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Abstract. The theory of endoscopy predicts the existence of large families of Tate classes on certain

products of Shimura varieties, and it is natural to ask in what cases one can construct algebraic cycles

giving rise to these Tate classes. This paper takes up the case of Tate classes arising from the Yoshida lift:
these are Tate cycles in middle degree on the Shimura variety for the group ResF/Q(GL2 ×GSp4), where

F is a totally real field. A special case is the family of Tate classes which reflect the appearance of two-

dimensional Galois representations in the middle cohomology of both a modular curve and a Siegel modular
threefold. We show that a natural algebraic cycle generates exactly the Tate classes which are associated

to generic members of the endoscopic L-packets on GSp4,F . In the non-generic case, we give an alternate

construction, which shows that the predicted Tate classes arise from Hodge cycles.
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1. Introduction

Let F be a totally real number field of degree d, and let G = GSp4,F . The unique elliptic endoscopic
group for G is M = (GL2×GL2 /Gm)F , where Gm is embedded anti-diagonally and the L-embedding is
induced by

(1) M̂ = GL2(C)×C× GL2(C) ↪→ GSp4(C) = Ĝ.

The functorial transfer of cuspidal automorphic forms from M to G has been studied by Roberts [28] and
Weissauer [35]. For any (unordered) pair of distinct cuspidal automorphic representations π1, π2 of GL2(AF )
with the same central character, one obtains an L-packet Π(π1, π2) of cuspidal automorphic representations
of GSp4(AF ). The members ΠS(π1, π2) of this L-packet are indexed by finite sets S of places of F at which
both πi are discrete series, such that |S| is even. The unique generic member of the L-packet Π(π1, π2) is
Π∅(π1, π2).

Let GSp4 = ResF/QG be the restriction of scalars, with the Shimura datum induced from that of GSp4,Q.
Let

S(GSp4) := lim←−
K

SK(GSp4)

be the resulting pro-algebraic Shimura variety over Q, where K ranges over compact open subgroups of
GSp4(Af ). (For the rest of the introduction, the same notation will apply when GSp4 is replaced by any Q-
group H with a Shimura datum.) If π1 and π2 are unitary and of parallel weights 4 and 2, respectively, then
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the automorphic representations ΠS(π1, π2) contribute to the cohomology of S, and Kottwitz’s conjecture
[16] predicts the associated Galois representations in étale cohomology.

To state the expected formula, choose a finite extension E/Q over which π1, π2, and ΠS(π1, π2) are all
defined. For a finite place λ of E, set ρΠ = ρπ1

⊕ρπ2
(−1), where ρπi

are the usual λ-adic Galois representations
associated to Hilbert modular forms, cf. [5]. Then let (ρ̃Π, V ) and (ρ̃2, V0) be the tensor induction of ρΠ and
ρπ2

, respectively, from Gal(Q/F ) to Gal(Q/Q). There is a natural Galois-equivariant inclusion V0(−d) ↪→ V .
Consider the involution s ∈ End(ρ̃Π, V ) such that, in each factor of the decomposition

(2) V = ⊗v|∞ρΠ,
s acts as −1 on ρπ1

and 1 on ρπ2
(−1). Taking s-eigenspaces induces a decomposition

(3) V = V + ⊕ V −,

and V0(−d) lies inside V +.
Kottwitz’s conjectures imply that the ΠS(π1, π2)f -isotypic part of étale cohomology should be:

(4) H3d
ét,c(S(GSp4)Q, Eλ)ΠS(π1,π2)f =

{
V +, |Sf | even,
V −, |Sf | odd,

where Sf ⊂ S is the subset of finite places. This expectation has been fully verified in the case F = Q [35].
Meanwhile, V0 is also expected to appear in the étale cohomology of the Shimura variety S(GL2):

(5) Hd
ét(S(GL2)Q, Eλ)π2,f

= V0.

The Tate conjecture then suggests that, for all S with |Sf | even, there should be a 2d-dimensional algebraic
cycle on S(GSp4)× S(GL2) whose étale realization induces a nontrivial map

(6) H3d
ét,c

(
S(GSp4)Q, Eλ(d)

) [
ΠS(π1, π2)f

]
→ Hd

ét

(
S(GL2)Q, Eλ

)
[π2,f ].

The natural candidate for this algebraic cycle is the sub-Shimura variety S(H) ⊂ S(GSp4) × S(GL2),
where:

(7) H := GL2×Gm GL2
ι,p
↪−→ GSp4×GL2 .

Here ι : H ↪→ GSp4 is the standard inclusion and p : H → GL2 is the first projection.
Our first main theorem characterizes when the correspondence S(H) does indeed induce a nontrivial map

(6).

Theorem A (Theorem 7.2.5). Let π1 and π2 be cuspidal automorphic representations of GL2(AF ) of parallel
weights 4 and 2, respectively, and with the same unitary central character. Then the composite map

H3d
c (S(GSp4), E(d))[ΠS(π1, π2)f ]

[S(H)]−−−−→ Hd(S(GL2), E) ↠ Hd(S(GL2), E)[π2,f ]

is nontrivial if and only if Sf = ∅. In this case its image generates the GL2(AF,f )-module Hd(S(GL2), E)[π2,f ].

One could instead project to the πf -isotypic component for any cuspidal automorphic representation π
of GL2(AF ); however, if π ̸= π2, we prove that the resulting map is always trivial. In the non-generic case
Sf ̸= ∅, we are not able to produce an algebraic cycle which induces a nontrivial map (6). However, we are
able to give an alternative realization of (6) as the map induced by a nontrivial Hodge cycle:

Theorem B (Theorem 10.2.3). Let π1 and π2 be cuspidal automorphic representations of GL2(AF ) of
parallel weights 4 and 2, respectively, with the same unitary central character. Let S be a set of places of F
at which both πi are discrete series, such that |Sf | ≥ 2 is even. Then there exists a Hodge class

ξ ∈ H4d(S(GSp4)× S(GL2), E(2d))

such that:

(1) For all finite places λ of E, the image of ξ in λ-adic étale cohomology is Gal(Q/F c)-invariant.
(2) The composite map

H3d
c (S(GSp4), E(d))[ΠS(π1, π2)f ]

ξ∗−→ Hd(S(GL2), E) ↠ Hd(S(GL2), E)[π2,f ]

is nontrivial, and its image generates the GL2(AF,f )-module Hd(S(GL2), E)[π2,f ].
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Remark. (1) Assuming Kottwitz’s conjectures, one could show that ξ is Gal(Q/Q)-invariant. However,
our result is unconditional, and in particular does not rely on (4) and (5).

(2) In the text, we also prove higher-weight analogues of Theorems A and B; the results are described
later in the introduction.

Overview of the proofs. Both Theorem A and Theorem B rely on the explicit realization of ΠS(π1, π2)
as a theta lift from a four-dimensional orthogonal group, cf. [28, 35]. Indeed, if |S| is even, then there is
a quaternion algebra B over F ramified exactly at the places in S, and the orthogonal group GSO(B) ≃
B××B×/Gm is an inner form of M . The automorphic representation ΠS(π1, π2) is the theta lift of πB1 ⊠πB2
from GSO(B) to GSp4,F , where π

B is the Jacquet-Langlands transfer of πi to B
×. This is crucial because

it allows for the calculation of period integrals involving ΠS(π1, π2).

Proof of Theorem A. Since the non-vanishing of [S(H)] may be detected in L2 cohomology, the theorem is
essentially a statement about periods of ΠS(π1, π2)⊠ π∨

2 along the subgroup H ⊂ GSp4×GL2 . That is, we
must compute integrals of the form

(8) PS(γ, β) :=
∫
ZH(AF )H(F )\H(AF )

γ(ι(h))β(p(h)) dh, γ ∈ ΠS(π1, π2), β ∈ π.

Because ΠS(π1, π2) is a theta lift from GSO(B), we can compute (8) using the seesaw diagram:

GSp4 GSO(B)×Gm
GSO(B)

GL2×Gm GL2 GSO(B)

Here the vertical lines are inclusions and the diagonals are dual reductive pairs inside GSp16. Formally, the
seesaw identity would read:

(9) PS(θ(α), β) =
∫
[PGSO(B)]

θ(β)(g)θ(1)(g)α(g) dg, α ∈ π1 ⊗ π2, β ∈ π∨
2 ,

where the theta lifts on the right are from GL2 to GSO(B), and the theta lifts on both sides depend on
choices of Schwartz functions which must be made compatibly. The integral defining θ(1) is divergent, so a
regularization step is necessary to interpret (9). However, after regularization, θ(1) can be recognized as 0
if B is not split (i.e. if S ̸= ∅), and as a certain Eisenstein series on GSO(B) if B is split. The integral (9)
then unfolds to an Euler product which allows us to evaluate it explicitly. The result of the calculation is:

Theorem C (Theorems 6.2.2, 6.5.2). Let π1, π2, and π be cuspidal automorphic representations of GL2(AF )
such that πi and π

∨ have the same central character, and let S be a finite set of (possibly archimedean) places
of F at which both πi are discrete series, such that |S| is even. Consider the period pairing

(10) PS(γ, β) :=
∫
ZH(AF )H(F )\H(AF )

γ(ι(h))β(p(h)) dh, γ ∈ ΠS(π1, π2), β ∈ π,

where dh is normalized as in (6.1.1).

(1) If PS(γ, β) ̸= 0, then S = ∅, i.e. ΠS(π1, π2) is generic, and π ∼= π∨
2 .

(2) Suppose given factorizable Schwartz functions

ϕi = ⊗vϕi,v ∈ S(M2(AF )), i = 1, 2

and factorizable vectors

α = ⊗vαv ∈ π1 ⊗ π2, β = ⊗vβv ∈ π∨
2 .

Then the theta lift θϕ1⊗ϕ2
(α) lies in Π∅(π1, π2) and, for a sufficiently large finite set S of places of

F ,

P∅(θϕ1⊗ϕ2
(α), β) = 2|DF |1/2 · π−dL

S(1, π1 × π∨
2 )L

S(1,Adπ2)

ζSF (2)

∏
v∈S

Zv(ϕ1,v, ϕ2,v, αv, βv)
1− q−1

v

.

Here Zv(ϕ1,v, ϕ2,v, αv, βv) is an explicit local zeta integral which is nonzero for appropriate choices
of test data; ϕ1⊗ϕ2 is the tensor product Schwartz function in S(M2(AF )2); the theta lift θϕ1⊗ϕ2

(α)
is defined in §4; and the other notations are introduced in (2.1.1).
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Remark. The L-values appearing in Theorem C are nonzero by the classical result of Shahidi [30].

In fact, Theorem C amounts to a special case of the non-tempered Gan-Gross-Prasad conjectures in [8]:
if π1 and π2 have trivial central character, then ΠS(π1, π2) descends to PGSp4 = SO5, and the period (8)
reduces to a period for the split GGP pair SO4 ⊂ SO5 . Although ΠS(π1, π2) is tempered, the automorphic
representation of SO4 corresponding to the forms β(p(h)) on H is not, and so this period falls outside the
scope of the usual GGP conjecture.

To deduce Theorem A from Theorem C, one additional ingredient is needed. In the period integrals
(8), one really wants to consider only vectors γ and β that contribute to cohomology, which in our case is
equivalent to generating a minimal K-type at archimedean places. The most delicate part is to write such a
vector γ as a theta lift θϕ(α), which requires a particular choice of archimedean component for the Schwartz
function ϕ; the correct choice is calculated using local Howe duality. Once we know which ϕ to consider, we
can evaluate the relevant archimedean zeta integrals to show that the periods (8) are nontrivial.

Proof of Theorem B. The main difficulty in the proof of Theorem B is to find a nontrivial family of Hodge
classes on S(GSp4) × S(GL2) (besides the ones coming from the algebraic cycle S(H)). Once we have a
good supply of Hodge classes, the proof that they induce nontrivial maps (6) uses similar methods to the
proof of Theorem A.

This family of Hodge classes is constructed using nontempered, cohomological automorphic representations
of GSp6(AF ) which contribute to cohomology in degree 4d, and whose contribution consists entirely of
Hodge cycles. More precisely, let S = Sf ∪ S∞ with |Sf | even, and let B be the quaternion algebra over F
which is ramified exactly at Sf . Assume Sf ̸= ∅, i.e. B is nonsplit. Then for any auxiliary automorphic
representation π of PB(AF )× of parallel weight 6, we consider Θ(π ⊠ 1), the theta lift from GSO(B) to
GSp6 of the automorphic representation π⊠ 1 of GSO(B) ≃ B× ×B×/Gm. We do not prove that Θ(π⊠ 1)

is irreducible, but for any constituent Π̃ of Θ(π ⊠ 1), we have:

(11) H4d
(2)(S(GSp6),C)[Π̃f ] = H2d,2d

(2) (S(GSp6),C)[Π̃f ]

and

(12) Gal(Q/F c) acts trivially on IH4d(S(GSp6),Qℓ(2d))[Π̃f ],

where we identify Qℓ ≃ C to make sense of (12). In fact, (11) and (12) remain true for any Π̃ which is only
nearly equivalent to a constituent of Θ(π ⊠ 1).

To prove (11), it suffices (by Matsushima’s formula) to understand the Lie algebra cohomology of any Π̃∞
such that Π̃f ⊗ Π̃∞ is automorphic. For this it is better to restrict to Sp6, where we may use the endoscopic

classication of Arthur [4]. In particular, any irreducible constituent Π̃′ of Π̃f⊗Π̃∞|Sp6(AF ) has a global Arthur

parameter which depends only on π, and each component Π̃′
v of Π̃′ lies in the corresponding local Arthur

packet for Sp6(Fv). Since Lie algebra cohomology is issentially insensitive to restriction to Sp6, it suffices to

understand the cohomology of all Π̃′
v in the local Arthur packet, for each v|∞. This is accomplished using

the construction of archimedean packets in [2] and the classification of unitary representations with nonzero
cohomology [32].

