is equal toWNet
H (s)−CL(s) = WH(s)−(CH(s)−CL(s))−CL(s) = WH(s)−CH(s).
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Figure 5: Welfare

(a) Welfare when L Is a Pure Cream-Skimmer
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Notes: The graphs show welfare given equilibrium prices P e and implied consumer sorting betweenH , L, and uninsured.
Panel (a) shows the case where theL plan is a pure cream-skimmer (∆CHL = CH(s)− CL(s) = 0), while panel (b) shows
the case where L has a causal cost advantage (∆CHL > 0). The market surplus is shaded in green; the loss due to intensive
margin misallocation (betweenH andL) is shaded in red; and the loss due to extensive margin misallocation (betweenL and
U ) is shaded in thatched red.
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figure in Panel (b) similar to the illustration in Panel (a).22 In summary, Figure 5 shows how our model

can accommodate settings in which it is not socially efficient for all consumers to be enrolled inH or even

in L, such as settings where there is moral hazard, administrative costs, etc.

Appendix B.3 derives a formal expression for welfare, allowing for cases whereCU is non-zero—e.g.,

if the outside option involves social costs like uncompensated care. This derivation formalizes what is

shown graphically in Figure 5.

3 Two-Margin Impacts of Risk Selection Policies

In this section, we use our model to assess the consequences of three policies commonly used to combat

adverse selection in insurance markets: benefit regulation, the mandate penalty on uninsurance, and risk

adjustment transfers. Each of these policies is targeted at one margin of adverse selection, but our model

shows how they affect the other. Wediscuss each policy in turn andprovide graphical illustrations for their

consequences. We conclude with a discussion of other policies where cross-margin impacts on selection

may be relevant, including behavioral interventions targeting take-up.

3.1 Benefit Regulation

We start by examining benefit regulation. In Figure 6, we consider a rule that eliminatesL plans from the

market. This thought experiment captures a variety of policies that set a binding floor on plan quality—

e.g., network adequacy rules, caps onout-of-pocket limits, and theACA’s "essential health benefits."These

policies seek to address intensive margin adverse selection problems by eliminating low-quality, cream-

skimming plans. But, as we show, they can also have unintended extensive margin consequences.

Panel (a) of Figure 6 shows the baseline equilibriumwith bothH andL plans, while Panel (b) shows

equilibrium with L plans eliminated, which reduces to the classic EFC equilibrium. Panel (c) shows the

welfare impact of benefit regulation. This involves two competing effects: Some consumers formerly in
22Here, forgone surplus again consists of two components. The first is the foregone intensive margin surplus due to the

fact that consumers with s ∈ [seHL, s
∗
HL] are enrolled in L but would generate more surplus if they were enrolled inH . It is

characterized by the area betweenWNet
H andWL for these consumers (BKE). (Unlike in Panel (a), withH ’s higher costs it

is now inefficient for any consumer with s > s∗HL to enroll inH .) The second component represents the extensive margin
foregone surplus, and it is identical to the extensive margin foregone surplus in Panel (a).
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L shift to H (the intended consequence), and some consumers formerly in L become uninsured (the

unintended consequence).

In the textbook cream-skimming case, where H is the socially efficient plan for everyone (though

most consumers still generate more social surplus in L vs. U ), these two effects have opposing welfare

consequences. The first (intended) effect increases social surplus by shiftingpeople out ofL—an inefficient

plan that exists only by cream-skimming—and intoH . The second (unintended) effect, however, lowers

social surplus by shifting someL consumers into uninsurance. Thus, even in this textbook case where the

L plan is an inefficient cream-skimmer, banning it has ambiguous welfare consequences.23

What explains this counter-intuitive result? This can be thought of as an example of “theory of the

second best”-style interactions that emerge with two margins of selection. Regulation that bans a pure

cream-skimming L plan addresses an intensive margin selection problem. But it has the unintended side

effect of worsening the extensive margin selection problem of too much uninsurance. Put differently, a

pure cream-skimming L plan adds no social value within the market, but by segmenting the healthiest

people into a low-price plan, it can improve welfare by bringing new consumers into the market.24

3.2 Mandate Penalty on Uninsurance

Next we consider the consequences of a mandate penalty for remaining uninsured (choosing U ). The

analysis is also applicable for analyzing the effect of providing larger insurance subsidies, which likewise

reduce consumers’ net price of buying insurance relative to remaining uninsured.

The mandate penalty has both a direct effect and an indirect effect through equilibrium price adjust-

ments. The direct effect of a mandate penalty is to increase the demand for insurance. Panel (a) of Figure

7 shows this via an upward shift inWL andWH by $M , reflecting that both become cheaper relative toU

(whose utility and price are normalized to zero). As a result of this shift, some peoplewhowere previously
23The net welfare impact depends on the market primitives (WH ,WL, CH , CL) and the social cost of uninsurance, CU .

Section 2 presents the framework for how these can be measured and the net welfare impact quantified.
24Of course, this reasoning depends on the market stabilizing to a separating equilibrium where bothH and L survive. If

themarket unravels to theL plan, insurance coveragewill typically not be higher: the price ofLwill not be low (since it attracts
all consumers), and because the quality ofL is lower, uninsurancewill typically be higher than in anH-only equilibriumwhere
L is banned. Whether the market stabilizes to a separating equilibrium or unravels toL/upravels toH depends on themarket
primitives.
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Figure 6: Impact of Benefit Regulation
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Notes: The figure shows the impact on equilibrium (panels a and b) andwelfare (panel c) of a benefit regulation that eliminates
the L plan. This thought experiment captures a variety of policies that set a binding floor on plan quality, thus eliminating
low-quality plans. For welfare impacts, we show the textbook case whereH is the efficient plan for all consumers andL is more
efficient thanU .

uninsured buy insurance in the L plan. This is the intended effect of the penalty.

Panel (b) depicts the unintended, equilibrium effects of the penalty. By definition under extensive

margin adverse selection, the newly insured individuals are relatively healthy. Because they buy the low-

price L plan, they lower L’s average costs (i.e., a movement down theACL curve, not a shift in theACL
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curve) and therefore its price. The lower PL leads some consumers to shift on the intensive margin from

H toL—as captured by the downward shift inH ’s demand curve,DH(PL). This is themain unintended

effect of the penalty: although it is intended to reduce uninsurance, the penalty also shifts people toward

lower-quality plans on the intensive margin.25

There is a second equilibrium effect from this shift in consumers fromH toL. The consumers who

shift are high-cost relative to L’s previous customers, pushing up L’s average costs. In panel (b), this is

depicted via an upward shift in theACL(PH) curve, which has to occur because of the higherPH and the

leftward shift in the marginal sHL type. The higher average costs in L partly offset the fall in PL due to

the mandate and dampen the impact of the mandate on the price of L. Thus our model shows how and

why cross-margin effects may make a mandate less effective than one would predict from its direct effects

alone: The penalty induces healthy people to enter the market but also induces relatively sick people to

move fromH to L. Nonetheless, as long as the original equilibrium is stable, one can show that on net,

a larger penalty decreases PL and uninsurance (see Appendix A for a formal derivation).

Panel (c) of Figure 7 shows the welfare effects in the textbook case whereH is the efficient plan for all

consumers. There are again competing effects: (intended) welfare gains from newly insured consumers

and (unintended) welfare losses from consumers moving fromH to the lower-qualityL plan. Thus, the

interaction of the two margins of selection makes the welfare impact of a mandate ambiguous even in

this textbook case. In the extreme, a penalty could even lead to a market where high-quality contracts are

unavailable to consumers (i.e., market unraveling to L).

3.3 Risk Adjustment Transfers

Next we consider the impact of implementing risk adjustment, including the effects of strengthening or

weakening risk adjustment transfers relative to the status quo. Of the three policies we consider, risk

adjustment is the most difficult to illustrate graphically because the policy adds new risk-adjusted cost

curves (for both L andH) that crowd the figure. (See Figure A2 in the appendix.)
25We show in our simulations and in Appendix A that this prediction is largely robust to relaxing the vertical model. It is

driven by two properties: (1) that the newly uninsured are relatively healthy (extensive margin adverse selection), and (2) that
the newly insured mostly choose the low-pricedL plan.
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Figure 7: Impact of Mandate Penalty on Uninsurance

(a) Direct Effect
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Notes: The figure shows the impact of a mandate penalty in our framework. Panel (a) shows the direct effect: higher demand
for insurance. Panel (b) shows the unintended equilibrium effect: an intensive margin shift fromH toL. Panel (c) shows the
welfare effects in the textbook case whereH is the efficient plan for all consumers andL is more efficient thanU .

In theACAMarketplaces, the per-enrollee transfer to plan j is determinedby a formula of the form:26

Tj (P ) =

(
Rj(P )

R(P )
− 1

)
· P (P ) (4)

26The actual formula used in the Marketplaces is a more complicated version of this formula that adjusts for geography,
actuarial value, age, and other factors. Our insights hold with or without these adjustments, so we omit them for simplicity.
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whereRj(P ) is the average risk score of the consumers enrolling in plan j given price vector P ,R(P ) is

the (share-weighted) average risk score among all consumers purchasing insurance, andP (P ) is the (share-

weighted) average price in themarket. The transfer is positive as long as j’s average risk score is larger than

−j’s average risk score. The sumofH ’s andL’s transfers is always zero, making the transfer system budget

neutral. Note that risk adjustment here is imperfect in the sense of not necessarily eliminating all variation

in net enrollee costs.27 This is consistent with our empirical findings below.

To understand the impact of risk adjustment on the two margin problem, we tune its strength by

introducing a parameter α. We define the transfer from L toH as α · T (P ). With α = 0, there is no

risk adjustment. With α = 1, there is ACA-level risk adjustment. Other values magnify or attenuate

these transfers. For example, if a risk adjustment transfer were $500 underα = 1 it would be $600 under

α = 1.2. Importantly changes toαnot imply changes to the underlying risk scores (which are determined

by enrollee diagnoses). Adjusting α corresponds to ongoing policy activity, as we discuss below.

In Appendix A, we derive comparative statics describing the effect of an increase in α (i.e., a mag-

nification of the imperfect transfers) on PH and PL. These comparative statics mimic the simulations

we perform in the empirical section where we simulate equilibria under no risk adjustment and with

increasingly large risk adjustment transfers (i.e., increasingly large values forα). Larger values ofα unam-

biguously lower the price ofH . The effect of an increase in α on the price of L, however, is ambiguous.

In addition to risk adjustment’s direct effect to push up L’s average costs by transferring money from L

to H , there is a second, indirect effect. The consumers who shift from L to H tend to be L’s most ex-

pensive enrollees, even net of imperfect risk adjustment transfers. This lowers L’s risk-adjusted average

costs, pushing the price ofL downward. This indirect effect will be larger when intensive margin adverse

selection is severe (even after risk adjustment) andwhen consumers are highly price elastic on the intensive

margin. Indeed, we find in some of our simulations that the indirect effect is large, and risk adjustment

has minimal effects or even decreases PL. We defer further discussion of the comparative statics to the

results section.
27Perfect risk adjustment, where transfers exactly capture all variation in CL across consumer types, is a useful thought

experiment. But in practice markets include an imperfect form of risk adjustment, where transfers are based on individual risk
scores computed from diagnoses appearing in health insurance claims. See Geruso and Layton (2018) for an overview. And See
Appendix for more discussion of the case of perfect risk adjustment.
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Figure 8: Welfare Effects of Risk Adjustment
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Notes: The figure shows the welfare effects of a risk adjustment policy that shifts consumers on the intensivemargin fromL to
H (by loweringPH−PL) and on the extensivemargin fromL toU (by raisingPL). We show a case whereH is globallymore
efficient thanL, so the intensive margin shift is welfare improving, but whereU is sometimes more efficient thanL. Optimal
sorting across the extensive margin occurs when sLU = s∗LU .

Figure 8 depicts the welfare effects of a risk adjustment policy where the direct effect dominates such

that the policy shifts consumers fromH to L and also has some effect on the extensive margin, shifting

consumers from L to U . Again, we illustrate welfare for the textbook case whereH is the efficient plan

for all. As with benefit regulation and the mandate penalty, there are opposing effects: a welfare gain

from the intensive margin shift fromL toH and a welfare loss from the extensive margin shift fromL to

uninsurance. (There is also a welfare gain on the extensive margin due to the fact that some of the people

induced to choose uninsurance instead of L generate negative social surplus when enrolled in L.) This

suggests that, like the other policies, the welfare effects of risk adjustment are theoretically ambiguous.

3.4 Other Policies

The same price theory can be applied to other policies not explicitly discussed above, such as reinsurance.

The key insight is that anything that affects selection on one margin has the potential to affect selection
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on the other margin, as firms adjust prices in equilibrium to compensate for the changing consumer risk

pools.

Further, crossmargin effects are relevantnot only for policies that aim to address selection, but also for

policies for which selection impacts are incidental or a nuisance. Handel (2013), for example, shows how

addressing inertia through “nudging” can exacerbate intensivemargin selection in an employer-sponsored

plan setting. Our model implies that in other market settings, where uninsurance is a more empirically-

relevant concern, there is a further effect of nudging: Worsening risk selection on the intensive margin

(i.e., increasing the market segmentation of healthy enrollees into L and sick enrollees intoH) through

behavioral nudges may improve risk selection on the extensive margin by pushing down the equilibrium

price of L. This may counterbalance the welfare harm documented in Handel (2013). Similar insights

apply to any behavioral intervention that even incidentally affects the sorting of consumer risks (expected

costs) across plans.28 Similarly, behavioral interventions intended to increase take-up of insurance, such

as information interventions or simplified enrollment pathways, may have important intensive margin

consequences similar to the effects of a mandate.

4 Simulations: Methods

Todemonstrate how ourmodel can be applied empirically, we draw on previously estimatedmodel prim-

itives from two separate Massachusetts pre-ACA individual health insurance exchanges to simulate a hy-

pothetical post-ACA market. Demand and cost curves from a low-income population are drawn from

the subsidized health insurance exchange, known as Commonwealth Care or “CommCare” as estimated

by Finkelstein, Hendren and Shepard (2019), which we abbreviate “FHS.” A demand curve for higher

income individuals is drawn from the un-subsidized individual market “CommChoice" as estimated in

Hackmann, Kolstad and Kowalski (2015), which we abbreviate “HKK.”29 Our inclusion of both the
28This is relevant not only as it relates to inertia (Polyakova, 2016), but also to misinformation (Kling et al., 2012; Handel

and Kolstad, 2015), complexity (Ericson and Starc, 2016), and other behavioral concerns. It is also relevant for non-behavioral
policy changes in othermarkets, includingMedicare. For example, Decarolis, Guglielmo and Luscombe (2020) document that
intensive margin risk selection was affected by aMedicare policy change that allowed mid-year plan switching across Medicare
Advantage plans. This could have extensivemargin impacts onwho choosesMedicareAdvantage versus TraditionalMedicare.

29We import the HKK estimates to generate a demand curve for the high income population, though in principle, simulat-
ing high income demand as an ad-hoc shift or rotation to the estimated demand curve for the low income population could
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low-income and high-income populations is motivated by the design of subsidies under the ACA. Low-

income households receive subsidies that are linked to the price of insurance, a policy that limits cross-

margin effects by fixing the extensivemargin price of insurance. Higher-incomehouseholds donot receive

subsidies, meaning that cross-margin effects may be relevant. In order to capture these dynamics, we in-

clude both groups in our analysis. We apply the FHS cost curve to both populations. That is, people of a

given s-type in either population would have the same expected cost conditional on plan.30

Wemake two key modifications to the baseline FHS and HKK estimates. First, to allow for broader

policy counterfactuals, we extrapolate the curves over the full range of s-types. Second, we combine the

two sets of estimates to form one set of aggregated demand and cost curves, reflecting ACAmarkets that

include subsidized (low-income) and unsubsidized (high-income) enrollees. Given these modifications,

readers should consider these simulations illustrative of mechanisms rather than exact predictions for any

specific market. The co-mingling of the subsidized and unsubsidized group in the same market in our

simulations is a choice aimed at illustrating themechanismswewish to highlight rather than as an accurate

description of theMassachusetts market. Details on the construction of these demand and cost curves, as

well as figures showing the final curves, are in Appendix C.1.

