Carbon Taxes, U.S. Fiscal Policy and Social Welfare

By

Richard Goettle – Northeastern University

Allen Fawcett – U.S. Environmental Protection Agency

Mun Sing Ho – Harvard University

Dale Jorgenson – Harvard University

Eric Smith – U.S. Environmental Protection Agency

Peter Wilcoxen – Syracuse University and Brookings

Association of Environmental and Resource Economists (AERE)

AERE 2013 Banff

AERE 3rd Annual Summer Conference

The Banff Center

Banff, Alberta, Canada

June 6-8, 2013

What we did

- Examined the welfare implications
- Of five (5) carbon tax scenarios
 - \$10, \$20, \$30, \$40 and \$50 in 2020 discounted to 2016 and compounded to 2050 at 5%
- Under seven (7) fiscal treatments
 - Capital tax reduction, capital and labor tax reduction, labor tax reduction, increased government purchasing, deficit reduction, debt reduction and lump-sum redistribution
- Using IGEM, the Intertemporal General Equilibrium Model of Dale Jorgenson Associates (DJA)
 - http://www.igem.insightworks.com/
 - http://www.economics.harvard.edu/faculty/jorgenson

The Carbon Tax Scenarios

Intertemporal general equilibrium model, IGEM

- Econometrically estimated CGE model of U.S. structure and growth
 - Confidence intervals derived from variance-covariance estimates through delta method
 - Well suited to applications ranging over 30-50 year time horizons
- Unified accounting framework consistent with the *National Income and Product Accounts* and the *Consumer Expenditure Survey*
- Dynamics driven by population trends, capital accumulation, productivity growth in each industry
- Household decisions characterized by perfect foresight
- Supply and demand balances reflect mobility in all product and factor markets
- 35 producing industries generating 35 commodities (5 energy) with 5 final demand sectors (C, I, G, X, and M)
- Producers and consumers substitute among capital, labor and all 35 commodity inputs (models are hierarchical and non-CES)
- Aggregate consumption demand derived through exact aggregation over individual household demands for 244 household types. Each household utility function includes both goods, services and leisure

What we learned

- Robust but ever harder-to-achieve emissions abatement
 - Robust across fiscal treatments with rising marginal abatement costs both within and across carbon tax scenarios
- "Grand bargain" like tax receipts
- Fiscal ranking depends on how performance is measured
- From a welfare perspective
 - Dollar benefits or costs may appear large but the percentage changes are small
 - Capital tax reductions are welfare superior despite their qualified regressivity
 - Labor tax reductions are welfare inferior despite their unqualified progressivity
 - Lump sum redistribution is not necessarily least favorable at either the household or societal levels
- Statistically significant welfare results

Robust but ever harder-to-achieve emissions abatement

"Grand bargain" like tax receipts

	<u>2016-2025</u>		<u>2026-2050</u>	
	<u>Average</u>	Standard Deviation	<u>Average</u>	Standard Deviation
\$10 Tax Path	\$890	\$3	\$6,734	\$32
\$20 Tax Path	\$1,635	\$9	\$12,019	\$91
\$30 Tax Path	\$2,297	\$16	\$16,529	\$157
\$40 Tax Path	\$2,899	\$24	\$20,495	\$223
\$50 Tax Path	\$3,455	\$34	\$24,044	\$286

<u>Total tax receipts in \$(2013) billions averaged across the seven fiscal treatments</u>

Fiscal ranking depends on how performance is measured

From most to least preferred in \$(2005) billions versus GtCO₂-e

Real GDP

capital, combined capital and labor, labor, government, deficit,
 debt and lump sum

Real Consumption + Government

labor, combined capital and labor, capital, government, deficit,
 debt and lump sum

Real Full Consumption + Government

- Capital, debt, deficit, combined capital and labor, government, labor and lump sum
- Leisure-inclusive and the preferred choice

