Hospital Network Competition and Adverse Selection Evidence from the Mass. Health Insurance Exchange

> Mark Shepard Harvard Kennedy School and NBER

> > May 2016

Motivation: Growth of Limited Networks

- Growing phenomenon in health insurance: Limited networks of covered medical providers
 - ACA: 45% of plans have "narrow" hospital networks (McKinsey 2015)

• <u>Controversy</u>: Tend to exclude "star" academic hospitals

Top Hospitals Opt Out of Obamacare **The Seattle Times** Left off many networks, Seattle Children's sues

Plans Use Narrow Networks in Exchanges; Public, Politicians Predictably Perturbed

Adverse Selection and Star Hospitals

- Why might insurers exclude top hospitals?
 - 1. <u>Cost reduction:</u> Top hospitals have high prices (*Ho 2009: 60% > avg.*)
 - 2. <u>Adverse selection</u>: Avoid high-cost consumers
- **Question**: Does <u>adverse selection</u> deter covering star hospitals?
 - Exchanges: Use risk adjustment \rightarrow Is selection still relevant?
- Why study this question?
 - Implications for understanding narrow networks in ACA, Medicaid, etc.
 - Implications for market power of star hospitals
 - Broader issue: How well does competition work in selection markets?

Key Point: Adverse Selection on Two Cost Dimensions

$$Cost_{i} = \sum_{d} \underbrace{PrSick_{i,d}}_{h} \cdot \left(\sum_{h} \frac{Price \text{ of } Chosen Providers}{PrChoose_{i,d,h} \cdot Price_{d,h}}\right)$$

- Typical channel: <u>Medical risk</u>
 - Policy: Risk adjust payments to compensate plans extra for the sick
- Alternate channel: Likelihood to use star hospital when sick
 - Key fact: Star hospitals have high prices, paid by insurer not patients
- Idea: Selection on <u>preference</u> for using high-cost hospital
 - Creates "selection on moral hazard" (Einav et al. 2013)

Setting and Methods

- **Setting**: Subsidized Massachusetts health insurance exchange
 - Nice setting for studying hospital networks, selection
 - Data: Plan choices + insurance claims (costs, hospital choices)

• Reduced form evidence on selection:

- 1. Choices across plans varying in star hospital coverage
- 2. Network *change* in 2012 \rightarrow Observe plan switching and cost changes
- Structural model and policy counterfactuals:
 - Study equilibrium, welfare implications of policies to address selection

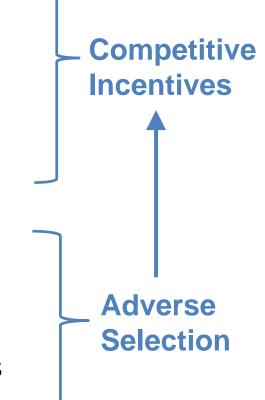
Preview of Results

- <u>Substantial adverse selection against plans covering star hospitals</u>
 - Key group: Patients loyal to star hospital based on past use
- Strong incentive to drop star hospitals from network
 - Model simulations: All plans drop star hospital system (with fixed prices)
 - Alternate possibility: Star hospitals might instead lower prices
- Counterfactuals: Modified risk adjustment
 - Restores star hospital coverage, but no net gains in welfare
 - Problem: Covering them raises costs (moral hazard); plan choice imperfectly sorts which patients should use star hospital

Outline

1. Background and Theory

2. Reduced Form Evidence


- 3. Structural Model and Estimates
 - Hospital Choice, Insurance Choice, Costs
- 4. Equilibrium and Counterfactuals
- 5. Conclusion

Setting: Mass. Health Insurance Exchange (CommCare)

- Offers subsidized plans to nonelderly adults below 3x poverty
 - Size: 5 insurers, ~170,000 enrollees/month (~3% of Mass. population)
- Key institutions:
 - Single plan per insurer
 - Community rated premiums + Risk adjustment
 - Most benefits fixed by regulation \rightarrow Key exception is <u>provider networks</u>
- Data: <u>Plan choices</u> and <u>Insurance claims</u> for all enrollees
 - 1.6 million plan choices by 611,455 unique individuals
 - 74,383 general acute hospital admits (including actual paid amounts)

Insurance Competition Model

- 1. Insurers negotiate with star hospital \rightarrow coverage, payment rates
 - My analysis: Holds payment rates fixed as observed
- 2. Insurers set plan prices at start of year
 - $Revenue_{ij} = Price_j + RiskAdjustment_i$
- 3. Consumers <u>choose plans</u>
- 4. When sick: Patients choose hospitals, incur costs

Characteristics of "star" hospitals:

- <u>Top reputations</u>—e.g., ranked highly in U.S. News "Best Hospitals"
 - Especially for most complex patients
- <u>Academic hospitals</u> centers of medical teaching and research
- Tend to have <u>high prices (Ho 2009: +60% above avg.)</u>

Star vs. Non-Star Hospital Example

Star: Mass. General Hospital

- Large Academic Med. Ctr. (947 beds)
- U.S. News Rank: #1 in MA (#2 in U.S.)

Avg. Price/admit = \$19,950

Non-Star: Mt. Auburn Hospital

- Smaller Teaching Hospital (203 beds)
- Not ranked in top MA hospitals

Avg. Price/admit = \$9,529

Cost and Selection Effects of Star Hospital Coverage

$$\pi \left(\text{No Star Hospital} \right) = \sum_{i} \left[P^{0} - C_{i}^{0} + RAdj_{i} \right] \cdot D_{i}^{0}$$
$$\pi \left(\text{Cover Star Hosp} \right) = \sum_{i} \left[\left(P^{0} + \Delta P \right) - \left(C_{i}^{0} + \Delta C_{i} \right) + RAdj_{i} \right] \cdot \left(D_{i}^{0} + \Delta D_{i} \right)$$

Effects of Covering Star Hospital:

- **1.** Cost Increase (moral hazard): $\Delta C_i > 0$
- 2. Adverse Selection: $Cov(\Delta D_i, C_i^0 + \Delta C_i) > 0$
 - Two components: Selection on cost level (C_i^0) and cost increase (ΔC_i)
- Risk Adjustment: Not designed to offset selection on moral hazard (Einav et al. 2015)

Equilibrium and Efficiency Implications

- Inefficient Sorting across Plans
 - Ideal: Choose plan A if $\Delta Value_i > \Delta Cost_i$
 - Actual: Choose plan A if $\Delta Value_i > \Delta Premium$

- Potentially: <u>Adverse selection death spiral</u>
 - Attract high-costs \rightarrow Raise price \rightarrow Lose low-costs \rightarrow Raise price \rightarrow ...
 - Either stabilizes at high price or leads to dropping star hospital

- <u>Disciplines market power</u> of star hospital
 - Adverse selection improves insurers' bargaining threat point