To prove (12), suppose that p ̸= ℓ splits completely in F and that Π̃v is spherical for all v|p. Then
the generalized Eichler-Shimura relation proven by Lee [19, 20] provides a polynomial P (X) such that

P (Frobp) = 0 on IH∗(S(GSp6),Qℓ)[Π̃f ]. The coefficients of P (X) depend on the Satake parameters of Π̃v
for v|p, which in turn are determined by those of πv via the spherical theta correspondence for orthogonal-
symplectic similitude pairs (Proposition 4.3.3). It turns out that P (X) has a unique root of weight 4d,

which is p−2d. (The other roots correspond to appearances of Π̃f in higher cohomological degrees.) Thus

Frobp = p−2d on IH4d(S(GSp6),Qℓ)[Π̃f ] for all such p, which shows (12) by the Chebotarev density theorem.

Let us now return to the main construction. For H̃ := GSp4×Gm
GL2 ⊂ GSp6, we have inclusions of

Shimura varieties

S(GSp6)
ι1←− S(H̃)

ι2−→ S(GSp4)× S(GL2)

such that ι2 is open and closed. Thus we obtain a well-defined map

(13) ι2,∗ ◦ ι∗1 : IH∗(S(GSp6), E(d))→ IH∗(S(GSp4)× S(GL2), E(d)).
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If Π̃ is defined over E, then the subspace IH∗(S(GSp6), E(d))[Π̃f ] makes sense, and we obtain from (11),
(12), and (13) a space of Galois-invariant Hodge classes

Hdg(Π̃) ⊂ IH4d(S(GSp4)× S(GL2), E(d)).

However, we will see in a moment that, to obtain the nonvanishing of a Hodge class constructed in this way,

we will have to allow π – hence also Π̃ – to be defined over an arbitrary number field. In general, let S(π)
denote the set of automorphic representations of GSp6(AF ) which are nearly equivalent to a constituent of
Θ(π ⊠ 1). Then the subspace∑

σ∈Aut(C/Q)

∑
Π̃∈S(πσ)

IH4d(S(GSp6),C)[Π̃f ] ⊂ IH4d(S(GSp6),C)

is stable under the Aut(C/Q) action on the coefficients. After descending to E, its image under (13) defines
a subspace

Hdg(π) ⊂ IH4d(S(GSp4)× S(GL2), E(d))

which again consists of Galois-invariant Hodge classes.
It remains to show that some element ξ ∈ Hdg(π) induces a nonzero map as claimed in Theorem B.

Similarly to the proof of Theorem A, we reduce this question to showing that the triple product period
integral

(14)

∫
[Z

H̃
\H̃]

θ(α)(h, h′)β(h)γ(h′) d(h, h′), α ∈ π ⊠ 1, β ∈ ΠS(π1, π2), γ ∈ π∨
2

is nonzero for some choice of π and some choice of test vectors α, β, and γ. Here H̃ is parametrized by
pairs (h, h′) ∈ GSp4×GL2, and the theta lift, which again depends on a choice of Schwartz function, is from
GSO(B) to GSp6. The relevant seesaw diagram for this period is:

GSp6 GSO(B)×Gm
GSO(B)

GSp4×Gm
GL2 GSO(B)

The seesaw identity reduces (14) to

(15)

∫
[PGSO(B)]

α(g)θ(β)(g)θ(γ)(g) dg,

where the theta lifts are now from GSp4 and GL2 to GSO(B). (Under the assumption that B is nonsplit, all
the integrals involved in the seesaw identity converge absolutely.) The theta lift θ(γ) runs over (πB2 )∨⊠(πB2 )∨

as γ varies, and the image of the theta lift θ(β) includes πB1 ⊠ πB2 as β varies. We choose α to be a Hilbert
modular eigenform on PB×(AF ) such that ⟨fB1 · fB2 , α⟩Pet ̸= 0, where fB1 ∈ πB1 and fB2 ∈ (πB2 )∨ are
holomorphic newforms, and let π be the automorphic representation generated by α. (Note that α may be
defined over a larger number field than fB1 · fB2 .) Having made this choice of π and α, it follows that (15) is
nonzero for appropriate choices of β and γ.

Overview of the higher-weight case. To simplify the notation, assume for now that F = Q. The
representations ΠS(π1, π2) are cohomological whenever π1 and π2 have weights m1 ≥ m2 + 2 ≥ 4. In this
situation one again finds nontrivial Galois-invariant classes in the étale cohomology of S(GSp4) × S(GL2),
where now we take cohomology with coefficients in a local system depending on m1 and m2. However, it is
only for special choices of weights that we are able to formulate an analogue of Theorem A.

So suppose that π1, π2 have weights m+ 2 and m respectively, for an integer m ≥ 2. Let V(m−2,0) be the

representation of GSp4(Q) with highest weight (m− 2, 0) and central character t 7→ tm−2, and let Vm−2 be
the representation Symm−2 Vstd of GL2(Q). We write V(m−2,0) and Vm−2 for the corresponding local systems
of E-vector spaces on S(GSp4) and S(GL2). (The normalization of these local systems is different in the
text.) With the corresponding normalization of the central characters of πi, we have [35]:

(16) H3
ét,c(S(GSp4)Q,V(m−2,0),λ)ΠS(π1,π2)f =

{
ρπ2

(1), ∞ ̸∈ S
ρπ1

, ∞ ∈ S
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In particular, when ∞ ̸∈ S one finds a nontrivial Galois-invariant map

(17) H3
ét,c(S(GSp4)Q,V(m−2,0),λ)[ΠS(π1, π2)f ]→ H1

ét(S(GL2)Q,Vm−2,λ)[π2,f ].

The significance of our special choice of weights is that the local system

ι∗V∨
(m−2,0) ⊗ p

∗Vm−2

on S(H) has the constant local system Q as a direct factor with multiplicity one. We may therefore define

(18) [S(H)] ∈ H4
(
S(GSp4)× S(GL2),V∨

(m−2,0) ⊠ Vm−2(2)
)

using the pushforward of the fundamental class on S(H).

Theorem D. Let π1 and π2 be cuspidal automorphic representations of GL2(AQ) of weights m+ 2 and m,
respectively, and the same central character (suitably normalized). Then the composite map

H3
c (S(GSp4),V(m−2,0)(1))[ΠS(π1, π2)f ]

[S(H)]∗−−−−−→ H1(S(GL2),Vm−2) ↠ H1(S(GL2),Vm−2)[π2,f ]

is nonzero if and only if S = ∅. In this case its image generates the GL2(AQ,f )-module H1(S(GL2),Vm−2)[π2,f ].

It is likely that Theorem B could be generalized to the weights m1 ≥ m2 + 2 ≥ 4; however, we have
restricted our attention to the context of Theorem D.

Theorem E. Let π1 and π2 be cuspidal automorphic representations of GL2(AQ) of weights m+ 2 and m,
respectively, with the same central character (suitably normalized). Let S be a set of places of Q at which
both πi are discrete series, such that |S| ≥ 2 is even and ∞ ̸∈ S. Then there exists a Hodge class

ξ ∈ H4
(
S(GSp4)× S(GL2),V∨

(m−2,0) ⊠ Vm−2(2)
)

such that:

(1) For all finite places λ of E, the image of ξ in λ-adic étale cohomology is Gal(Q/Q)-invariant.
(2) The composite map

H3
c (S(GSp4),V(m−2,0))[ΠS(π1, π2)f ]→ H1(S(GL2),Vm−2) ↠ H1(S(GL2),Vm−2)[π2,f ]

is nontrivial, and its image generates the GL2(AF,f )-module Hd(S(GL2),Vm−2,λ)[π2,f ].

The proofs of Theorems D and E follow the same lines as the overview given above, with only minor
modifications. When F ̸= Q, we also have similar results assuming π1 and π2 have vector-valued weights
(mv +2)v|∞ and (mv)v|∞. However, in this case it is more cumbersome to write down the definitions of the
appropriate local systems. The precise results are included in Theorems 7.2.5 and 10.2.3 below.

One could also ask for an analogue of Theorem E that uses π1, the higher-weight representation, in the
place of π2. Unfortunately, our construction does not appear to yield any results in this direction.

Comparison with previous work. Previous results in this direction were concerned with the Jacquet-
Langlands correspondence for cohomological representations of inner forms of GL2,F . For the transfer be-
tween quaternion algebras B1 and B2 which are split at exactly one archimedean place, the Shimura varieties
associated to B×

1 and B×
2 are curves. The resulting Tate classes are known to arise from cycles by Faltings’s

isogeny theorem [6], but no more explicit construction of these algebraic cycles is known. When the relevant
Shimura varieties have higher dimension, Ichino and Prasanna [14] have shown that the Jacquet-Langlands
transfers (for general weights) are induced by Hodge cycles. Their construction is similar to the one used to
prove Theorem B. However, the results of this paper demonstrate two new phenomena that did not appear
in [14]: the first is the presence of the candidate algebraic cycle S(H), and the second is the qualitatively
different behavior of generic and non-generic members of the L-packet.
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Arithmetic implications. This work was originally motivated by a question of Weissauer in [34], which
can be paraphrased as follows: if F = Q and π2 is the automorphic representation associated to an elliptic
curve E/Q, then the motive associated to E appears attached to members of the L-packet Π(π1, π2) in the
cohomology of S(GSp4). Can we then use Shimura curves on S(GSp4) to construct interesting Selmer classes
for E in the spirit of Heegner points? Theorem A implies that, when applied to quaternionic Shimura curves
and a generic representation Π∅(π1, π2), this construction would simply recover the Heegner points on E.
Indeed, all appearances of the motive of E attached to generic representations Π∅(π1, π2) are fully accounted
for by Hecke translates of the correspondence from S(GSp4) to the modular curve S(GL2) induced by (7),
and nonsplit quaternionic Shimura curves on S(GSp4) are necessarily sent to CM divisors on S(GL2) under
this correspondence. It is an intriguing question whether Weissauer’s construction yields new Selmer classes
when applied to the non-generic members of the L-packets Π(π1, π2).

Organization of the paper. In §2, we give some basic notations and conventions. In §3, we recall the
plectic version of Matsushima’s formula and its relation to vector-valued automorphic forms. In §4, we give
notations and conventions for similitude theta lifts. This section also contains a proof of the L-functoriality
for similitude theta lifts of spherical representations from orthogonal to symplectic groups (Proposition 4.3.3);
this is presumably well-known to experts. In §5, we recall the construction of the Yoshida lift L-packets via
theta lifts, and compute the plectic Hodge structures associated to ΠS(π1, π2)f . The material up to this
point is necessary for all the main results. However, the proofs of Theorems C and A, which are given in
§6 and §7, respectively, are logically independent of the proof of Theorem B. The only exceptions are some
results on the archimedean theta correspondence in §7.1. In §8, we study the nontempered representations
used for the construction of Hodge classes. In §9, we compute the vector-valued triple product periods that
are necessary for the nonvanishing of the Hodge classes. The proof of Theorem B is completed in §10.
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encouragement; Wei Zhang, for pointing out the relation of Theorem C to the nontempered GGP conjecture;
and Si Ying Lee, Siyan Daniel Li-Huerta, Kartik Prasanna, and Alexander Petrov, for helpful conversations
and correspondence. This work was supported by NSF Grant #DGE1745303.

2. Preliminaries

2.1. Basic notations.

2.1.1. Throughout this article, F is a fixed totally real number field of degree d and discriminant DF , OF is
its ring of integers, and AF is its ring of adeles. For each place v of F , denote by Fv the completion; if v is non-
archimedean, Ov is the valuation ring of Fv, ϖv ∈ Ov is the uniformizer, and qv = #Ov/ϖv. For archimedean
v, qv = 1. The Haar measure on the additive group AF is the product measure da = daf

∏
v|∞ dav, where

daf is the Haar measure on AF,f such that ÔF has volume 1 and dav is the standard measure on Fv ∼= R.

2.1.2. If G is an algebraic group over F , [G] denotes the adelic quotient G(F )\G(AF ). If dg denotes a Haar
measure on G(AF ), then we write dg as well for the quotient Haar measure on [G] (where G(F ) is given the
counting measure).

2.1.3. We fix the additive character ψ = ψ0 ◦ tr of F\AF , where ψ0 : Q\A → C is the unique unramified
character such that ψ0(x) = e2πix for x ∈ R.

2.1.4. For any m, let ωm : R× → R× be the character

t 7→ tm−2·⌊m
2 ⌋.

If m = (mv)v|∞, let ωm : (F ⊗ R)× → R× be the character ⊗v|∞ωmv
. These characters will be used as the

central characters for “nearly unitary” normalizations of automorphic forms appearing in cohomology.

2.1.5. If V is a vector space over a local field k (either Archimedean or non-Archimedean), then Sk(V ) is
the Schwartz space of functions on V . If V is a vector space over F and v is a place of F , then SFv

(V )
denotes the space of Schwartz functions on V ⊗F Fv. Likewise, we write SF⊗R(V ) for the tensor product of
the Schwartz spaces SFv

(V ) as v ranges over archimedean places of F .

2.2. Conventions for GL2 and SL2.



8 NAOMI SWEETING

2.2.1. The standard Borel and unipotent subgroups of GL2 are denoted B and N , respectively; B denotes the

image of B in PGL2 . We shall abbreviate by c 7→ hc the section of det : GL2 → Gm given by hc =

(
1 0
0 c

)
.

