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Abstract

This paper is concerned with the Bayesian estimation and comparison of flexible, high di-
mensional multivariate time series models with time varying correlations. The model proposed
and considered here combines features of the classical factor model with that of the heavy tailed
univariate stochastic volatility model. A unified analysis of the model, and its special cases,
is developed that encompasses estimation, filtering and model choice. The centerpieces of the
estimation algorithm (which relies on MCMC methods) are (1) a reduced blocking scheme for
sampling the free elements of the loading matrix and the factors and (2) a special method for
sampling the parameters of the univariate SV process. The resulting algorithm is scalable in
terms of series and factors and simulation-efficient. Methods for estimating the log-likelihood
function and the filtered values of the time-varying volatilities and correlations are also pro-
vided. The performance and effectiveness of the inferential methods are extensively tested using
simulated data. In sum, our procedures lead to the first practical inferential approach for truly
high dimensional models of stochastic volatility.

Keywords: Bayesian inference; Markov Chain Monte Carlo; Marginal likelihood; Metropolis-Hastings
algorithm; Particle filter; Simulation; State space model; Stochastic jumps; Student-t distribution;
Volatility.

1 INTRODUCTION

Two classes of models, ARCH and stochastic volatility (SV), have emerged as the dominant ap-

proaches for modeling financial volatility (Bollerslev, Engle, and Nelson (1994) and Ghysels, Harvey,

and Renault (1996)). For the most part, the literature has dealt with univariate processes despite

the need for multivariate models in areas such as asset pricing, portfolio analysis, and risk manage-

ment. Although some multivariate models of volatility have been proposed, inference is restricted

to specifications involving only a few variables, largely because of the proliferation of parameters in
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high-dimensions. A major aim of this paper is to overcome this problem and demonstrate a unified

Bayesian fitting and inference framework for truly high dimensional multivariate SV models.

In previous work within the ARCH tradition, multivariate models of volatility have been dis-

cussed by Bollerslev, Engle, and Wooldridge (1988), Diebold and Nerlove (1989), Engle, Ng, and

Rothschild (1990) and King, Sentana, and Wadhwani (1994). Unfortunately, these generalizations

are parameter rich and difficult to estimate due to complicated constraints on the parameter space.

More tractable versions of multivariate ARCH models (Bollerslev, Engle, and Nelson (1994, pp.

3002-10)) are not generally capable of modeling the complexities of the data (e.g. Bollerslev (1990)

assumes that the conditional correlations amongst the series are constant over time). Engle and

Sheppard (2001) have tried to overcome this problem but only two parameters index the time-

varying multivariate correlation matrix. On the other hand, in the stochastic volatility context,

multivariate models are discussed by Harvey, Ruiz, and Shephard (1994), Jacquier, Polson, and

Rossi (1995), Kim, Shephard, and Chib (1998), Pitt and Shephard (1999b), and Aguilar and West

(2000) but the models in these papers are rather special and the estimation approaches are not

scalable in the dimension of the model.

In this paper we specify and estimate a new and flexible multivariate SV model that permits

both series-specific jumps at each time, and student-t innovations with unknown degrees of freedom.

Let yt = (y1t, ..., ypt)′ denote the p observations at time t (t ≤ n) and suppose that conditioned on

k unobserved factors ft = (f1t, ..., fkt)′ and p independent Bernoulli “jump” random variables qt,

we have

yt = Bft + Ktqt + ut , (1.1)

where B is a matrix of unknown parameters (subject to the identifying restrictions bij = 0 for j > i

and bii = 1 for i ≤ k), Kt = diag {k1t, ..., kpt} are the jump sizes, and ut is a vector of innovations.

Assume that each element qjt of qt takes the value one with probability κj and the value zero with

probability 1 − κj , and that each element ujt of ut follows an independent student-t distribution

with degrees of freedom νj > 2, which we express in hierarchical form as

ujt = λ
−1/2
jt εjt, λjt

i.i.d.∼ gamma
(νj

2
,
νj

2

)
, t = 1, 2, ..., n, (1.2)
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where  εt

ft

 |Vt, Dt, Kt, qt ∼ Np+k

0,

 Vt 0

0 Dt




are conditionally independent Gaussian random vectors. The time-varying variance matrices Vt and

Dt are taken to depend upon unobserved random variables (log-volatilities) ht = (h1t, ..., hp+k,t) in

the form

Vt = Vt(ht) = diag {exp(h1t), ..., exp(hpt)} : p × p

Dt = Dt(ht) = diag {exp(hp+1,t), ..., exp(hp+k,t)} : k × k , (1.3)

where each hjt follows an independent three-parameter (µj , φj , σj) stochastic volatility process

hjt − µj = φj(hjt−1 − µj) + σjηjt , ηjt
i.i.d.∼ N(0, 1) . (1.4)

Our model specification is completed by assuming that the variables ζjt = ln(1 + kjt), j ≤ p, are

distributed as N(−0.5δ2
j , δ

2
j ), where δ = (δ1, ..., δp) are unknown parameters. This assumption is

similar to that made by Andersen, Benzoni, and Lund (2002) in a different context and models the

belief that the expected value of kjt is zero.

To understand the size of this model in terms of parameters and latent variables, let β denote

the elements of B after imposing the identifying restrictions. Then there are pk−(k2+k)/2 elements

in β, 3(p + k) parameters θj = (φj , µj , σ
2
j ), j ≤ p, in the autoregressive process of {hjt}, p degrees

of freedom ν = (ν1, ..., νp), p jump intensities κ = (κ1, ..., κp), and p jump variances δ = (δ1, ..., δp).