Outline

1. Background and Theory

2. Reduced Form Evidence

- 3. Structural Model and Estimates
 - Hospital Choice, Insurance Choice, Costs
- 4. Equilibrium and Counterfactual Simulations
- 5. Conclusion

Review: Components of Adverse Selection Story

Three Components:

1. <u>High-price</u> hospitals (*star hospitals*)

2. Consumer group especially <u>likely to use</u> star hospitals

- 3. Three facts about this group:
 - High cost even after risk adjustment
 - Tend to choose plans covering star hospitals
 - High cost change ("moral hazard") when star hospitals are covered

High-Price Star Hospitals: Partners Healthcare

Price: Estimated with model of average amount paid per admission, adjusted for patient severity → Details

Average Values

				Average	values
_		Hospital	System	Price	Severity
Star Hospitals	1	Brigham & Women's	Partners	\$20,474	1.12
Partners Healthcare	2	Mass. General	Partners	\$19,550	1.09
manneare	3	Boston Med. Ctr.	BMC	\$15,919	1.05
	4	Tufts Med. Ctr.	Tufts	\$14,038	1.10
	5	UMass Med. Ctr.	UMass	\$14,111	1.07
	6	Charlton Memorial	Southcoast	\$14,210	1.03
	7	Baystate Med. Ctr.	Baystate	\$12,223	1.11
	8	Lahey Clinic	Lahey	\$11,742	1.13
	9	Beth Israel Deaconess	CareGroup	\$11,787	1.08
	10	St. Vincent	Vanguard	\$11,455	1.03
		All Other Hospitals		\$8,585	0.95

Consumer Group Driving Adverse Selection

- Key Group: Past patients at Partners facilities (outpatient care)
 - Idea: Patients likely to be <u>loyal</u> to Partners hospitals/docs in future
 - Loyalty may reflect *either* heterogeneity or state dependence
 - Implement "unused observable" test for adverse selection (Finkelstein and Poterba 2012)

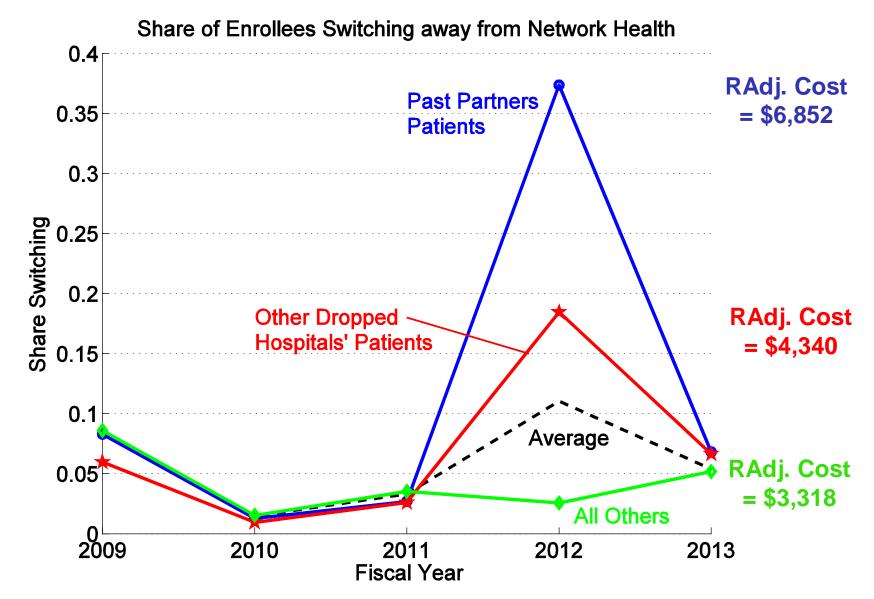
- **Test Results:** Past outpatients at Partners hospital are:
 - Almost 5x as likely to use Partners hospital when hospitalized
 - 28% higher cost *after* risk adjustment
 - 80% more likely to *actively* choose plan covering Partners

Evidence from Network Changes

 Additional evidence: How do selection patterns, costs respond to change in network coverage of Partners?

• **Biggest change** : Large plan (Network Health) drops Partners (+ several other hospitals) in 2012

- How did network changes affect selection and costs?
 - Selection: Look at plan switching
 - Cost changes (moral hazard): Analyze cost changes for non-switchers

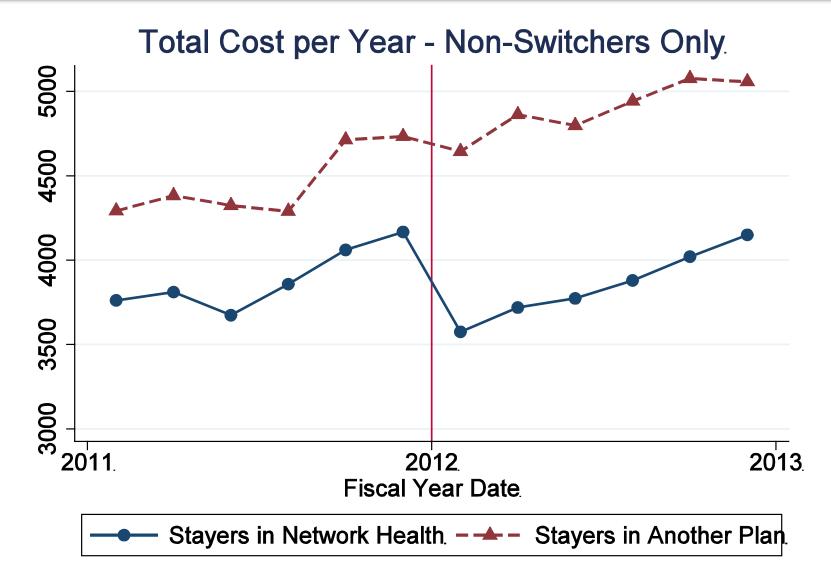

Health Care Costs per Member-Year 5500 All Other Plans. 5000 Dollars 4000 4500 Partners Dropped 3500 Network Health 3000 2014 2010 2011. 2012 2013

Fiscal Year Date

Network Health Costs per	r Member-Year
--------------------------	---------------