2.2.2. For each non-archimedean place v of F , we normalize the Haar measure dgv on PGL2(Fv) to assign
volume 1 to PGL2(Ov), and likewise for SL2(Fv). For non-archimedean v, we choose the Haar measure dgv
on PGL2(Fv) ∼= PGL2(R) given by:

(19) dgv =
dadtdθ

πt2
, gv =

(
1 a
0 1

)(
t 0
0 1

)(
cos θ sin θ
− sin θ cos θ

)
, a ∈ R, t ∈ R×, θ ∈ [0, π).

On SL2(Fv) ∼= SL2(R), we choose the Haar measure dgv given by:

(20) dgv =
da dtdθ

2πt2
, gv =

(
1 a
0 1

)(
t1/2 0
0 t−1/2

)(
cos θ sin θ
− sin θ cos θ

)
, a ∈ R, t ∈ R>0, θ ∈ [0, 2π).

2.2.3. For the standard compact subgroup SO(2) of SL2(R), we denote by χm : SO(2) 7→ C× the character(
cos θ sin θ
− sin θ cos θ

)
7→ (cos θ + i sin θ)m.

2.3. Conventions for symplectic groups.

2.3.1. Let J be the matrix

(
0 1
−1 0

)
. Then, for any field k, the block-diagonal matrix

J . . .

J

 defines

a symplectic pairing on the k-space W2n,k = ⟨e1, · · · , e2n⟩ such that

W2n,k = ⟨e1, e3, · · · , e2n−1⟩ ⊕ ⟨e2, e4, · · · , e2n⟩

is a decomposition into maximal isotropic subspaces; we refer to W2n,k as the standard symplectic space of
dimension 2n. The symplectic group Sp2n,k and the general symplectic group GSp2n,k are the isometry and
similitude groups, respectively, of W2n,k. When not otherwise specified, k = F .

2.3.2. The maximal compact-modulo-center subgroup of the symplectic group GSp2n,R is Kn ≃ (U(n) ×
R×)/ {±1}, consisting of the matrices whose 2 × 2 blocks commute with J . When Kn is viewed as a
subgroup of GSp2n(Fv) we write it Kn,v. There is a maximal compact torus T ⊂ U(n) such that

t =

α1J
. . .

αnJ

 , αi ∈ R.

We parameterize the weights of U(n) by tuples of integers (m1, · · · ,mn), corresponding to the characterα1J
. . .

αnJ

 7→ m1α1 + · · ·+mnαn.

When n = 1, the character χm ⊠ ω−1
m on U(1) × ZGL2 descends to a character of K1, which we will also

denote by χm; we hope that this will cause no confusion.

3. Cohomology of Shimura varieties

3.1. Plectic Hodge structures.
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3.1.1. Let G be a reductive group over F , and let G = ResF/QGF . Since

(21) G(R) =
∏
v|∞

G(Fv) =
∏
v|∞

Gv(R),

a Shimura datum (G,X) is necessarily a product X ≃
∏
v|∞Xv. If Kv ⊂ Gv(R) denotes the stabilizer of a

distinguished point hv ∈ Xv, then the stabilizer of the corresponding point h ∈X is

K∞ =
∏
v|∞

Kv.

Given a neat compact open subgroup

K ⊂ G(AQ,f ) = G(AF,f ),

one has a smooth algebraic Shimura variety SK(G,X) such that

SK(G,X)(C) = G(F )\G(AF,f )×X/K;

the inverse limit over K defines the pro-algebraic Shimura variety S(G). (We usually drop X since it will
be clear from context.) Finally, given an algebraic representation ρ of G on an E-vector space V , we have
for each level subgroup K the local system VK on SK(G) whose total space over SK(G)(C) is

(22) G(F )\G(AF,f )×X × V/K.

The local systems VK are compatible as K varies, and we write V for this compatible collection of local
systems on S(G).

3.1.2. Assuming E ⊂ C, Matsushima’s formula for the L2 cohomology of S(G) is:

(23) H∗
(2)(S(G),VC) ∼=

⊕
π=πf⊗π∞

mdisc(π) · πf ⊗H∗(Lie G;K∞, π
sm
∞ ⊗ VC)).

Here π runs over cuspidal automorphic representations of G(A), mdisc(π) refers to the multiplicity in the
discrete spectrum, and πsm

∞ is the dense subspace of smooth vectors. Moreover (23) is equivariant for the
natural actions of G(AF,f ) on both sides. Suppose VC = ⊗vVv, where Vv are C-vector spaces equipped with
algebraic representations ρv of Gv(R), such that ρ factors as

(24) ρ : G(F ) ↪→ G(F ⊗ R) ≃
∏
v

Gv(R)
⊗ρv−−→

∏
v

Aut(Vv).

Since the Lie algebra of G is
∏
v|∞ gv, the right hand side of (23) has a decomposition (cf. [23]):

(25)
⊕
p,q

 ⊕
πf⊗π∞

mdisc(π) · πf ⊗
⊗
v|∞

Hpv,qv (gv,Kv, π
sm
v ⊗ Vv)

 .

Here p and q are plectic Hodge types, i.e. tuples of positive integers (pv)v|∞ and (qv)v|∞. Then (23) induces
a plectic Hodge decomposition on H∗

(2)(S(G),VC), written:

(26) H∗
(2)(S(G),VC) =

⊕
p,q

Hp,q
(2) (S(G),VC).

Remark 3.1.3. Because this decomposition does not take into account the variation of Hodge structures
on VC, it does not compare directly with the canonical mixed Hodge structure on H∗(S(G),VC). For this
reason, (26) should be viewed more as a computational tool then as a suitable definition of “the” plectic
Hodge structure on H∗

(2)(S(G),VC).

3.2. Realizing automorphic forms in cohomology.
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3.2.1. The complex structure on Xv induces a decomposition

gv,C = k∞ ⊕ pv,+ ⊕ pv,−.

We define

(27) ∧p,qp∗G := ⊗v|∞(∧pvp∗v,+ ⊗ ∧qvp∗v,−),

and let (σp,q,∧p,q) be the corresponding natural representation of K∞. The vector bundle Ω∗ of differential
forms on S(G) has a decomposition

Ω∗ = ⊕p,qΩ
p,q,

where the vector bundle Ωp,q of (p, q)-forms on S(G) corresponds to the local system whose complex points
are:

G(F )\G(AF,f )×G(R)× ∧p,qp∗G/K∞.

In particular, the space Γ(2)(Ω
p,q ⊗ VC) of L2 global (p, q)-forms with coefficients in VC is identified with:

(28)
{
f ∈ C∞

(2)(G(AF ))⊗ VC ⊗ ∧
p,qp∗G : f(γgk) = ρ(γ)σp,q(k−1)f(g), ∀γ ∈ G(F ), k ∈K∞

}
.

Here C∞
(2)(G(AF )) is the space of smooth L2 functions on G(AF ); by definition, we have:

(29) Γ(2)(Ω
p,q ⊗ VC) ↠ Hp,q

(2) (S(G),VC).

Finally, we remark that there is a canonical isomorphism:

(A(2)(G(AF ))⊗ VC|K∞ ⊗ ∧p,qp∗G)K∞ ∼−→ Γ(2)(Ω
p,q ⊗ VC)

ϕ 7→ fϕ, fϕ(g) = ρ(g∞)ϕ(g).
(30)

Here ρ(g∞) is defined via the decomposition (24). By composing with (29), we obtain a realization of
vector-valued automorphic forms in cohomology:

(31) (A(2)(G(AF ))⊗ VC|K∞ ⊗ ∧p,qp∗G)K∞ ↠ Hp,q
(2) (S(G),VC).

3.3. Comparison with Betti cohomology.

3.3.1. For any local system V associated to a complex algebraic representation V of G(F ), recall the canonical
commutative diagram of G(AF,f )-modules (cf. [31, p. 293]):

H∗
cusp(S(G),V) H∗

(2)(S(G),V)

H∗
c (S(G),V) IH∗(S(G)∗,V) H∗(S(G),V)

∼

Here IH∗(S(G)∗,V) is the intersection cohomology of the minimal compactification, and the indicated map
is an isomorphism by the proof of Zucker’s conjecture [21, 29]. Moreover it is known that the composite
H∗

cusp(S(G),V) → H∗(S(G),V) is injective. Thus L2 cohomology is related to inner cohomology by the
inclusions:

(32) H∗
cusp(S(G),V) ⊂ H∗

! (S(G),V) ⊂ imH∗
(2)(S(G),V).

3.3.2. If Πf is a C[G(AF,f )]-module, Πf is defined over a subfield E ⊂ C if there exists a E[G(AF,f )]-module
ΠEf such that ΠEf ⊗EC ≃ Πf . In this case, if V is the E-local system associated to an E-linear representation

V of G(F ), then we write:

H∗
? (S(G),V)ΠSf

:= HomE[G(AF,f )](Π
E
f , H

∗
? (S(G),V),

H∗
? (S(G),V)[ΠSf

] := ΠEf ⊗E H∗
? (S(G),V)ΠSf

,
(33)

where H∗
? denotes compactly supported, inner, or singular cohomology as ? = c, !, or ∅.
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3.3.3. We say an irreducible admissible complex G(AF,f )-representation Π is Eisenstein if Π is a subquotient

of a parabolic induction Ind
G(AF,f )

P (AF,f )
πf , for a parabolic subgroup P = MN of G and a discrete automorphic

representation π ofM(AF ). For any admissible E[G(AF,f )]-moduleH, we sayH is Eisenstein if all irreducible
constituents of H ⊗ C are.

Lemma 3.3.4. Let V be the automorphic local system on S(G) associated to a G(F )-representation (V, ρ).
Then the E[G(AF,f )]-module

Hi(S(G),V)/Hi
! (S(G),V)

is Eisenstein.

Proof. This is well-known; a lucid exposition may be found in the preprint [10, Chapter 9]. □

3.4. Symplectic Shimura varieties.

3.4.1. When G = GSp2n, equipped with its usual Shimura datum, the subgroup K∞ is just

(34) Kn :=
∏
v

Kn,v ⊂ GSp2n(F ⊗ R).

We establish some notation for local systems on S(GSp2n). Suppose given a tuple λ = (λv)v|∞, where
λv = (m1,v, · · · ,mn,v) is a dominant weight of Sp2n,R. We define (ρλv

, Vλv
) to be the unique irreducible

C-linear representation of GSp2n whose restriction to Sp2n has weight λv and whose central character is
ω−1
m1,v+···+mn,v

in the notation of (2.1.4). This defines a representation (ρλ, Vλ) of GSp2n(F ) according to

(24), which clearly descends to F c.

Proposition 3.4.2. The representation (ρλ, Vλ) descends to a Q(λ)-linear representation of GSp2n(F ),
where Q(λ) is the fixed field of

{σ ∈ Aut(C/Q) : λσ·v = λv ∀v|∞} .

Proof. The proof of [33, Proposition I.3] applies unchanged. □

3.4.3. In particular, for each such λ, we obtain a Q(λ)-local system Vλ on S(GSp2n) such that Vλ,C arises
from the tuple of representations (ρλv

, Vλv
) of GSp2n(Fv) according to (24).

3.5. The case G = GL2.

3.5.1. We recall some basic results on the cohomology of S(G) in the simplest case, G = GL2 = GSp2 . For
a tuple of integers m = (mv)v|∞ with mv ≥ 2, define Q(m) to be the fixed field of

(35) {σ ∈ Aut(C/Q) : mσ·v = mv ∀v|∞} .

We then obtain from §3.4 a Q(m)-local system Vm−2 on S(GL2), where m− 2 = (mv − 2)v|∞.

3.5.2. Let (p(+), q(+)) = (1, 0) and (p(−), q(−)) = (0, 1), and define (p(ϵ), q(ϵ)) to be the plectic Hodge
type (pv(ϵv), qv(ϵv))v|∞, for any choice of signs ϵ = (ϵv)v|∞. Let χϵm be the character of K1 from (2.3.2).
Then we have:

dimC HomK1

(
χ−ϵm,∧p(ϵ),q(ϵ)p∗GL2

⊗ Vm−2,C

)
= 1,

dimC HomK1

(
χ∨

−ϵm,∧1−p(ϵ),1−q(ϵ)p∗GL2
⊗ V ∨

m−2,C

)
= 1.

(36)

Let π be a cuspidal automorphic representation of GL2(AF ) of weight m, whose central character has infinity
type ωm. Then combining (31) with (36) yields maps, well-defined up to scalars:

clϵ : (π ⊗ χ−ϵm)K1 → H
p(ϵ),q(ϵ)
(2) (S(GL2),Vm−2,C)[πf ]

cl′ϵ : (π
∨ ⊗ χ∨

−ϵm)K1 → H
1−p(ϵ),1−q(ϵ)
(2) (S(GL2),V∨

m−2,C)[π
∨
f ]

(37)

Here (1− p(ϵ), 1− q(ϵ)) = (p(−ϵ), q(−ϵ)) is the plectic Hodge type (1− p(ϵv), 1− q(ϵv))v|∞. The following
is well-known:
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Proposition 3.5.3. For each ϵ, the maps in (37) are isomorphisms, and

Hp,q
(2) (S(GL2),Vm−2,C)[πf ] = Hp,q

(2) (S(GL2),V∨
m−2,C)[π

∨
f ] = 0

if (p, q) is not of the form (p(ϵ), q(ϵ)) for some ϵ. Moreover, if πf is defined over E ⊃ Q(m), then there
are GL2(AF,f )-equivariant isomorphisms

H∗
! (S(GL2),Vm−2,E)[πf ]⊗E C ≃ H∗

(2)(S(GL2),Vm,C)[πf ]

and
H∗
c (S(GL2),Vm,E)[πf ] ≃ H∗(S(GL2),Vm,E)[πf ] ≃ H∗

! (S(G),Vm)[πf ],

and similarly for V∨
m,E and π∨

f .