Given these demand and cost curves, it is straightforward to estimate equilibrium prices and alloca-

tions of consumers acrossH ,L, andU under a given set of policies. Ourmethod for finding equilibrium

is based on the approach described in Figure 3. We characterize equilibrium as a price vector PH , PL at

which any plan that has nonzero enrollment breaks even. We then use a Riley equilibrium concept to

choose which break-even price vector is the equilibrium price vector.31 This method results in a unique

equilibrium for each policy environment we consider.

We then simulatemarket equilibriumunderdifferent specificationsof twopolicies: amandatepenalty

(ranging from $0 to $60 permonth) and risk adjustment transfers (ranging from zero to 3 times the size of

ACA transfers). We study the effects of these policies in a 2×2 matrix of market environments. The first

have also served the purpose of illustrating the tradeoffs in our model.
30Both sets of demand and cost curves are well-identified using exogenous variation in net consumer prices. FHS use a

regression discontinuity design based on three household income cutoffs that generate discrete changes in consumer subsidies.
HKK use a difference-in-differences design leveraging the introduction of an uninsurance penalty in Massachusetts.

31See Appendix C.4 for additional details.
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dimension of the environment we vary is subsidy design, with two regimes: (1) “ACA-like” subsidies that

are linked to the price of the cheapest plan and (2) “fixed” subsidies set at an exogenous dollar amount.32

In both cases, low-income consumers receive subsidies only if they purchaseH or L, and the subsidy is

identical for both plans. High-income consumers do not receive subsidies.

The second dimension we vary is whetherL is a pure cream-skimmer (i.e. CL(s) = CH(s) for all s)

or has a cost advantage. FHS find no evidence that L has lower costs thanH in CommCare, motivating

our cream-skimmer case. To illustrate another possibility, we simulate the case where L has a 15% cost

advantage (i.e. CL(s) = 0.85CH(s)). Of particular interest is how the welfare consequences of risk

adjustment and the uninsurance penalty vary across these two cases. We explore these in Section 6.

5 Simulation Results: Prices and Enrollment

In this section, we present results on how prices and market shares change under (1) stronger mandate

penalties and (2) stronger risk adjustment. In Appendix D.2 we also present results on how prices and

market shares change under benefit regulation, where we implement benefit regulation by eliminatingL

from the consumers’ choice set. In Appendices D.4.1 andD.4.2 we explore the sensitivity of our results to

relaxing the vertical model and modifying the primitives (specifically, consumers’ incremental WTP for

H vs. L), finding that the key results are quite robust. In presenting results, we vary consumer charac-

teristics (demand and costs/selection), supply-side features (horizontal differentiation among plans), and

policy interventions (mandate/subsidies, risk adjustment) to generate a catalogue of findings that provide

guidance on how these features interact to affect equilibrium prices and enrollment.

5.1 Mandate/Uninsurance Penalties

Figure 9 presents equilibrium market shares for each option, H , L, and U , under different levels of a

mandate penalty for remaining uninsured (PU ≡ M ). We consider penalties in increments from $0 to
32For (1) we follow the ACA rules by setting the subsidy such that the net-of-subsidy price of the index plan equals 4% of

income for consumers at 150% of the federal poverty line (FPL) in 2011 (or $55 per month), the year on which our estimated
demand and cost curves are based. The ACA subsidy rules actually link the subsidy to the price of the second-lowest cost
silver plan. Our subsidy rule mimics this rule in spirit (in a way that is compatible with our CommCare setting) by linking the
subsidy to the price ofL.
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$60, applied equally to both the subsidized and unsubsidized populations.33 In all cases we include ACA-

style risk adjustment (described in detail in Section 5.2 below). The top two panels of Figure 9 contain the

results for the case where L is a pure cream-skimmer. The bottom two panels contain results for the case

where L has a 15% cost advantage. The cases with ACA-like price-linked subsidies are shown in the left

panels and the cases with a fixed subsidy are in the right panels.34 All results are also reported inAppendix

Table A1.

Figure 9: Market Shares with VaryingMandate Penalty (M )

(a) ACA-like subsidy, L cream-skimmer (b) Fixed $275 subsidy, L cream-skimmer

(c) ACA-like subsidy, 15% L cost advantage (d) Fixed $250 subsidy, 15% L cost advantage

Notes: The figures showmarket shares forH ,L, and uninsurance (U ) from our simulations with varying sizes of themandate
penalty (x-axis, in $ per month). The panels represent different subsidy designs and specifications for the L plan’s causal cost
advantage vs. H (i.e., ∆CHL). In panels (a) and (b), L is a pure cream-skimmer (∆CHL = 0), while in panels (c) and (d) L
has a 15% cost advantage. Panels (a) and (c) have “ACA-like subsidies” linked to the price of L, while panels (b) and (d) have
fixed subsidies of the indicated dollar amounts.

33We find that in all cases studied here, PU = 60 is sufficient to drive the uninsurance rate to 0 in the presence of ACA risk
adjustment transfers.

34Fixed subsidies are equal to $275 in the case whereL is a pure cream-skimmer and $250 in the case whereL has a 15% cost
advantage. These values were chosen in order to ensure that risk adjustment and the uninsurance penalty have some effect on
market shares. With subsidies that are “too large” no consumers opt to be uninsured and with subsidies that are “too small”
no consumers opt to purchase insurance, making the simulated policy modifications uninformative.
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For the twoACA-like subsidy cases (left), the patterns are qualitatively similar regardless ofmodeling

L as a cream skimmer (top) or as having a cost advantage (bottom). When there is no mandate penalty,

some consumers choose each of the three options,H , L, and U , though the share inH is extremely low

in the cost advantage case. As the penalty increases, the uninsurance rate decreases, with no consumers

remaining uninsured at a penalty of $60/month. However, there are also intensivemargin consequences:

As the penalty increases, there is a shift of consumers fromH to L. In the case where L is a pure cream-

skimmer, H ’s market share decreases from 42% with no penalty to 23% with a penalty of $60/month.

This represents a significant decline in H ’s market share and a significant deterioration of the average

generosity of coverage among the insured. When L has a 15% cost advantage (bottom), the patterns are

similar, thoughH ’s initial market share with no penalty is much lower (≈ 2%).

The two fixed subsidy cases are presented in the right panels of Figure 9. When L is a pure cream-

skimmer (top), with zero penalty consumers are split acrossH , L, and U . As the penalty increases from

zero, consumersmove fromU toL, the intended effect of thepolicy. At apenalty of just under $30/month

the influx of inexpensive consumers into L causes PL to get low enough that some consumers switch

from H to L. As the penalty continues to increase, consumers move into L from both U and H until

the mandate reaches just over $40/month and all consumers are insured. At this point 23% of the mar-

ket is enrolled in H and 77% of the market is enrolled in L. This represents an intended decline in the

uninsurance rate from 35% to 0% but also an unintended decline inH ’s market share from 42% to 23%.35

In each of the cases in Figure 9, a larger mandate penalty has the intended consequence of decreasing

uninsurance and the unintended consequence of shifting consumers fromH to L.36 This is consistent

with implications of our graphical model as well as the comparative statics we outline in Sections 2 and 3.

The unintended intensive margin effect is starkest when L is a perfect cream-skimmer, highlighting how

market primitives can amplify the cross-margin impacts of policy changes.37

35In the case where L has a 15% cost advantage, the penalty again decreases both the uninsurance rate (intended) andH ’s
market share (unintended), butH ’s market share with a $0 penalty is so low (around 3.5%) that the decline inH ’s market share
(to zero) is relatively insignificant.

36This finding also holds when we relax the vertical assumptions of the model, as we explore further in Appendix D.4.1 and
show inAppendix FigureA10. In addition, inAppendixD.4.2 we show that these results are robust to varying the incremental
WTP forH vs. L.

37To seewhy the effect is larger for the cream-skimmer case, note that for fixed preferences, it is more difficult to achieve high
enrollment inH whenL has an actual cost advantage versus whenL has similar costs toH . This leads to lower enrollment in
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Figure 10: Market Shares with Varying Strength of Risk Adjustment (α)

(a) ACA-like subsidy, L cream-skimmer (b) Fixed $ 275 subsidy, L cream-skimmer

(c) ACA-like subsidy, 15% L cost advantage (d) Fixed $ 250 subsidy, 15% L cost advantage

Notes: The figures show market shares for H , L, and uninsurance (U ) from our simulations with varying strength of risk
adjustment α (on the x-axis). As described in text, α is a multiplier on the risk adjustment transfer: α = 0 implies no risk
adjustment; α = 1 is baseline risk adjustment using the ACA formula; and α > 1 is over-adjustment. The panels represent
different subsidy designs and specifications for theL plan’s causal cost advantage vs.H (i.e.,∆CHL). In panels (a) and (b),L is
a pure cream-skimmer (∆CHL = 0), while in panels (c) and (d)L has a 15% cost advantage. Panels (a) and (c) have “ACA-like
subsidies” linked to the price ofL, while panels (b) and (d) have fixed subsidies of the indicated dollar amounts.

5.2 Risk Adjustment

We now consider the effects of risk adjustment. We start with risk adjustment transfers implied by the

ACA risk adjustment transfer formula (see Eq. 4). We first calculate risk scores for each individual using

the HHS-HCC risk adjustment model used in the ACA Marketplaces. (This is a straightforward me-

chanical application of the regulator’s algorithm to our individual-level claims data.) We then use those

scores plus the FHS regression discontinuity design to estimate a “risk score curve”RA(s) describing the

average risk score across consumers of a given s-type. Because this curve is novel to this paper and not

H even with a small penalty and less opportunity for a reduction inH ’s market share.
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estimated by FHS, we describe the estimation of it in Appendix C.2. We plot this curve alongside the cost

curve in Appendix Figure A5. It is apparent that while risk scores explain part of the correlation between

willingness-to-pay and costs, they do so only imperfectly. Specifically, we find that risk scores account for

about one-third of the correlation between willingness-to-pay and costs, implying substantial selection

on costs net of the ACA’s imperfect risk adjustment policy. (Although incidental to our aims here, this is

a novel finding.)

We use the risk score curve to determine the average risk scores forH and L for any given allocation

of consumers acrossH ,L, andU . This is similar to constructing average cost curves frommarginal costs.

We then enter these average risk scores into the risk adjustment transfer formula (Eq. 9) to determine the

transfer from L toH for a given price vector T (P ), the statutory transfer under ACA risk-adjustment.

Finally, we find the equilibrium prices. Under the benchmark risk adjustment, these prices satisfy PH =

ACH(p)− T (P ) and PL = ACL(P ) + T (P ) when L andH have non-zero enrollment.

To vary the strength of risk adjustment transfers we maintain the original risk scores and structure

of the transfer formula, but we multiply transfers by a scalar α (as in the discussion in section 3.3 and

comparative statics inAppendixA) so that transfers fromLtoHare somemultiple of the transfers implied

by the ACA formula (i.e. PH = ACH(p)− αT (P ) and PL = ACL(P ) + αT (P )). We allow α to vary

from 0 (no risk adjustment) to 3 (risk adjustment transfers 3 times the size of ACA transfers). The case of

ACA transfers occurs where α = 1. In these risk adjustment simulations, we are not modifying the fit

of risk adjustment nor changing the scores in any way. Instead, we are enhancing the transfer implied by

the same scores so that if a plan’s risk adjustment transfer was $500 under α = 1, it is $600 under α =

1.2. This approach to evaluating strengthening or weakening risk adjustment reflects real-world policy

experimentation: The federal government recently reduced α from 1 to 0.85 in the ACA Marketplaces

and gave states the ability to further reduceα.38 Our approach thus maps to feasible policy interventions,

rather than assuming that the regulator can increase the predictive power of risk scores.

Equilibrium market shares for different levels of α in the cases without and with a cost advantage

for L are found in the top and bottom panels of Figure 10, respectively. Market shares under ACA-like
38The reduction of α from 1 to 0.85 occurred when the federal government decided to “remove administrative costs” from

the benchmark premium that multiplies insurer risk scores to determine transfers in the transfer formula described by Eq. 4.
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subsidies are presented in the left panels and market shares under fixed subsidies are found in the right

panels. Results are also found in Appendix Table A2. With ACA-like subsidies, patterns are qualitatively

similar whenL is a pure cream-skimmer and whenL has a 15% cost advantage. In both cases, when there

is no risk adjustment (α = 0), the market unravels to L: No consumers choose H , and the market is

split between L and uninsurance. As the strength of risk adjustment transfers increases, consumers shift

from L to H . This is the intended consequence of risk adjustment. When L is a pure cream-skimmer,

transfers about 1.25 times the size of ACA transfers are sufficient to cause the market to “upravel” toH .

When L has a 15% cost advantage transfers need to be 1.6 times the size of ACA transfers to generate the

same outcome. In both cases, there is no extensive margin effect except at the level of αwhere the market

initially upravels toH . At that point, there is a small reduction in the uninsurance rate. This reduction is

due to the fact that there the subsidy becomes linked to the (higher) price ofH instead of the (lower) price

ofL due to the exit ofL from themarket. With the larger subsidy, more consumers purchase insurance.39

The right column of Figure 10 presents market shares under fixed subsidies with different levels of

α. Here, we again see that stronger risk adjustment transfers have the intended effect: Higher levels of α

result in more consumers choosingH instead of L. In the case where L is a pure cream-skimmer, we see

only a small extensive margin effect, with a small decrease in the uninsurance rate as α increases. This is

consistent with our comparative statics from Section 3: The direct effect of increasing the transfer from

L toH is more than fully offset by the indirect effect of the costliest (net of imperfect risk adjustment)

L enrollees leaving L and joining H , resulting in a decrease in PL and a corresponding decrease in the

uninsurance rate. (See Section 3 and Appendix A for a fuller discussion of this result.)

On the other hand, in the case whereL has a 15% cost advantage we see a different unintended exten-

sivemargin consequence of stronger risk adjustment transfers: More consumers opt to remain uninsured.

In this case, with no risk adjustment (α = 0) all insured consumers opt forL, with no consumers choos-

ingH and the market split between L and U . ACA risk adjustment transfers (α = 1) barely alter these
39This reduction seemingly goes against the intuition we present in Section 3 where we showed that in many cases risk

adjustment may increase the uninsurance rate rather than decrease it as we see here. Note, however, that in the cases here the
subsidy is linked to the extensive margin price. This results in risk adjustment having no effect on the net-of-subsidy extensive
margin price faced by the low-income consumers (except whereL exits the market), limiting (and in this case eliminating) any
unintended extensive margin consequence.
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market shares. As transfers are strengthened above ACA levels, consumers begin to opt forH instead of

L. At the higher levels of α, extensive margin consequences also start to appear with some consumers

exiting the market and opting for uninsurance. When transfers are strengthened to two times the size of

ACA transfers, themarket upravels toH with all insured consumers opting forH instead ofL. Atα = 2

the uninsurance rate reaches almost 50%, an increase of 15 percentage points (60%) compared to the case

with no risk adjustment. This indicates that this shift of consumers to more generous coverage on the

intensive margin had a substantial extensive margin impact. We show that the same result holds when we

relax the vertical model assumptions in Appendix Figure A10.40

These results provide important lessons for where the unintended extensive margin effects of risk

adjustment will matter most. First, ACA-like price-linked subsidies protect against the unintended ex-

tensive margin effects of risk adjustment, even when those subsidies are only targeted to the low-income

consumers making up 60% of the market (though there may be important effects on the size of the sub-

sidies themselves, and thus government costs). Second, the unintended extensive margin effects are more

likely to occur when L has a larger cost advantage. In cases where L andH have similar costs, extensive

margin effects are likely to be small. But when L has a large cost advantage, stronger risk adjustment can

have significant effects on the portion of consumers who opt to be uninsured.