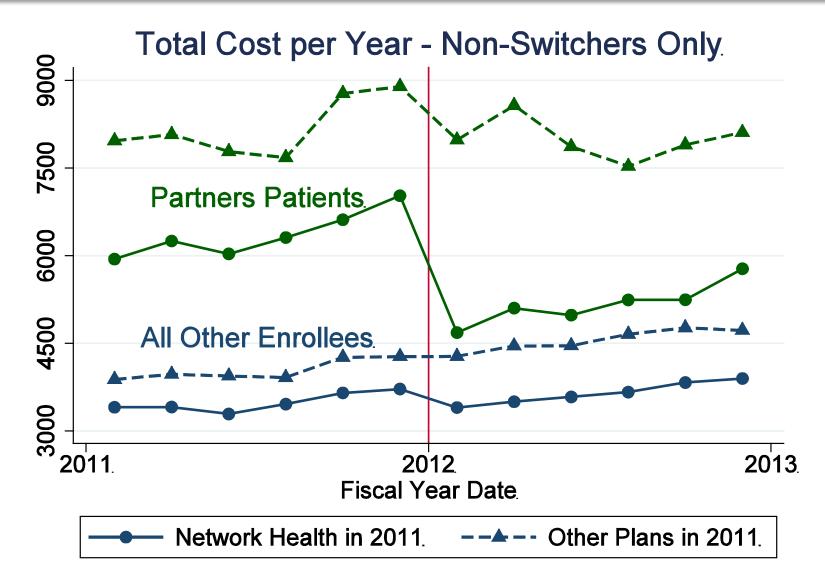
Enrollee Group	Risk Adj. Costs		Group		
	2011	2012	%Δ	Size	
All Enrollees	\$4,439	\$3,761	-15%		
Stayers	\$3,807	\$3,596	-6%	36,768	Both effects
Left Plan in 2012					driven by
Switched Plans	\$6,109	[\$5,106]		4,640	Partners patients
Exited Market	\$5,511			22,617	
Joined Plan in 2012					
Switched Plans	[\$3,641]	\$3,706		15,062	
Entered Market		\$4,007		51,109	

Evidence of Selection: Plan Switching



Summary So Far

- Summary: Strong evidence of <u>adverse selection</u> by past Partners patients when Network Health dropped Partners
 - Raised costs for rival plans (→ Additional Evidence)


- Final fact to test: Are cost changes (moral hazard) larger for Partners patients when drop star hospitals?
 - Next: Examine cost history for fixed set of "stayers" in Network Health

Evidence of Overall Cost Reductions for Stayers

Note: Points are group x time coeffs. from regression with individual fixed effects.

Differential Cost Reductions for Partners Patients

Note: Points are group x time coeffs. from regression with individual fixed effects.

Summary and Partners Coverage History

 Summary: Dropping Partners reduces costs both through selection and cost reduction

Decomposition using model: Selection explains ~50% of fall in risk-adjusted costs for Network Health in 2012 (→ Results)

- **Concern**: Unraveling of coverage of Partners
 - 2012: Network Health drops Partners
 - 2014: Another plan drops Partners (citing selection)
 - Only one plan left covering Partners (bought by Partners in 2013)

Outline

- 1. Background and Theory
- 2. Reduced Form Evidence

3. Structural Model and Estimates

- Hospital Choice, Insurance Choice, Costs
- 4. Equilibrium and Counterfactual Simulations
- 5. Conclusion

Structural Analysis Introduction

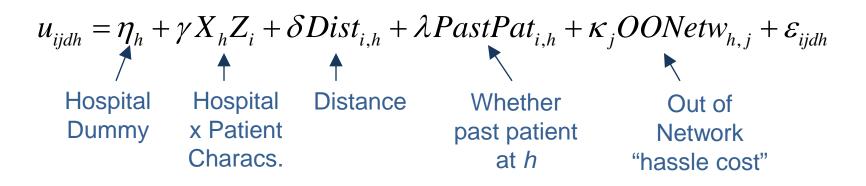
• Summary so far: Evidence that heterogeneous prefs. for star hospitals creates adverse selection and selection on moral hazard

• Open questions:

- How quantitatively important for incentive to cover star hospital?
- What are the welfare implications?
- How should risk adjustment or other policies respond?

Need a structural model to address these questions

Structural Model Summary


• Setup: Follows past literature [e.g., Capps, et al. 2003; Ho 2006]

Model Part	Inputs	Outputs
1. Hospital Choice	 Hospital admission data 	Hospital demandNetwork utility (<i>WTP</i>)
2. Plan Choice	Plan choice dataNetwork utility	Plan demandCons. welfare metric
3. Costs	 Hospital prices and demand Non-hospital costs 	Cost model
4. Equilibrium	Plan demandCost model	• Simulate Nash eq.

Adverse selection story: Captured by hospital preferences (in #1) entering plan choice and cost model

Model Part 1: Hospital Choice

<u>MN Logit Model</u>: (patient i, plan j, diagnosis d, hospital h)

- First three terms are standard in literature
- Distinct from past work:
 - Dummy for whether past patient at hospital *h* (inpatient & outpatient)
 - Allow out-of-network use, estimate "hassle cost" of plan authorization

Hospital Choice Model Estimates

I			
VARIABLE	Coeff.	Std. Error	Marginal Effects
Hospital/Patient Characteristics			
Distance in Miles (avg. coeff.)	-0.144***	(0.001)	+10 miles = -31%
Patient Severity x Academic Med. Ctr.	2.076***	(0.044)	+1 s.d. = +47%
Hospital dummies, Specialized services	Yes	5	
Past Patient at this Hospital (>60 days pr	ior)		
Inpatient Care	1.417***	(0.020)	Past IP = $+146\%$
Outpatient Care	2.202***	(0.013)	Past $OP = +468\%$
Out-of-Network Hassle Disutility			
x Plan = BMC	-1.117***	(0.034)	Out-of-Network
x Plan = CeltiCare	-1.464***	(0.058)	= -63% (avg.)
x Plan = Fallon	-1.583***	(0.059)	
x Plan = NHP	-0.543***	(0.049)	
x Plan = Network Health	-1.011***	(0.036)	_
R ² in Shares (Area-Plan-Year Level)	0.742	2	
Num. Hospitalizations	74,383	3	
Std. Errors in parentheses. $* = 5\%$ sign. $** =$	= 1% sign ***	= 0.1% sign	1.

Std. Errors in parentheses. * = 5% sign., ** = 1% sign., *** = 0.1% sign.