□

4. Similitude theta lifting

4.1. Local Weil representation and local theta lift.

4.1.1. Let ϵ = ±1, and let V , W be vector spaces over a field k equipped with nondegenerate ϵ-symmetric
and (−ϵ)-symmetric pairings, respectively. We assume dimW = 2n and dimV = 2m are even, and that W
is equipped with a complete polarization

(38) W =W1 ⊕W2, W2 =W ∗
1 .

For simplicity, assume as well that the discriminant character of V is trivial (as will be the case in our
applications). Let G1 = G1(V ), G = G(V ) be the connected isometry and similitude groups, respectively,
of W , and likewise H1 = H1(W ) and H = H(W ) . Let P = P (W1) ⊂ H(W ) be the parabolic subgroup
stabilizing W1, P1 its intersection with H1, and N ⊂ P1 its unipotent radical. Also set

(39) R0 = {(h, g) ∈ H ×G : νH(h) = νG(g)} ,
where νG : G→ Gm and νH : H → Gm are the similitude characters.

4.1.2. Assume that k is a local field. Then, for any nontrivial additive character ψk of k, the Weil represen-
tation ω = ωW,V,ψk

of H1(k)×G1(k) is realized on the Schwartz space Sk(W2⊗V ); in this model, the action
of the parabolic P1 ×G1 ⊂ H1 ×G1 stabilizing W1 × V is described as follows.

(40)


ω(1, g)ϕ(x) = ϕ(g−1x), g ∈ G1(k),

ω(n, 1)ϕ(x) = ψ
(
1
2 ⟨n(x), x⟩

)
· ϕ(x), n ∈ N(k) ⊂ Hom(W2,W1),

ω(h(a), 1)ϕ(x) = |det(a)|mϕ(atx), a ∈ GL(W1)(k) ⊂ P1(k),

where GL(W1) is viewed as the Levi factor of P1 by the standard embedding

(41) a 7→ h(a) =

(
a 0
0 a−t

)
∈ P1.

Following the convention of [27], ω extends naturally to R0(k) by defining

(42) ω

((
1 0
0 νG(g)

)
, g

)
ϕ(x) = |νG(g)|−mn/2ϕ(g−1x)

for all g ∈ G(k). Note that ω is trivial on the center {(λ, λ)} ⊂ R0.

4.1.3. Suppose that V = V1⊕V2 is also split; then the preceding construction also defines an action of R0(k)
on Sk(W ⊗ V2) by interchanging the roles of V and W . These two representations are isomorphic via the
partial Fourier transform. More precisely, consider the map F : Sk(W2 ⊗ V )→ Sk(W ⊗ V2) defined by

(43) ϕ 7→ ϕ̂, ϕ̂(x1, x2) =

∫
(W2⊗V1)(k)

ϕ(z, x2)ψ(⟨z, x1⟩) dz,

where x1 ∈ W1 ⊗ V2, x2 ∈ W2 ⊗ V2, and dz is the self-dual Haar measure with respect to ψk. Then it is
well-known that F intertwines the actions of H1(k)×G1(k) on both sides, and it is immediate to check that
it intertwines the actions of ((

1 0
0 λ

)
,

(
1 0
0 λ

))
∈ R0(k)
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according to the definition (42); so F is equivariant for all of R0(k).

4.1.4. If π is an irreducible admissible representation of H(k), then the local theta lift Θ(π) = ΘW,V (π) is
the largest semisimple representation of G(k) such that there is a surjection

ωW,V,ψk
↠ π∨ ⊠Θ(π)

of admissible R0(k)-representations. Symmetrically, if σ is an irreducible admissible representation of G(k),
then the local theta lift Θ(σ) = ΘV,W (σ) is the largest semisimple representation of H(k) admitting a
surjection ωW,V,ψk

↠ Θ(σ)⊠ σ∨. The theta lift does not depend on ψk by [28, Proposition 1.9].

4.1.5. We remark that the Weil representation extends naturally to the full similitude groups of V andW , not
just the neutral connected components, and so a theta lift Θ(π) or Θ(σ) may be viewed as a representation
of the full similitude group of V or W . The drawback of working with neutral connected components of
similitude groups is that we no longer have Howe duality, and in particular the local theta lift may be
reducible. However, using connected similitude groups is more convenient for our global calculations.

4.2. Global Weil representation and global theta lifts.

4.2.1. Now turning to the global situation, assume k = F in (4.1.1). Also suppose given, for almost every
place v, self-dual lattices Wv ⊂W ⊗Fv and Vv ⊂ V ⊗Fv, such that Wv is compatible with the polarization
W =W1 ⊕W2 in the sense that:

Wv ∩ (W1 ⊗ Fv)⊕Wv ∩ (W2 ⊗ Fv) =Wv.

The adelic Schwartz space SAF
(W2⊗V ) is the restricted tensor product of the local Schwartz spaces SFv

(W2⊗
V ) with respect to the indicator function of (Wv∩(W2⊗Fv))⊗Vv. The global Weil representation of R0(AF ),
realized on SAF

(W2 ⊗ V ), is defined as the restricted tensor product of the local Weil representations (using
the characters ψFv determined by the fixed global character ψ). Recall the automorphic realization of ω,
given by the theta kernel:

(44) θ(h, g;ϕ) =
∑

x∈W2(F )⊗V (F )

ω(h, g)ϕ(x), (h, g) ∈ R0(AF ), ϕ ∈ SAF
(W2 ⊗ V ).

If V is also split, then we again have the alternate model SAF
(W ⊗V2), related to SAF

(W2⊗V ) by the adelic
partial Fourier transform. Note that

θ(h, g;ϕ) = θ(h, g; ϕ̂) =
∑

x∈W⊗V2

ω(h, g)ϕ̂(x)

by Poisson summation.

4.2.2. Let f ∈ A0(H(AF )) be an automorphic cusp form and choose any ϕ ∈ SAF
(W2 ⊗ V ). Then, fixing a

Haar measure dh1 on H1(AF ), the similitude theta lift θϕ(f) to G is the automorphic function

(45) g 7→
∫
[H1]

θ(h1h0, g;ϕ)f(h1h0) dh1, g ∈ G(AF ),

where h0 ∈ H(AF ) is any element such that νH(h0) = νG(g).
Likewise, if f ∈ A0(G(AF )) is an automorphic cusp form and dg1 is a Haar measure on G1(A), then the

similitude theta lift θϕ(f) to H is the automorphic function

h 7→
∫
[G1]

θ(h, g1g0;ϕ)f(g1g0) dg1, h ∈ H(AF ),

where g0 ∈ G(AF ) is any element such that νG(g0) = νH(h).
If π is a cuspidal automorphic representation of H(AF ), then the similitude theta lift Θ(π) = ΘW,V (π)

is the subspace of A(G(AF )) spanned by the theta lifts θϕ(f) for f ∈ π and ϕ ∈ SAF
(W2 ⊗ V ); if π is a

cuspidal automorphic representation of G(AF ), we similarly define Θ(π) = ΘV,W (π) to be the subspace of
A(H(AF )) spanned by the theta lifts θϕ(f) for f ∈ π and ϕ ∈ SAF

(W2 ⊗ V ). A key property of the global
theta lift is its compatibility with the local theta lift. Although this is well-known, we include a proof for
the reader’s convenience.
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Proposition 4.2.3. Let π be a cuspidal automorphic representation of either G(AF ) or H(AF ), and suppose
that Θ(π) lies in the L2 subspace. Then for any automorphic representation σ = ⊗′

vσv ⊂ Θ(π), σv is a
constituent of Θ(πv) for all v.

Proof. Without loss of generality, suppose π is a representation of G(AF ). Consider the map of R0(AF )-
representations:

SAF
(W2 ⊗ V )⊗ π ⊗ σ∨ → C

ϕ⊗ f ⊗ f ′ 7→
∫
[ZH\H]

θϕ(f)(h)f
′(h) dh.

This map is well-defined and nontrivial by assumption. By duality, it also gives a nontrivial map

SAF
(W2 ⊗ V ) ↠ π∨ ⊠ σ,

which is evidently a restricted tensor product. This implies the proposition. □

4.2.4. The theta lift defined in (4.2.2) generalizes readily to vector-valued automorphic forms. Suppose
K ⊂ G(F ⊗⊗R) and L ⊂ H(F ⊗ R) are subgroups which are compact modulo center, and let

(L×K)0 := (L×K) ∩R0(F ⊗ R).

Suppose given finite-dimensional representations σ and τ of L and K, and let f ∈ (A0(H(AF )) ⊗ σ)L be a
vector-valued automorphic form. Then for a vector-valued Schwartz function

φ ∈ (SF⊗R(W2 ⊗ V )⊗ σ∨ ⊗ τ)(L×K)0 ,

and a Schwartz function

ϕf ∈ SAF,f
(W2 ⊗ V ) := ⊗′

v∤∞SFv
(W2 ⊗ V ),

we may define

θϕf⊗φ(f) ∈ (A(G(AF ))⊗ τ)K

by the same formula (45) as for the scalar-valued theta lift. The vector-valued theta lift from G to H is
defined in the same way.

4.3. Spherical theta correspondence for similitudes.

4.3.1. We shall require an explicit description of the spherical similitude theta correspondence in certain
cases. Continuing the notation of (4.1.1), assume k is a nonarchimedean local field, that ψk is unramified,
and that V = V1 ⊕ V2 is a split orthogonal space (so that ϵ = +). For this subsection only, for the purposes
of clearer comparison with the literature, we let G′

1 and G′ denote the full isometry and similitude groups
of V , so that G′

1 and G′ are disconnected; likewise for

R′
0 := {(h, g) ∈ H ×G′ : νH(h) = νG′(g)} .

The Weil representation of R0(k) extends naturally to R′
0(k). We assume the additive character ψk of k

used to define ω is unramified.
Now choose bases {e1, · · · , em} and {f1, · · · , fn} of V1 and W1, respectively, and let {e∗1, · · · , e∗m} and

{f∗1 , · · · , f∗n} be the dual bases of V2 and W2. Let TG1
⊂ GL(V1) ⊂ G1 and TH1

⊂ GL(W1) ⊂ H1 be the
standard diagonal tori; then we choose the maximal tori for G, H, and R0 given (with respect to the bases
{e1, · · · , em, e∗1, · · · , e∗m} and {f1, · · · , fn, f∗1 , · · · , f∗n}) by:

TG = TG1 ×Gm =
{
diag(x1, · · · , xm, λx−1

1 , · · · , λx−1
m )
}

TH = TH1 ×Gm =
{
diag(y1, · · · , yn, κy−1

1 , · · · , κy−1
n )
}

TR0 = TH ×Gm TG ≃ TG1 × TH1 ×Gm

(46)
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4.3.2. To fix notation, we recall the unramified principal series of G and H. The unramified characters of
TG1(k) are parameterized by tuples χ1 = (α1, · · · , αm) ∈ (C×)m, where

χ1(diag(x1, · · · , xm, x−1
1 , · · · , x−1

n )) =

m∏
i=1

αord xi
i .

The unramified characters of TG(k) are parameterized by χ = (α1, · · · , αm, s) ∈ (C×)m+1, where

χ(diag(x1, · · · , xm, λx−1
1 , · · · , λx−1

m )) = sordλ
m∏
i=1

αord xi
i .

Similarly, the unramified characters of TH1(k) (resp. TH(k)) are parametrized by µ1 = (β1, · · · , βn) ∈ (C×)n

(resp. µ = (β1, · · · , βn, t) ∈ (C×)n+1), and the unramified characters of TR0
(k) are parameterized by

η = (β1, · · · , βn, α1, · · · , αm, u) ∈ (C×)n+m+1. Note that the character µ ⊠ χ of TH(k) × TG(k) pulls back
to the character

µ · χ := (β1, · · · , βn, α1, · · · , αm, st)
of TR0(k) under the inclusion TR0 ⊂ TH × TG.

For Borel subgroups BG = TGNG ⊂ G and BH = THNH ⊂ H, the (normalized) principal series repre-

sentations Ind
G(k)
BG(k) χ and Ind

H(k)
BH(k) µ possess unique spherical subquotients denoted πχ and σµ, respectively;

note πχ and σµ depend only on the Weyl orbits of χ and µ. Moreover σµ ⊠ πχ|R0 is the unique spherical

subquotient of Ind
R0(k)
BG(k)×BH(k)∩R0(k)

µ · χ.

Proposition 4.3.3. Suppose m ≤ n, ϵ = +, and that the residue field of k has odd cardinality q. If πχ is

the spherical representation of G(k) associated to χ = (α1, · · · , αm, s), and if Ind
G′(k)
G(k) πχ is irreducible, then

Θ(πχ) is the spherical representation σµ of H(k) for

µ = (α1, · · · , αm, q, q2, · · · , qn−m, sq−(m2−m)/4−(n2+n)/4+nm/2).

Proof. Since Ind
G′(k)
G(k) πχ is irreducible, Θ(πχ) is nonzero, irreducible [27], and unramified [28, Proposition

1.11]. Thus Θ(πχ) = σµ for some µ, and it remains to determine µ.
As in [25, §4], let σ = (σ1, · · · , σm) ∈ Cm, and consider for all ℜ(σi)≫ 0 the family of integrals:

(47) I(σ, ϕ) =

∫
ϕ

 m∑
i=1

aiif
∗
i ⊗ ei +

∑
1≤i<j≤m

zijf
∗
i ⊗ ej

 m∏
i=1

|aii|σi+i−r d×aii
∏
i<j

dzij ,

where ϕ ∈ Sk(W2 ⊗ V ).