Effects on Consumption plus Government Purchases

Present value changes versus tonnes abated, 2010-2050

Effects on Full Consumption plus Government Purchases

Present value changes versus tonnes abated, 2010-2050

Household Welfare

- Intratemporal indirect utility functions (V_d) of prices (p_t) , total full wealth expenditures (M_d) and household attributes (A_d)
 - Covering non-durable goods, capital services, consumer services and leisure
 - Attributes family size (children, adults), race and gender of head, region and location of residence
- Intertemporally optimized subject to the lifetime budget constraint on full wealth
 - Full wealth the present value of future earnings from labor, domestic capital, government debt, net foreign assets plus government transfers and the imputed values of leisure
- Economy-wide full consumption achieved through exact aggregation

$$\begin{split} EV &= \Delta W_d = \Omega_d(\{p_t^0\}, \{\gamma_t^0\}, V_d^1) - \Omega_d(\{p_t^0\}, \{\gamma_t^0\}, V_d^0) \\ \% \, EV_d &= \frac{\Delta W_d}{\Omega_d(\{p_t^0\}, \{\gamma_t^0\}, V_d^0)} \end{split}$$

Household Welfare Effects, Reference Households

Equivalent Variations in \$(2005) and as %'s of full wealth

	Poorest household ¹		Richest household ²	
	<u>\$(2005)</u>	% of wealth	<u>\$(2005)</u>	% of wealth
\$10 Tax Path				
Capital	\$362	0.045	\$43,926	0.134
Labor	-\$161	-0.020	-\$36,133	-0.110
Lump Sum	-\$1,296	-0.161	\$34,120	0.104
\$50 Tax Path				
Capital	-\$495	-0.062	\$131,852	0.403
Labor	-\$2,057	-0.256	-\$144,855	-0.442
Lump Sum	-\$5,891	-0.734	\$99,379	0.303

¹ Female headed, non-white household with one child living in the rural South with lifetime full wealth of \$0.8 million

² Male headed, non-white household with three or more each of adults and children living in the urban West with lifetime full wealth of \$32.8 million

Household Welfare Effects, Family Size

Household Welfare Effects, Race & Gender of Head

Household Welfare Effects, Region & Location

Social Welfare

Jorgenson, Slesnick and Wilcoxen

- Pareto-principled, money-metric social welfare function, W
 - Exact aggregation over 244 CEX household types
 - Social welfare increases with increasing household welfare
 - Transfers from richer to poorer households are social welfare improving
 - Parameterizes the range of society's preferences for equality from purely egalitarian to purely utilitarian
- Welfare efficiency, E maximum social welfare achievable through a reallocation of lifetime expenditure that equalizes household utility
- Welfare equity, EQ the difference between actual (W) and efficient
 (E) welfare

$$\Delta W = \Delta E + \Delta E Q$$

$$\Delta W = \Omega(\{p_t^0\}, \{\gamma_t^0\}, W^1) - \Omega(\{p_t^0\}, \{\gamma_t^0\}, W^0)$$

$$\Delta E = \Omega(\{p_t^0\}, \{\gamma_t^0\}, W_{\text{max}}^1) - \Omega(\{p_t^0\}, \{\gamma_t^0\}, W_{\text{max}}^0)$$

$$\Delta E Q = [\Omega(\{p_t^0\}, \{\gamma_t^0\}, W^1) - \Omega(\{p_t^0\}, \{\gamma_t^0\}, W_{\text{max}}^1)]$$

$$-[\Omega(\{p_t^0\}, \{\gamma_t^0\}, W^0) - \Omega(\{p_t^0\}, \{\gamma_t^0\}, W_{\text{max}}^0)]$$

Capital tax reductions are welfare superior despite their qualified regressivity

Labor tax reductions are welfare inferior despite their unqualified progressivity

Capital Tax Rates, Utilitarian

-\$2,000

Capital Tax Rates, Egalitarian

\$50, Total

Lump sum redistribution is not necessarily least favorable at the household level