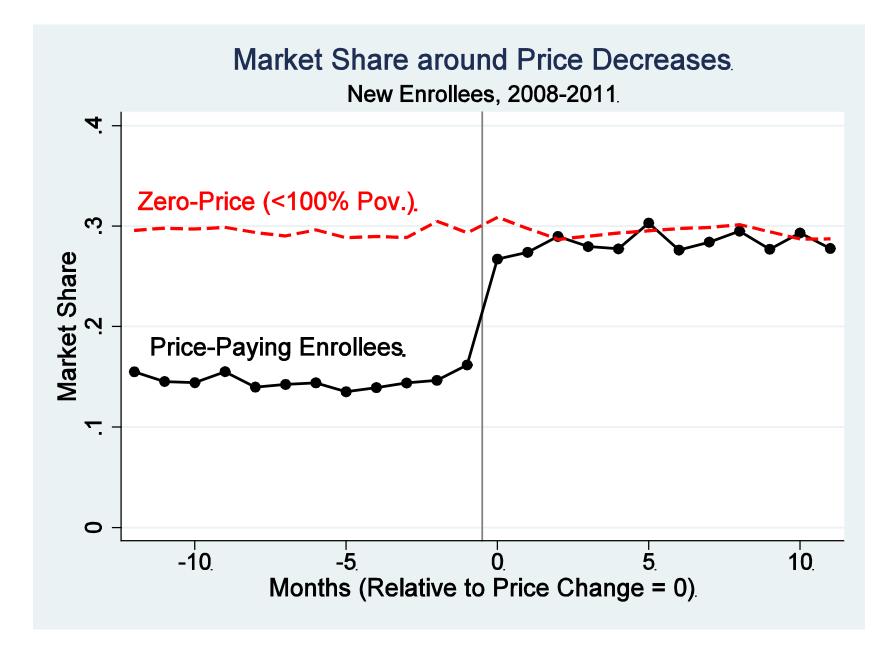
Full model also includes: (1) Distance^2, Distance x region, income grp., age, gender, severity, emergency; (2) Out-of-network x emergency, (3) Eight specialty services x associated diagnoses.

Model Part 2: Insurance Plan Choice

<u>New Enrollees:</u> (consumer i, plan j, time t)

- 1. **Premium** (post-subsidy)
- 2. Hospital Network Variables:
 - > Expected utility from hospital choice model (\rightarrow *More*)
 - Additional dummy: Whether covers ind.'s past-used hospital(s)
- **3. Plan Dummies:** Unobserved quality (*used for identification*)

<u>Current Enrollees</u>: Add "switching cost" dummy to capture inertia in simple way (<u>> Details</u>)


Premium Coefficient Identification

- Use cross-group variation (for same plan) induced by subsidy rules
 - Above Poverty: Consumer premiums change with prices
 - Below Poverty: Subsidies make all plans \$0 (control group)

- Idea: Similar to difference-in-difference
 - Utility specification: Plan dummies absorb all variation except withinplan <u>differential premium changes</u> across income groups

- Assumption: Parallel trends in *unobserved* quality across incomes
 - Next slides: Test for parallel trends

 \rightarrow Example

Plan Demand Estimates

VARIABLE	Coeff.	Std. Error
Premium (avg. coeff.)	-1.000***	(0.025)
x Income/50% Pov. (avg.)	0.304***	(0.014)
x Age/5 (avg.)	0.035***	(0.002)
Hospital Network		
Network Utility (avg. coeff.)	6.949***	(0.670)
x Income/50% Pov. (avg.)	0.627	(0.440)
Whether Covers Past-Used Hospital	5.736***	(0.853)
x <u>Partners</u> Hospital	11.546***	(0.771)
Inertia / Switching Cost		
Average Coeff.	95.638***	(0.234)
x Plan Drops Past Used Hospital	-27.275***	(1.010)
x Drops <u>Partners</u> Hospital	-20.218***	(1.384)
Plan Dummies	Ye	S
No. Choice Instances	1,588,889	

* = 5% sign., ** = 1% sign., *** = 0.1% sign.

Full model also includes: (1) Premium x income grp., age group (5-year), sex; (2) Network utility x income grp., (3) Inertia x age grp., sex, (4) Plan dummies (region-year and region-income grp.)

Distribution of Value of Partners Coverage

Consumer Value of Partners Covg.

Percentiles	Avg. Value (\$/month)	_
0-50%	\$0.5	
50-70%	\$2.2	
70-79%	\$4.3	
80-89%	\$8.8	
90-95%	\$23.6	Past Partners
96-100%	\$46.8 -	patients
Average	\$5.7	

Model Part 3: Insurer Costs

• **Goal**: <u>Individual-level</u> model of costs in different plans/networks

• Inpatient Hospital Costs:

$$C_{ij}^{Hosp} = \sum_{n=1}^{nAdmit_i} \hat{\omega}_{i,n} \cdot \sum_h \hat{P}_{jh} \cdot s_{idh}(N_j)$$

- Condition on observed admissions, hospital prices
- Adjust hospital choices based on plan network using model

- Non-Inpatient Costs: Reduced form model of plan effects on costs
 <u>
 → Details
 </u>
- Total Costs = Inpatient + Non-inpatient costs

Table: Correlation of Partners Value and Cost

Consumer Value of Partners Covg.		Costs to Insurer					
		Not Coveri	ng Partners		ΔCost if Cover Partners		
Percentiles	Avg. Value (\$/month)	Unadjusted Cost	Risk Adj. Cost		ΔCost	ΔCost - Partners Hospital Mkup.	
0-50%	\$0.5	\$300.0	\$301.2		\$8.0	\$7.0	
50-70%	\$2.2	\$269.6	\$294.5		\$14.0	\$10.6	
70-79%	\$4.3	\$264.3	\$292.7		\$18.1	\$12.4	
80-89%	\$8.8	\$300.1	\$311.8		\$23.5	\$14.0	
90-95%	\$23.6	\$455.7	\$360.4		\$37.9	\$21.1	
96-100%	\$46.8	\$482.3	\$340.1		\$48.5	\$23.3	
Average	\$5.7	\$308.8	\$305.6		\$15.6	\$10.6	

Model Part 4: Equilibrium

• Have all elements of plan profit function:

$$\pi_{j}\left(\mathbf{P},\mathbf{N}\right) = \sum_{i} \left(P_{j} + RAdj_{i} - C_{ij}\left(N_{j}\right)\right) \cdot D_{ij}\left(\mathbf{Prem}(P),\mathbf{N}\right)$$

- Simulate full-info, static Nash eq. in two-stage insurer game:
 - 1. Cover or exclude Partners hospitals
 - 2. Set plan prices
- Key assumptions:
 - Fixed hospital prices and hospital networks other than Partners
 - Single plan per insurer

Equilibrium Analysis Details

- Condition on past history and simulate static equilibrium for a single year (e.g., 2012)
- Accounting for plan choice inertia
 - Challenge: Creates dynamics, but fully dynamic game complex and difficult to estimate from small number of years in Mass. exchange
 - What I do: Adjust static FOC for effect of inertia on future profits (→ Details)
- Cost assumptions:
 - Counterfactual Partners hospital prices = Avg. observed prices among plans covering it (not a full bargaining model)
 - Other costs: Change in proportion to average hospital costs (\rightarrow *Details*)

Outline

- 1. Background and Theory
- 2. Reduced Form Evidence

- 3. Structural Model and Estimates
 - Hospital Choice, Insurance Choice, Costs
- 4. Equilibrium and Counterfactual Results
- 5. Conclusion