If we let ψ = (β, θ1, ..., θp+k, ν, δ, κ) denote the entire list of parameters, then the dimension of ψ

is 688 when p = 50 and k = 8, as in one of our models below. Furthermore, the model contains

n(p+k) latent volatilities {ht} that appear non-linearly in the specification of Vt and Dt, 2np latent

variables {qt} and {kt} associated with the jump component, and np scaling variables {λt}.
In the sequel, we refer to our model as the multivariate stochastic volatility jump model with

student-t errors, or MSVJt for short. We use the acronyms MSVt to denote the model without

jumps, MSVJ to denote the model with jumps and Gaussian errors, and MSV to denote the model

with no jumps and Gaussian errors. We compare and contrast all four models in our empirical

exercises.
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The rest of the paper is organized as follows. In Section 2 we discuss the Bayesian estimation

approach for the MSVJ-t model. Because of the rather complicated form of the likelihood function,

we estimate the model by Markov chain Monte Carlo methods. The problem of model comparisons

is taken up in Section 3 where we develop an approach for estimating the marginal likelihood and

Bayes factors for competing models. In this context, we include a simulation-based sequential

procedure for computing the filtered values of the unknown volatilities. In Section 4 we provide a

detailed simulation study of the performance of our estimation and model choice procedures. We

conclude with some brief remarks in Section 5.

2 ESTIMATION OF THE MSVJt MODEL

2.1 Preliminaries

If we let Ft−1 denote the history of the {yt} process up to time t−1, and p(ht, λt, Kt, qt|Ft−1, ψ) the

density of the latent variables (ht, λt, Kt, qt) conditioned on (Ft−1, ψ), then the likelihood function

of ψ given the data y = (y1, ..., yn) is

p(y|ψ) =
n∏

t=1

∫
p(yt|ht, λt, Kt, qt, B)p(ht, λt, Kt, qt|Ft−1, ψ) dht dλt dKt dqt

=
n∏

t=1

∫
Np(yt|Ktqt, Ωt)p(ht, λt, Kt, qt|Ft−1, ψ) dht dλt dKt dqt , (2.5)

where Np(·|·, ·) is the multivariate normal density function, Ktqt is the mean of yt marginalized

over ft,

Ωt = V ∗
t + BDt(ht)B′ and V ∗

t = Vt(ht) � diag(λ−1
1t , ..., λ−1

pt )

is the marginalized variance depending on the latent volatilities ht, λt and the loading matrix B,

and the symbol � denotes element-by element multiplication. It is not difficult to see that neither

p(ht, λt, Kt, qt|Ft−1, ψ) nor the integral of Np(yt|Ktqt, Ωt) over (ht, λt, Kt, qt) are available in closed

form.

We utilize Markov chain Monte Carlo (MCMC) methods to develop a practical Bayesian esti-

mation approach for this model; Chib (2001) provides an extensive review of these methods. In

the MCMC approach, the posterior distribution is sampled by simulation methods and the draws

generated from the simulation are used to summarize the posterior distribution. The simulation is
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conducted by devising, and simulating, the transition density of an irreducible, aperiodic Markov

chain whose invariant distribution is the target posterior distribution. In order to implement this

approach, one basic idea is to avoid the direct use of the likelihood function (which is, of course,

rather complicated and difficult to compute) and to focus on the posterior distribution of the

parameters and the latent variables

π
(
β, {ft}, {θj}, {hj.}, {νj}, {λj.}, {δj}, {κj}, {ζj.}, {qj.}|y

)
, (2.6)

where the notation zj. is used to denote the collection (zj1, ..., zjn). This distribution is quite high-

dimensional but as we show in the rest of the paper it can be sampled efficiently by MCMC methods

provided the Markov chain is carefully constructed. Efficiency in this context refers to the serial

correlations in the sampled output and is measured, for each parameter in turn, by the inefficiency

factor which is, intuitively speaking, one plus the sum of all the serial correlations.

One issue of particular importance is the type of “blocking” that is used. A single block MCMC

algorithm proceeds by moving ψ in one simultaneous move from the current point to the next point

in the chain. Since this is infeasible given the high-dimension of ψ, the Markov chain is constructed

by a divide and conquer strategy wherein blocks of parameters are updated conditioned on the

values of the remaining blocks; a single, complete transition of the Markov chain occurs when

all the blocks have been thus revised. By carefully managing the blocking structure we show

that efficiency of the simulation scheme can be increased by orders of magnitude; without use of

our refinements, the inefficiency factors often exceed 1000, and with our refinement they range

between 20 to 50, even in the our highest dimensional models. The practical ramifications of

this are significant. If in one case one needed perhaps quarter-million samples from the posterior

distribution, in the other 10000 would suffice. For models as large as we are interested in fitting,

the value of this improvement cannot be overstated.

2.2 Proposed MCMC algorithm

One key step in our algorithm is the sampling of β and the factors {ft} in one block, conditioned

on
(
y, {hj.}, {λj.}, {ζj.}, {qj.}

)
. Because β and ft appear in product form, the obvious approach of

sampling β conditioned on {ft} and then sampling {ft} conditioned on β is less effective, which we

demonstrate in Section 4.
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Consider then the sampling of β from the density

π
(
β|y, {hj.}, {ζj.}, {qj.}, {λj.}

) ∝ p(β)
n∏

t=1

p(yt|B, ht, ζt, qt, λt)

∝ p(β)
n∏

t=1

Np(yt|Ktqt, V
∗
t + BDtB

′)

where p(β) is the normal prior density defined above. To sample this density, which is typically

quite high-dimensional, we use the Metropolis-Hastings (M-H) algorithm (Chib and Greenberg

(1995)). We follow Chib and Greenberg (1994) and take the proposal density to be multivariate-t,

T(β|m, Σ, ν), where m is the approximate mode of l = log{∏n
t=1 Np(yt|Ktqt, Ωt)}, and Σ is minus

the inverse of the second derivative matrix of l; the degrees of freedom ν is set arbitrarily at fifteen.