6 Simulation Results: Welfare

Wenext analyze the changes in social surplus associated with the policy simulations of Section 5. We char-

acterize welfare at a baseline equilibrium, then trace the gains and losses associated with illustrative policy

changes, and finally determine optimal policy. Importantly, we show that the optimal mandate penalty

depends on the strength of risk adjustment and vice versa. One straightforward implication is that ifman-

date penalties were altered by legislative action or court outcomes, a constrained optimal response from

a regulator would be to adjust risk adjustment strength in concert. (Unlike mandate penalties, regulators

typically have authority to tune risk adjustment without legal changes.)
40In Appendix D.4.1 we explore the sensitivity of these results to the vertical model assumption, finding that the results are

robust to modest relaxation of the assumption. See Figure A10. Also, in Appendix D.4.2 we show that these results are largely
robust to varying the incremental WTP forH vs. L.
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We begin by noting the possibility that in many settings, social surplus may not be increased by poli-

cies that raise insurance take-up or move consumers from less generous to more generous coverage. This

is because some consumersmay not value insurance (ormore generous coverage)more than its incremen-

tal cost. Further, policies may have opposing effects on the intensive and extensive margins, increasing

enrollment in more generous coverage while simultaneously decreasing overall insurance take-up, or vice

versa. For these reasons, it is important to understand the effects of policies not just onmarket allocations

(which Section 5 presents), but also on welfare.

As discussed in Section 2, it is straightforward to estimate overall social surplus associated with some

equilibrium market outcome (enrollment shares), given the WNet
H = WH − (CH − CL); WL; and

CNet
L = CL−CU curves. From Section 4, we have all necessary primitives exceptCU . From Section 5, we

have equilibriummarket shares under a variety of policy environments, whichwe can contrast to the social

optimum defined by the primitives. Therefore, the only missing piece for estimating welfare is the social

cost of uninsurance. In Section 2 we assumed CU = 0 for simplicity. However, this assumption ignores

uncompensated care, care paid for by other state programs, or more difficult-to-measure parameters like

a social preference against others being uninsured. Because we do not have any way to directly measure

the social cost of uninsurance, we specify it as linked to the observed type-specific cost of enrolling inH .

We write the social cost of uninsurance for type s as:

CU(s) =
(1− d)CH(s)

1 + φ
+ ω (5)

where d is the share of total uninsured healthcare costs that the uninsured pay out of pocket, φ is the

assumed moral hazard from insurance, and ω is some fixed cost of uninsurance. For d and φ, we use the

values as derived fromFinkelstein,Hendren and Shepard (2019) and assume thatd = 0.2 andφ = 0.25.41

We set the fixed cost ω = −$97 per month, which is the ω value consistent with 95% of the population

being optimally insured when L has a 15% cost advantage.

Before analyzing welfare, we provide an important caution: as is standard in the literature, welfare
41Wenote that without this assumption (i.e. if we assumeCU = 0), it is inefficient for any consumer to purchase insurance,

as no consumer values eitherH or Lmore than the cost of enrolling them inH or L. This fact plus a full discussion of the
derivation of the assumed values of d and φ can be found in Finkelstein, Hendren and Shepard (2019).
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estimation depends on inferring consumer value from observed demand responses. In other words, our

welfare estimates are accurate only to the extent that demandaccurately reflects true valuations. Behavioral

frictions might cause consumer demand to deviate from valuations (Handel, Kolstad and Spinnewijn,

2019). Liquidity constraints could also cause valuation and demand to diverge (Casaburi andWillis, 2018).

A separate issue is that our specification of CU is ad hoc and may not reflect the actual social costs of

uninsurance. Indeed, many of our welfare conclusions will necessarily be sensitive to assumptions about

CU . (See results with alternative assumptions on CU in Appendix D.3.2.) We present this analysis to

illustrate how to apply our framework but are cautious about drawing strong normative conclusions.42

6.1 Welfare and Changes to Risk Adjustment

We now show how to estimate welfare with our graphical model. For parsimony, we focus on the case of

strengthening risk adjustment transfers. In Appendix D.3 we show the case of an uninsurance penalty.

Figure 11 plots the empirical analogs to our welfare figures from Section 2. Panel (a) depicts foregone sur-

plus relative to the social optimum under a baseline case with ACA risk adjustment (α = 1), nomandate

penalty, and a fixed subsidy equal to $250. Panel (b) depicts the difference in social surplus between the

baseline case and a similar case where risk adjustment is strengthened (α = 2), reflecting the simulation

reported in the bottom-right panel of Figure 10. Instead of plottingCL, we plotCNet
L = CL−CU , as in

Eq. (18) to account for the fact thatCU 6= 0. We also plotWNet
H = WH − (CH − CL) as in Section 2.

InPanel (a), we indicate the equilibrium s cutoffs forα = 1. The intensivemargin equilibriumcutoff

is seHL and the extensive margin cutoff is seLU . Thus, consumers with s < seHL enroll inH , consumers

with seHL < s < seLU enroll in L, and consumers with s > seLU remain uninsured.

Efficient sorting of consumers across options is indicated by s∗ cutoff types. Consumers with s <

s∗HL should be in H , consumers with s∗HL < s < s∗LU should be in L, and the few consumers with

s > s∗LU should be uninsured tomaximize social surplus. In panel (a) of Figure 11, we depict the foregone

surplus in the baselineACAsettingwith shaded areas. Intensivemargin foregone surplus (lost surplus due
42Importantly, considerations about choice frictions or about the difficulty ofmeasuringCU do not threaten the use of our

model for the positive analysis of Section 5, which consists of predictions of prices and market shares under different coun-
terfactual mandate penalties and risk adjustment. Such predictions do not rely on assumptions about CU or about demand
reflecting underlying consumer valuation.
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Figure 11: Empirical Welfare Effects from Simulations

(a) Baseline Sorting andWelfare Loss (b) Welfare Effects of Stronger Risk Adjustment

Notes: In both panels (a) and (b), we assume that there is a fixed subsidy equal to $250 andL has a 15% cost advantage overH .
Further, 60% of the population is low-income and 40% of the population is high-income, so WTP curves are weighted sums
of both types. Panel (a) shows welfare losses in this setting under no mandate andα = 1, relative to efficient sorting. Efficient
cutoffs are indicated with a * while equilibrium outcomes are denoted with an e superscript. Panel (b) shows welfare changes
under a risk adjustment policy where α = 2, relative to the baseline risk adjustment policy where α = 1.

to consumers choosing L instead ofH) is indicated by the welfare triangleABC , representing a welfare

loss of $19.71.43 Extensive margin foregone surplus is represented by the welfare triangleDEF . Welfare

loss on this margin amounts to $33.47. Combining these, the (average per consumer) foregone surplus in

the baseline setting in panel (a) of Figure 11 is thus $53.18.

Panel (b) of Figure 11 shows the welfare consequences of strengthening risk adjustment. To show

the effects of strengthening risk adjustment, we increase α from 1 to 2, so that risk adjustment transfers

are increased to two-times the ACA transfers. We hold all other policy parameters fixed. Recall from the

bottom-right panel of Figure 10 that moving from α = 1 to α = 2 in this setting shifts nearly 60%

of consumers in the market from L to H but also shifts 13% of consumers in the market from L to U .

Overall, no consumers remain in Lwhen α = 2.

The first effect of increasing α is the intended consequence of risk adjustment, and here it implies

both welfare gains and losses. Welfare gains occur when consumers whose incremental valuation forH
43These shapes are more triangle-ish than triangular.
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vs. L exceeds the incremental cost ofH vs. L (i.e. those withWNet
H (s) > WL(s)) enroll inH instead of

L. These gains are represented by the green welfare triangle ABC , and they amount to $19.71. Welfare

losses occur when consumers whose incremental valuation forH vs. L is less than the incremental cost

ofH vs. L (i.e. those withWNet
H (s) < WL(s)) enroll inH instead of L as L unravels. These offsetting

welfare losses occur when “toomany” consumers enroll inH , and they are represented by the red welfare

triangleCDE and amount to $19.24. In other settings, where it is always more efficient for consumers to

be enrolled inH instead ofL (such as the pure cream-skimming case), there will only be welfare gains on

thismargin. In the case of panel (b) of Figure 11, the two effects nearly cancel each other out so that the net

welfare gain due to the intended consequence of shifting consumers fromL toH amounts to just $0.47.

The second effect of increasing α is the unintended consequence of risk adjustment, and here it im-

plies welfare losses. Because risk adjustment leads to a higher price ofL, some consumers exit the market,

increasing the uninsurance rate. In this case, all consumers who exit the market value insurance more

than the (net) cost of insuring them, CNet
L = CL − CU , causing the welfare consequences of this shift

of consumers out of the market to be unambiguously negative. The size of the welfare loss is represented

by the area ofEFGH , which we estimate to be $68.30. Combining the intended and unintended conse-

quences of risk adjustment, we estimate that in this setting doubling risk adjustment transfers by shifting

from α = 1 to α = 2 would decrease welfare by $67.83, on average per consumer.

Welfare results for all settings studied in Figures 9 and 10, for the full range of levels of α, and un-

der different assumptions about CU are found in Appendix D.3.2. These results indicate that under our

baseline assumption of CU (Equation 5), with ACA-like subsidies, increasing the strength of risk adjust-

ment transfers always improves welfare when L is a pure cream-skimmer. In this case, there is no effect

of risk adjustment on the extensive margin due to the linkage of the subsidy to the price, leaving only

intensive margin consequences. The intensive margin effects of moving consumers from L toH are also

unambiguously positive, as it is inefficient for any consumer to be enrolled inL vs.H . WhenL has a cost

advantage, increasing the strength of risk adjustment transfers improves welfare given low initial levels of

α but decreases welfare given higher initial levels ofα, with thewelfare-maximizing risk adjustment policy

having anα around 1.25, or 1.25 times the strength ofACA risk adjustment transfers. This non-monotonic
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result is due to the fact that increases in α from low initial levels of α induce only those consumers who

valueH highest relative to L to enroll inH , with consumers whose incremental WTP does not exceed

their incremental cost remaining enrolled in L.

With fixed subsidies, the welfare consequences again depend on whetherL has a cost advantage. Re-

call that whenL is a pure cream-skimmer, extensive margin consequences of risk adjustment are limited.

It is inefficient for any consumers to be enrolled inL vs.H in the cream-skimmer case, implying that the

intensive margin effects of moving consumers from L toH are unambiguously positive. When L has a

cost advantage, patterns in the fixed subsidy case are similar to the ACA-like subsidy case, with welfare

increasing with the strength of risk adjustment at low initial levels of α and decreasing at higher levels.

Here, in addition to moving some consumers who should not be inH intoH , stronger risk adjustment

also pushes consumers out of themarket, further worsening the negative effects of risk adjustment. Over-

all, risk adjustment is most likely to improve welfare in a setting with ACA-like subsidies and when L

plans do not have a cost advantage. However, policymakers should be cautious when strengthening risk

adjustment in settings where subsidies are fixed and/or plans are heterogeneous in their cost structures.

6.2 Optimality under Interacting Policies

The findings above suggest the necessity of a second-best approach to policy: optimal extensive margin

policy (penalties and subsidies) will often depend on the intensive margin policies (risk adjustment and

benefit regulation) currently in use in a market. Here we show how our model can be used to assess

optimal policy, allowing for these interactions.

We again consider uninsurance penalties and risk adjustment. We compute social welfare over a grid

of uninsurance penalties and levels of α. We do this for the case in which L has a 10% cost advantage and

low-income consumers (who comprise 60% of the market) receive a fixed subsidy equal to $250 when

purchasing insurance. The social cost of uninsurance is once again set to CU(s) = 0.25CH(s) − 97 as

in the previous section. We “cherry-pick” this case because the two policies interact in interesting ways.

For completeness, we perform similar analyses for all other settings studied in Figures 9 and 10. Results

are reported in Appendix D.3.
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Figure 12: Welfare under Interacting Extensive and Intensive Margin Policies

Notes: The figure shows social welfare outcomes (darker = higher welfare) from the model simulations under different pa-
rameters for the strength of risk adjustment (α, x-axis) and for the size of the uninsurance mandate penalty ($ per month,
y-axis). The key point is that the optimum for one policy depends on the other: with weak risk adjustment a weaker mandate
is optimal, while with strong risk adjustment a strong mandate is optimal.

Figure 12 presents the welfare estimates graphically as a heatmap, where darker areas represent higher

values of social surplus.44 Under a 10% cost advantage, the socially efficient allocation is for 33% of the

population to be in H , 60% of the population to be in L, and the remainder to be uninsured. We can

examine how the optimal level of risk adjustment changes with different values of the mandate penalty.

The figure shows that in this setting,when themandatepenalty is high,welfare is increasing in the strength

of risk adjustment (i.e. higher α). At these high values of the mandate penalty, all consumers purchase

insurance, eliminating anypotential unintended extensivemargin consequences. Under suchhighmarket

enrollment, it is optimal to use strong risk adjustment to sort more people into H instead of L. With

low levels of the mandate penalty, however, risk adjustment has important unintended extensive margin
44Consider a given α, mandate combination that generates a level of welfareW (α,mandate). We scale/normalize the heat

map shading as follows:W norm(α,mandate) = W (α,mandate)−min(W )
max(W )−min(W ) , where the maximum and minimum are taken over all

possible α, mandate combinations for the setting.
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consequences. Thus, the benefits of shifting consumers fromL toH must be traded off against the costs

of shifting consumers out of the market and into U . The results in Figure 12 indicate that with a small

penalty, social surplus is maximized at 1.25 < α < 1.5, somewhat stronger than ACA risk adjustment

but weaker than the optimal level of α under a strong penalty, which is> 1.5.

We can also use Figure 12 to consider the optimal mandate penalty for each level of α. With weak

risk adjustment, starting from low levels of the mandate penalty, social surplus is increasing in the size of

the penalty. However, starting from high levels of the penalty, the sign is opposite, with social surplus

increasing rapidly as the penalty is reduced. This occurs because while a strong mandate penalty increases

social surplus by inducing consumers to enroll in insurance, it also has the first-order offsetting effect of

shifting consumers fromH toL. Ultimately, an intermediate penalty level (around $30)maximizes social

surplus, though any level of the penalty below $40 achieves much higher levels of social surplus than the

level achieved by a penalty exceeding $40. When risk adjustment is strong, social surplus is increasing in

the mandate penalty. Here, strong risk adjustment causes the market to “upravel” toH , eliminating any

potential unintended intensive margin consequences of increasing the level of the penalty. With strong

risk adjustment, a strongermandate thus only induces consumers tomove fromU toH , generatinghigher

levels of social surplus.

In terms of optimal policy, Figure 12 reveals that social surplus is highest for an intermediate level of

both the uninsurance penalty and risk adjustment. Given such a combination of policies, consumers sort

themselves to each ofH ,L, andU , which is the socially efficient outcome in this particular setting. Note

that the lowest-surplus combinations are a strongmandate with weak risk adjustment or a weakmandate

with strong risk adjustment.

In Appendix D.3 we show that other settings have different optimal policies. In the case where L is

a pure cream-skimmer and subsidies are linked to prices (ACA-like subsidies), optimal policy is to have

strong risk adjustment (high α) and a weak mandate. In the case where L has a cost advantage, a weak

mandate with weak to moderate risk adjustment is the optimal policy. In all cases, it is clear that these

two policies interact with each other, implying that evaluating one policy in isolation from the other can

be misleading. Specifically, market designers should not only consider consumer preferences for high- vs.
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low-quality coverage and consumer valuation of insurance but also the interaction between intensive and

extensive margin selection when determining the optimal combination of policies.

7 Conclusion

Adverse selection in insurance markets can occur on either the extensive (insurance vs. uninsurance) or

intensive (more vs. less generous coverage) margin. While this possibility has long been recognized, most

prior treatments of adverse selection focus on only one margin or the other. This focus misses important

cross-margin trade-offs inherent to many selection policies.

In this paper, we develop a simple graphical framework that generalizes the framework of Einav,

Finkelstein and Cullen (2010) by adding the option to remain uninsured. Our setup allows for and high-

lights simultaneous selection on both margins. We use this framework to build intuition for the un-

intended intensive margin consequences of extensive margin policies and vice versa. We show that the

extent to which these cross margin effects occur depends on the primitives of the market.