Equilibrium with ACA-Like Policies

	Equil	ibrium (2012, 1	ACA-like po	olicies)	Deviation: NHP covers
	BMC	CeltiCare	Netw. Health	NHP	Change
Partners Coverage	No	No	No	No	(added)
Price	\$427	\$365	\$371	\$418	+\$12
Market Share	22%	19%	41%	16%	-1%
	Finan	cial Statistics (\$/member-i	nonth)	
Risk Adj. Transfer	\$6	-\$43	-\$1	\$12	+\$17
Total Revenue	\$433	\$322	\$370	\$429	+\$29
Total Cost	\$386	\$304	\$360	\$378	+\$35
Profit Margin	\$47	\$18	\$10	\$51	-\$6
Total Profit (\$millions)	\$10.99	\$3.55	\$4.32	\$8.55	-\$1.33

• Finding: Full unravelling of Partners coverage (robust across years)

Counterfactual Policy: Modified Risk Adjustment

Policy Change:

- Scale up risk adjustment payments for sick, decrease for healthy
- Idea: "Over adjust" to offset noisy signal (Glazer & McGuire 2000)

Findings:

- Policies can reverse unraveling of Partners coverage
- But net welfare declines (net $\Delta Cost > \Delta Consumer value)$
 - ΔValue > ΔCost for Partners patients; opposite for rest of population
- Competitive Effect: Weakens insurer incentive to reduce markups

Risk Adjustment Counterfactuals

Risk Adjustment Changes									
Over-	Plans	Welfa	Welfare Analysis (per member-month)						
Adjustment	Covering	$\Delta Cons.$	Insurer	Partners	Govt.	∆Social			
Factor	Partners	Surplus	Profit	Net Rev.	Costs	Surplus			
None	None	\$0.0	\$26.5	\$0.6	\$322.7	\$0.0			
25%	None	\$4.1	\$30.0	\$0.6	\$330.7	-\$0.4			
50%	NHP Only	\$5.4	\$33.4	\$1.7	\$337.1	-\$1.0			

 Note: Social Surplus = Cons. Surplus + Insurer Profit + Partners Net Revenue – Govt. Cost

Outline

- 1. Background and Theory
- 2. Reduced Form Evidence

- 3. Structural Model and Estimates
 - Hospital Choice, Insurance Choice, Costs
- 4. Equilibrium and Counterfactual Simulations
- 5. Conclusion

Conclusion

- Main result: Adverse selection discourages covering star hospitals
 - <u>Mechanism</u>: Selection on preference for using expensive star provider

- Implication #1: Changing economics of star hospitals in exchanges
 - No longer "must cover" hospitals, puts downward pressure on their prices
 - Selection may help explain rise in narrow network plans

- Implication #2: Additional non-risk channel for thinking about adverse selection – <u>selection on use of higher-cost option</u>
 - May apply more generally: Covg. of high-cost drugs, cancer treatments
 - Policy challenge: Selection linked to moral hazard/risk protection tradeoff

Thank You!

Appendix Slides

Network Utility Measure for Plan Demand

- Method from Capps, Dranove, Satterthwaite (2003), Ho (2006)
- 1. Calculate <u>expected utility</u> (inclusive value) of access to plan j's network using hospital choice model:

$$HospEU_{i,d,j}\left(N_{j}\right) \equiv E\max_{h}\left\{\hat{u}_{i,d,h}\left(N_{j}\right) + \varepsilon_{i,d,h}\right\} = \log\left(\sum_{h}\exp\left(\hat{u}_{i,d,h}\left(N_{j}\right)\right)\right)$$

Expected Utility in Logit Model

 Network Utility (entering plan demand) = Illness probability (based on age/sex) * Hospital Expected Utility

$$NetworkUtil_{i,j,t} \equiv \sum_{d} \hat{p}_{i,d,t} \cdot HospEU_{i,d,j} \left(N_{j,t} \right)$$

> <u>Assumption</u>: Network valuation proportional to expected use of hospital

← Go Back

Hospital Price Estimation

• Estimate hospital prices w/ Poisson regression in claims data:

$$E\left[Payment_{i,j,h,t} \mid Diag_{it}, Z_{it}\right] = \underbrace{\exp(\rho_{j,h,t})}_{\text{Price} \equiv \hat{P}_{j,h,t}} \cdot \underbrace{\exp(Diag_{it}\lambda + Z_{it}\gamma)}_{\text{Severity} \equiv \hat{\omega}_{it}}$$

<u>Details:</u>

- Covariates: Diagnoses (CCS categories), age x sex, income grp.
- Limit price flexibility b/c of sample size:
 - Separate constant for each plan-hospital-network status w/ >50 obs.
 - Separate plan-year effects for each of top 6 systems covered by plan
 - Residual plan-year effect for other hospitals, separate by network status

← Go Back

Insurance Plan Demand: Consumer Choice Process

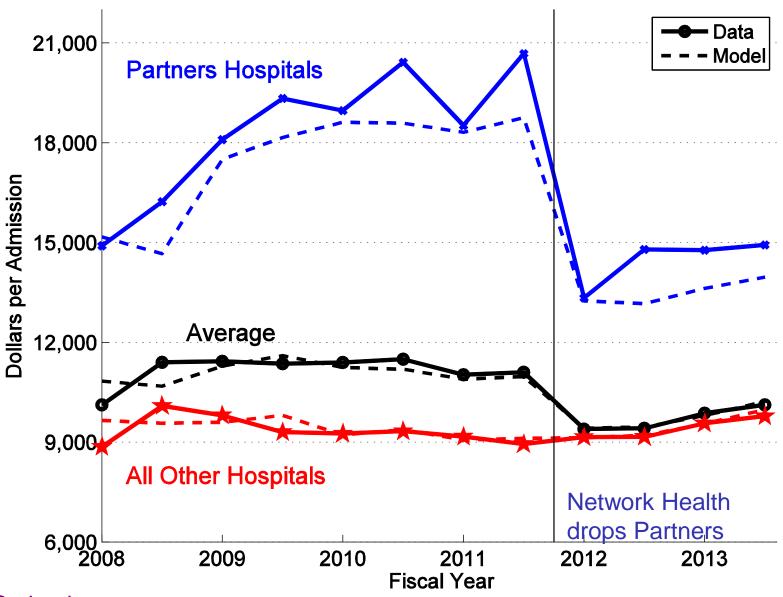
Two times when enrollees choose plans:

- New enrollment in exchange:
 - Must <u>actively choose</u> a plan to get coverage (default = not enrolled)
- Current enrollees at annual open enrollment:
 - Prices and networks may change, so enrollees given chance to switch plans
 - <u>Default</u>: Re-enrollment in current plan
 - Empirically: Very low switching rate (~5%) consistent finding w/ insurance
- Model: Needs to account for possibility of inertia/switching costs