Claim. If ℜ(σi) ≫ 0 for all i, then there exist Borel subgroups BG = TGNG ⊂ G and BH = THNH ⊂ H
such that NG and NH act trivially on V1, W1, respectively, and such that

Zσ(ϕ)(h, g) := I(σ, ω(h, g)ϕ)

defines an R′
0(k)-intertwining map from ω to the induced representation

Iσ := Ind
R′

0(k)

TR0
(k)·(NH×NG)(k) η(σ),

η(σ) = (qσ1+1−m, · · · , qσi+i−m, · · · , qσm , q, q2, · · · , qn−m,

qm−σ1−1, · · · , qm−σi−i, · · · , q−σm , q−(m2−m)/4−(n2+n)/4+nm/2) ∈ (C×)n+m+1.

Proof of claim: Note that

Iσ|H1×G′
1
≃ Ind

H1(k)
TH1

NH(k) µ1(σ)⊠ Ind
G′

1(k)

TG1
NG(k) χ1(σ),

µ1(σ) = (qσ1+1−m, · · · , qσi+i, · · · , qσm , q, q2, · · · , qn−m),

χ1(σ) = (qm−σ1−1, · · · , qm−σi−i, · · · , q−σm).

Thus the fact that Zσ is an H1 × G′
1-intertwining map, for choices of NH and NG as in the claim, is a

restatement of [25, Lemma 4.1]. (See p. 487-489 of loc. cit. for the choices of NH and NG.) To see that Zσ
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is an R′
0-intertwining map, it therefore suffices to check that, if

rλ =

((
1

λ

)
,

(
1

λ

))
∈ R0,

then

I(σ, ω(rλ)ϕ) = |λ|(m
2−m)/4+(n2+n)/4−nm/2 · | det(rλ,LieNH ×NG)|1/2I(σ, ϕ).

By definition,

I(σ, ω(rλ)ϕ) = |λ|−nm/2.

On the other hand, one can calculate directly that the determinant factor on the right-hand side is

|λ|−(m2−m)/4−(n2+n)/4,

since rλ acts by the scalar λ−1 on the rootspaces Hom(V2, V1) ∩ LieNG and Hom(W2,W1) ∩ LieNH , and
trivially on the rest of LieNG ×NH . This concludes the proof of the claim.

Now choose a hyperspecial subgroup KR′
0
of R′

0(k) (arising from maximal self-dual lattices in W and V ),
and let H be the Hecke algebra of C-valued, KR′

0
-biinvariant functions on R′

0. For all σ as in the claim, the
Hecke action on the unique spherical vector in Iσ defines an algebra morphism zσ : H → C. It follows from
[25] that the support of the H-module

Sk(W2 ⊗ V )
KR′

0

is contained in the Zariski closure of the points zσ of SpecH. On the other hand, the Satake isomorphism
identifies complex points of SpecH with R′

0-Weyl orbits of parameters η = (β1, · · · , βm, α1, · · · , αn, u) as
above. By assumption, there is a surjection

Sk(W2 ⊗ V ) ↠ π∨
χ ⊠ σµ,

and hence the character χ−1 ·µ lies in the Zariski closure of the Weyl orbit of the parameters η(σ) in the claim.
However, the µ listed in the proposition is the only one (up to H-Weyl action) satisfying this property. □

5. Yoshida lifts on GSp4

5.1. Some four-dimensional orthogonal spaces.

5.1.1. Let B be a quaternion algebra, possibly split, over a field k. Then B comes equipped with a norm
N : B → k and an involution b 7→ b∗ such that bb∗ = N(b) for all b ∈ B. The k-orthogonal space VB
associated to B is isomorphic to B as a vector space, with the inner product defined by

(48) (b1, b2) := tr(b1b
∗
2) = b1b

∗
2 + b2b

∗
1.

When B is split, we often drop the subscript and abbreviate V = VM2(k).

5.1.2. One has a map of algebraic groups over k:

(49) pZ : B× ×B× → GO(VB)

defined by

pZ(b1, b2) · x = b1xb
∗
2, x ∈ VB .

The kernel of pZ is the antidiagonally embedded Gm, and pZ is a surjection onto the connected similitude
group GSO(VB).

If k is a local field, then irreducible admissible representations of GSO(VB)(k) are all of the form π1 ⊠π2,
where πi are irreducible admissible representations of B× of the same central character; if k = F , the same
is true of automorphic representations of GSO(VB)(AF ).

5.2. Elliptic endoscopic L-parameters.
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5.2.1. The unique elliptic endoscopic group of GSp4,F is GSO(V ), equipped with the L-embedding:

(50) LGSO(V ) = (GL2×Gm
GL2)(C)×Gal(F/F ) ↪→ GSp4(C)×Gal(F/F ) = LGSp4.

The Langlands functoriality principle for the map (50) then suggests that, to an automorphic representation
π = π1 ⊠ π2 of GSO(V )(AF ), one can associate an L-packet of automorphic representations Π(π1, π2) of
GSp4(AF ). These L-packets and their local analogues are constructed via similitude theta lifting in [28, 35].
More precisely, for each place v of F and each irreducible admissible representation π1,v⊠π2,v of GSO(V )(Fv),
one associates a local L-packet

(51)
{
Π+(π1,v, π2,v),Π

−(π1,v, π2,v)
}
,

where by convention Π−(π1,v, π2,v) = 0 unless both πi,v are discrete series. For all v, Π+(π1,v, π2,v) is the
unique generic member of the L-packet, and is explicitly given by the (nonzero, irreducible) local similitude
theta lift:

(52) Π+(π1,v, π2,v) := ΘV,W4
(π1,v ⊠ π2,v).

If πi,v are both discrete series, then they admit Jacquet-Langlands transfers πBi,v to B×, where B is the
non-split quaternion algebra over Fv. In this case, we have

(53) Π−(π1,v, π2,v) := ΘVB ,W4(π
B
1,v, π

B
2,v),

a nonzero irreducible representation. We remark that the central character of Π±(π1,v, π2,v) is the common
central character of πi,v (since the central character of the Weil representation is trivial). The L-packets
associated to πv and π′

v = π2,v ⊠ π1,v coincide, but otherwise are all disjoint. Globally, given a cuspidal
automorphic representation π1 ⊠ π2 of GSO(V )(AF ) and a finite set S of places where πi are both discrete
series, we form the adelic representation

(54) ΠS(π1, π2) :=
⊗′

v ̸∈S

Π+(π1,v, π2,v)⊗
⊗
v∈S

Π−(π1,v, π2,v).

Theorem 5.2.2 (Weissauer). Let π1 ⊠ π2 be a cuspidal automorphic representation of GSO(V )(AF ), where
π1 ̸∼= π2. Then the automorphic multiplicity of ΠS(π1, π2) is given by:

mdisc(ΠS(π1, π2)) = mcusp(ΠS(π1, π2)) =

{
1, if |S| is even,

0, if |S| is odd.

The representations ΠS(π1, π2) constitute a full near equivalence class in the discrete spectrum of A(2)(GSp4(AF )),
and are generic if and only if S = ∅. They are tempered and not CAP. Moreoever, if |S| is even,

ΠS(π1, π2) = ΘVB ,W4
(πB1 ⊠ πB2 ),

where B is the unique F -quaternion algebra ramified at the set of primes S and πBi are the Jacquet-Langlands
transfers of πi to B

×(AF ).

Proof. This is a combination of [35, Theorem 5.2] (for the multiplicity formula) and [35, Corollary 5.5] (for
the nonvanishing of the global theta lift); note that, given ΘVB ,W4

(πB1 ⊠ πB2 ) ̸= 0, it is cuspidal if πB1 ̸= πB2
by [35, Theorem 4.3], and hence abstractly isomorphic to ΠS(π1, π2) by Proposition 4.2.3. □

5.3. Yoshida lifts in cohomology.

5.3.1. Fix a tuple m = (mv)v|∞ of integers such that mv ≥ 2 for all v. Let π1, π2 be cuspidal automorphic
representations of GL2(AF ) of weightsm+2 = (mv+2)v|∞ andm, respectively, with equal central characters
of infinity type ωm. For a set Sf of finite places of F at which πi are both discrete series, set

ΠSf
=

′⊗
v ̸∈Sf

v∤∞

Π+(π1,v, π2,v)⊗
⊗
v∈Sf

Π−(π1,v, π2,v).

We consider the local system V(m−2,0) of Q(m)-vector spaces on S(GSp4) according to the conventions of
§3.4 (the field Q(m) is defined in (3.5.1)).

For each v|∞, let τ+mv
, resp. τ−mv

, be the unique irreducible representation of K2,v of central character

ω−1
mv

whose restriction to U(2) ⊂ K2,v has highest weight (1,−mv − 1), resp. (mv + 1,−1). Similarly, let
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σ+
mv

, resp. σ−
mv

, be the unique irreducible representation of Kv of central character ω−1
mv

whose restriction
to U(2) has highest weight (−3,−mv − 1), resp. (mv + 1, 3). Note that τ±mv

are the duals of the minimal
Kv-types of the representation Π+

v (π1,v, π2,v) of (5.2.1), and σ
±
mv

are the duals of the minimal Kv-types of
Π−
v (π1,v, π2,v).
For a subset S∞ ⊂ {v|∞} and a collection of signs ϵ = {ϵv}v|∞ , define the K2-representation

(55) τ ϵ
m,S∞

:=
⊗
v∈S∞

σϵvmv
⊗
⊗
v ̸∈S∞
v|∞

τ ϵvmv
.

Thus τ ϵ
m,S∞

is a minimal K2-type of ΠS(π1, π2), if S∞ is the set of archimedean places in S.

5.3.2. Now let (p(ϵ, S∞), q(ϵ, S∞)) be the plectic Hodge type determined by:

(56) (pv(ϵ, S∞), qv(ϵ, S∞)) =


(3, 0), ϵv = +, v ∈ S∞,

(2, 1), ϵv = +, v ̸∈ S∞,

(1, 2), ϵv = −, v ̸∈ S∞,

(0, 3), ϵv = −, v ∈ S∞.

Thus (p(ϵ, ∅), q(ϵ, ∅) = (p(ϵ) + 1, q(ϵ) + 1) in the notation of (3.5.1). An easy calculation shows that

(57) dimHomK2

(
τ ϵ
m,S∞

, V(m−2,0),C ⊗ ∧p(ϵ,S∞),q(ϵ,S∞)p∗GSp4

)
= 1.

Hence, if S = Sf ⊔ S∞ is a finite set of places of F with |S| even, combining (31) and (57) yields a map
(well-defined up to a scalar):

(58) clϵS :
(
ΠS(π1, π2)⊗ τ ϵ

m,S∞

)K2 → H
p(ϵ,S∞),q(ϵ,S∞)
(2) (S(GSp4),V(m−2,0),C)[ΠSf

].

Proposition 5.3.3. The map clϵS is an isomorphism of G(AF,f )-representations, and moreover

Hp,q
(2) (S(GSp4),V(m−2,0),C)[ΠSf

] = 0

if (p, q) is not of the form (p(ϵ, S∞), q(ϵ, S∞)) for some S∞ such that |Sf ∪ S∞| is even.

Proof. That clϵS is an injection follows from [32] and the calculation of Casimir operators for G, cf. [11].
The surjectivity and the vanishing of other plectic Hodge types follows from (25), Theorem 5.2.2, and the
calculation of the nonvanishing (g,K2) cohomology groups:

dimH3,0(g,K2; Π
−
v (π1,v, π2,v)⊗ Vmv,C) = dimH0,3(g,K2; Π

−
v (π1,v, π2,v)⊗ Vmv,C) = 1,

dimH2,1(g,K2; Π
+
v (π1,v, π2,v)⊗ Vmv,C) = dimH1,2(g,K2; Π

+
v (π1,v, π2,v)⊗ Vmv,C) = 1.

The dimensions of these cohomology groups are calculated in [32]; the result is also recalled in [31]. □

5.3.4. Finally, we relate the ΠSf
-isotypic parts of the L2 and singular cohomology.

Proposition 5.3.5. Assume Π is defined over E, where Q(m) ⊂ E ⊂ C. Then there exist GSp4(AF,f )-
equivariant isomorphisms

H∗
! (S(GSp4),V(m−2,0),E)[ΠSf

]⊗E C ≃ H∗
(2)(S(GSp4),V(m−2,0),C)[ΠSf

]

and

H∗
c (S(GSp4),V(m−2,0),E)[ΠSf

] ≃ H∗(S(GSp4),V(m−2,0),E)[ΠSf
] ≃ H∗

! (S(GSp4),V(m−2,0),E)[ΠSf
].

Proof. By Theorem 5.2.2,

Hcusp(S(GSp4),V(m−2,0))[ΠSf
] ≃ H(2)(S(GSp4),V(m−2,0))[ΠSf

],

and the first statement follows by the discussion in (3.3.1). The second assertion is an immediate consequence
of Lemma 3.3.4 (and Poincaré duality), since ΠSf

is not Eisenstein. □

6. Periods of Yoshida lifts

6.1. The period problem.
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6.1.1. Let π1 ⊠ π2 be a cuspidal automorphic representation of GSO(V )(AF ), and let π be an auxiliary
cuspidal automorphic representation of GL2(AF ) such that π∨ and πi have the same central character.
Consider the subgroup

H = GL2×Gm GL2 ⊂ GSp4
and the period integral PS,π1,π2,π : ΠS(π1, π2)⊗ π → C defined by

(59) PS,π1,π2,π(α, β) =

∫
[ZH\H]

α(h, h′) · β(h) d(h, h′),

where H(AF ) ⊂ GSp4(AF ) is parameterized by pairs (h, h′) ∈ GL2(AF ) × GL2(AF ) such that det(h) =
det(h′). When π1, π2, and π are clear from context, we drop them from the notation PS,π1,π2,π. The goal
of this section is to calculate PS,π1,π2,π explicitly (Theorems 6.2.2 and 6.5.2). The result is applied to the
cohomology of Shimura varieties in the next section.