We also show that it is straightforward to take the graphical framework to data with variation that

identifies two sets of demand and cost curves. We do this with estimates from Massachusetts and find

that the extensive/intensive margin trade-off is empirically relevant for evaluating the consequences of

various policies. Specifically, (1) strengthening uninsurance penalties can increase insurance take-upwhile

shifting some consumers from higher- to lower-quality coverage, and (2) strengthening risk adjustment

transfers can shift enrollment toward higher-quality coverage while also increasing uninsurance. Addi-

tionally, price-linked subsidies for low-income consumers tend to weaken some of these trade-offs (i.e.

effects of risk adjustment and benefit regulation) but not others (i.e. mandates/uninsurance penalties).

Finally, we show that trade-offs related to risk adjustment are more pronounced when the lower-quality

plan has a cost advantage.

Becausemany policies lead to coverage gains on onemargin and coverage losses on the other, in some

cases the unintended effects of policies are first-order with respect to welfare. We show cases in which the

welfare losses from coverage losses on the unintendedmargin exceedwelfare gains from coverage gains on

the intended margin. This happens most often with a penalty for choosing to be uninsured.
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The simplicity of our approach is not without some costs. The assumption of perfect vertical or-

dering of demand is required to maintain simplicity in our graphs, though we show in both theory and

empirics that our results are largely robust relaxing this assumption. What matters is that the primary

form of plan differentiation is vertical. Conclusions may differ in more complex cases, which are an im-

portant area for future research.

The issues we highlight are relevant for future reform of individual health insurance markets in the

U.S. Many have observed that the quality of coverage available in these settings is low, with most plans

having tight provider networks, high deductibles, and strict utilization controls. Additionally, others have

observed that take-up is far from complete, with many young and healthy consumers remaining unin-

sured (Domurat, Menashe and Yin, 2018). These two observations are consistent with adverse selection

on the intensive and extensive margins, respectively. Our framework highlights the unfortunate but im-

portant point that budget-neutral policies targeting one of these problems tend to exacerbate the other

due to the trade-off between extensive and intensive margin selection. This point is often absent from

reform discussions, and our intention is to correct this potentially costly omission.
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Online Appendix

Online Appendix for:
The TwoMargin Problem in Insurance Markets

A Analysis in a General Model (Relaxing Vertical Assumptions)
In this appendix, we present a formal mathematical analysis of the equilibrium impacts of tuning the
parameters governing the two main policies discussed in Section 3: the mandate penalty and risk adjust-
ment. We implement this analysis in a general model that does not invoke the vertical assumptions used
for our graphical approach. This lets us showhow the vertical assumptions interact with themodel’smain
predictions.

Horizontal differentiation allows for an additional margin of substitution, betweenH and U , that
the vertical model shuts down. As we show below, this adds additional terms to the comparative statics
defining the policy effects onprices andmarket shares. But as long as theseH-U substitution terms are not
too large—e.g., as long as whenM increases, most of the newly insured buy the cheaperL plan, notH—
then they do not reverse the sign of the vertical model predictions. Thus, our results are not a knife-edge
case driven by the assumption of pure vertical differentiation. Rather, as long as vertical differentiation
is the "main" way thatH and L compete, the model provides a useful approximation. This is consistent
with the findings of our empirical robustness check that allows for horizontal differentiation inAppendix
D.4.1.

A.1 Model Setup
The setup is identical to that of Section 2, with two plansH andL andP = {PH , PL} denoting insurer
prices. LetG = {SH , SL,M} denote plan-specific government subsidies (Sj) and the mandate penalty
(M ). Throughout this section (as in Section 2), we assumeSH = SL = S, though the framework would
generalize if this were not true. Nominal consumer prices equal P cons

j = Pj − S for j = {L,H} and
P cons
U = M .
Unlike in the verticalmodel, wewill not assume thatWH andWL are perfectly correlated. Instead, we

allow consumers to vary along both willingness to pay dimensions. Each consumer type is characterized
by an ordered pair s = (sH , sL), where sH indexes WTP for H and sL indexes WTP for L. We once
again normalize WU ≡ 0. Note that a single s-index is no longer sufficient to characterize consumer
willingness-to-pay. Without loss of generality, the s index takes a bivariate uniform distribution, so it
represents an index of the percentile of the WTP distribution forH and L.

The set of consumers who choose a given option j ∈ {H,L, U} is defined as Aj(P,G) = {s :
Wj(s) − P cons

j ≥ Wk(s) − P cons
k ∀k}. Demand is defined as the size of this group: Dj(P,G) =∫

Aj(P,G)
ds.

For each “WTP-type," we once again have a plan-specific expected costCj(s). We againmake the ad-
verse selection assumption that costs in a givenplan are increasing inWTPfor that plan. Hence∂Cj(sH , sL)/∂sj <
0 for plan j. Average costs for plan j ∈ {L,H} equal the average ofCj(s) over the enrolling set of con-
sumers:

ACj(P ;G) =
1

Dj(P ;G)

∫
Aj(P,G)

Cj(s)ds (6)
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Similarly, we can define the average risk score functions:

Rj(P ;G) =
1

Dj(P ;G)

∫
Aj(P,G)

R(s)ds (7)

whereR(s) is the average risk score among type-s consumers. The baseline per-enrollee risk adjustment
transfer from L toH is a function of these average risk scores, the (share-weighted) average risk score in
the market (≡ R(P ;G)) and the (share-weighted) average price in the market (≡ P (P ;G)):

T (P ;G) =

(
RH(P ;G)

R(P ;G)
− 1

)
P (P ;G). (8)

Finally we introduce a parameterα ∈ (0, 1) that multiplies the transfer,α ·T (P ;G), allowing us to vary
the strength of risk adjustment by scaling the transfers up or down such that α = 0 represents no risk
adjustment, α ∈ (0, 1) is partial risk adjustment, α = 1 is full-strength risk adjustment, and α > 1 is
over-adjustment.

We define equilibrium as prices equal average costs net of risk adjustment transfers:

PH = ACH (P ;G)− αT (P ;G) ≡ ACRA
H (P ;G,α)

PL = ACL (P ;G) + αT (P ;G) ≡ ACRA
L (P ;G,α) (9)

whereACRA
j (P ;G,α) are risk-adjusted costs for plan j = {L,H}.

A.2 Approach and Assumptions on Signs of Demand/Cost Curve Slopes
Wenow consider the equilibrium response to an increase in the uninsurance penaltyM and an increase in
α, i.e. the strengthof the risk adjustment transfers. Our goal is tounderstand the cross-margin interactions—
the effect ofM on demand forH and the effect of risk adjustment on the share uninsured. To do so, we
use the equilibrium conditions to derive the relevant comparative statics, dDH

dM
and dDU

dα
. The compar-

ative statics take account of both direct effects—denoted with partial derivatives below (e.g., ∂ACH

∂PH
)—

and equilibrium effects on market prices—denoted with total derivatives (e.g., dPH

dM
). These comparative

statics allow us to show the features of demand and cost that determine the sign and magnitude of the
cross-margin effects.

In analyzing these comparative statics, we will assume a stable equilibrium that is characterized by
adverse selection. These assumptions let us sign the slopes of several demand/cost curves that enter the
equations. In particular, we assume:

• Equilibrium stability, which requires that 1− ∂ACj

∂Pj
> 0 for j = {H,L} locally to the equilibrium

point.

• Adverse selection, which requires that (on average) the highest-cost types buyH , middle-cost types
buy L, and the lowest-cost choose U . More specifically, we assume:

1. The marginalH consumer is lower-cost than the averageH consumer and higher-cost than
the average L consumer—which implies that ∂ACH

∂PH
> 0 and ∂ACL

∂PH
> 0.
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2. The consumer on the margin of H and L is lower-cost than the average H consumer—so
∂ACH

∂PL
< 0

3. The marginal uninsured consumers are lower-cost than the average consumer ofH or L, so
∂ACH

∂M
≤ 0 and ∂ACL

∂M
≤ 0.

For the analysis of risk adjustment, we also assume that the analogous stability and adverse selection
conditions hold for risk-adjusted average costs ACRA

H and ACRA
L . This is true in our empirical simula-

tions, where we find that risk adjustment is imperfect, so risk-adjusted cost curves are characterized by
adverse selection.

Further, while we do not impose the vertical model, it is useful to note its implications for several
relevant partial derivatives:

• Vertical model assumes that no consumers are on the H-U margin, which implies that ∂DH

∂M
=

∂ACH

∂M
= ∂DU

∂PH
= 0.

In the analysis below, we color in red the terms that are zero under the verticalmodel. This lets readers
see where relaxing the vertical assumptions adds additional terms to the comparative statics.

A.3 Increase in Uninsurance Penalty (M )
We derive comparative statics for enrollment inH in response to a change in the uninsurance penaltyM .
Throughout this section, we assume that there is no risk adjustment in place, which simplifies the math.

We start by analyzing dDH

dM
, the cross-margin effect of a mandate penalty on enrollment inH . This

comparative static is comprised of two parts. First, in red is the direct enrollment change inH for a change
inM , holding fixed PH and PL. In the vertical model, this ∂DH

∂M
term would be zero. The second term is

the indirect effect onDH through the change in relative prices ofH and L. Formally:

dDH

dM
=

∂DH

∂M︸ ︷︷ ︸
HUmargin

+
∂DH

∂∆PHL︸ ︷︷ ︸
(−)

·
(
dPH
dM

− dPL
dM

)
.

︸ ︷︷ ︸
HLmargin

(10)

In the vertical model, ∂DH

∂M
= 0, so under the vertical assumption the sign of ∂DH

∂M
would be fully de-

termined by the change in the incremental price of H vs. L caused by an increase inM . If an increase
inM leads to an increase in ∆PHL = PH − PL, then an increase inM will lead to lower demand for
H . This positive relationship betweenM and∆PHL would occur under our assumptions about adverse
selection because an increase inM would induce a fall in PL as the consumers on the margin between L
andU who are induced to purchaseL are relatively healthy. If the verticalmodel does not hold, ∂DH

∂M
> 0,

which would partly offset the decrease inDH but not fully do so as long as it is small in magnitude.
Thus, to sign the cross-margin effect, weneed to show that dPH

dM
− dPL

dM
> 0. Wenow fully differentiate

PH and PL with respect toM to characterize this relationship more explicitly.

dPH
dM

=
∂ACH
∂M

+
∂ACH
∂PH

dPH
dM

+
∂ACH
∂PL

dPL
dM

dPL
dM

=
∂ACL
∂M

+
∂ACL
∂PH

dPH
dM

+
∂ACL
∂PL

dPL
dM

(11)
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Notice, that unlike under the purely vertical model, a change inM impacts direct costs for bothH and
L. Solving this system of equations again for dPH

dM
, we get the expression below.

dPH
dM

=

[
∂ACH
∂M

+
∂ACL
∂M

∂ACH
∂PL

(1− ∂ACL
∂PL

)−1
]
× Φ−1H (12)

where ΦH = {1− ∂ACH

dPH
− ∂ACH

∂PL

∂ACL

∂PH
(1− ∂ACL

∂PL
)−1}.

We now can sign dPH

dM
as follows:

dPH
dM

=


∂ACH
∂M︸ ︷︷ ︸

Ext. Margin Selection(≤0)

+
∂ACL
∂M︸ ︷︷ ︸
(−)

· ∂ACH
∂PL︸ ︷︷ ︸
(−)

(
1− ∂ACL

∂PL

)−1
︸ ︷︷ ︸

(+)︸ ︷︷ ︸
Substitution toL (+)


× Φ−1H︸︷︷︸

(+)

(13)

and ΦH = (1− ∂ACH
dPH

)︸ ︷︷ ︸
(+)

− ∂ACH
∂PL

∂ACL
∂PH︸ ︷︷ ︸

(−)

(1− ∂ACL
∂PL

)−1︸ ︷︷ ︸
(+)

> 0 , where all signs are determined by the

adverse selection and stability assumptions laid out above.
Therefore, we can sign dPH

dM
> 0 under the vertical model. The intuition is as we have already de-

scribed: themandate penalty lowersPL, leading relatively healthyH consumers to leaveH and substitute
to L, which raisesACH and therefore PH . When the vertical model does not hold, extensive margin se-
lection of consumers on theHU margin intoH (∂ACH

∂M
< 0) pushes in the other direction. But as long

as extensive margin substitution is not too large, the main effect of substitution to Lwill dominate.
We derive the expression for dPL

dM
in a similar way:

dPL
dM

=


∂ACL
∂M︸ ︷︷ ︸

Ext. Margin Selection(−)

+
∂ACH
∂M︸ ︷︷ ︸
(≤0)

· ∂ACL
∂PH︸ ︷︷ ︸
(+)

(
1− ∂ACH

∂PH

)−1
︸ ︷︷ ︸

(+)︸ ︷︷ ︸
Substitution toH(≤0)


× Φ−1L︸︷︷︸

(+)

(14)

where ΦL = {1− ∂ACL

dPL
− ∂ACL

∂PH

∂ACH

∂PL
(1− ∂ACH

∂PH
)−1} > 0 as with ΦH above.

Thus, under the vertical model where ∂ACH

∂M
= 0, we can unambiguously say that PL falls with a

higher mandate penalty (dPL

dM
< 0). This conclusion also holds when we relax the vertical model (as

shown by the negative substitution term), as any extensive margin substitution intoH acts to lower the
price of H , drawing the sickest consumers away from L and pushing L’s costs and price even further
down.

Returning now to dDH

dM
, we observe under the vertical model that

(
dPH

dM
− dPL

dM

)
< 0, which implies

that dDH

dM
> 0. In other words, the “unintended consequence" of decreasing enrollment in H should

49



Online Appendix

always occur under the vertical model. When we relax the vertical model, this result will also hold as long
substitution on theHU margin is not too large.

A.4 Increasing the Strength of Risk Adjustment (α)
We now consider in our more general model the effect of a small increase in the α parameter on the share
of the population that is uninsured. As in the previous section, we color in red the terms that are zero
under the vertical model. This lets readers see where relaxing the vertical assumptions adds additional
terms to the comparative statics.

The change in the share of the uninsured population given a change in α is comprised of two parts:
changes in enrollment from theHU margin (in red) andLU margin (in black). Under the vertical model
assumptions, theHU margin is not present.

dDU

dα
=

∂DU

∂∆PHU︸ ︷︷ ︸
≥0

d∆PHU
dα

︸ ︷︷ ︸
HUmargin

+
∂DU

∂∆PLU︸ ︷︷ ︸
(+)

d∆PLU
dα

︸ ︷︷ ︸
LUmargin

(15)

where ∆PHU = PH − S −M and ∆PLU = PL − S −M are the net prices ofH and L relative to
uninsurance.

By the law of demand, ∂DU

∂PH
≥ 0, ∂DU

∂PL
> 0. Under the vertical model, ∂DU

∂PH
= 0, so the cross-margin

effect of risk adjustment on uninsurance is entirely determined by the sign of the LU margin. We now
consider the impact of a change in α on ∆PHU and ∆PLU . The change in prices depends on the nature
of subsidies. With subsidies linked to the price of L, ∆PLU (= PL − S −M) is fixed by construction.
Therefore, the LUmargin of substitution is shut down. In the vertical model, we will have dDU

dα
= 0.