If we let the ijth free element of B be denoted by bij and define ỹt = yt − Ktqt, we have that

l =
n∑

t=1

log φp(yt|Ktqt, Ωt) = const − 1
2

n∑
t=1

log |Ωt| − 1
2

n∑
t=1

(yt − Ktqt)′Ω−1
t (yt − Ktqt),

and

∂l

∂bij
=

1
2

n∑
t=1

{
ỹt

′Ω−1
t

∂Ωt

∂bij
Ω−1

t ỹt − tr

(
Ω−1

t

∂Ωt

∂bij

)}

=
n∑

t=1

{
s′t

∂B

∂bij
DtB

′st − tr

(
Et

∂B

∂bij

′)}
,

where st = Ω−1
t ỹt, Et = Ω−1

t BDt, and Ω−1
t = (V ∗

t )−1 − (V ∗
t )−1B

{
D−1

t + B′(V ∗
t )−1B

}−1
B′(V ∗

t )−1.

With these derivatives, (m, Σ) can be found by a sequence of Newton-Raphson iterations. Then the

M-H step for sampling β is implemented by drawing a value β∗ from the multivariate-t distribution,

namely T(m, Σ, ν), and accepting the proposal value with probability α(β, β∗|ỹ, {hj.}, {λj.}), where

β is the current value, and

α(β, β∗|ỹ, {hj.}, {λj.}) = min
{

1,
p(β∗)

∏n
t=1 Np(ỹt|0, V ∗

t + B∗DtB
∗′)

p(β)
∏n

t=1 Np(ỹt|0, V ∗
t + BDtB′)

T(β|m, Σ, ν)
T(β∗|m, Σ, ν)

}
(2.7)

is the probability of move. If the proposal value is rejected, the next item of the chain is taken to

be the current value β.

The joint sampling of β and the factors is completed by sampling {ft} from the distribution
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{ft}|ỹ, B, h, λ. This step is simple because the latter distribution breaks up into the product of

the distributions ft|ỹt, ht, λt, B. By standard Bayesian calculations, one can derive that the latter

distribution is Gaussian with mean f̂t = FtB
′(V ∗

t )−1ỹt and variance Ft =
(
B′(V ∗

t )−1B + D−1
t

)−1.

The next step of the algorithm is particularly interesting because given
(
y, B, {ft}, {λj.}, {ζj.}, {qj.}

)
,

and the conditional independence of the errors in (1.3), the model can be devolved into (p + k)

conditionally Gaussian state space models. Namely, let αt = Bft, a p vector with components αjt,

and let

zjt =

 ln(yjt − αjt − (exp(ζjt) − 1)qjt + c)2 + ln(λjt) j ≤ p

ln(f2
j−p,t) j ≥ p + 1

. (2.8)

where c is an “offset” constant that is set to 10−6. Then from Kim, Shephard, and Chib (1998) it

follows that the p + k state space models can be subjected to an independent analysis for sampling

the {θj} and {hj.}. In particular, the distribution of zjt, which is hjt plus a log chi-squared random

variable with one degree of freedom, may be approximated closely by a seven component mixture

of normal distributions, allowing us to express the MSVJ-t model as

zjt|sjt, hjt ∼ N(hjt + mstj , v
2
stj

)

hjt − µj = φj(hjt−1 − µj) + σjηjt , j ≤ p + k (2.9)

where sjt is a discrete component indicator variable with mass function Pr(sjt = i) = qi, i ≤ 7,

t ≤ n, and mstj , v2
stj

and qi are parameters that are reported in Chib, Nardari, and Shephard

(2002). Thus, under this representation, conditioned on the transformed observations we have that

p({sj.}, θ, {hj.}|z) =
k+p∏
j=1

p(sj., θj , hj.|zj.),

which implies that the mixture indicators, log-volatilities and series specific parameters can be

sampled series by series. This representation of the model is one reason that our approach is

scalable in both p and k.

Now, for each j, one can sample (sj., θj , hj.) by the univariate SV algorithm given by Chib,

Nardari, and Shephard (2002). Briefly, sj. is sampled straightforwardly from

p(sj.|zj., hj.) =
n∏

t=1

p(sjt|zjt, hjt),
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where p(sjt|zjt, hjt) ∝ p(sjt)φ(zjt|hjt + mstj , v
2
stj

) is a mass function with seven points of support.

Next, θj is sampled by the M-H algorithm from the density π(θj |zj., sj.) ∝ p(θj)p(zj.|sj., θj) where

p(zj.|sj., θj) = p(zj1|sj., θj)
T∏

t=2

p(zjt|F∗
jt−1, sj., θj), (2.10)

and p(zjt|F∗
j,t−1, sj., θj) is a normal density whose parameters are obtained by the Kalman filter

recursions, adapted to the differing components, as indicated by the component vector sj. Finally,

hj. is sampled from [hj.|zj., sj., θj ] by the simulation smoother algorithm of de Jong and Shephard

(1995).

In the remaining steps, the degrees of freedom parameters, jump parameters and associated

latent variables are sampled independently for each time series. Significant improvements in simu-

lation efficiency are achieved by sampling νj marginalized over λj. from the multinomial distribution

Pr(νj |yj., hj., B, f, qj., ζj.) ∝ Pr(νj)
n∏

t=1

T
(
yjt|αjt +

{
exp(ζjt) − 1

}
qjt, exp(hjt), νj

)
. (2.11)

Next, the jump indicators {qj.} are sampled from the two-point discrete distribution

Pr(qjt = 1| yj., hj., B, f, νj , ζj., κj) ∝ κjT
(
yjt|αjt +

{
exp(ζjt) − 1

}
, exp(hjt), νj

)
Pr(qjt = 0| yj., hj., B, f, νj , ζj., κj) ∝ (1 − κj)T (yjt|αjt, exp(hjt), νj) ,

followed by the components of the vector λj. from the density

λjt|yjt, hjt, B, f, νj , qjt, ψjt ∼ gamma

(
νj + 1

2
,
νj + (yjt − αjt − (exp(ζjt − 1)qjt)2

2 exp(hjt)

)
.