Lump sum redistribution is not necessarily least favorable at the societal level

Measures of Equality and Progressivity

Measure of Absolute Equality

$$AEQ(\{p_t^0\}, \{\gamma_t^0\}, W, W_{\text{max}}) = [\Omega(\{p_t^0\}, \{\gamma_t^0\}, W)] - \Omega(\{p_t^0\}, \{\gamma_t^0\}, W_{\text{max}})]$$

Measure of Relative Equality

$$REQ(\{p_t^0\}, \{\gamma_t^0\}, W, W_{\text{max}}) = \frac{\Omega(\{p_t^0\}, \{\gamma_t^0\}, W)}{\Omega(\{p_t^0\}, \{\gamma_t^0\}, W_{\text{max}})}$$

Measure of Absolute Progressivity

$$AP = AEQ(\{p_t^0\}, \{\gamma_t^0\}, W^1, W_{\text{max}}^1) - AEQ(\{p_t^0\}, \{\gamma_t^0\}, W^0, W_{\text{max}}^0)$$

Measure of Relative Progressivity

$$RP = REQ(\{p_t^0\}, \{\gamma_t^0\}, W^1, W_{\text{max}}^1) - REQ(\{p_t^0\}, \{\gamma_t^0\}, W^0, W_{\text{max}}^0)$$

Measures of Progressivity

	Capital Tax Rates	All Tax Rates	<u>Labor Tax</u> <u>Rates</u>	<u>Lump Sum</u>
Absolute	Regressive	Progressive	Progressive	Regressive
Relative	Progressive	Progressive	Progressive	Regressive

Robust across all carbon tax paths and the full range of egalitarian and utilitarian views

Statistically significant welfare results

Tuladhar and Wilcoxen

Appendix

Average Reductions in Tax Rates or Tax Equivalent Redistributions, 2016-2050

Carbon Tax Path

	<u>\$10</u>	<u>\$20</u>	<u>\$30</u>	<u>\$40</u>	<u>\$50</u>
Capital	-11.1%	-19.9%	-27.5%	-34.3%	-40.3%
All	-3.5%	-6.4%	-9.0%	-11.3%	-13.4%
Labor	-5.2%	-9.4%	-13.2%	-16.7%	-19.8%
Lump Sum	-3.8%	-6.8%	-9.5%	-11.8%	-13.9%

Household Welfare Effects, Largest and Smallest

Equivalent Variations in \$(2005) and as %'s of full wealth

	<u>Impact</u>	<u>\$(2005)</u>	% of wealth1
\$10 Tax Path			
Capital	Largest	\$45,985	0.204
Capitai	Smallest	\$111	0.005
Labor	Largest	\$1,297	0.020
Laboi	Smallest	-\$36,133	-0.118
Lump Sum	Largest	\$35,054	0.136
Lump Jum	Smallest	-\$6,509	-0.202
\$50 Tax Path			
Capital	Largest	\$139,978	0.574
	Smallest	-\$5,740	-0.137
Labor	Largest	-\$1,733	-0.074
Laboi	Smallest	-\$144,855	-0.515
Lumn Sum	Largest	\$110,314	0.429
Lump Sum	Smallest	-\$36,554	-0.893

¹ Household characteristics often do not correspond to those represented in the adjacent \$(2005) column

Comparative Carbon Tax Scenarios

GHG Emissions under IGEM runs and Waxman-Markey Cap

Household Welfare

Indirect utility function of prices (p_t) and total full wealth expenditures (M_d) and attributes (A_d)