Let us now consider the case where there is a fixed subsidy and therefore prices can be affected by the
level of transfers. We fully differentiate (9) and rearrange to get a system of equations. These are identical
under both the horizontal and vertical model.

dPH
dα

= T (.)︸︷︷︸
(+)

×

 −1︸︷︷︸
Direct(−)

+
∂ACRA

H

∂PL

(
1− ∂ACRA

L

∂PL

)−1
︸ ︷︷ ︸

Substitution from L (−)

× (ΦRA
H )−1 < 0

where ΦRA
H ≡ 1− ∂ACRA

H

∂PH
− ∂ACRA

L

∂PH

∂ACRA
H

∂PL
(1− ∂ACRA

L

∂PL
)−1. As in the mandate section above, this ΦRA

H

termmust be positive under the assumptions on stability and adverse selection we have made.
The term in brackets is composed of two effects. First, there is a direct effect of stronger risk adjust-

ment transferring money toH , which tends to lower PH . Second, there is an indirect substitution effect,
arising from substitution of relatively healthy consumers on the margin betweenH and L opting forH
and lowering H ’s average cost and thus its price. Thus, dPH

dα
< 0 because both the direct and indirect

effects push PH down.
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Doing the same for dPL

dα
gives

dPL
dα

= T (.)︸︷︷︸
(+)

×

 1︸︷︷︸
Direct(+)

+

(
−∂AC

RA
L

∂PH

)(
1− ∂ACRA

H

∂PH

)−1
︸ ︷︷ ︸

Substitution to H (−)

× (ΦRA
L )−1︸ ︷︷ ︸
(+)

where ΦRA
L ≡ 1 − ∂ACRA

L

∂PL
− ∂ACRA

H

∂PL

∂ACRA
L

∂PH
(1 − ∂ACRA

H

∂PH
)−1, which must be positive under the stability

and adverse selection assumptions.
Here, the direct effect is positive because larger transfers takemoney fromL, driving up the price ofL.

However, the indirect substitution effect is negative—since ∂AC
RA
L

∂PH
> 0 by adverse selection. Intuitively,

stronger risk adjustment transfers increase the price of L, causing consumers on theH-Lmargin to opt
for H instead of L. These consumers are the highest-cost L enrollees, implying that their exit from L
will lower L’s average cost and thus its price. Therefore, the indirect substitution effects will mute (or
even fully offset) the direct effect of risk adjustment on PL. Because of this direct and indirect effect, it
is ambiguous whether PL will increase or decrease, and in general, any change in PL will be smaller than
one would expect from the direct effect alone.

Further, the question of whether the direct or indirect effect dominates depends onwhether the sub-
stitution term is greater than or less than 1 in absolute value. If it is greater than 1, then the substitution
term will dominate. This will occur if ∂AC

RA
L

∂PH
> 1 − ∂ACRA

H

∂PH
. This will tend to occur when intensive

margin adverse selection is very strong (even after risk adjustment) so that both ∂ACRA
L

∂PH
and ∂ACRA

H

∂PH
are

large. Conversely, if adverse selection is weak, the direct effect will dominate.
This expression also tells us how the size of any cost advantage forLmay affect the effects of increasing

α. WhenL has no cost advantage overH (the cream-skimmer case), the only reasonL gets any demand is
intensive margin adverse selection. When adverse selection is strong in the cream-skimmer case, L exists
but the substitution effect is also large, muting the direct effect of risk adjustment. When adverse selection
is weak in the cream-skimmer case,L fails to exist. Thus, it is more likely that increasing α will have little
or no (or possibly negative) effect onPL in the case whereL has no cost advantage than in the case where
L has a cost advantage.

To summarize the case with fixed subsidies, dDU

dα
is ambiguous even under the vertical model because

we cannot theoretically sign the change in PL when when α increases. If the direct effect dominates,
then PL will increase with α and uninsurance will rise under the vertical model. If the substitution toH
dominates, then PL will fall and uninsurance will also fall.

When we relax the vertical assumptions, the potential for stronger risk adjustment to increase unin-
surance is further mitigated by the presence of theHU extensive margin. The term ∂DU

∂PH

dPH

dα
in equation

(15) will be positive. Because dPH

dα
< 0, consumers on theHU margin will tend to become insured (inH)

when risk adjustment is strengthened. This may offset any rise in uninsurance along theLU margin ifPL
rises, as more consumers leave uninsurance to buyH .
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B Appendix: Extensions to the Graphical Model

B.1 Graphical Analysis of Perfect Risk Adjustment
In this section, we illustrate how our graphical model can be used to show the effects of perfect risk adjust-
ment on equilibrium prices and market shares. Under perfect risk adjustment, transfers perfectly capture
all variation in CL across consumer types. The graphical representation of the role of risk adjustment in
the two margin problem is complicated by the fact that risk adjustment transfers causeRACH (the risk-
adjusted cost curve) to become an equilibrium object rather than a stable market primitive (likeACH), as
any effects of selection into the market are at least partially shared betweenL andH due to the risk-based
transfers.

To simplify exposition, we assume that the causal cost difference betweenH andL equals a constant
value of δ for all consumer types s. We define perfect risk adjustment as transfers such that the aver-
age cost in H net of risk adjustment always equals the average cost in L net of risk adjustment plus δ:
RACH(P ) = RACL(P ) + δ. Under perfect risk adjustment, the average risk-adjusted cost inH andL
does not depend on consumer sorting betweenH andL. Instead, the average cost of both plans depends
only on consumer sorting between insurance and uninsurance. If new healthy consumers join themarket
(buying theLplan), the risk transfers share the improved risk pool equally betweenH andL, maintaining
the δ difference between their average costs. The important simplifying feature of perfect risk adjustment
is that when it comes to average costs, there is only one relevant margin of adjustment: the extensive mar-
gin. With imperfect risk adjustment, residual intensive margin selection that is not compensated by risk
adjustment remains relevant, complicating the graphical analysis.

We depict the perfect risk adjustment case in Figure A1. Note that here we do not assume that L is a
pure cream-skimmer but instead thatL has a cost advantage equal to δ. Risk adjustment affects the curves
in a number of ways. First, as depicted in panel (b), risk adjustment causes the average cost curve for L
to shift upward and rotate slightly to make it parallel with the original, unadjusted average cost curve for
H . This shift reflects the risk transfer away fromL (and toH) that raisesL’s effective costs. RACL(sLU)
still slopes down because of extensive margin adverse selection, but it is now a fixed curve that does not
depend on the price ofH or sorting betweenH andL.45 The new, higher average cost curve forL,RACL
implies a new, higher equilibrium price forL, P̂ e

L. This higher price ofL implies a new demand curve for
H , shifted upward from the previous demand curve and depicted in panel (c) of Figure A1. This higher
demand curve forH reflects the fact that the higher price of Lmakes L less attractive relative toH .

Panel (d) of Figure A1 illustrates the second direct effect of risk adjustment. For the H plan, risk
adjustment causes the average cost curve,RACH(sHL), to be rotated downward relative to the unadjusted
curve,ACH(sHL). RACH is now a flat line, since sorting between plans (i.e., the value of sHL) does not
affect average costs. The level ofRACH equalsACH(sLU)—the average cost if the entire population up
to the extensive margin type sLU were to enroll inH .

FigureA2 shows how this shift inH ’s average cost curve combineswith the shift inH ’s demand curve
to produce a new lower equilibrium price ofH , P̂ e

H and a higher quantity of consumers enrolling inH .
45One can show thatRACL is parallel to the oldACH since it is capturing the overall average costs of everyone from s = 0

up to a given sLU cutoff.
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Figure A1: Equilibrium under Perfect Risk Adjustment
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Notes: Starting from equilibrium in panel (a) and introducing perfect risk adjustment in panel (c), perfect risk adjustment
shifts up the average cost ofL fromACL(sLU ) toRACL(sLU ), reflecting the transfer away fromL toH . UnlikeACL, the
risk adjustedRACL only depends on the extensive margin SLU , not on the allocation across plans (sHL). The risk adjusted
curveRACL(sLU ) intersectsDL at a lower point, shifting out the extensive margin from seLU to ŝeLU . Next, in panel (c) we
see that this lower extensive margin-type ŝeLU shifts upDH . Finally, in panel (d) we see that risk adjustment flattens the risk
adjusted average cost ofH ,RACH , which likeRACL no longer varies depending on sorting between the two plans, sHL.
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Figure A2: Equilibrium under Perfect Risk Adjustment

ACL(sLU ; sHL)

$

s

ACH(sHL)

WH

𝑷𝑯
𝒆

RACL(sLU)

𝑷𝑳
𝒆

𝑠𝐻𝐿
𝑒 𝑃𝑒 𝑠𝐿𝑈

𝑒 (𝑃𝑒)

DH(𝑷𝑳
𝒆)

DL

෡𝑷𝑳
𝒆

Ƹ𝑠𝐿𝑈
𝑒 (𝑃𝑒)

Buy L UninsBuy H U instead of L

RACH(sHL)

Ƹ𝑠𝐻𝐿
𝑒 𝑃𝑒

෡𝑷𝑯
𝒆

H instead of L

Unintended Consequence: 

Risk adjustment shifts 𝐴𝐶𝐿 up, 

raising 𝑃𝐿. Consumers choose L 

instead of U.

Intended Consequence: Risk 

adjustment rotates 𝐴𝐶𝐻 down, 

higher 𝑃𝐿 shifts 𝐷𝐻 up, leading 

to lower 𝑃𝐻. Consumers choose 

H instead of L

Notes: Under perfect risk adjustment, the risk-adjusted average cost curve forH is completely flat for a given sLU . Equilibrium
occurs at sHL and sLU values such thatRACH intersectsDH andRACL intersectsDL.

In summary, perfect risk adjustment has two effects. First, it causes the average cost curve forH to
rotate downward until it is flat. This rotation of the cost curve causes sHL to shift right, indicating a shift
of consumers from L toH . This is the intended effect of risk adjustment, and it is caused by a transfer
from L to H to compensate H for the externality imposed on it by intensive margin selection from L.
Second, it causes the average cost curve forL to both rotate and shift up.46 This change inACL causes sLU
to shift left, indicating a shift of consumers fromL toU , increasing uninsurance. This is the unintended
effect of risk adjustment. It occurs because the transfer to H comes from L, resulting in an increase in
L’s costs and price, forcing some consumers out of the market. In Section 3 we also provide a graphical
description of the welfare consequences of risk adjustment, both perfect and imperfect.

In Appendix A and Appendix D.4.1 we also explore (both theoretically and empirically) how the
effects of risk adjustment are affected by the relaxation of our vertical model assumption, finding that
the presence of consumers with non-vertical preferences can act to weaken the unintended effects of risk
adjustment on the extensive margin.

Finally we note that if risk adjustment is perfect—as assumed in this subsection—it will often lead to
countervailing effects with some consumers opting forH instead ofL and other consumers opting forU
instead ofL. With imperfect risk adjustment, in contrast, the unintended extensive margin effect may or
may not occur, depending on the relative sizes of the direct and indirect effects.

46The curve remains downward-sloping because perfect risk adjustment only addresses intensive margin selection, leaving
selection on the extensive margin in place.
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B.2 Extension: Medicare Advantage + Traditional Medicare
Our graphical model can be extended to other cases beyond the baselineH/L/U setup modeled on the
ACAMarketplaces. One setting of particular policy interest is the Medicare Advantage (MA) market, in
which plans of varying quality compete with an outside option of TraditionalMedicare (TM). A key dif-
ference for the MA-TM setting is that the inside-option plans are advantageously selected relative to the
outside option. Unlike the ACA case where the outside option of uninsurance attracts the lowest-cost
consumers,TM has historically attracted the sickest and highest-cost enrollees.47 We show in this section
how our graphical model can capture theMA-TM case under the maintained assumption of vertical dif-
ferentiation. (For non-vertical differentiation, a 2-D graphical approach is not feasible, but see the math
in Appendix A that captures the general case.)

TheMA-TM extension works as follows. We start by setting up a model with three vertically ranked
plans: (1) TM, the most preferred option; (2) H, a high-quality MA plan (middle option); and (3) L, a
lower-quality MA plan (least preferred). We think of TM as representing Traditional Medicare bundled
with a generous Medigap plan so that it is the most generous option for both cost sharing and provider
network. H could be a broad-network MA plan (e.g., a PPO), while L could be a narrow-network MA
plan (e.g., anHMO). Importantly, we assume thatTM is the outside optionwhose price is set exogenously
by policymakers (e.g., via the Part B premium and rules for MA subsidies/benchmarks), while the prices
of H and L are determined in equilibrium. We note, of course, that the real-world MA-TM market is
muchmore complicated than this setup and that vertical differentiation is an approximation. Ourmodel
should be seen as an approximation, and the caveats discussed for our baseline model also apply here.

To capture advantageous selection with respect to TM, we reorder the plan sorting along our main-
tained "s type" x-axis. Rather than have the lowest-WTP types choose the outside option (of uninsurance)
as in our baseline model, the highest-WTP types now choose the outside option of TM. Middle-WTP
types choose the H MA plan, and the lowest-WTP types choose the L MA plan. We will continue to
assume thatWTP correlates with sickness (cost), so the sickest types chooseTM, middle types chooseH,
and the healthiest types chooseL. This reordering lets us define demand and costs curves and competitive
equilibrium in a similarmanner as in our baselineH/L/Umodel. We note that this reordering is different
from the EFC-graph approach to advantageous selection, which instead uses upward sloping curves corre-
sponding to amarketwhere consumer preference formore generous coverage itself is negatively correlated
with costs.

Formally, we maintain the vertical model assumptions of Section 2 with labeling changes. We nor-
malizeWi,L ≡ 0 and make the following two assumptions:

Assumption 3. Vertical ranking: Wi,TM > Wi,H > Wi,L ≡ 0 for all i

Assumption 4. Single dimension of WTP heterogeneity: There is a single index s ∼ U [0, 1] that orders
consumers based on declining WTP, such thatW ′

H(s) < 0 andW ′
TM(s)−W ′

H(s) < 0 for all s.

We assume that the consumer price of TM, PTM , is set exogenously. The prices of theH and LMA
plans are set competitively to equal their average costs:

PH = ACH (P ) and PL = ACL (P ) (16)

47There is evidence that in recent years, improved risk adjustment has offset some of these differences. The model in this
section should be seen as illustrative of the traditional case where MAwas still advantageously selected.
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As in the baseline model, there could be non-uniqueness, and we limit attention to equilibria that meet
the requirements of the Riley Equilibrium (RE) notion (see Appendix C.3). For the graphical presenta-
tion, we focus on the case of monotonic adverse selection in which higher-WTP correlates with higher
costs. For graphical simplicity, we also focus on the pure cream-skimming case whereCH(s) = CL(s) for
all s. The more general case would be similar but would involve plotting two separate type-specific cost
curves. Finally, we depict the case with positive demand for all contracts, though in principle the model
allows one more contracts to unravel.

Figure A3 shows equilibrium in the MA-TM case under these assumptions. The graph is similar to
equilibrium in the baselineH/L/U case (see Figure 4) but with a few differences. First, the price ofTM is
exogenous and there is therefore no need to show the average cost ofTM. Second, all demand and average
cost curves are now equilibrium objects that depend onPH orPL; it is no longer possible to defineACH
andDL based on primitives alone. This makes the setup slightly more complex to describe, but the basic
concepts and cross-margin policy effects are similar.

Walking through Figure A3, suppose we start with an exogenous PTM (set by policymakers) and an
initial guess forPH andPL. Thedemand curve that determines sortingbetweenTM andH isDTM(s) =
WTM(s)−WH(s)+PH . The type indifferentbetween these twooptions iss∗TM,H , definedbyDTM(s∗TM,H) =
PTM . Types to the left of this point (DTM(s) > PTM ) choose TM , while types to the right of this point
choose H or L. Sorting between H vs. L is determined by the yellow curve DH(s) ≡ WH(s) + PL,
with indifferent type s∗H,L defined byWH(s∗H,L) + PL = PH . Types to the left of s∗H,L chooseH (since
DH(s) > PH), while types to the right choose L (since DH(s) < PH). Notice that both the dashed
black and yellow curves equal WTP (for TM andH) shifted upward by PL. This is similar to the way
that themandate penalty (price of the lowest-quality option) shifted upwardWTP for insurance plans in
our baseline H/L/Umodel, but in this case the price of L is endogenous.