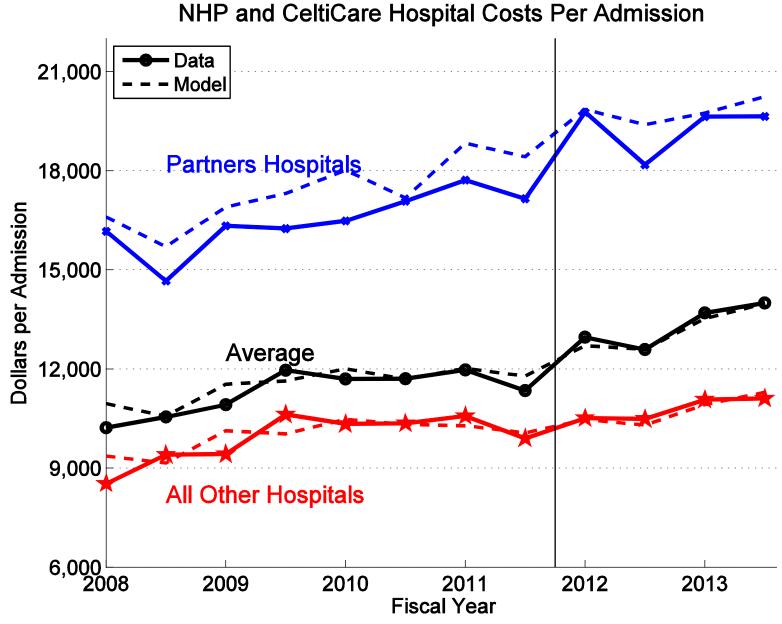
Insurance Plan Demand Model

Utility model for enrollee *i*, in year *t*, for choosing plan *j*:

$$V_{ijt} = \alpha(Z_i) \cdot \underbrace{Prem_{ijt}}_{\text{Premium}} + \beta(Z_i) \cdot \underbrace{NetworkUtil_{ijt}}_{\text{Hosp. Network Utility}} + \underbrace{\xi_{j,t,Reg_i} + \xi_{j,Reg_i,Inc_i}}_{\text{Unobs. Plan Quality}}$$


$$U_{ijt}^{New} = V_{ijt} + \eta_{ij} + \varepsilon_{ijt}$$
$$U_{ijt}^{Curr} = V_{ijt} + \chi(Z_i) \cdot CurrPlan_{ijt} + \eta_{ij} + \varepsilon_{ijt}$$
$$\underbrace{\eta_{ij} + \varepsilon_{ijt}}_{\text{Default Choice Coeff.}} + \eta_{ij} + \varepsilon_{ijt}$$

Model Breakdown of Network Health Cost Change


	Model Co	st Function	De	ı	
Market Shares	2011	2012	% Δ Costs	Selection	Total
2011 Shares	\$353	\$325	8.2%	4.6%	12.8%
2012 Shares	\$331	\$308	6.4%	6.4%	12.8%

(Enrolloss in Evolution in Dath 2011 12)

Network Health Hospital Costs Per Admission

← Go back

Inpatient Hospital Costs

- Estimate plan-specific hospital prices (P) and patient severities (ω) using regression with claims data $\rightarrow Details$
- <u>Condition</u> on observed admissions, severities, prices; <u>Predict</u> shares using hospital choice model (applying alternate network)

$$c_{ijt}^{Hosp}\left(N_{jt}\right) = \sum_{n=1}^{NAdmits_{it}} \underbrace{\hat{\omega}_{i,t,n}}_{\text{Severity}} \cdot \left(\sum_{h} \underbrace{\hat{P}_{j,h,t} \cdot s_{i,d,t,h}^{Hosp}\left(N_{jt}\right)}_{\text{Price x Hosp. Demand Share}}\right)$$

Other (Non-Hospital) Costs

- Estimate reduced form model of plan effect on costs <u>→ Details</u>
- Scale observed cost by this plan effect: $c_{ij}^{Model} = c_i^{Obs} \cdot \left(\frac{\hat{\rho}_j}{\hat{\rho}_{iObs}}\right)$

Other (Non-Hospital) Costs Details

Non-Hospital Costs

• Estimate insurer non-hospital costs with regression in claims data:

$$E\left[NonHospCost_{i,j,t} \mid Diag_{it}, Z_{it}\right] = \underbrace{\exp\left(\chi_{j,t}\right)}_{\text{Plan Effect} \equiv \hat{C}_{j,t}} \cdot \underbrace{\exp\left(Diag_{it}\mu + Z_{it}\varsigma\right)}_{\text{Ind. Severity} \equiv \hat{v}_{i,t}}$$

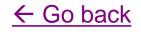
• Define non-hospital cost function:

$$c_{ijt}^{NonHosp}\left(N_{jt}\right) = \underbrace{\hat{C}_{j,t}}_{\text{Plan Effect}} \cdot \underbrace{\hat{v}_{i,t}}_{\text{Ind. Severity}} \cdot \underbrace{\phi(N_{jt})}_{\text{Network Adjustment}}$$

 φ = reduced-form adjustment to account for effect of network changes (e.g., due to changes in physician costs)

Summary: Correlation of Partners Value and Cost

	r Value of 's Covg.	Costs to Insurer				
		Not Coveri	ng Partners	ΔCost if Cover Partne		
Percentiles	Avg. Value (\$/month)	Unadjusted Cost	Risk Adj. Cost	ΔCost	ΔCost - Partners Hospital Mkup.	
0-50%	\$0.5	\$300.0	\$301.2	\$8.0	\$7.0	
50-70%	\$2.2	\$269.6	\$294.5	\$14.0	\$10.6	
70-79%	\$4.3	\$264.3	\$292.7	\$18.1	\$12.4	
80-89%	\$8.8	\$300.1	\$311.8	\$23.5	\$14.0	
90-95%	\$23.6	\$455.7	\$360.4	\$37.9	\$21.1	
96-100%	\$46.8	\$482.3	\$340.1	\$48.5	\$23.3	
Average	\$5.7	\$308.8	\$305.6	\$15.6	\$10.6	


← Go Back

Accounting for Inertia: Insurer Profit Assumptions

- Challenge: Enrollee inertia creates dynamics, but full dynamics are complex to model especially w/ unpredictable policy
- Assumption: Insurers maximize current profits + Effect of today's enrollees on future profits (due to inertia)

$$\pi_{j}^{Total} = \sum_{i} \underbrace{\left(Risk_{i} \cdot P_{j} - c_{ij}\left(N_{j}\right) \right) \cdot D_{ij}\left(P,N\right)}_{Current Year Profit} + \underbrace{V_{i,Future} \cdot D_{ij}\left(P,N\right)}_{Future Profit Effect}$$

- Assumptions:
 - Exogenous inertia probability (90%) each year
 - Future profit margins (at enrollee-level) = Today's profit margin
 - Use consumers' actual future exchange enrollment length

Other (Non-Hospital) Cost Change Details

 Issue: Covering/dropping Partners affects non-hospital costs also (e.g., b/c Partners system includes doctors)