Another key step concerns the sampling of the parameters δj and ζj.. For simulation efficiency

reasons, these two parameters must also be sampled in one block. To see how this is possible, note

that if kjt is small, as is true in financial applications with high frequency returns that are measured

in decimals, exp(ζjt) may be closely approximated by 1+ ζjt, implying that kjtqjt equals ζjtqjt and

ζjt can be marginalized out. This permits the sampling of δj from the density

π(δj)
n∏

t=1

N
(
αjt − 0.5δ2

jqjt, δ
2
jq

2
jt + exp(hjt)λ−1

jt

)
(2.12)
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by the M-H algorithm. Once δj is sampled, the vectors ζj. are sampled, bearing in mind that their

posterior distribution is updated only when qjt is one. Therefore, when qjt is zero, we sample ζjt

from N(−0.5δ2
j , δ

2
j ), otherwise we sample from the distribution N (Ψjt(−0.5 + exp(−hjt)λjtyjt), Ψjt),

where Ψjt =
(
δ−2
j + exp(−hjt)λjt

)−1. The algorithm is completed by sampling the components of

the vector κ independently from κj |qj. ∼ beta(u0j +n1j , u1j +n0j), where n0j is the count of qjt = 0

and n1j = n − n0j is the count of qjt = 1.

A complete cycle through these various distributions completes one transition of our Markov

chain. These steps are then repeated G times, where G is a large number, and the values beyond

a suitable burn-in of say a 1000 cycles, are used for the purpose of summarizing the posterior

distribution.

3 MODEL COMPARISON

In this section we show how the MSVJt model can be compared with alternative multivariate and

univariate specifications. We do this comparison based on the marginal likelihood of each model and

the associated Bayes factors (ratios of marginal likelihoods). Because of the dimensions involved,

computation of the marginal likelihood presents several challenges. Nonetheless, our study of the

problem has revealed that the method of Chib (1995) and Chib and Jeliazkov (2001) is feasible in

this context, and quite effective in picking the true model, as we demonstrate in our simulation

exercises.

The starting point of the Chib method is the basic marginal likelihood identity under which

the log of the Bayes factor for comparing non-nested models M1 to M2 can be written as

log p(y|M1) − log p(y|M2) = log p(y|M1, ψ
∗
1) + log p(ψ∗

1|M1) − log π(ψ∗
1|M1, y)

− {log p(y|M2, ψ
∗
2) + log p(ψ∗

2|M2) − log π(ψ∗
2|M2, y)}

(3.13)

where p(y|Mj , ψ
∗
j ) is the likelihood function under Mj , p(ψ∗

j |Mj) and π(ψ∗
j |Mj , y) are the cor-

responding prior and posterior densities, evaluated at some specified point ψ∗
j , say the posterior

mean. The next step is to estimate the likelihood and posterior ordinates by some efficient method.
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3.1 Posterior Ordinate

To estimate the posterior ordinate we use a marginal/conditional decomposition and the output of

the original and subsequent “reduced MCMC runs.” To explain this technique, let

π(ψ∗|M, y) = π(β∗, ν∗, θ∗, δ∗, κ∗|M, y)

= π(β∗|M, y)π(ν∗|M, y, β∗)π(θ∗|M, y, β∗, ν∗)

× π(δ∗|M, y, β∗, θ∗, ν∗)π(κ∗|M, y, β∗, θ∗, ν∗, δ∗)

and consider the estimation of each of the terms starting in the second line of this decomposition. It

turns out that for the sample sizes in our applications, the marginal posterior densities of the factor

loadings are very concentrated around the mean and close to normal. For simplicity, therefore, we

approximate π(β∗|M, y) by the ordinate of a normal density with mean vector and covariance

matrix obtained from the full MCMC run.

Second, to estimate the p-dimensional conditional ordinate π(ν∗|M, y, β∗) we fix β at β∗ and

continue our MCMC simulation for another G iterations. Within this run, the ordinates of the con-

ditional mass function Pr(νj |yj., hj., B
∗, f, qj., ζj.) are averaged and the resulting modal probability

is taken as the estimate of π(ν∗|M, y, β∗).

Third, to estimate the conditional ordinate π(θ∗1, ..., θ
∗
p+k|y,M, β∗, ν∗) we group the θj ’s in

groups of two (each of dimension six) and produce output from the appropriate reduced MCMC

runs to estimate the resulting ordinates. Specifically, to estimate π(θ∗1, θ
∗
2|y,M, β∗, ν∗) we fix β at

β∗, ν at ν∗ and run the MCMC algorithm given above. The desired ordinate is then estimated by

the kernel smoothing method applied to the output on θ1 and θ2 from this run. The process is

repeated in sequence, in each case with additional parameters held fixed.

Next, we estimate the ordinate π(δ∗|M, y, β∗, ν∗, θ∗) by applying a result given in Chib and

Jeliazkov (2001). Specifically, it can be shown that the ordinate

π(δ∗|M, y, β∗, ν∗, θ∗) =
∫ p∏

j=1

π(δ∗j |M, yj., β
∗, ν∗, θ∗, hj., f, qj., λj.)

dπ({hj.}, f, {qj.}, {λj.}|M, y, β∗, ν∗, θ∗),
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where π denotes generically the distribution of the enclosed random vectors, can be expressed as

E1

p∏
j=1

α(δj , δ
∗
j |M, yj., β

∗, ν∗, θ∗, hj., f, qj., λj.)q(δ∗j |M, yj., β
∗, ν∗, θ∗, hj., f, qj., λj.)

E2

p∏
j=1

α(δ∗j , δj |M, yj., β
∗, ν∗, θ∗, hj., f, qj., λj.)