Turning to costs, the pink curve is the type-specific cost curve,CH(s) = CL(s), for this pure cream-
skimming case (though this would be easy to generalize). The average cost curve forH starts at s∗TM,H and
slopes downward to the right (lying above theCH(s) curve), capturing the average costs of all individuals
choosing H (i.e., s ∈ [s∗TM,H , sHL]). In equilibrium, ACH(s) intersects DH(s) at s = s∗H,L so that
ACH(s∗H,L) = PH . For the L plan, the average cost curve starts at this s∗H,L type and slopes downward
to the right (lying above the CL(s) curve). Since all s ∈ [s∗H,L, 1] choose L, the final average costs of L
equals the value ofACL(s) at s = 1. In equilibrium,ACL(1) = PL.

This model can also be used to think about cross-margin policy effects. For instance, suppose the
government decreases the price of TM, intending to get more consumers to choose the higher-quality
TM option. Some consumers then shift fromH intoTM at the s∗TM,H margin, captured by amovement
along the DTM curve. These people leaving H are its highest-cost consumers, so the ACH curve shifts
downward, resulting in a lowerPH and a shift fromL toH on the intensive margin. Therefore, a change
in the extensivemargin price (PTM ) results in a demand shift on the intensivemargin from theL to theH
plan. Notice, however, that unlike the H/L/U case, the cross-margin effects reinforce the original policy’s
goal of getting consumers into higher-quality plans. In addition to the intended shift from H to TM
(higher quality), there is a cross-margin shift from L toH (also higher quality). In words, lowering the
price of TM results in more MA enrollees choosing higher-quality MA options.48

48Similar analysis could also be applied to study the cross-margin impact of a risk adjustment transfer from L toH , which
might lower the price ofH and draw consumers intoH from TM . In reality in theMA-TMmarket, risk adjustment applies
across all three options, making the analysis somewhat different.
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Figure A3: Equilibrium inMedicare Advantage + Traditional Medicare Case
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Notes: The graph shows equilibrium in the Medicare Advantage (MA) + Traditional Medicare (TM) case, as described in
the appendix text. Assumptions, curve setups, and equilibrium are similar to our baseline H/L/U model, but with sorting
reordered so that thehighest-WTP (furthest left) types choose theoutside optionofTM,middle-WTP types choose thehigher-
quality MA plan (H ), and the lowest-WTP types choose the lower-quality MA plan (L).

B.3 Formal Social Welfare Function
In this appendix, we derive a formal expression for welfare, building on the graphical presentation in the
body text. We allow for cases where CU is non-zero—e.g., if the outside option involves social costs like
uncompensated care.

We define social welfare as:

ŜW (P ) =

sHL(P )∫
0

(WH (s)− CH (s)) ds+

sLU (P )∫
sHL(P )

(WL (s)− CL (s)) ds−
1∫

sLU (P )

CU (s) ds (17)

Recall that the level of utility was normalized above by settingWU = 0. As in the figures, we can express
welfare in terms of three curves and two areas (integrals) if we make the following transformations. First,
add a constant equal to total potential cost of U , defining SW = ŜW +

∫ 1

0
CU (s) ds. Second, define

“net costs” ofL (in excess ofCU ) asCNet
L (s) ≡ CL(s)−CU(s). Rearranging and simplifying, this yields
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the following expression for social welfare:

SW =

sHL(P )∫
0

(
WNet
H (s)−WL(s)

)
ds

︸ ︷︷ ︸
Intensive Margin Surplus fromH vs. L

+

sLUP )∫
0

(
WL (s)− CNet

L (s)
)
ds

︸ ︷︷ ︸
Extensive Margin Surplus fromL vs. U

(18)

The first term is the intensive margin surplus (H vs. L) for consumers who buyH , s ∈ [0, sHL]. Notice
thatWNet

H (s) −WL(s) = ∆WHL − ∆CHL, so this is indeed capturing the intensive margin surplus.
The second term is the extensive margin surplus from insurance (in L) relative to uninsurance, which
applies to everyone who buys insurance, s ∈ [0, sLU ]. Equation (18) shows that it is straightforward to
calculate welfare even whenCU 6= 0, as long as the researcher has information aboutCU .

C Appendix: SimulationMethod Details

C.1 Constructing Demand and Cost Curves
As discussed in section 4, we draw on separate demand and cost estimates for both low-income subsidized
consumers from Finkelstein, Hendren and Shepard (2019) (abbreviated "FHS") and high-income unsub-
sidized consumers fromHackmann, Kolstad andKowalski (2015) (abbreviated "HKK"). We describe how
each respective paper produced its primitives as well as our modifications below.

C.1.1 Low-Income Demand and Costs: FHS (2019)

FHS Primitives

• Population: FHS estimate insurance demand in Massachusetts’ pre-ACA subsidized health insur-
ance exchange, known as “CommCare.” CommCare was an insurance exchange created under the
state’s 2006 “Romneycare” reform to offer subsidized coverage to low-income non-elderly adults
(below 300% of poverty) without access to other health insurance (from an employer, Medicare,
Medicaid, or another public program). This population was similar, though somewhat poorer,
than the subsidy-eligible population under the ACA.

• Market structure: CommCare participation was voluntary: consumers could choose to remain
uninsured and pay a (small) penalty. As FHS show, a large portion of consumers (about 37% over-
all) choose the outside option of uninsurance, despite the penalty and large subsidies. The Comm-
Care market featured competing insurers, which offered plans with standardized (state-specified)
cost sharing rules but which differed on their provider networks. In 2011, the main year that FHS
estimate demand, the market featured a convenient vertical structure among the competing plans.
Four insurers had relatively broad provider networks and charged nearly identical prices just below
abindingprice ceiling imposedby the exchange. One insurer (CeltiCare) had a smaller provider net-
work and charged a lower price. FHSpool the four high-price, broadnetwork plans into a single "H
option"—technically defined as each consumer’s preferred choice among the four plans—and treat
CeltiCare as a vertically lower-ranked "L option." FHS present evidence that this vertical ranking is
a reasonable characterization of the CommCare market in 2011.
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• FHS Estimation: To estimate demand and costs, FHS use a regression discontinuity design leverag-
ing discontinuous cutoffs in subsidy amounts based on household income. Because subsidies vary
across income thresholds, there is exogenous net price variation that can transparently identify de-
mand and cost curves withminimal parametric assumptions. FHS leverage discontinuous changes
in net-of-subsidy premiums at 150%FPL, 200%FPL, and 250%FPL arising fromCommCare’s sub-
sidy rules. They estimate consumerwillingness-to-pay for the lowest-cost plan (L) and incremental
consumer willingness-to-pay for the other plans (H) relative to that plan.49 This method provides
estimates of the demand curve for particular ranges of s. The same variation is used to estimate
ACH(s) and CH(s), the average and marginal cost curves forH . Our goal is not to innovate on
these estimates but rather to apply them as primitives in our policy simulations to understand the
empirical relevance of our conceptual framework.

OurModifications to FHS Primitives

• Extrapolating to extremes of s distribution: The FHS strategy provides four points of theWL(s)
curve and four points of theWHL(s) = WH(s) − WL(s) curve. As shown in Figure 10 from
FHS, for theWL curve these points span from s = 0.36 to s = 0.94 and for theWHL curve
these points span from s = 0.31 to s = 0.80. Because our model allows for the possibility of zero
enrollment in eitherL orH or both, we need to modify the curves, extrapolating to the full range
of consumers, s ∈ [0, 1]. We start by extrapolating linearly, and then we “enhance” demand forH
among the highest WTP consumers, as we view this as more realistic than a linear extrapolation.
(We explore the sensitivity of our empirical results to alternative assumptions about this WTP en-
hancement inAppendixD.4.2)We then smooth the enhanced demand curves to eliminate artificial
kinks produced by the estimation and extrapolation.
(1) Linear demand: For the linear demand curves, we extrapolate the curves linearly to s = 0 and
s = 1.0. Call these curves W lin

L (s) and W lin
H (s), with incremental WTP defined as W lin

HL =
W lin
H −W lin

L (s).
(2) Enhanced demand: For the enhanced demand curves

(
W enh
L (s) andW enh

H (s)
)
, we inflate con-

sumers’ relative demand forH vs. L in the extrapolated region, relative to a linear extrapolation.
We implement enhanced demand in an ad hoc but transparent way: We first generateW enh

L (s) =
W lin
L (s) for all s. For all s >= 0.31 (the boundary of the "in-sample" region ofWHL(s)), we

likewise setW enh
HL (s) = W lin

HL(s). For s = 0, we setW enh
HL (s = 0) = 3W lin

HL(s = 0), so that
the maximum enhanced incremental willingness-to-pay is three times the value suggested by the
primitives. We then linearly connect the incremental willingness to pay between s=0 and s=0.31,
settingW enh

HL (s < 0.31) = W lin
HL (s) + 3 × (0.31−s)

0.31
×W lin

HL (0) so that the enhanced curve is
equal to the linear curve for s >= 0.31, equal to three times the linear curve at s = 0, and linear
between s = 0.31 and s = 0. This approach assumes that there exists a group of (relatively sick)
consumers who exhibit very strong demand for H relative to L, which seems likely to be true in
the real world. Thus,

W enh
HL (s) =

{
W lin
HL (s) for s ∈ [0.31, 1]

W lin
HL (s) + 3× (0.31−s)

0.31
×W lin

HL (0) for s ∈ [0, 0.31)
(19)

49Because the base subsidy for L and the incremental subsidy forH change discontinuously at the income cutoffs, there is
exogenous variation in both the price ofL and the incremental price ofH .
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and

W enh
H (s) = W lin

L (s) +W enh
HL (s). (20)

Both the linear and the enhancedWTP curves are shown in the top panel of Figure A4.

• Cost of L plan: We need to produce estimates of CL(s) to complete the model. FHS provide
suggestive evidence that CL(s) is quite similar to CH(s)—i.e., that for a given enrollee, L does
not save money relative to H . We conducted further analyses to provide additional evidence on
this question (leveraging entry of the L plan in some areas but not others, leveraging additional
price variation forL vs.H , etc.), consistently finding a lack of evidence of any cost advantage forL
among the enrollees marginal to these sources of variation. While Lmay indeed be a pure cream-
skimmer in this setting, the assumption that CH(s) = CL(s) for all s seems unlikely to hold in
many other settings. Thus, we consider both the setting where L has a 15% cost advantage so that
CL(s) = 0.85CH(s) and the setting where, consistent with the empirical evidence, L is a pure
cream-skimmer, i.e. CL(s) = CH(s).

• Smoothing primitives: Because they were estimated using a regression discontinuity design, the
primitives above all have discrete “kink points" at which the slope of the curve with respect to the
share of the population enrolled changes discretely. In these regions, equilibrium allocations are
extremely sensitive to small changes in policy parameters. To avoid this unrealistic sensitivity, we
smooth the cost curves as well as the enhanced demand curves using a fourth degree polynomial.
Specifically, for primitive Y (s), we run the following regression.

Y = β̂0 + β̂1s+ β̂2s
2 + β̂3s

3 + β̂4s
4 + ε

Using the fitted coefficients, we then use the predicted value Ŷ ,

Ŷ = β̂0 + β̂1s+ β̂2s
2 + β̂3s

3 + β̂4s
4

This “smoothing” process was done on both theWTP curves as well as the cost curve primitives.

C.1.2 High-Income Demand and Costs: HKK (2015)

For our simulations, we also consider demand of higher-income groups, which allows us to simulate poli-
cies closer to the ACA. Under the ACA, low-income households receive subsidies to purchase insurance
while high-income households do not. We constructWTP curves for high-income households using esti-
mates of the demand curve for individual-market health insurance coverage inMassachusetts fromHack-
mann, Kolstad and Kowalski (2015) ("HKK").

HKK Primitives

• Population: HKKestimate demand in the unsubsidized pre-ACA individual health insurancemar-
ket in Massachusetts, which is for individuals with incomes above 300% of poverty (too high to
qualify for CommCare).

• Estimation: HKK use the introduction of the state’s individual mandate in 2007-08 as a source of

60



Online Appendix

exogenous variation to identify the insurance demand and cost curves. HKKonly estimate demand
for a single L plan.

OurModifications to HKK Primitives

• Constructing WHI
L (s) : We start by constructing WHI

L (s), based on the estimates from Hack-
mann, Kolstad andKowalski (2015). The superscriptHI refers to high income. TheHKKdemand
curve takes the following form:

WHKK(s) = −$9, 276.81 ∗ s+ $12, 498.68 (21)

This demand curve is "in-sample" in the range of 0.70 < s < 0.97. As with the low-income,
subsidized consumers, we linearly extrapolateWHKK(s) out-of-sample to constructWHI,lin

L (s).
Specifically, we letWHI,lin

L (s) = WHKK(s) for all s.

• ConstructingWHI,lin
H (s) andWHI,enh

H (s): HKK only estimate demand for a single L plan. Sim-
ilar to FHS, we start by estimating a linearly extrapolated WTP forH ,WHI,lin

H (s), and then “en-
hance” demand forH among the highest WTP types,WHI,enh

H (s), using theW lin
HL andW enh

HL as
constructed for the low-income population above (i.e. we assume that extensive margin WTP for
insurance is different between the high-income and low-income groups, but intensivemarginWTP
forH vs. L is the same):

WHI,lin
H (s) = WHI

L +W lin
HL(s)

WHI,enh
H (s) = WHI

L +W enh
HL (s)

• ConstructingCHI
L (s), CHI

H (s): We assume that the cost curves for this group are equivalent to the
cost curves of the subsidized population, Thus,

CHI
H (s) = CH(s)

CHI
L (s) = CL(s)

where CH(s) is drawn from FHS and CL(s) is the curve as constructed in the previous section.
We note that these assumptions imply that the high-income consumers have a level shift in WTP
with no difference in the extent of intensive or extensive margin selection from the low-income
consumers.

• Smoothing primitives: Similar to above, we also smooth primitives.

We thus have two demand systems: one for low-income consumers and one for high-income con-
sumers. Both exhibit WTP forH that is “enhanced” for the highest WTP types beyond what a simple
linear extrapolation would imply. We combine these systems to form one set of demand and cost curves,
by assuming that 60%of themarket is low-income and 40%of themarket is high-income, consistent with
the population in the ACAHealth Insurance Marketplaces.
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Figure A4: WTP Curves forH and L

(a) Low-Income

(b) High-Income

Notes: Figure shows WTP Curves for H and L, WH(s) andWL(s). The top panel shows curves for low-income group
which come from (Finkelstein, Hendren and Shepard, 2019). The bottom panel shows curves for high-income group which
come from (Hackmann, Kolstad and Kowalski, 2015). Linear curves extrapolate linearly over the out-of-sample range [0,0.31].
Modified (i.e. "enhanced") curves assume that the lowest s-types have very high incremental WTP forH .
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C.2 Estimation of Risk Score Curve
LikeWTP and costs, we use FHS’s regression discontinuity approach to estimate a risk adjustment func-
tion for each s-type, R(s). This function characterizes the expected cost of each s-type, as predicted by
the actual risk scores of each enrollee, RAHCCi . To calculate this, we first compute these scores for each
individual in our data, based on diagnosis codes present in the individual-level claims. All risk scores are
computed using theHierarchical ConditionCategories (HCC), a risk adjustmentmodel used by the Cen-
ters for Medicare andMedicaid Services for the ACAMarketplaces.50

Once we have a risk score for each individual in the dataAHCCi , the risk score curveR(s) was iden-
tified off of the same premium discontinuities as used to identify the demand curve in FHS. We then
connect and smooth segments in a similar fashion to our construction of the cost and WTP curves to
generate theR(s) we use in our analysis. Similar to our assumption that the cost curveCH(s) estimated
on the subsidized population applies to the un-subsidized population, we assume that this R(s) curve
estimated on the un-subsidized population also applies to the subsidized population.

Figure A5 shows a measure of risk-adjusted costs for theH plan in comparison to raw costs CH(s).
It plots CH(s) and CH(s)/R(s); the latter would be constant in s under perfect risk adjustment. Con-
sistent with risk adjustment being meaningful but imperfect, the risk-adjusted cost curve is much flatter
than raw costs but still downward sloping. Over the s ∈ [0, 1] interval, the risk-adjusted cost curve falls
by about $130, compared to a fall of $367 in raw costs. Thus, by this measure, risk scores net out about
35% of the cost variation along the marginal cost curve forH . Since this simulation exclusively uses cost
and risk score primitives from the subsidized population of pre-ACAMassachusetts, this finding should
not necessarily be seen as generalizable to the entire ACA exchange population.