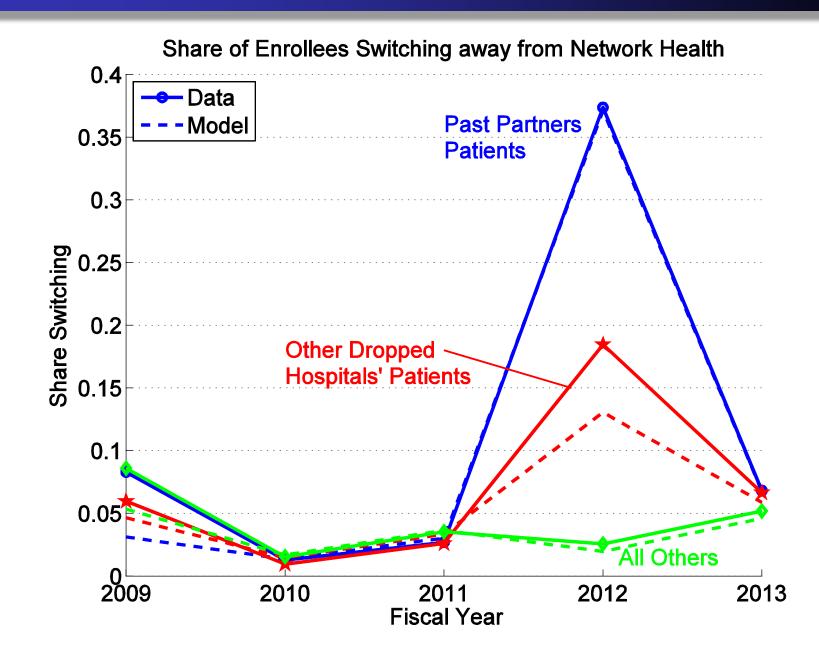
- **Challenge**: Do not have structural model for non-hospital costs
- **Solution**: When add/drop Partners, adjust non-hospital costs in proportion to regional avg. hospital cost change (with $\lambda = 0.038$)

$$c_{ijt}^{NonHosp}\left(N_{jt}\right) = c_{ijt}^{NonHosp}\left(N_{jt}^{Obs}\right) \cdot \left(1 + \lambda \cdot \% \Delta HospCost_{j,Reg,t}\left(N_{jt}\right)\right)$$

Network Cost Adjustment

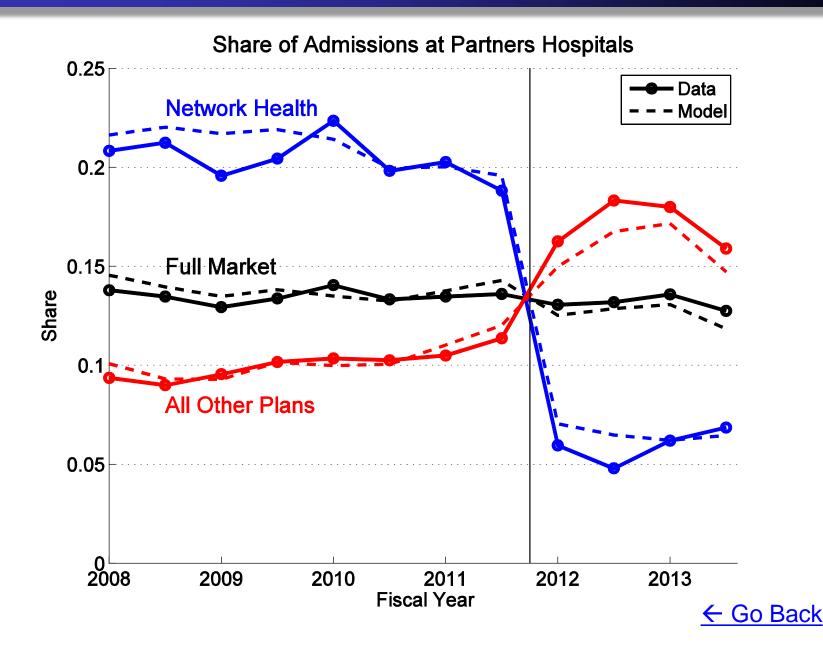
 Future robustness: More heterogeneity in cost adjustment, based on observed changes when plan dropped Partners
 Go back

Marginal Subsidy Counterfactuals


Marginal	Plans	Welfare Analysis (per member-month)							
Subsidy	Covering	$\Delta Cons.$	Insurer	Partners	Govt.	ΔSocial			
Rate	Partners	Surplus	Profit	Net Rev.	Costs	Surplus			
None	None	\$0.0	\$26.5	\$0.6	\$322.7	\$0.0			
15%	None	\$0.7	\$33.4	\$0.6	\$331.1	-\$0.8			
25%	BMC Only	\$0.7	\$39.5	\$1.0	\$338.8	-\$1.9			
50%	BMC + NHP	\$2.5	\$65.5	\$2.4	\$370.2	-\$4.1			

Marginal Subsidies

 Qualitatively similar results: Can undo Partners unravelling, but raises prices and profits at government expense