(3.14)

where α is the probability of move in the M-H step for δj , q is the Student-t proposal density in

that step, E1 is the expectation with respect to π({hj.}, f, {qj.}, {λj.}|M, y, β∗, ν∗, θ∗) and E2 is the

expectation with respect to

π({hj.}, f, {qj.}, {λj.}|M, y, β∗, ν∗, θ∗, δ∗)
p∏

j=1

q(δj |M, y, β∗, ν∗, θ∗, δ∗, hj., f, qj., λj.).

The first of these expectations can be computed from the output of a reduced MCMC run in which

β, ν, and θ are fixed at their starred values. The second expectation can be computed from the

output of an additional reduced run in which δ is also fixed; for each draw of {hj.}, f, {qj.}, {λj.}
in this reduced run, δj is drawn from the proposal density and these combined draws are used to

average the probability of move in the denominator of (3.14).

Finally, to estimate the κ∗ conditional ordinate, the parameters (β, ν, θ, δ) are fixed and the

quantities {qt, κ} are drawn in a reduced MCMC run. The required ordinate then follows by

averaging the beta density of κ.

3.2 Filtering and Likelihood Evaluation

We now discuss a simulation-based approach, called the auxiliary particle filtering method (see Pitt

and Shephard (1999a) and the book length review of Doucet, de Freitas, and Gordon (2001)), to

estimate the likelihood ordinate log f(y1, ..., yn|M, ψ∗) =
∑n

t=1 log f(yt|M,Ft−1, ψ
∗), where

f(yt|M,Ft−1, ψ
∗) =

∫
Np(yt|Ktqt, Ωt)p(λt, Kt, qt|M, ψ∗)p(ht|M,Ft−1, ψ

∗) dht dλt dKt dqt

is the one-step-ahead predictive density of yt,

p(ht|M,Ft−1, ψ
∗) =

∫
p(ht|M, ht−1, ψ

∗)p(ht−1|M,Ft−1, ψ
∗) dht−1,
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is the one-step-ahead predictive density of ht, p(ht|M, ht−1, ψ
∗) =

∏p+k
j=1 N(htj |µ∗

j + φ∗
j (hj,t−1 −

µ∗
j ), σ

2) is the product of the Markov transition densities and p(ht−1|M,Ft−1, ψ
∗) is the posterior

distribution of ht−1 given Ft−1 (the filtered distribution).

We now use a sequential Monte Carlo filtering procedure to efficiently estimate the one-step

ahead predictive density of yt given above. In this procedure, samples (particles) from the preceding

filtered distribution (e.g., p(ht−1|M,Ft−1, ψ
∗)) are propogated forward to produce samples from

the subsequent filtered distribution (namely, p(ht−1|M,Ft−1, ψ
∗)). Suppose then that we have a

sample h
(g)
t−1 (g ≤ M) from the filtered distribution ht−1|M,Ft−1, ψ

∗. Based on this sample, we

can approximate the one-step-ahead predictive density of ht as

p(ht|M,Ft−1, ψ
∗) � 1

M

M∑
g=1

p(ht|M, h
(g)
t−1, ψ

∗)

Under this approximation, the posterior density of the latent variables at time t is available as

p(λt, Kt, qt, ht|M,Ft, ψ
∗) ∝ Np(yt|Ktqt, Ωt)p(λt, Kt, qt|M, ψ∗)p(ht|M,Ft−1, ψ

∗)

.∝ Np(yt|Ktqt, Ωt)p(λt, Kt, qt|ψ∗)
1
M

M∑
g=1

f(ht|M, h
(g)
t−1, ψ

∗) (3.15)

and the objective is to sample this density. This sampling is carried out as follows. In the first

stage, proposal values h
∗(1)
t , ..., h

∗(R)
t are created. These values are then resampled to produce the

draws {h(1)
t , ..., h

(M)
t } that correspond to draws from (3.15). We have found that R should be five

or ten times larger than M to ensure efficient propagation of the particles. We summarize the steps

in the following algorithm.

Auxiliary particle filter for multivariate SV model

1. Given values {h(1)
t−1, ..., h

(M)
t−1 } from (ht−1|M,Ft−1, ψ

∗) calculate ĥ
∗(g)
t = E

(
h

(g)
t |h(g)

t−1

)
and

wg = Np(yt|0, Ωt(ĥ
∗(g)
t , 1, B∗), ψ∗) , g = 1, ..., M ,

and sample R times the integers 1, 2, ..., M with probability wg
t = wg/

∑M
j=1 wj . Let the

sampled indexes be k1, ..., kR and associate these with ĥ
∗(k1)
t , ..., ĥ

∗(kR)
t .
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2. For each value of kg from Step 1, simulate the values {h∗(1)
t , ..., h

∗(R)
t } from

h
∗(g)
j,t = µ∗

j + φ∗
j (h

(kg)
j,t−1 − µ∗

j ) + σ∗
jη

(g)
j,t , g = 1, ..., R,

where η
(g)
j,t ∼ N(0, 1). Likewise draw λ

(g)
t , K

(g)
t , q

(g)
t from their prior p(λt, Kt, qt|ψ∗), where

K
(g)
t = diag

{
k

(g)
1t , ..., k

(g)
pt

}
and ζ

(g)
jt = ln(1 + k

(g)
jt ) is drawn from N(−0.5δ∗2j , δ∗2j ).

3. Resample the values {h∗(1)
t , ..., h

∗(R)
t } M times with replacement using probabilities propor-

tional to

w∗
g =

Np(yt|K(g)
t q

(g)
t , Ωt(h

∗(g)
t , λ

(g)
t , B∗))

Np

(
yt|0, Ωt(ĥ

∗(kg)
t , 1, B∗)

) , g = 1, ..., R ,

to produce the desired filtered sample {h(1)
t , ..., h

(M)
t } from (ht|M,Ft, ψ

∗).