C.3 Riley Equilibrium Concept
We consider equilibria that meet the requirements of the Riley Equilibrium (RE) notion. In words, a
price vector of P = (PH , PL) is a Riley Equilibrium if there is no profitable deviation for which there
is no "safe" (i.e. weakly profitable) reaction that would make the deviating firm incur losses. We slightly
modify the definition presented in Handel, Hendel andWhinston (2015) below

DEFINITION 1: A Riley Equilibrium is a set of break-even price offers P ∈ PBE for which there exists
noRileyDeviationP ′. ARileyDeviation (P ′) is a set of offers such thatP ′∪P is closed andP ′∩P = ∅.
This P ′ is a Riley deviation if the following criteria are satisfied.

1. The Riley Deviation plan P ′ is weakly profitable and garners non-zero enrollment when the orig-
inal prices are also offered: P ′j ≥ ACj(P

′
j) when P ∪ P ′ is offered and P ′j 6= Pj (Note that this

deviates from Handel, Hendel and Whinston (2015), which requires that the Riley Deviation is
strictly profitable)

2. No "Safe Response" (P ′′) exists

We define a safe response as a set of price offersP ′′ such thatP ∪P ′∪P ′′ is closed andP ′′ is disjoint from
P ∪ P ′ ∪ P ′′ such that

50In practice, the methodology involves grouping diagnoses into different conditions, such as diabetes, etc. Individuals are
then assigned risk scores based on the weighted value of all of their conditions. CMS publishes its weights annually on its
website (https://www.cms.gov/medicare/health-plans/medicareadvtgspecratestats/risk-adjustors.html)
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Figure A5: Raw Costs (CH) versus Risk-Adjusted Costs

Notes: Figure shows raw CH (black, continuous line) and risk-score normalized CH (blue, dashed). While the risk score is
able to flatten out the cost curve somewhat, not all risk is captured by the score, leaving some slope.

1. P ′ incurs losses when P ∪ P ′ ∪ P ′′ is offered

2. P ′′ does not incur losses when any market offering P̂ containing P ∪ P ′ ∪ P ′′ is offered

It is straightforward to show that in our setting no price vector that earns positive profits for either L or
H is a RE (see Handel, Hendel and Whinston, 2015 for a proof). This limits potential REs to the price
vectors that causeL andH to earn zero profits. We refer to these price vectors as "breakeven" vectors. This
set consists of the following potential vectors:

1. No Plan Enrollment: Prices are so high that no consumer enrolls inH or L

2. L-only: PH is high enough that no consumer enrolls inH while PL is set such that PL equals the
average cost of the consumers who choose L.

3. H-only: PL is high enough that no consumer enrolls in Lwhile PH is set such that PH equals the
average cost of the consumers who chooseH .

4. H andL:PL andPH are set such that bothL andH have positive enrollment andPL is equal to the
average cost of the consumers who choose L and PH is equal to the average cost of the consumers
who chooseH .

To simplify exposition, in Section 2 we assume that there is a unique RE such that there is positive en-
rollment in bothH andL. However, we note that under certain conditions the competitive equilibrium
will instead consist of positive enrollment in only one of the two plan options. We allow for these possi-
bilities in the empirical portion of the paper and are able to find an unique REwhere at least one plan has
non-zero enrollment for every setting tested. See Appendix C.4 for details on the algorithm.
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C.4 Reaction Function Approach to Finding Equilibrium
Evaluating demand, profits: For each uninsurance penalty, risk adjustment strength, L-plan cost advan-
tage, and subsidy type setting, we find the equilibrium price configuration (PH , PL) using the following
grid-search method. We construct a grid of PH , PL price combinations, withH on the vertical axis and
L on the horizontal axis. For most simulations, we use a coarse grid with $1 units. For each pair, we eval-
uate H and L profits using the demand, cost, and risk-adjustment equations as detailed in the body of
the paper. For insurance typesH ,L and uninsuranceU we evaluate demand by finding the "indifference
points"–the first and the last points in the s distribution such that each type of insurance’s enrollment
conditions are satisfied. Because of the vertical model, we can attribute all intermediate points of the s
distribution between these indifference points to a given plan. If no points on the s vector satisfy the
plan’s enrollment conditions, the plan has zero enrollment. We have indifference points sHL, sLU if both
H and L have non-zero enrollment and sHU , sLU if L orH has zero enrollment, respectively. If there is
non-zero demand for bothH andL, we calculate the average risk of those enrolled in each plan and con-
struct transfers from the less risky plan to the more risky plan, per the ACA risk adjustment formula (see
equation 4). In some counterfactual policy simulations, the transfer is multiplied by α. Finally, average
costs are calculated for each plan with non-zero enrollment. The function returns theH,L profit grids
ΠH , ΠL with which we can then evaluate equilibrium.

Finding equilibrium: For a given grid coarseness, we set a tolerance value T equal to the increment be-
tween grid points. A plan is considered to have zero profits if its profits are between−T and T . Potential
equilibria are all price pairs where (1) onlyH has non-zero enrollment and is making zero profits (2) only
L has non-zero enrollment and ismaking zero profits (3) bothH andL have non-zero enrollment and are
both making zero profits. Given the coarseness of the grid, there are usually multiple potential equilibria
of each type. We use the following process to refine this set down to the final equilibrium point according
to our concept of the Riley Equilibrium.

• Single plan equilibria: First, we refine our L−only andH−only equilibria. For the remainder of
this paragraph, we will refer to the potential L−only equilibria, but an analagous methodology
also applies to refining potentialH−only equilibria. LetPL−only be the set of potentialL− only
equilibria. Price vector (PH , PL) ∈ PL−only iff. at (PH , PL)

1. ΠL(PH , PL) ∈ [−T, T ]

2. L has nonzero enrollment
3. H has zero enrollment.

Given the curved nature of the primitives, for some settings, especially those where L has a large
cost advantage, there are multiple unique PL that are potential L-only equilibrium vectors.

Further, for each potential L-only PL, ∃ Pmin
H s.t. ∀ PH > Pmin

H (PH , PL) ∈ PL−only51 For
each potentialL-only equilibrium pricePL, we evaluate whether the conditions of a Riley Equilib-
rium are satisfied at (Pmin

H , PL). We need only evaluate Pmin
H since any potential deviations from

51 If at (PH , PL),L has non-zero enrollment and earns zero profits andH gets zero enrollment, then ifH increases its price
to P ′H > PH , enrollment allocations will remain exactly the same andLwill continue to make zero-profits.
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(Pmin
H , PL) would also be deviations from (PH , PL), PH > Pmin

H .

To test anL-only equilibrium for anH-deviation, the process is as follows: Startingwith the lowest
PL ∈ PL−only, the Riley Equilibrium refinement algorithm evaluates whether a Riley Deviation
exists for a given potential L-only PL using three nested loops. For L-only equilibria (PL, P

min
H ),

we considerH-only Riley Deviations (P ′H , PL) where P ′H < Pmin
H .

1. Find Potential Riley Deviations: The outer loop evaluates each P ′H < Pmin
H to identify

whetherΠH(P ′H , PL) > T (i.e.H makes positive profits). If no such potentialH-deviations
are found, (Pmin

H , PL) is considered a RE. If a potential H-deviation is found, the second
loop is called.

2. Find Potential Retaliations: This loop evaluates each grid point (P ′H , P
′
L), P ′L < PL to iden-

tify potential L-retaliations where ΠL(P ′H , P
′
L) > −T,ΠH(P ′H , P

′
L) < −T (i.e. Lmakes

weakly positive profits and H makes negative profits. If no such potential retaliations are
found for a given potentialH-deviation, then (Pmin

H , PL) is not a Riley Equilibrium (since
there exists a Riley Deviation with no retaliation).

3. Determine if Retaliation is "Safe": If a potential retaliation is found, a third loop is activated
to evaluate if there is any point (P ′′H , P

′
L), P ′′H < P ′H that makes a given retaliation "unsafe"

where unsafe is defined asΠL < −T (i.e. Lmakes negative profits). If no such "unsafe" point
exists, then the retaliation point is safe and the potential deviation would not succeed.

If no retaliation-proof deviation exists for a given (PL, P
min
H ), then the point is a RE. If a deviation

does exist, the next larger (P ′L, PHmin
′) ∈ PL−only is tested.

• H-L equilibria: Because of the coarseness of the grid, there are usually multiple connected points
where bothH andL have enrollees and are making zero profits. We pick the point with the lowest
PL to evaluate. For each potentialHL equilibrium, we test if any single-plan deviations exist. This
consists of checking whether any Riley Deviations that change PH holding fixed PL or change PL
holding fixedPH exist, using the same set ofRE loops described in the previous paragraph. If either
type of deviation is found, theHL equilibrium is not an RE.

We apply this algorithm to every cost, risk adjustment, mandate penalty, and subsiyd type setting and in
every case are able to find an unique equilibrium that satisfies our Riley Equilibrium conditions.

D Appendix: Additional Simulation Results

D.1 Simulation Results for Mandate/Uninsurance Penalty
Tables A1 andA2 Show additional outcomes for themandate/uninsurance penalty simulations discussed
in Section 5 and shown in Figure 9. In all cases, the welfare measure represents the social surplus under
the particular policy setting as a percent of the difference between minimum possible social surplus and
maximum possible social surplus achieved.

66



Online Appendix

Table A1: Varying Mandate Penalty

(a) ACA-like subsidy, L cream-skimmer

mandate 0 15 30 45 60
price H 382 374 371 360 349
price L 352 344 337 325 313
share H .42 .42 .3 .26 .23
share L .31 .37 .55 .67 .77
share U .27 .21 .15 .069 0
subsidy 297 289 282 270 258
welfare .91 .76 .49 .24 0

(b) Fixed $275, L cream-skimmer

mandate 0 15 30 45 60
price H 387 381 373 349 349
price L 357 351 341 313 313
share H .42 .42 .37 .23 .23
share L .24 .3 .44 .77 .77
share U .35 .28 .19 0 0
subsidy 275 275 275 275 275
welfare .93 .79 .56 0 0

(c) ACA-like subsidy, L cost advantage

mandate 0 15 30 45 60
price H 414 409 404 399 .
price L 307 300 292 283 273
share H .021 .017 .013 .0065 0
share L .73 .79 .86 .93 1
share U .25 .19 .13 .067 0
subsidy 252 245 237 228 218
welfare .95 .75 .52 .27 0

(d) Fixed $250 , L cost advantage

mandate 0 15 30 45 60
price H 415 404 . . .
price L 307 294 273 273 273
share H .019 .016 0 0 0
share L .73 .84 1 1 1
share U .26 .15 0 0 0
subsidy 250 250 250 250 250
welfare .27 .16 0 0 0

Notes: Table A1 contains equilibrium prices, market shares, subsidy levels and relative welfare under varying levels of mandate
penalties. Panels (a) and (b) are results for when L is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for when L
has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the market
has a fixed subsidy. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) where max and min are taken over integer
mandate penalty values 0 to 60 under the panel’s sameL cost advantage, subsidy scheme.

D.2 Simulations of Benefit Regulation
Tables A3 and A4 characterize equilibrium results with and without an L-plan offered when the L-plan
is a pure cream-skimmer and when L has a 15% cost advantage. For a given setting, the welfare loss is
reported in dollars and represents loss relative to welfare under the optimal allocation.

The results indicate that for the ACA-like price-linked subsidies, removing L from the choice set
always (weakly) improves welfare. This is because removingL results in a higher subsidy andmore people
entering the market. In the fixed subsidy cases, we find that removing L often causes both an increase in
H ’s market share and an increase in the uninsurance rate (especially when L has a 15% cost advantage).
However, we find that in all cases, benefit regulation improves welfare, implying that the welfare losses
from more people being uninsured are more than offset by welfare gains from more people enrolling in
H .
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Table A2: Varying Risk Adjustment (α)

(a) ACA-like subsidy, L cream-skimmer

α 0 .5 1 1.5 2
price H . 437 382 362 362
price L 372 362 352 . .
share H 0 .082 .42 .78 .78
share L .72 .64 .31 0 0
share U .28 .28 .27 .22 .22
subsidy 317 307 297 307 307
welfare .46 .59 .91 .91 .91

(b) Fixed $275, L cream-skimmer

α 0 .5 1 1.5 2
price H 495 438 387 377 377
price L 381 369 357 . .
share H .0095 .097 .42 .66 .66
share L .57 .52 .24 0 0
share U .42 .38 .35 .34 .34
subsidy 275 275 275 275 275
welfare .68 .73 .93 1 1

(c) ACA-like subsidy, L cost advantage

α 0 .5 1 1.5 2
price H . . 414 361 362
price L 308 308 307 313 .
share H 0 0 .021 .16 .78
share L .75 .75 .73 .59 0
share U .25 .25 .25 .25 .22
subsidy 253 253 252 258 307
welfare .93 .93 .95 .99 .58

(d) Fixed $250, L cost advantage

α 0 .5 1 1.5 2
price H . . 415 365 381
price L 309 309 307 316 .
share H 0 0 .019 .16 .6
share L .74 .74 .73 .56 0
share U .26 .26 .26 .29 .4
subsidy 250 250 250 250 250
welfare .24 .24 .27 .48 1

Notes: Table A2 contains equilibrium prices, market shares, subsidy levels and relative welfare under varying strengths of risk
adjustment α. Panels (a) and (b) are results for whenL is a cream-skimmer (∆C = 0) while panels (c) and (d) are for whenL
has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the market has
a fixed subsidy. relative welfare is reported as welfare−min(welfare)

max(welfare)−min(welfare) where max andmin are taken over integer mandate
penalty values 0 to 60 under the panel’s sameL cost advantage, subsidy scheme.

D.3 Additional Welfare Results from Simulations
D.3.1 Graphical Illustration of Welfare Consequences of an Uninsurance Penalty

In this appendix we show how to estimate the welfare consequences of an uninsurance penalty with our
graphical model. This exercise corresponds to the similar exercise analyzing the welfare consequences
of risk adjustment in the main text. Panel (a) of Figure A6 plots the empirical analogs to our welfare
figure from Section 2 for the case where L is a pure cream-skimmer. Instead of plotting CL, we plot
CNet
L = CL−CU , as in Eq. (18) to account for the fact thatCU 6= 0. We indicate the equilibrium s cutoffs

for the baseline ACA setting, where subsidies are linked to the price of the lowest-priced plan,α = 1, and
there is no uninsurance penalty. The intensivemargin equilibrium cutoff is seHL and the extensivemargin
cutoff is seLU . Thus, consumers with s < seHL enroll inH , consumers with seHL < s < seLU enroll in L,
and consumers with s > seLU remain uninsured.

It is apparent that, from a social surplus perspective, no consumer should be in L becauseWH −
(CH −CL) is everywhere aboveWL. This is becauseL is a pure cream-skimmer: All consumers valueH
more thanL andL has no cost advantage overH . In addition, in this setting some consumers (those with
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Table A3: Benefit Regulation : L-plan Cream Skimmer

ACA-like all sub Fixed = Avg. Cost Fixed = 300 Fixed = 275 Fixed =2 50

L offered No L L offered No L L offered No L L offered No L L offered No L
price H 382 362 353 390 429 429 448 448 461 461
price L 352 . 308 . . . . . . .
share H .42 .78 .29 .65 .43 .43 .31 .31 .22 .22
share L .31 0 .71 0 0 0 0 0 0 0
share U .27 .22 0 .35 .57 .57 .69 .69 .78 .78
subsidy 297 307 322 322 300 300 275 275 250 250
welfare -229 -225 -266 -213 -211 -211 -219 -219 -228 -228

Notes: Table A3 contains equilibrium prices, market shares, subsidy levels and welfare for various subsidy settings with and
without the L plan offered. All results are for a setting where L is a cream-skimmer (∆CHL = 0). The first two columns
contain results for ACA-like price-linked subsidies. The following columns are for various fixed subsidies. Welfare is calculated
under the baseline assumption,CU (s) = 0.64CH(s)− 97.