Model vs. Data: Plan Switching Patterns

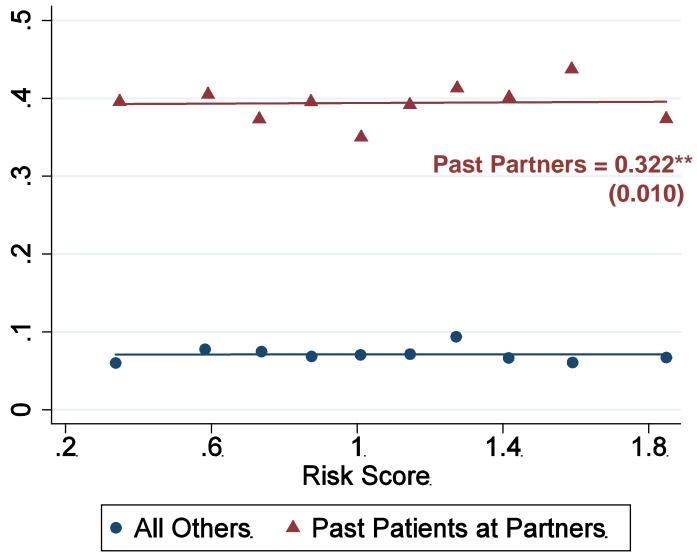
Network Health: Average Costs 2011-12

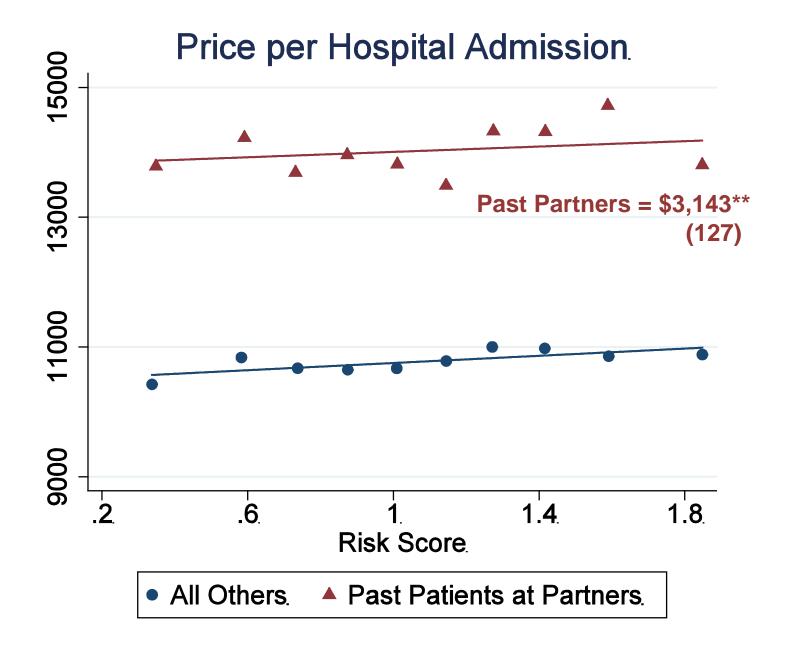
		D	ata	_	Model			
Enrollee Group				Risk Adj.				Risk Adj.
	2011	2012	%Δ	%Δ	2011	2012	%Δ	%Δ
All Enrollees	\$378	\$313	-17%	-15%	\$374	\$310	-17%	-16%
Stayers (in plan both years)	\$317	\$305	-4%	-5%	\$334	\$312	-7%	-9%
2011 Only Enrollees	\$476				\$435			
2012 Only Enrollees		\$310				\$302		

Model vs. Data: Partners Hospital Use Patterns

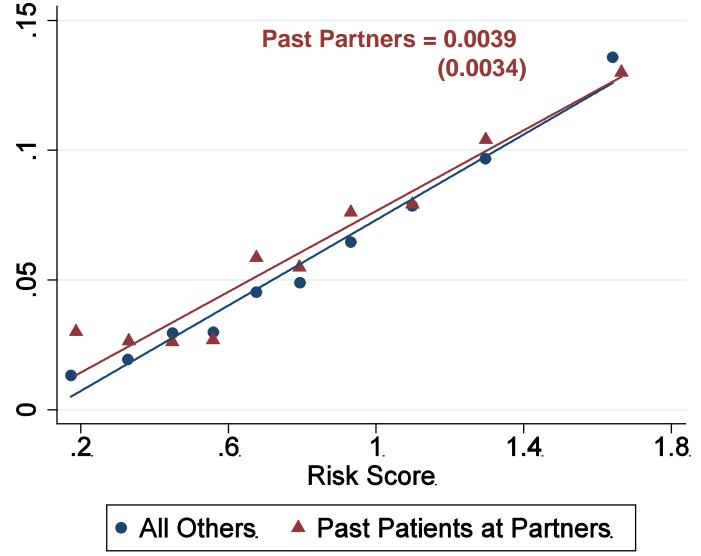
Switching Cost for Current Enrollees

- Recall: Default choice for current enrollees is to not switch
 - Likely affects behavior: Avg. switching rate <5% (c.f. Handel 2013)

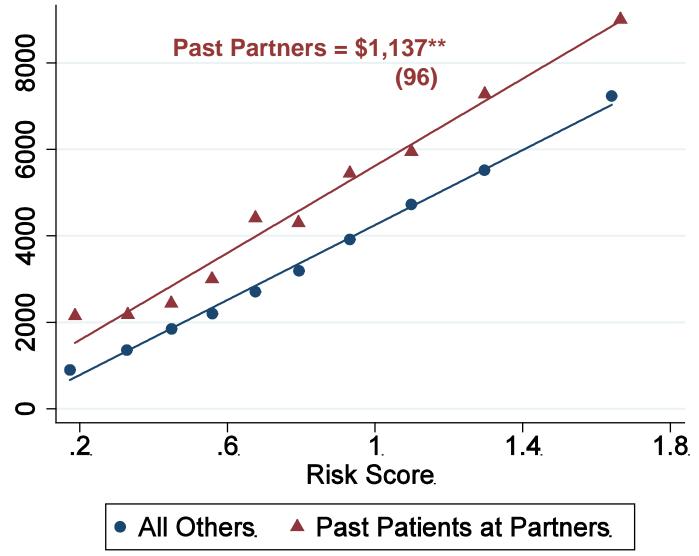

• Method: Add reduced form "switching cost" to choice utility

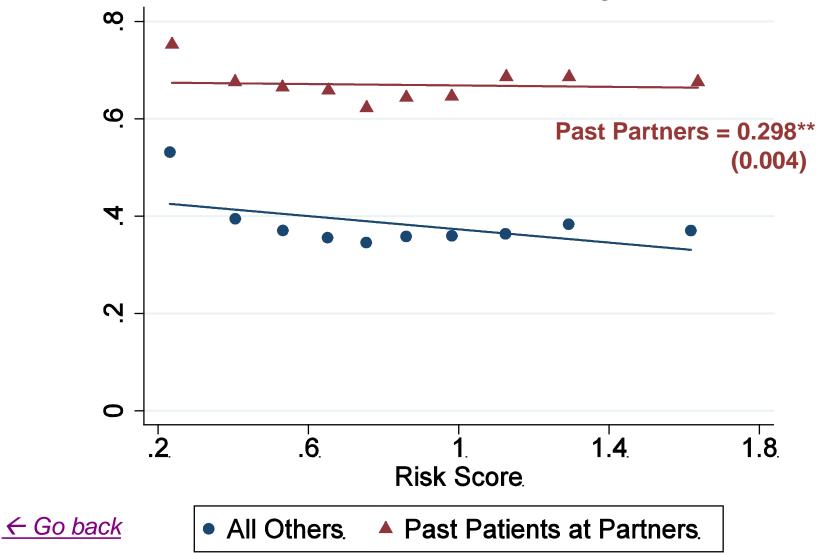

$$U_{ijt}^{Curr} = V_{ijt}^{New} + \chi(Z_i) \cdot 1_{j=CurrPlan} + \mathcal{E}_{ijt}$$

"Excess Utility" of Curr. Plan


- Issue: Picks up both true inertia and unobserved heterogeneity
 - Future work: Separate these by allowing persistent taste heterogeneity with time-invariant random coefficients

Share of Admissions at Star Hospitals.




Hospitalization Rate per Year.

Total Health Care Spending per Year.

Share Choose Plan Covering Partners

Note: Based on <u>active</u> choices by re-enrollees after a coverage gap.