6.1.2. Of course, we must specify a Haar measure on [ZH\H] for (59) to be well-defined. Let C = A×,2
F F×\A×

F ,

and let dc be the Haar measure on C assigning volume 1 to the image of ÔF . As the measure on [ZH\H], we
take the measure induced by pullback from the surjection [SL2]× [SL2]× C ↠ [ZH\H]. The Haar measure
on SL2 is described in (2.2.2).

6.1.3. Before we begin the calculation of (59), we explain the seesaw diagram that lies behind it:

GSp4 GSO(VB)×Gm
GSO(VB)

H GSO(VB)

Here B is the quaternion algebra ramified at S, the vertical lines are inclusions, and the diagonals are
similitude dual pairs inside GSp8; the diagram corresponds to the two decompositions

W4 ⊗ VB =W2 ⊗ VB ⊕W2 ⊗ VB
of W16. Since ΠS(π1, π2) is spanned by theta lifts θϕ(f1 ⊗ f2) for fi ∈ πBi , we wish to apply the formal
seesaw identity:

(60) ⟨θϕ(f1 ⊗ f2)|H , β ⊗ 1⟩H = ⟨f1 ⊗ f2, θϕ(β ⊗ 1)|GSO(VB)⟩GSO(VB),

Here β ⊗ 1 is the automorphic form (h, h′) 7→ β(h) on H. Now, the theta lift from H to GSO(VB) ×Gm

GSO(VB) is simply two copies of the theta lift from GL2 to GSO(VB); restriction to the diagonal amounts
to multiplying the theta lifts of β and 1 on GSO(VB). The theta lift of β to GSO(VB) will be a vector
in πB ⊠ πB , where πB is the Jacquet-Langlands transfer. However, the theta lift of the constant function
is formally divergent; to regularize it, we need a certain second-term Siegel-Weil formula. Ignoring this
technicality, the theta lift θϕ(β ⊗ 1) restricted to the diagonal GSO(VB) should be the product of a vector
in πB ⊠ πB and an Eisenstein series on GSO(VB). Of course, the Eisenstein series can only exist when B is
split, so (59) should vanish identically unless S = ∅. But when S = ∅, integrating θϕ(β⊗ 1) against the form
f1 ⊗ f2 gives a Rankin-Selberg integral that unfolds to an Euler product and ultimately an L-function.

Thus to compute PS,π1,π2,π, we first must dispatch the trivial case S ̸= ∅, and then study the theta lift
of both cusp forms and constant functions from GL2 to GSO(V ). This is the content of the next three
subsections.

6.2. Calculation of period integral: trivial case.

6.2.1. The trivial case S ̸= ∅ can be handled easily:

Theorem 6.2.2. If S ̸= ∅, then PS is identically zero.

Proof. Let B be the quaternion algebra over F ramified exactly at S (recall |S| is even). By Theorem 5.2.2,
it suffices to show the vanishing of all integrals of the form

I(ϕ, g, f) =

∫
[ZH\H]

θϕ(g)(h, h
′) · f(h) d(h, h′),

where ϕ ∈ SA(W2 ⊗B), W2 ⊂W a maximal isotropic subspace of the standard four-dimensional symplectic
space, and g ∈ πB1 ⊠ πB2 . Let us fix a place v at which B ramifies, and a Schwartz function ϕ(v) ∈
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SAF
(v)(W2⊗B). Then, holding the other data f, g fixed as well, consider the linear map Iv : SFv (W2⊗B)→ C

defined by

(61) ϕv 7→ I(ϕv ⊗ ϕv, f, g).

Now Iv clearly factors through the maximal quotient Q of SFv (W2 ⊗ B) = SFv (B ⊕ B) on which {1} ×
SL2(Fv) ⊂ H(Fv) ⊂ GSp4(Fv) acts trivially. We claim this quotient is trivial. Indeed, the action of the
Borel subgroup of {1} × SL2(Fv) is explicitly described by:

ω

(
1×

(
1 n
0 1

)
, 1

)
ϕv(b1, b2) = ψ

(
1

2
nN(b2)

)
ϕv(b1, b2)

ω

(
1×

(
a 0
0 a−1

)
, 1

)
ϕv = |a|2ϕv(b1, ab2).

(62)

Since Bv is anisotropic, it follows from the first equation that SFv (W2 ⊗ B) → Q factors through ϕv 7→
ϕv(b1, 0); then the second equation implies Q = 0. Therefore Iv is identically zero for all choices of (ϕv, f, g),
and in particular (since the adelic Schwartz space is generated by factorizable Schwartz functions) all the
period integrals I(ϕ, f, g) vanish as well. □

6.3. Lifts of cuspidal representations from GL2 to GSO(V ).

6.3.1. Since V is split, the Weil representation for the pair (W2, V ) has the alternate model given by the
complete polarization V = V1 ⊕ V2, where

(63) V1 =

(
x y
0 0

)
, V2 =

(
0 0
z w

)
.

6.3.2. Let π be a cuspidal automorphic representation of GL2(AF ). It is well-known that the theta lift
Θ(π) ⊂ A0(GSO(V )(AF )) is isomorphic to the automorphic representation π⊠π of GSO(V ). To obtain our
ultimate period formula, we will require the following calculation:

Lemma 6.3.3. Let ϕ = ⊗vϕ ∈ SA(⟨e2⟩ ⊗ W ) and f = ⊗vfv ∈ π be factorizable vectors, and choose a
factorization

Wψ,f (h) =
∏
v

Wf,v(hv), h = (hv) ∈ GL2(AF )

of the global Whittaker function of f (so that Wf (hv)(1) = 1 for almost all v). Then the Whittaker coefficient
of θϕ(f) along the standard unipotent subgroup N ×N ⊂ pZ(GL2×GL2) is given by:

θϕ(f)(g)N×N,ψ−1×ψ−1 =
∏
v

(∫
SL2(Fv)

Wf,v(hvhcv )ω(hvhcv , g)ϕ̂(1, 0, 0,−1) dhv

)
, c = (cv) = det(g).

Proof. We compute in two steps. First, for (h, g) ∈ R0(AF ),

θ(h, g;ϕ)N×1,ψ−1×1 =

∫
[N ]

∑
x∈W⊗V2

ω(h, ng)ϕ̂(x)ψ(n) dn

=

∫
[Ga]

∑
(z1,w1,z2,w2)

ψ(a(w2z1 − z2w1))ω(h, g)ϕ̂(z1, w1, z2, w2)ψ(a) da

=
∑

(z1,w1,z2,w2)
z1w2−w1z2=1

ω(h, g)ϕ̂(x)

=
∑

γ∈SL2(F )

ω(γh, g)ϕ̂(1, 0, 0,−1).

Here dn is the Haar measure on N such that [N ] has volume 1. Now, using the identity

ω(nh, g)ϕ̂(1, 0, 0,−1) = ω(h,pZ(1, n)g)ϕ̂(1, 0, 0,−1), (g, h) ∈ R0, n ∈ N(A),
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we obtain:

θϕ(f)(g)N×N,ψ−1×ψ−1 =

∫
[N ]

∫
[SL2]

θ(hhc,pZ(1, n)g;ϕ)N×1,ψ−1×1ψ(n)f(hhc) dhdn

=

∫
[N ]

∫
SL2(A)

ω(hhc,pZ(1, n)g)ϕ̂(1, 0, 0,−1)ψ(n)f(hhc) dhdn

=

∫
[N ]

∫
SL2(A)

ω(hhc, g)ϕ̂(1, 0, 0,−1)ψ(n)f(n−1hhc) dndh

=

∫
SL2(A)

ω(hhc, g)ϕ̂(1, 0, 0,−1)Wψ,f (hhc) dh,

which gives the lemma. □

6.4. A Siegel-Weil identity for GSO(V ).

6.4.1. Degenerate principal series for GSO(V ). The maximal isotropic subspace V1 ⊂ V of (63) has stabilizer

(64) P = pZ(B ×GL2) ⊂ GSO(V ).

Let v be a place of F , and consider the (normalized) induced representation

Iv(s) = Ind
GSO(V )(Fv)
P (Fv)

δsP1
.

We also consider the induced representations Iv(s) = Ind
GL2(Fv)
B(Fv)

δsB . The representations Iv(s) and Iv(s) are

related by the following observation.

Proposition 6.4.2. The map

M : Iv(s)→ Iv(s)

defined by

M(φ)(g) = φ(pZ(g, 1))

is a linear isomorphism and an intertwining map of GL2(Fv)×GL2(Fv) representations, if GL2(Fv)×GL2(Fv)
acts on the left through the quotient GL2(Fv)×GL2(Fv) ↠ GSO(V )(Fv) and on the right through the quotient
GL2(Fv)×GL2(Fv) ↠ GL2(Fv)× {1} .

Then by the well-known theory of principal series for GL2, we deduce:

Corollary 6.4.3. For all places v, the representation Iv(1/2) has a unique irreducible subrepresentation,
and the corresponding quotient is the trivial character of GSO(V )(Fv).

6.4.4. Consider the map

[·]v : SFv
(⟨e2⊗⟩V )→ Iv(1/2)

defined by

[ϕ](g) = ω(hν(g), g)ϕ̂(0).

A standard calculation shows that [·] is equivariant for the action of R0(Fv) ⊂ GL2(Fv) × GSO(V )(Fv) on
both sides, where R0(Fv) acts on Iv(1/2) through the projection R0 ↠ GSO(V ). We may then extend [ϕ]v
to a holomorphic section [ϕ]v(s) ∈ Iv(s) by requiring the restriction of [ϕ] to the maximal compact subgroup
K0 ⊂ GSO(V )(Fv) to be independent of s.

Lemma 6.4.5. For any place v, the map ϕ 7→ [ϕ] identifies Iv(1/2) with the maximal quotient of SFv
(⟨e2⟩⊗

V ) on which SL2(Fv) ⊂ R0 acts trivially.

Proof. By [26, Theorem II.1.1] (cf. [17] in the Archimedian case), the map ϕ 7→ [ϕ] realizes its image as the
maximal quotient of SFv (⟨e2⟩⊗V ) on which SL2(Fv) acts trivially. In light of Corollary 6.4.3 it suffices to show
that there exists a nontrivial map SFv (⟨e2⟩⊗V )→ C which is equivariant for SL2(Fv)×SO(V )(Fv) ⊂ R0(Fv).
The L2-norm

ϕ 7→
∫
⟨e2⟩⊗V

|ϕ(z)|2 dz

is such a map (by the Plancherel identity). □
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6.4.6. Eisenstein series on GSO(V ). Let I(s) = Ind
GSO(V )(AF )
P (AF ) δsP be the global parabolic induction, and

for holomorphic sections φs ∈ I(s) consider the Eisenstein series:

(65) E(g, s;φ) =
∑

γ∈P (F )\GSO(V )(F )

φs(γg), g ∈ GSO(V )(AF ),

which converges for ℜ(s)≫ 0.We also consider I(s) = Ind
GL2(AF )
B(AF ) δsB and, for holomorphic sections φs ∈ I(s),

the corresponding family of Eisenstein series:

(66) E(g, s;φ) =
∑

γ∈B(F )\GL2(F )

φs(γg), g ∈ GL2(AF ).

Proposition 6.4.7. Let M = ⊗vMv : I(s)→ I(s) be the global intertwining map. Then

E(g1; s,M(φ)) = E(pZ(g1, g2); s, φ)

as functions on C×GL2(AF )×GL2(AF ) for ℜ(s)≫ 0 and holomorphic sections φ ∈ I. □

By Proposition 6.4.7 and the well-known theory of Eisenstein series for GL2, E(g, s;φ) has a meromorphic
continuation to s ∈ C, with at most a simple pole at s = 1

2 . Let

(67) [·]s : SAF
(⟨e2⟩ ⊗ V )→ I(s)

be the tensor product of the local maps [·]v,s. For each ϕ ∈ SAF
(⟨e2⟩ ⊗ V ), we consider the Laurent series

expansion:

(68) E(g, s; [ϕ]) =
A−1(g;ϕ)

s− 1
2

+A0(g;ϕ) + · · · .

Lemma 6.4.8. For each ϕ, A−1(g;ϕ) is a constant function of g. Moreover, the linear map

A0 : SAF
(⟨e2⟩ ⊗ V )→ A(GSO(V )(AF ))

is an R0(AF )-intertwining operator modulo constant functions.

Proof. The first claim is immediate from Proposition 6.4.7. For the second, the proof of [9, Proposition 6.4]
applies almost verbatim, taking into account Lemma 6.4.5. □

6.4.9. The spherical Eisenstein series. Let φ0
s ∈ I(s) be the unique GL2(ÔF ) · SO(2)-spherical section such

that φ0
s(1) = 1, and let

(69) E0(g, s) := E(g, s;φ0
s)

be the resulting Eisenstein series on GL2(AF ). We record the following:

Proposition 6.4.10. The residue of E0(h, s) at s =
1
2 is given by:

κ =
πdRess=1 ζF (s)

2|DF |
1
2 ζF (2)

.