Table A4: Benefit Regulation : L-plan 15% cost advantage

ACA-like all sub Fixed = Avg. Cost Fixed = 300 Fixed = 275 Fixed =2 50

L offered No L L offered No L L offered No L L offered No L L offered No L
price H 414 362 . 390 . 429 441 448 462 461
price L 307 . 273 . 273 . 345 . 373 .
share H .021 .78 0 .65 0 .43 .066 .31 .088 .22
share L .73 0 1 0 1 0 .47 0 .25 0
share U .25 .22 0 .35 0 .57 .46 .69 .67 .78
subsidy 252 307 322 322 300 300 275 275 250 250
welfare -406 -236 -469 -224 -469 -222 -345 -230 -298 -239

Notes: Table A4 contains equilibrium prices, market shares, subsidy levels and welfare for various subsidy settings with and
without theL plan offered. All results are for a setting whereL has a 15% cost advantage. The first two columns contain results
for ACA-like price-linked subsidies. The following columns are for various fixed subsidies. Welfare is calculated under the
baseline assumption,CU (s) = 0.64CH(s)− 97.
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Figure A6: Empirical Estimates of Foregone Surplus

(a) Baseline Foregone Surplus (b) Impose $60 Penalty

Notes: Panels (a) and (b) showwelfare losses under ACA-like subsidies relative to efficient sorting, whenL is a cream-skimmer
and whenL has a 15% cost advantage overH , respectively. In both settings, 60% of the population is low-income and 40% of
the population is high-income, so WTP curves are weighted sums of both types. Efficient cutoffs are indicated with a * while
equilibrium outcomes are denoted with an e superscript. For both panel (a) and (b), we assumeCU (s) = 0.64CH(s)− 97.

s > s∗HU ) should not be insured at all. These consumers do not value eitherH or Lmore than the (net)
cost of enrolling them, making it inefficient for them to be insured. In the figure, we depict the foregone
surplus in the baseline ACA setting with shaded areas. The foregone intensivemargin surplus in panel (a)
(lost surplus due to consumers choosingL instead ofH) is described by the area betweenWNet

H andWL

for the consumers not enrolled inH ,ACDB. This area represents a welfare loss of $41.92. The foregone
extensive margin surplus (lost surplus due to consumers choosing U instead of L) is given by the area
betweenWL andCNet

L for the consumers who are not enrolled in insurance but should be,EDF . This
area represents a welfare loss of $16.58. The total foregone surplus in the baseline ACA setting in panel (a)
of Figure A6 is $58.50.

Panel (b) of Figure A6 shows how we estimate the welfare consequences of adding an uninsurance
penalty of $60permonth to thebaseline case fromPanel (a). Recall from the top-left panel of Figure 9 that
the imposition of a $60 mandate (1) induces all previously uninsured consumers to purchase insurance
and (2) causes a shift of 19% of the market from H to L. Effect (1) is the intended consequence of the
penalty, and it implies both welfare gains and losses. Welfare gains occur among those consumers who
valueLmore thanCNet

L = CL − CU and who newly enroll inL (green welfare triangleEFG). Welfare
losses occur among those consumers who valueL less thanCNet

L and who newly enroll inL (red welfare
triangleGHI). Together, the intended consequence of the penalty, inducing all consumers to purchase
insurance, implies a net welfare gain of $16.59. Effect (2) is the unintended consequence of the penalty,
shifting consumers fromH to L. Here, it implies a welfare loss of $57.83, which arises becauseH and L
have similar costs but all consumers valueH more than L. Overall a $60 uninsurance penalty leads to a
welfare loss of $41.25 in this setting.
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We report welfare impacts of a mandate in other market settings in Appendix D.3.2. Those results,
which correspond to the cases in Figures 9, show that it is common for an uninsurance penalty to nega-
tively affect welfare. Given the demand and cost primitives we consider, the unintended consequence of
shifting consumers from H to L often more than offsets welfare gains from inducing some consumers
who value insurance more than its cost to become insured. This is true both whenL is a cream-skimmer
andwhenLhas a cost advantage. However, it is not clear that this result would generalize to other settings
with different consumer willingness-to-pay forH vs. L.

D.3.2 Additional Welfare Estimates Corresponding toMarket Share Simulations

Figures A7 and A8 present welfare results corresponding to the market shares in Figures 9 and 10. For a
given parameter settingk, we report herewelfare normalized as follows:Wk = welfare−min(welfare)

max(welfare)−min(welfare) .
We characterize welfare under three different assumptions of the cost of uninsured individuals. The first
baseline assumption is the same as in the body of the text:

CU(s) =
(1− d)CH(s)

1 + φ
+ ω,

where the share of total uninsured health care costs that the uninsured pay out of pocket is d = 0.2, the
assumed moral hazard from insurance is φ = 0.25, and the fixed cost of uninsurance is ω = −97. In
addition to this baseline specification,we also showwelfare resultswherewe assumeuninsured individuals
to have the same cost as they would in H (CU = CH) and where uninsured individuals have no cost
CU = 0.

When the cost of the uninsured is high (CU = CH), a stronger mandate is generally optimal in all
settings. When the uninsured are less costly, however, lower mandates and higher risk adjustment are
generally optimal.

D.3.3 Optimality under Interacting Policies, Further Results

In Figure A9, we present welfare results under interacting extensive margin (mandate) and intensive mar-
gin (risk adjustment α parameter) policies for all settings studied in Figures 9 and 10 in the main text.
These results are similar to the results we report in Section 6 but correspond to different market and pol-
icy settings. We see that the optimal mandate and risk adjustment combination depends on both the
subsidy as well as the cost structure. When theL plan is a cream-skimmer, moderate to strong risk adjust-
ment is preferable in order to induce more consumers to enroll inH vs. L. WhenL has a cost advantage,
however, weaker risk adjustment is preferable. Further, when L is a cream-skimmer, the optimal man-
date for a given level of risk adjustment also varies, with ACA-like subsidies warranting a lower mandate
compared to the fixed subsidy case.

D.4 Empirical Robustness: Varying SimulationModel Assumptions
D.4.1 Empirical Robustness: Relaxing the Vertical Model

The demand primitives from Finkelstein, Hendren and Shepard (2019) were estimated in a setting where
insurance options could be clearly ranked frommost to least desirable for all consumers and whereWTP
was assumed to vary along a single dimension of heterogeneity. As a result, these primitives are consistent
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Figure A7: Welfare with VaryingMandate Penalty (M )

(a) ACA-like subsidy, L cream-skimmer (b) Fixed $275 subsidy, L cream-skimmer

(c) ACA-like subsidy, L cost advantage (d) Fixed $250 subsidy, L cost advantage

Notes: Figure A7 depicts equilibrium relative welfare under varying levels of the mandate penalty. The simulations are the
same as in figure 9. Panels (a) and (b) are results for whenL is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for
when L has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the
market has a fixed subsidy. For each set of simulations, we present relative welfare under three different assumptions about the
social cost of uninsurance. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) wheremax andmin are taken over the
possible mandate penalties within a set of simulations andCU assumptions.

with a vertical demand structure. In effect, this means that throughout ourmain simulations, individuals
are only on the margin between H and L or L and U , never on the margin between H and U (except
in cases where the market “upravels” and nobody chooses L). As the theoretical analysis in Appendix A
shows, allowing for an HU substitution margin that would be present with horizontal differentiation
adds additional terms to the comparative statics defining cross-margin policy effects.

We can investigate how robust our empirical results are to the vertical model by assuming some por-
tion of the population does not value L at all and is thus solely on the margin betweenH and U . To do
this, we perform the following exercise:

Simulation modifications

• From our standard population comprising 60% subsidized low income types and 40% unsubsi-
dized high income types, we assume γ percent of each type do not value L so that they may only
choose betweenH and U
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Figure A8: Welfare with Varying Strength of Risk Adjustment (α)

(a) ACA-like subsidy, L cream-skimmer (b) Fixed $ 275 subsidy, L cream-skimmer

(c) ACA-like subsidy, L cost advantage (d) Fixed $ 250 subsidy, L cost advantage

Notes: Figure A7 depicts equilibrium relative welfare under varying strengths of risk adjustment α. The simulations are the
same as in figure 10. Panels (a) and (b) are results for whenL is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for
when L has a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the
market has a fixed subsidy. For each set of simulations, we present relative welfare under three different assumptions about the
social cost of uninsurance. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) wheremax andmin are taken over the
possible α values within a set of simulations andCU assumptions.

• We assume that thisγ portion has the standardWH(s) andWHI
H (s) curves and same sdistribution

as in our baseline simulations

• The remaining1−γ portionof thepopulationhas the standarddemandprimitives andmay choose
betweenH , L, and U as normal

• For a given price bid, PH and PL, and subsidy, we allow both types to choose plans, estimating
profits and equilibrium in the typical way

Impact ofHU margin types on mandate results
In panel (a) of Figure A10 we estimate demand shares with ACA-like subsidies where the L plan is a

pure cream-skimmer and with increasingly larger values of γ (i.e., increasing proportions ofHU margin
types) from 0% up to 20%. For every mandate penalty level, the market allocation to H is everywhere
higher with larger shares of HU margin types. As the uninsurance penalty increases, consumers move
from U to L and from U to H . There is still an unintended shifting of consumers from H to L as

73



Online Appendix

Figure A9: Welfare under Interacting Extensive and Intensive Margin Policies

(a) ACA-like subsidy, L cream-skimmer (b) Fixed 275 subsidy, L cream-skimmer

(c) ACA-like subsidy, 15% L cost advantage (d) Fixed 250 subsidy, 15% L cost advantage

Notes: Figure A9 depicts equilibrium relative welfare under varying levels of the mandate penalty and strength of risk adjust-
mentα. Panels (a) and (b) are results for whenL is a cream-skimmer (∆CHL = 0) while panels (c) and (d) are for whenL has
a 15% cost advantage. In panels (a) and (c), the market has a price-linked subsidy while in panels (b) and (d), the market has a
fixed subsidy. Relative welfare is calculated as welfare−min(welfare)

max(welfare)−min(welfare) where max and min are taken over all the possible
mandate penalties and risk adjustment strengths within a subsidy and cost setting. For all simulations, we use our baseline
assumption of the social cost of uninsurance,CU = 0.64CH − 97.
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highlighted in Section 5 of the paper, but there are countervailing forces, composed of (1) the shifting of
consumers from U to H , and (2) the fact that the presence of some lower-cost HU margin types in H
lowers the price ofH and the price differential betweenH and L.

On net,DH still declines with a strongermandate with a γ of 10% or 20%. This shows that the empir-
ical “unintended” effect of themandate onDH is robust to some horizontal differentiation. However, the
net decline is increasingly muted as γ increases, and a level of γ much larger than 20% would eventually
result inDH being flat or increasing with the mandate penalty.

Impact ofHU margin types on risk adjustment results
Next, in panel (b) of Figure A10 we estimate demand shares as we vary risk adjustment strength for

the case of fixed subsidies whenL has a 15% cost advantage. Recall that this is the risk adjustment simula-
tion where we saw a trade-off between extensive and intensive margin selection: Stronger risk adjustment
induced consumers to move fromL toH but it also induced some consumers to exit the market and opt
for U .

Similar to our mandate simulations allowing for some consumers to be on theHU margin, we see
that the initial allocations toH absent risk adjustment are higher when we have moreHU margin types
compared to our baseline setting. Because lower cost HU margin types will enroll in H compared to
our baseline types, the cost differential between the two plans is lower with larger shares ofHU margin
types. Consequently, the size of risk adjustment transfers for a given α are lower. However, the level of α
that causes the market to “upravel” toH is the same for all levels of γ. Further, the uninsurance rate also
depends very little on γ, with the U market share at any given level of α being similar across levels of γ.
This indicates that our result that under certain conditions risk adjustment can unintentionally increase
the uninsurance ratewhile simultaneously shifting consumers fromL toH is largely robust to our vertical
model assumption for the market primitives we examine.

D.4.2 Empirical Robustness: Varying ∆WHL

Demand for H critically depends on the incremental willingness to pay for H relative to L, ∆WHL =
WH(s)−WL(s). Below, we see how sensitive our results are to variations in this incremental willingness
to pay. Specifically, we estimate equilibrium under simulations where we hold fixedWL(s) at baseline
but scale ∆WHL(s) by a multiplier ρ ∈ [0.25, 4]:

∆W adj
HL(s) = ∆WHL(s)raw ∗ ρ

W adj
H (s) = WL(s) + ∆W adj

HL(s)

This scaling changes both the level and slope ofWH(s), as seen in Figure A11.
Using our typical counterfactual process, we estimate equilibrium market shares under these modi-

fied primitives for varying levels of the mandate penalty and risk adjustment strength. Simulation results
are presented in Figure A12. We find that under both increased and decreased incremental willingness to
pay (i.e. higher and lower ρ), the general patterns of our counterfactual exercises do not change.

Panel (a) shows that demand for H declines with a larger mandate penalty, except at the very high
scalar ρ = 4. When ρ = 4, the marginal willingness to pay forH relative to L is sufficiently high that an
incrementally highermandate penalty induces individuals to enter themarket and then chooseH overL.
As a result, demand forH is weakly increasing in the mandate penalty throughout the range of penalties
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Figure A10: Relaxing vertical model

(a) Mandate penalty

ACA-like subsidy, Cream-skimming L plan

(b) Risk adjustment

Fixed subsidy = $250, 15% cost advantage L plan

Notes: Panels (a) and (b) of Figure A10 depicts equilibrium market shares ofH ,L, and uninsurance under varying levels of
the mandate penalty and risk adjustment strength (α), respectively. Three separate simulations are presented. The thinnest
line is our baseline simulation where no individuals are on the margin betweenH and uninsurance (γ = 0) while the thickest
lines correspond to when 20% of individuals do not consider L and are thus on the margin betweenH andU (γ = 0.2). All
simulations in panel (a) are for a cream-skimming L plan and ACA-like price linked subsidy and all simulations in panel (b)
are for anL plan with a 15% cost advantage and fixed subsidy of $250 for both plans.
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tested while demand forL only rises for high levels of the mandate. The rise inL only occurs in the range
of mandate penalties where the individuals induced to enter the market are of sufficiently low marginal
willingness to pay that some choose L instead of H . Because this is a relatively small group, the cost
differential betweenH and L remains small.

Panel (b) shows that increasing the strength of risk adjustment has similar effects at all levels of ρ.
Initially, stronger risk adjustment induces consumers to chooseH instead of L. But in all cases, there is
also eventually an unintended increase in the uninsurance rate. The effect ofmodifying ρ is that the shifts
in market share (both from L toH and from L to U ) occur at different levels of α with shifts occurring
at lower levels of α for higher levels of ρ. That is, when marginal willingness to pay forH relative to L is
higher, a lower level of risk adjustment is needed to induce changes in market shares.
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Figure A11: ScaledWTPH

(a) Low income demand

(b) High income demand

Notes: Panels (a) and (b) of A11 depicts willingness to pay curves for high and low-income consumers, respectively, under
various scaling factors ρ of∆W adj

HL = ρ∆WHL. The thickest lines are for high marginal WTP forH relative toL. Baseline is
for ρ = 1. Willingness to pay forL is the dashed line and remains unmodified.
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Figure A12: Scaling ∆WTP

(a) Mandate penalty

ACA-like subsidy, Cream-skimming L plan

(b) Risk adjustment

Fixed subsidy = $250, 15 % cost advantage L plan

Notes: Figure A12 showsmarket shares forH ,L, and uninsurance under the different scaled∆WTP curves depicted in figure
A11. Panel (a) depicts shares for different mandate penalties under an ACA-like price-linked subsidy and cream-skimming L
plan (∆CHL = 0). Panel (b) depicts shares for different strengths of risk adjustment (α) under a fixed subsidy and a 15% L
plan cost advantage. As in figure A11, thicker lines correspond tomarket shares whenmarginal willingness to pay forH relative
toL is set higher (higher ρ).
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