$$\begin{split} \ln V_{dt} &= \alpha_{p} \ln p_{t} + \frac{1}{2} \ln p_{t} B_{pp} \ln p_{t} - D(p) \ln \frac{M_{dt}}{N_{dt}} \quad \text{where} \\ &\ln N_{dt} = \frac{1}{D(p_{t})} \ln p_{t} B_{A} \quad \text{and} \quad D(p_{t}) = -1 + \iota B_{pp} \ln p_{t} \\ &\max_{F_{dt}} U_{k} = E_{t} \{ \sum_{t=1}^{T} (1 + \rho)^{-(t-1)} \ln V_{kt} \} \\ &\text{s.t.} \quad \sum_{t=0}^{\infty} \gamma_{t} M_{dt} (p_{t}, V_{dt}, A_{d}) = \Omega_{d} \quad \text{where} \quad \gamma_{t} = \prod_{s=0}^{t} \frac{1}{1 + r_{s}} \\ &EV = \Delta W_{d} = \Omega_{d} (\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, V_{d}^{1}) - \Omega_{d} (\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, V_{d}^{0}) \end{split}$$

$$\%EV_{d} = \frac{\Delta W_{d}}{\Omega_{d}(\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, V_{d}^{0})}$$

Social Welfare

$$W(u,x) = \overline{V} - \eta \left[\sum_{d=1}^{D} a_d \left| V_d - \overline{V} \right|^{-\mu} \right]^{-1/\mu} -\infty < \mu < -1$$
Utilitarian < \mu < Egalitarian

where
$$\overline{V} = \sum_{d=1}^{D} a_d V_d$$
 and $a_d = \frac{\exp\{\sum_t \delta^t D_t \ln N_{dt} / S\}}{\sum_{l=1}^{D} \exp\{\sum_t \delta^t D_t \ln N_{lt} / S\}}$

$$\Omega_{d}^{*} = a_{d}\Omega \quad W_{\text{max}} = S \ln R - S \ln \Omega + S \ln N + \sum_{t=0}^{\infty} \delta^{t} D_{t} \ln \left(\frac{D_{0} \gamma_{t} P_{t}}{\delta^{t} D_{t} P_{0}} \right) \\
\Delta W = \Delta E + \Delta E Q \\
\Delta W = \Omega(\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, W^{1}) - \Omega(\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, W^{0}) \\
\Delta E = \Omega(\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, W_{\text{max}}^{1}) - \Omega(\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, W_{\text{max}}^{0}) \\
\Delta E Q = [\Omega(\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, W^{1}) - \Omega(\{p_{t}^{0}\}, \{\gamma_{t}^{0}\}, W_{\text{max}}^{1})]$$

 $-[\Omega(\{p_t^0\}, \{\gamma_t^0\}, W^0) - \Omega(\{p_t^0\}, \{\gamma_t^0\}, W_{\text{max}}^0)]$

Tier Structure of Household Demand

Full consumption = U (Nondurables, Capital services, Services, Leisure)

Nondurables = U (Energy, Food, Consumer Goods)

Energy = U (Gasoline, Coal & Fuel Oil, Electricity, Gas)

Household Full Consumption Model

Demographic Groups

Number of children 0,1,2, 3 or more

Number of adults 1,2, 3 or more

Region Northeast, Midwest, South, West

Location Urban, Rural

Race of head Non-white, White

Gender of head Female, Male

Full Expenditure and Household Budget Shares

Full Expenditures	Nondurables	Capital	Services	Leisure
\$7,500	0.208	0.151	0.055	0.586
\$25,000	0.164	0.137	0.060	0.626
\$75,000	0.123	0.124	0.065	0.693
\$150,000	0.098	0.116	0.068	0.713
\$275,000	0.075	0.108	0.071	0.718
\$350,000	0.066	0.106	0.072	0.716

Price and income elasticities

	Uncompensated Price Elasticity	Compensated Price Elasticity	Expenditure Elasticity
Nondurables	-0.727	-0.651	0.673
Capital Services	-1.192	-1.084	0.902
Consumer Services	-0.561	-0.49	1.067
Leisure	0.014	-0.305	1.063
Labor Supply	-0.032	0.713	-2.486

Growth

VOLUME

Energy, the Environment, and Economic Growth

Dale W. Jorgenson