As discussed by Pitt (2001), the weights produced in the above algorithm provide a simulation-

consistent estimate of the likelihood contribution. In particular,

f̂(yt|M,Ft−1, ψ
∗) =

 1
M

M∑
g=1

wg

 1
R

R∑
g=1

w∗
g


which can be shown to converge to f(yt|M,Ft−1, ψ

∗) in probability as M and R go to infinity.

These estimates are obtained for each t and combined to produce our estimate of the likelihood

ordinate log f(y1, ..., yn|M, ψ∗).

4 SIMULATION STUDY

We now provide evidence, with the help of several simulated data sets, of the efficacy of the methods

proposed in this paper. We examine the simulation efficiency of the fitting method, its estimation

accuracy, robustness to changes in the prior, and of the reliability of the model selection method.

4.1 Prior distribution

In the experiments we assume that the parameters are mutually independent with distributions

specified as follows. Free elements of B : bij ∼ N(1, 9); φ : φ∗
j ∼ beta(a, b), where φj = 2φ∗

j − 1, so

that the prior mean of φj is 0.86 and standard deviation is 0.11; σ : σj ∼ IG(c/2, d/2) with mean

of 0.25 and standard deviation of 0.4; ν : νj is discrete uniform over the grid (5, 8, 11, 14, 17, 20,
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30, 60); κ : κj ∼ beta(2, 100) implying jumps about 50 observations apart; and log(δ) : log(δj) ∼
N(−3.07, 0.148) implying a mean of 0.05 and standard deviation of 0.02 on δj .

4.2 Simulation Efficiency

A key feature of our estimation method is the sampling of B marginalized over the factors. Whereas

it is simpler to condition on the factors, as done by Geweke and Zhou (1996), Pitt and Shephard

(1999b), Aguilar and West (2000) and Jacquier, Polson, and Rossi (1995) in the context of static

and dynamic factor models, the sampled output is far less well behaved. To show this, we generate

eight datasets, labeled D1-D8, from different models and with different number of assets, factors and

time series observations, and evaluate the alternative samplers in terms of the realized inefficiency

factors. The inefficiency factor is the inverse of the numerical efficiency measure in Geweke (1992)

and is computed from the MCMC output as the square of the numerical standard error divided by

the variance of the posterior estimate under (hypothetical) i.i.d. sampling.

In generating the data, we draw the parameters of the models from the following distributions:

the free elements of bij are from N(0.9, 1); µj from N(−9, 1), φj from a scaled beta with mean 0.95

and variance 0.03, σj from IG(2.5, 0.5); νj from its prior; log δj from N(−3.07, 0.148); and κj from

a beta(2, 100) distribution. The specifics of each dataset are shown in Table 1. It should be noted

that the models are quite high-dimensional; the smallest has 142 parameters and the largest has

688.

Dataset Model p k n Parms Dataset Model p k n Parms
D1 MSV 20 4 2,000 142 D2 MSV 50 4 2,000 352
D3 MSV 20 4 1,000 142 D4 MSV 50 4 1,000 352
D5 MSV 20 4 5,000 142 D6 MSV 50 4 5,000 352
D7 MSV 40 8 2,000 428 D8 MSVJt 50 8 2,000 688

Table 1: Features of simulated datasets. Parms denotes the number of parameters.

For each dataset, we employ the marginalized sampling procedure and two other methods where

the elements of B are sampled either by column or by row, conditioned on the factors. For the

algorithm proposed in this paper we run the MCMC sampler for 11000 iterations, collecting the

last 10000 for inferential purposes. For the other two methods, expecting a drop in simulation

efficiency, we collect 50000 draws after discarding the first 5000. We compare the three methods, as

they relate to the sampling of B, in terms of the relative inefficiency factors (the ratio of inefficiency
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factors). As can be seen from Table 2, in models with four factors (D1 through D6) our procedure

is between 20 and 40 times more efficient than the other two methods. In models with eight factors

(D7 and D8), our method is about 80 times more efficient. Furthermore, the efficiency of our

method does not erode as the dimensionality and complexity of the model is increased whereas the

other methods become even less efficient. The performance gains from sampling B in the way we

Sampling B Mean S.D Low Upp Max Min Mean S.D Low Upp Max Min
D1 D2

Row/Marg 34.5 17.3 24.6 46.0 71.0 1.8 29.7 17.0 17.9 39.4 91.4 6.2
Col/Marg 37.9 21.1 22.1 50.3 83.9 1.3 33.4 19.5 18.8 45.4 106 7.4
Col/Row 0.8 0.6 0.5 1.7 2.3 0.2 1.2 0.6 0.8 1.5 3.8 0.5

D3 D4
Row/Marg 36.4 29.5 14.1 46.0 113 4.0 41.7 23.7 26.8 51.2 132 2.9
Col/Marg 27.5 15.1 16.5 41.4 59.3 3.6 15.9 9.8 7.6 20.4 45.7 2.0
Col/Row 0.9 0.3 0.7 1.2 1.7 0.5 0.4 0.2 0.3 0.6 1.1 0.1

D5 D6
Row/Marg 24.0 27.3 4.6 31.8 167 2.3 88.0 49.3 42.7 131 185 11.8
Col/Marg 14.8 16.2 4.0 18.3 101 1.9 62.3 45.5 26.4 91.0 231 2.3
Col/Row 0.7 0.2 0.5 0.9 1.8 0.3 0.9 1.1 0.4 1.0 9.0 0.1

D7 D8
Row/Marg 62.3 36.0 33.4 87.1 161 9.6 76.9 54.7 25.9 119 279 3.3
Col/Marg 89.7 54.9 44.4 126 238 6.1 84.6 56.2 29.2 128 294 5.1
Col/Row 1.5 0.8 1.0 1.9 6.5 0.3 1.3 0.4 1.0 1.7 2.4 0.3

Table 2: Summary output for inefficiency factors. The Table summarizes the distribution of relative
inefficiency factors for the estimated factor loadings. Row denotes sampling by row, Col sampling
by column and Marg sampling marginalized over the factors. Results are reported for different
simulated datasets and for alternative sampling schemes for the factor loading matrix B. Low
denotes the 25th. percentile, Upp denotes the 75th. percentile.

suggest are worth the computational burden because substantially smaller Monte Carlo samples

are needed to achieve a given level of numerical accuracy. On average, our procedure is 5− 6 times

slower in terms of CPU time per MCMC iteration than the alternative non-marginalized methods.