Proof. Although this is standard, we give a sketch for the reader’s convenience. In the Fourier expansion of
E0(h, s), the non-constant Fourier coefficients are holomorphic. We therefore wish to calculate

Ress= 1
2

1

Vol([N ])

∫
[N ]

E0(n, s) dn,

where dn is the Haar measure on N(AF ) induced by the identification N(AF ) ≃ AF and (2.1.1). Unfolding,
we obtain (using the Bruhat decomposition of GL2):

1

Vol([N ])

∫
[N ]

E0(n, s) dn =
1

Vol([N ])

∫
[N ]

∑
γ∈B(F )\GL2(F )

φ0
s(γn) dn

=
1

Vol([N ])

∫
[N ]

φ0
s(n) dn+

1

Vol([N ])

∫
[N ]

∑
a∈F

φ0
s(w0an) dn

=
1

Vol([N ])

∫
[N ]

φ0
s(n) dn+

1

Vol([N ])

∫
N(AF )

φ0
s(w0n) dn,
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where

w0 =

(
0 1
−1 0

)
is the Weyl element. The first term is holomorphic in s, so we may discard it and compute:

1

Vol([N ])

∏
v

∫
N(Fv)

φ0
s(w0nv) dnv,

where dnv is the standard Haar measure assigning volume one to Ov. By the Gindikin-Karpelevich formula
(e.g. [7]), this product is

1

Vol([N ])

(√
π
Γ(s− 1/2)

Γ(s)

)d∏
v∤∞

1− q−2s−1
v

1− q−2s
v

=
1

Vol([N ])

(√
π

Γ(s)

Γ(s+ 1/2)

)d
ζF (2s)

ζF (2s+ 1)
.

Taking residue at s = 1
2 , we obtain

κ =
πdRess=1 ζF (s)

2Vol([N ])ζF (2)
.

Finally, we may calculate

Vol([N ]) = Vol(F\AF /ÔF ) = Vol(Rd/OF ) = |DF |
1
2

by strong approximation. □

6.4.11. Regularized theta integrals. We now recall the regularization, due to Kudla and Rallis [18], of the
(non-convergent) theta integral

g 7→
∫
[SL2]

θ(h1hν(g), g;ϕ) dh1, g ∈ GSO(V )(AF ),

where ϕ ∈ SAF
(⟨e2⟩⊗V ). The first step of the regularization is to define a certain element z of the universal

enveloping algebra of sl2; for the precise definition, see [18, §5.1]. Kudla-Rallis’ regularized theta integral
(adapted to the similitude case) is then:

(70) I(g, s;ϕ) :=
1

κ · (4s2 − 1)

∫
[SL2]

θ(g, h1hν(g);ω(z)ϕ)E0(h1, s) dh1, g ∈ GSO(V )(AF ).

(The factor of 4s2 − 1 is designed to cancel the effect of ω(z), cf. [18, §5.5]. Our normalization of s differs
from loc. cit. by a factor of two.) The regularized integral I(g, s;ϕ) is a meromorphic function of s whose
poles coincide with the poles of E0(h1, s). The Laurent expansion about s = 1

2 has the form:

(71) I(g, s;ϕ) =
B−2(g, ϕ)(
s− 1

2

)2 +
B−1(g, ϕ)

s− 1
2

+B0(g, ϕ) + · · ·

By definition, the linear maps

(72) Bd : SAF
(⟨e2⟩ ⊗ V )→ A(GSO(V ))

are GSO(V )(AF )-equivariant, where g ∈ GSO(V )(AF ) acts on the left by ϕ 7→ ω(hν(g), g)ϕ.

Theorem 6.4.12 (Gan-Qiu-Takeda). For all ϕ ∈ SAF
(⟨e2⟩ ⊗ V ) and all g ∈ GSO(V )(AF ), we have:

B−2(g, ϕ) = Vol([SL2])A−1(g, ϕ)

B−1(g, ϕ) = Vol([SL2])A0(g, ϕ) + C(ν(g), ϕ),

where the volume of [SL2] is taken with respect to dh1.

Proof. Fix ϕ; it follows immediately from [9] that the identities hold for all g ∈ SO(V )(AF ), and for some
C(1, ϕ). On the other hand, the map ϕ 7→ B−2(·, ϕ) is SL2-invariant and GSO(V )(AF )-invariant, in particular
R0(AF )-invariant; thus it factors through the maximal GSO(V )(AF )-quotient of I(1/2) on which SO(V )(AF )
acts trivially, i.e. the trivial character of GSO(V )(AF ), and B−2(·, ϕ) is constant. Since A−1(·, ϕ) is also
constant by Lemma 6.4.8, the first identity follows.

For the second identity, for all g = g1g0 ∈ GSO(V )(AF ) with g0 ∈ SO(V )(AF ), Lemma 6.4.8 implies:

A0(g1, ω(hν(g0), g0)ϕ) = A0(g1g0, ϕ) + C(g0, ϕ);
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since this applies to all decompositions g = g1g0, C(g0, ϕ) depends only on ν(g0) = ν(g). Combining this
with the identity for isometry groups,

B−1(g, ϕ) = B−1(g1, ω(hν(g0), g0)ϕ)

= Vol([SL2])A0(g1, ω(hν(g0), g0)ϕ) + C(ϕ)

= Vol([SL2])A0(g1g0, ϕ) + C ′(ν(g), ϕ).

□

6.5. Calculation of the period: nontrivial case.

6.5.1. We now assume that S = ∅, so that Π = Π∅(π1, π2) is generic, and compute P∅,π1,π2,π.

Theorem 6.5.2. (1) Choose vectors ϕ1 ∈ SAF
(⟨e2⟩ ⊗ V ), ϕ2 ∈ SAF

(⟨e4⟩ ⊗ V ), α ∈ π1 ⊠ π2, and β ∈ π.
Then:

P∅,π1,π2,π(θϕ1⊗ϕ2(α), β) = Vals= 1
2

∫
[PGSO(V )]

E(g, s; [ϕ2])α(g)θϕ1
(β)(g) dg,

where PGSO(V )(AF ) = PGL2(AF )× PGL2(AF ) is given the product Haar measure.
(2) P∅,π1,π2,π is identically zero unless π ∼= π∨

2 .
(3) Suppose we are given factorizations:

ϕ1 = ⊗vϕ1,v ∈ SAF
(V ), ϕ2 = ⊗vϕ2,v ∈ SAF

(V ),

α = ⊗vαv ∈ π1 ⊠ π2, β = ⊗vβv ∈ π∨
2 ,

along with decompositions of the global Whittaker functions:

αN×N,ψ×ψ(g) =
∏
v

Wα,v(gv), g = (gv) ∈ GSO(V )(AF ),

βN,ψ−1(h) =
∏
v

Wβ,v(hv), h = (hv) ∈ GL2(A).

Then for a sufficiently large finite set of primes S, we have:

P∅(θϕ1⊗ϕ2
(α), β) = 2|DF |

1
2 · π−dL

S(1, π1 × π∨
2 )L

S(1,Adπ2)

ζSF (2)

∏
v∈S

Zv(ϕ1,v, ϕ2,v, αv, βv)
1− q−1

v

where Zv(ϕ1,v, ϕ2,v, αv, βv) is the local zeta integral:∫
(N×N\PGSO(V ))(Fv)

∫
SL2(Fv)

Wα,v(g)Wβ,v(h1hc)ω(h1hc, g)ϕ̂1(1, 0, 0,−1)φ0(g2)[ϕ2](g1) dh1 dg

c = det(g1g2), g = pZ(g1, g2).

(73)

Here φ0(g2) is the standard spherical section of I(1).
(4) The L-values LS(1, π1 × π∨

2 ) and LS(1,Adπ2) are nonzero. Moreover, for each place v, there exist
choices of ϕi,v, αv, and βv such that

Zv(ϕ1,v, ϕ2,v, αv, βv) ̸= 0.

Proof. First, fix the Haar measure dg on SO(V )(AF ) such that, under the surjective natural map [SO(V )]×
C → [PGSO(V )] = [PGL2]× [PGL2], the Haar measure on [PGL2]× [PGL2] induced from (2.2.2) pulls back
to dg dc. We expand:

(∗) P∅,π1,π2,π (θϕ1⊗ϕ2(α), β) =

∫
[ZH\H]

θϕ1⊗ϕ2(α)(h, h
′)β(h),



TATE CLASSES AND ENDOSCOPY FOR GSp4 OVER TOTALLY REAL FIELDS 25

which by definition is:

(∗) =
∫
[ZH\H]

∫
[GSO(V )ν(h)]

θ(h, g;ϕ1)θ(h
′, g;ϕ2)α(g)β(h)

=

∫
C

∫
[SL2]

∫
[SO(V )]

∫
[SL2]

θ(hhc, ggc;ϕ1)θ(h
′hc, ggc;ϕ2)α(ggc)β(h)

=

∫
C

∫
[SL2]

∫
[SO(V )]

θ(h′hc, ggc;ϕ2)θϕ1
(β)(ggc)α(ggc).

Now, by the reasoning of [18, §5.5], the latter integral is equal to the residue at s = 1
2 of:

1

κ · (4s2 − 1)

∫
C

∫
[SL2]

∫
[SO(V )]

θ(hhc, ggc;ω(z)ϕ2)E0(h, s)α(g)θϕ1
(β)(ggc) dg dhdc,

which is meromorphic for ℜ(s)≫ 0. Here κ is as in Proposition 6.4.10. Now, by the principle of meromorphic
continuation, we may interchange the integrals over SL2 and SO(V ), and obtain:

(∗) =
∫
[PGSO(V )]

B−1(g, ϕ2)α(g)θϕ1
(β)(g) dg

= Vals= 1
2

∫
[PGSO(V )]

E(g, s; [ϕ2]s)α(g)θϕ1
(β)(g) dg,

by Theorem 6.4.12 and the cuspidality of A. This is (1). For (2), since θϕ1
(β)(g) lies in the automorphic

representation π′ ⊠ π′ of GSO(V )(AF ), it is a linear combination of functions of the form

pZ(g1, g2) 7→ f1(g1)f2(g2).

Combining this observation with Proposition 6.4.7, it follows that (∗) is a linear combination of integrals of
the form

Vals= 1
2

∫
[PGL2 ×PGL2]

E(g1, s;M [ϕ2])α(pZ(g1, g2))f1(g1)f2(g2) dg1 dg2,

which clearly vanish unless f2 ∈ π∨
2 , i.e., unless π

′ ∼= π2. This proves (2). In order to prove (3), we replace
(∗) with an equivalent integral that can be unfolded:

(∗) = 1

κ
Ress= 1

2

∫
[PGSO(V )]

E(g1, s;M [ϕ2])E0(g2, s)α(g)θφ1(β)(g) dg, g = pZ(g1, g2)

=
1

κ
Ress= 1

2

∫
N(A)×N(A)\PGSO(V )(A)

M [ϕ2]s(g1)φ
0
s(g2)αN×N,ψ×ψ(g)θφ1(β)N×N,ψ−1×ψ−1(g) dg.

This factors into an Euler product

(∗) = 1

κ
Ress= 1

2

∏
v

Zv(s, ϕ1,v, ϕ2,v, αv, βv),

where the local zeta integrals are (applying Lemma 6.3.3):∫
(N×N\PGSO(V ))(Fv)

∫
SL2(Fv)

Wα,v(g)Wβ,v(h1hc)ω(h1hc, g)ϕ̂1(1, 0, 0,−1)φ0(g2)[ϕ2](g1) dh1 dg

c = det(g1g2), g = pZ(g1, g2).

(74)

At an unramified place v such that Wα,v, Wβ,v, ϕi,v are all the standard spherical vectors, the inner integral∫
SL2(Fv)

Wβ,v(h1hc)ω(h1hc, g)ϕ̂1(1, 0, 0,−1) dh1

is exactly the standard spherical Whittaker function for π∨
2 ⊠ π∨

2 , by the unramified theta correspondence.
Then, the standard Rankin-Selberg calculations show that we have the Euler factor

Zv(s, ϕ1,v, ϕ2,v, αv, βv) =
Lv(s+

1
2 , π1 ⊠ π∨

2 )Lv(s+
1
2 , π2 ⊠ π∨

2 )

1− q−2
v

.
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Now the formula (3) follows by comparing with Proposition 6.4.10. The non-vanishing of the L-values in (4)
is well-known; see for instance [30] and [12]. The non-vanishing of the local zeta integrals at ramified places
also follows from the non-vanishing for Rankin-Selberg local zeta integrals, cf. [15]. □

7. Proof of main result: special cycles in the generic case

In this section, we apply the results of §6 to the cohomology of Shimura varieties. Since the Schwartz
functions at the Archimedean places must be chosen rather carefully to obtain automorphic forms that
contribute to cohomology, we must begin with several local calculations.

7.1. Archimedean calculations.

7.1.1. We first establish some general conventions for the local Weil representation for the pair (V,W2n,R),
where V = VM2(R). Fix coordinates on W2n ⊗ V by:

(x1, · · · , x2n)←→
∑

ei ⊗ xi,

xi = (xi, yi, zi, wi)←→
(
xi yi
zi wi

)
.

(75)

LetKn ⊂ G = GSp2n,R be as in (2.3.2), let H = GSO(V ), let R0 be as in (4.1.1), and let L = ZH ·pZ(SO(2)×
SO(2)) ⊂ H(R). Also let L1 ⊂ L be the kernel of νH restricted to L, so that L1 = pZ(SO(2)× SO(2)). For
any integers m1,m2 with m1 ≡ m2 (mod 2), let χm1,m2

be the character of L which is given by ω−1
m1

= ω−1
m2

on ZH and by χm1
⊠ χm2

on L1. Finally let (K × L)0 = (K × L) ∩R0.