For a model with 30 series and 4 factors fit to 2000 observations, our MCMC algorithm coded in C

and running on Linux 2.5 megahertz Pentium 4 computer consumes about 20 hours of CPU time

to generate 10,000 MCMC draws.

We next consider the specifics of our MCMC scheme as they relate to the sampling of ν and

δ. We generate an additional data set, D9, from the MSVJt model with 50 series, 4 factors and

2000 observations per series and we employ our method along with several alternatives where one

or more of the reduced blocking steps in the generation of B, ν and δ are switched off. Efficiency
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factors from these runs are reported in Table 3. Two patterns are noticeable. First, the reduced

blocking scheme leads to much better mixing for both ν and δ. On aveerage, our proposed method

is 40 − 50 times more efficient than the alternatives. Second, these performance gains are realized

even when B is sampled conditioned on the factors.

Sampling Mean S.D Low Upp Mean S.D Low Upp Mean S.D Low Upp
B δ ν

s1/s2 108.4 49.6 66.5 147.8 1.0 0.3 0.9 1.2 1.1 0.3 0.9 1.3
s3/s1 1.0 0.2 1.0 1.0 54.8 27.2 37.1 65.0 41.1 13.2 24.1 49.9
s3/s2 106.4 49.6 63.3 139.1 54.2 25.2 34.5 64.4 43.1 13.0 26.7 51.3

Table 3: Summary output for inefficiency factors. The Table summarizes the distribution of relative
inefficiency factors for the estimated factor loadings (B), degrees of freedom parameters (ν) and
jump intensiy parameters (δ). Results are reported for a dataset of 50 series and 2000 observations
per series and for alternative sampling schemes for B, ν and δ. Specifically, s1: B non marginalized,
ν marginalized, δ marginalized. s2: all marginalized. s3: all non marginalized. Low denotes the
25th. percentile, Upp denotes the 75th. percentile.

4.3 Parameter Estimates and Factor Extraction

In this section we first show the ability of the proposed algorithm to correctly estimate the large

number of parameters and latent variables in the model. Second, we assess the robustness of the

algorithm to changes in the prior. We contrast the results from our proposed method with those

where B is sampled by columns, conditioned on the factors.

In these experiments, the artificial datasets are generated from the MSVJt model with forty

series and eight factors. Each simulated series has 1250 observations, equivalent to about five

years of daily data. We use the same mechanism described in the previous section to generate

one set of true parameters. From these parameter values we then generate a total of 40 data sets

and we fit the 8 factor MSVJt model to each of them. Due to the differences in the simulation

efficiency, the preferred MCMC algorithm is run for 10000 iterations while the non-marginalized

MCMC algorithm is run for 100000 iterations. We initially use the same priors reported in section

4.1, defined collectively as Prior1. Subsequently we repeat the estimation with a more diffuse

independent N(0, 1000) prior on bij . This prior is labeled as Prior2.

Table 4 contains correlations between the true values and the parameter estimates for the

alternative procedures and priors. The estimates are obtained as the grand averages of the posterior

means across simulated samples.
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Sampling B µa φa σa δ κ µf φf σf ν

Bmarg Prior1 .97 .99 .92 .92 .95 .92 .98 .91 .86 .82
Bbycol Prior1 .84 .99 .90 .88 .95 .92 .88 .77 .38 .82
Bmarg Prior2 .95 .99 .90 .88 .98 .92 .95 .94 .84 .82
Bbycol Prior2 .84 .99 .90 .87 .98 .92 .88 .77 .39 .81

Table 4: Summary output for simulated data. Entries are the correlation coefficients between the
true parameter values and MCMC estimates. The latter are the average of posterior means across
40 samples with n = 1250 . Bmarg denotes the sampling of B marginalized over the latent factors,
Bbycol denotes the sampling of B conditioning on the factors and done by column. Prior1 and
Prior2 are defined in the main text.

Consider first the estimates for the factor loading matrix, which in this case has 284 free

parameters. The correlation between the true values and the grand averages across samples is

substantially higher for the more efficient procedure: 97.28% vs. 83.88%. The bar graph in Figure

1 shows that the proposed approach yields accurate estimates of the B matrix (elements for only four

factors are plotted). Second, the estimates of the volatility parameters for the factors (not reported)

are noticeably more accurate for the preferred algorithm. Third, the estimates of the parameters

in the volatility evolution equations are also less accurate from the non-reduced blocking scheme.

The log-volatility levels, denoted by µa, are closely identified by both procedures; somewhat larger

deviations are recorded for the φ’s and the σ’s: however, the correlations of the estimates with

the true values are quite high, of the order of 90%. Next, consider the jump parameters, δ and κ.

Without providing a graph we mention that the average of the posterior means across the different

data sets are slightly closer to the true values for δ (correlation = 95%) than κ (correlation of 92%).

In both cases the standard deviations across samples are quite small compared to their respective

means. For the jump parameters we don’t find meaningful differences across sampling schemes. The

performance of both algorithms is relatively less satisfactory for the degrees of freedom parameters

of the Student-t distributions. The correlation with the true values is only 82%. This could be due

to the large overall dimension of the parameter space combined with a relatively limited sample

size used in the estimation.

Next, consider the effect of Prior2 on the posterior estimates, which is reported in the last two

rows of Table 4. Both procedures appear to be robust to this change in the prior as the correlations

between the true and simulated values are almost unaltered. It is still true, however, that the

marginalized sampling scheme does a better job in estimating the factor loadings and the factor
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Figure 1: True Values vs. posterior estimates for the factor loadings. Each panel displays the
loadings on a different factor (only factor 1, 4, 6 and 8 are reported). The posterior quantities are
the average of posterior means across 40 samples with n = 1250.

volatility parameters.

Finally, consider the relationship between the true and estimated factors. Figure 2 displays

the correlations across samples for the common factors: the estimates for these latent variables

are obtained by averaging across the MCMC draws for each sample. We report the summaries

for factor 1, 2, 5 and 8. In all cases the latent series are estimated well with correlations with

the true values ranging between 70 and 95%. The precision is high for the first factor, decreasing

somewhat for the other factors. These experiments show that the suggested estimation procedure

yields reliable inferences for both the model parameters and the latent dynamic factors. Relying on

the non-marginalized schemes to update the factor loadings leads to significant biases. These biases

arise not only in the estimates of the loading parameters but also in those of the factor volatilities.
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Figure 2: Correlations between true and estimated factors across simulated samples. For each
dataset the estimates are obtained by averaging the draws of the MCMC sampler. The results are
based on 40 simulated datasets of size 1250 each.

4.4 Performance and Stability of the Marginal Likelihood Method

In this section we utilize simulated data to assess the performance of the marginal likelihood and

Bayes factor criterion in identifying the correct model across model types and, within a given model

class, the correct number of factors. In the simulation design, datasets are generated from the MSVt

model with three factors. Each simulated dataset contains thirty series of 2000 observations each.

The model parameters in the true model are randomly generated as in section 4.2. We generate a

total of 50 data sets from the true model. The MSVJ, MSVt and MSVJt models are then fitted

to these data sets, each with 2, 3 and 4 factors. Thus, nine models are each estimated fifty times

under the prior distributions and hyperparameters reported in section 4.1. The marginal likelihood

of each model in each simulated data set is calculated from G = 10000 MCMC iterations (beyond a

burn-in of 1000 iterations) followed by reduced runs of 10000 iterations. Finally, the two parameters

of the particle filter algorithm, namely M and R, are set to 20000 and 200000, respectively.
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4.4.1 Stability

First, we investigate the stability of the posterior ordinate estimate. We randomly pick 5 of our

50 simulated datasets and compute estimates of the posterior ordinate for various values of G, the

Data Simulation Size G

5, 000 10, 000 25, 000 50, 000
D2 329.74 329.73 329.80 329.97
D10 325.40 327.18 327.94 327.99
D30 319.11 323.35 323.87 323.71
D40 318.19 320.86 320.14 320.19
D50 346.97 348.87 348.40 348.92

Table 5: Natural log-posterior ordinate estimates for different simulation sizes. G denotes the
number of reduced MCMC draws. Results are based on 5 simulated datasets.

number of reduced-run iterations. In particular, we let G take the values 5000, 10000, 20000 and

50000. The posterior ordinates from each of the five data sets are then averaged. Although the

data are generated from the MSVt model, we do this calculation with the MSVJt model which is

a larger model. The estimated values are shown in Table 5.

The table values indicate that the estimates converge when the number of reduced runs is at

least 10000.

4.4.2 Model Comparison

We conclude our experiments by examining the performance of the marginal likelihood criterion in

selecting the true model. This is done via a sampling experiment in which we count the frequency

with which each possible K-factor model (K = 2, 3, 4) is picked over the other models, based on the

estimated marginal likelihoods. Table 6 reports the relevant results: the true model, MSVt with 3

factors, is compared with every other specification we estimate.

According to the Jeffreys’ scale, the evidence in favor of true model is always decisive versus

the basic MSV model as well as versus MSVt 2f and it is at least substantial against MSVt 4f in

84% of the cases. When compared to the more highly parametrized MSVJt model, MSVt 3f is still

selected as the best model 100% of the times against MSVJt 2f, 98% of the times against MSVJt 3f

and 88% of the times against MSVJt 4f. In all these cases the support in favor of the true model

is strong or decisive. In summary, the simulation evidence provides a convincing validation of the
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True Model: MSV t3f

1 − 3.2 3.2 − 10 10 − 100 > 100 Total > 10
MSV t3f/MSV 2f 0 0 0 100 100
MSV t3f/MSV 3f 0 0 0 100 100
MSV t3f/MSV 4f 0 0 2 98 100
MSV t3f/MSV t2f 0 0 0 100 100
MSV t3f/MSV t4f 0 4 20 60 84
MSV t4f/MSV t2f 0 0 4 96 100
MSV t3f/MSV Jt2f 0 0 0 100 100
MSV t3f/MSV Jt3f 0 0 2 94 96
MSV t3f/MSV Jt4f 0 0 10 78 88

Table 6: Frequency distribution (percentage) of Bayes factors across 50 simulated replications. The
ranges for Bayes factor values correspond to the Jeffreys’ scale.

Bayes factor criterion along two dimensions: the identification of the correct number of common

factors and in the selection of the appropriate model specification.

5 CONCLUSION

In this paper we have a proposed and analyzed a new multivariate model with time varying cor-

relations. The model contains several features (for example fat tails and jump components) that

are particularly relevant in the modeling of financial time series. Our fitting approach, which relies

on tuned MCMC methods, was shown to be scalable in terms of both the multivariate dimension

and the number of factors. This leads us to believe that this is first viable estimation approach for

high-dimensional stochastic volatility models. In the paper we also provide a method for finding

the marginal likelihood of the model. This criterion is useful in comparing the general model with

various special cases, say defined by the presence or absence of jumps and fat-tails, and in identi-

fying the correct number of pervasive factors. A detailed simulation study shows that our estimate

of the marginal likelihood is both accurate and reliable.
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