7.1.2. Let S0(n) ⊂ SFv
(⟨e2, · · · , e2n⟩ ⊗ V ) be the subspace of Schwartz functions of the form

ϕ(x2, · · · , x2n) = p(x2, · · · , x2n) exp(−π(|x2|2 + · · ·+ |x2n|2),
where p is a polynomial, and let S0

d(n) ⊂ S0(n) be the subset such that p is homogeneous of degree d. As
a (r0, (Kn × L)0)-module, S0 is isomorphic to the Fock space Fn of complex polynomials in 4n variables,
cf. [13]; the isomorphism does not preserve degrees, but it does carry S0

≤d(n) = ⊕i≤dS0
i isomorphically onto

F≤d, the subspace of polynomials of degree less than or equal to d. The following proposition is the key fact
we will need about the structure of the (Kn × L)0-module S0

≤d(n).

Proposition 7.1.3. (1) If the U(n)-representation of highest weight (a1, · · · , an) appears in S0(n)≤d,
then |a1|+ · · ·+ |an| ≤ d.

(2) If m1 ≡ m2 (mod 2) are integers such that m1 = ±m2 if n = 1, define

a =
|m1 +m2|

2
, b =

|m1 −m2|
2

,

and let τ be the unique representation of Kn whose restriction to R× is ω−1
m and which has weight

(a, 0, · · · , 0,−b) when restricted to U(n). Then

dim
(
S0
≤a+b(n)⊗ τ ⊗ χ∨

m1,m2

)(Kn×L)0
= 1.

Proof. This follows from [11, Proposition 4.2.1]; see Remark 3.2.2 of loc. cit. to translate the O(2) × O(2)
parameters into pZ(SO(2)× SO(2))-parameters. □

In practice, we supplement this proposition with an explicit calculation:

Proposition 7.1.4. Suppose n = 1 and m ≥ 0. Then for ϵ = ±1, a generator for the one-dimensional space

(S0
≤m(1)⊗ χϵm ⊗ χ∨

m,ϵm)(K1×L)0

is given by

ϕϵm(x, y, z, w) := (x+ ϵiy + iz − ϵw)m exp(−π|x|2).

Proof. It suffices to show that for all

(k,pZ(k1, k2)) ∈ U(1)× pZ(SO(2)× SO(2)) ⊂ SL2(Fv)× SO(V )(Fv),

we have:

ω(k,pZ(k1, k2))ϕ
ϵ
m = χ−ϵm(k)χm(k1)χϵm(k2)ϕ

ϵ
m.



TATE CLASSES AND ENDOSCOPY FOR GSp4 OVER TOTALLY REAL FIELDS 27

For the action of U(1) ⊂ SL2, we calculate on the Lie algebra level using the following formulas for
differential dω of the Weil representation:

dω

((
0 0
1 0

)
, 0

)
=

1

2πi

(
∂2

∂z∂y
− ∂2

∂w∂x

)
,

dω

((
0 1
0 0

)
, 0

)
= 2πi(xw − yz).

Since

dω

((
0 1
−1 0

)
, 0

)
ϕϵm = −imϵϕϵm,

the lemma follows. □

7.1.5. For the remainder of this subsection, n = 2. We now define the vector-valued Schwartz functions
adapted to constructing cohomology classes on Shimura varieties as in §3, and compute two related local
zeta integrals. Fix a choice of sign ϵ = ± and an integer m ≥ 2, and let τ ϵm be the representation of K2

defined in (5.3.1).

Remark 7.1.6. In practice, it would suffice to perform the calculations below for a single choice of ϵ; we
have included both for maximum clarity and for the convenience of the reader.

Proposition 7.1.7. Let φϵm generate the one-dimensional space

(S0
≤m+2(2)⊗ τ ϵm ⊗ χ∨

(m+2),−ϵm)(K2×L)0 .

If ℓ ∈ τ ϵ,∨m is a highest (resp. lowest) weight vector if ϵ = + (resp. ϵ = −), then ℓ(φ) is proportional to

ϕ−ϵm+1(x2) · ϕϵ1(x4).

Proof. The one-dimensionality follows from Proposition 7.1.3(2). For the rest, ℓ(φ) is a vector of weight ϵ(m+
1,−1) for U(2). By Proposition 7.1.3(1), τ∨ is the only U(2)-type containing the highest weight (ϵ(m+1),−ϵ)
to appear in S0

≤m+2(2), so ℓ(φ) spans the weight ϵ(m+ 1,−1) subspace of (S0
≤m+2 ⊗ χ∨

(m+2,−ϵm))
L1 ; on the

other hand ϕ−ϵm+1(x2) · ϕϵ1(x4) lies in this subspace by Proposition 7.1.4, and the proposition follows. □

Proposition 7.1.8. Let ℓ ∈ τ ϵ,∨m be a vector of weight (ϵm, 0). Then ℓ(φϵm) is proportional to

φϵm :=
(
(m+ 1)

(
(x4 + iz4)

2 + (y4 + iw4)
2
)
− (x2 + iz2)

2 − (y2 + iw2)
2
)
ϕ−ϵm (x2) exp(−π|x4|2).

Proof. In light of Proposition 7.1.7, we must apply a lowering (resp. raising) operator to ϕ−ϵm+1(x2) ·ϕϵ1,v(x4)
in the case ϵ = + (resp. ϵ = −). First, on the Lie algebra level, the lowering operator for K2 is:

L =


0 0 1 i
0 0 −i 1
−1 i 0 0
−i −1 0 0

 ∈ k⊗ C ⊂ g⊗ C,

and the raising operator R is its complex conjugate. For compactness of notation, set L+ := L and L− := R.
Recall the partial Fourier transform of 4.1.3:

ϕ̂(z1, z2, z3, z4, w1, w2, w3, w4) =

∫
ϕ(x2, x4)ψ(y2z1 − x2w1 + y4z3 − x4w3) dx2 dy2 dx4 dy4.

Using the identity

̂ω(g, 1)ϕ(z1, z2, z3, z4, w1, w2, w3, w4) = ϕ̂

g−1


z1
z2
z3
z4

 , g−1


w1

w2

w3

w4


 ,

we calculate that

(76)

ω(Lϵ) [p(x2, x4)ϕ0(x2)ϕ0(x4)] =
[
−(z2+ϵy2)(∂z4p+ϵ∂y4p)+(z4−ϵy4)(∂z2p−ϵ∂y2p)−(w2−ϵx2)(∂w4

p−ϵ∂x4
p)

+ (w4 + ϵx4)(∂w2
p+ ϵ∂x2

p) +
ϵ

2π
(∂2y2,z4p+ ∂2z2,y4p− ∂

2
x2,w4

p− ∂2w2,x4
p)
]
ϕ0(x2)ϕ0(x4),
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where we have abbreviated

ϕ0(x) := exp(−π|x|2).
One can then check that

ω(Lϵ)
[
ϕ−ϵm+1(x2) · ϕϵ1,v(x4)

]
= 2φϵm,

which proves the proposition. □

7.1.9. For later use, we calculate two archimedean local zeta integrals related to φϵm. Write:

ϕ1 = ϕ−ϵm

ϕ2 =
(
(x+ iz)2 + (y + iw)2

)
exp(−π|x|2),

ϕ′1 =
(
(x+ iz)2 + (y + iw)2

)
ϕϵm

ϕ′2 = exp(−π|x|2),

so that

(77) φϵm = (m+ 1)ϕ1 ⊗ ϕ2 − ϕ′1 ⊗ ϕ′2.

For each integer n ≥ 2 and pair of signs ϵ, δ ∈ {±}, let W ϵ
n,ψδ be the normalized weight ϵn vector in the

ψδ-Whitaker model of the discrete series representation of GL2(R) of weight n; thus

(78) W ϵ
n,ψδ

(
ϵδt1/2 0

0 t1/2

)
= tn/2e−2πt, W ϵ

n,ψδ

(
−ϵδt1/2 0

0 t−1/2

)
= 0, ∀t > 0.

Proposition 7.1.10. With notation as above,

Zv
(
ϕ1, ϕ2,W

−
m+2,ψ ⊗W

ϵ
m,ψ,W

−ϵ
m,ψ

)
=
ϵm ·m!(m− 1)!

π2m+223m+2

and

Zv
(
ϕ′1, ϕ

′
2,W

−
m+2,ψ ⊗W

ϵ
m,ψ,W

−ϵ
m,ψ

)
= 0.

Proof. First, note that:

ω(k,pZ(k1, k2))ϕ1 = χϵm(k)χm(k1)χ−ϵm(k2)ϕ1,

ω(k,pZ(k1, k2))ϕ2 = χ2(k1)ϕ2,

ω(k,pZ(k1, k2))ϕ
′
1 = χϵm(k)χm+2(k1)χ−ϵm(k2)ϕ

′
1,

ω(k,pZ(k1, k2))ϕ
′
2 = ϕ′2, ∀(k,pZ(k1, k2)) ∈ U(1)× pZ(SO(2)× SO(2)) ⊂ SL2×SO(V ).

The first identity is just Proposition 7.1.4, and the latter three may be proved similarly. (Alternatively, the
action of the first factor U(1) ⊂ SL2 can be deduced from Proposition 7.1.8.) Next, we compute the inner

integral for Zv
(
ϕ1, ϕ2,W

−
m+2,ψ ⊗W ϵ

m,ψ,W
−ϵ
m,ψ

)
:

(79) I(g1, g2) =

∫
SL2(Fv)

ω(h1hc,pZ(g1, g2))ϕ̂1(1, 0, 0,−1)W−ϵ
m,ψ(h1hc) dh1, c = det(g1) det(g2).

By the archimedean local theta correspondence for GL2×GSO(V ) and Proposition 7.1.4, we have

(80) I(g1, g2) = λW+
m,ψ−1(g1)W

−ϵ
m,ψ−1(g2)

for a scalar λ. To pin down the scalar, it suffices to calculate:

(∗) I(g0), g0 := pZ

((
−1 0
0 1

)
,

(
ϵ 0
0 1

))
.

By definition, we have:

(∗) =
∫
ω

(
h1

(
1 0
0 −ϵ

)
, g0

)
ϕ̂−ϵm (1, 0, 0,−1)W−ϵ

m,ψ

(
h1

(
1 0
0 −ϵ

))
dh1

=

∫
ω

(
h1

(
1 0
0 −ϵ

)
, g0

)
ϕϵm(x, y, 0,−1)ψ(y)(−ϵ)mW−ϵ

m,ψ

(
h1

(
−ϵ 0
0 1

))
dxdy dh1.
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Recall that the Haar measure on SL2 is given by

dh1 =
da dtdθ

2πt2
, h1 =

(
1 a
0 1

)(
t1/2 0
0 t−1/2

)(
cos θ sin θ
− sin θ cos θ

)
.

Adopting these coordinates, the integral becomes

(∗) = (−ϵ)m
∫
ψ(a)tm/2−2e−2πtψ(−ax)ω

((
t1/2 0
0 t−1/2

)
, 1

)
ϕ−ϵm (−x,−ϵy, 0, ϵ)ψ(y) dxdy da dt

= (−ϵ)m
∫
tm−1(−2 + iy)m exp(−πt(4 + y2))ψ(y) dtdy

= (−iϵ)m (m− 1)!

πm

∫
e2πiy dy

(y − 2i)m

= (−iϵ)m(2πi)m
(m− 1)!

(m− 1)!πm
e−4π = (2ϵ)me−4π;

hence λ = (2ϵ)m.
By the equivariance properties of ϕ2,

M [ϕ2] ∈ Ind
PGL2(R)
B(R) | · |1/2

is a section of weight two for SO(2). Thus it is determined by:

(81) M [ϕ2](1) =

∫
ϕ2(x, y, 0, 0) dxdy =

1

π
.

Now, our local zeta integral is given by

(2ϵ)m·

(∫
N\PGL2(Fv)

W−
m+2,ψ(g1)[ϕ2](g1)W

+
m,ψ−1(g1) dg1

)
·

(∫
N\PGL2(Fv)

W ϵ
m,ψ(g2)W

−ϵ
m,ψ−1(g2)φ

0(g2) dg2

)
.

Since both integrands are right SO(2)-invariant, and since the Haar measure on PGL2(R) is given by

dg =
dadtdθ

πt2
, g =

(
1 a
0 1

)(
t 0
0 1

)(
cos θ sin θ
− sin θ cos θ

)
, t ∈ R×, θ ∈ [0, π),

we obtain

(82)
(2ϵ)m

π

(∫ ∞

0

tme−4πt dt

)
·
(∫ ∞

0

tm−1e−4πt dt

)
=
ϵm ·m!(m− 1)!

π2m+223m+2
,

as claimed.
To show that

Zv
(
ϕ′1, ϕ

′
2,W

−
m+2,ψ ⊗W

ϵ
m,ψ,W

−ϵ
m,ψ

)
= 0,

we may ignore scalar factors. The inner integral

(83) I ′(g1, g2) =

∫
SL2(Fv)

ω(h1hc,pZ(g1, g2))ϕ̂
′
1(1, 0, 0,−1)W−ϵ

m,ψ(h1hc) dh1, c = det(g1) det(g2)

must be of the form

(84) I ′(g1, g2) =W ′(g1)W
−ϵ
m,ψ−1(g2),

whereW ′ is a weightm+2 vector in the ψ−1-Whittaker model of the discrete series representation of GL2(R)
of weight m. To calculate W ′, let

(85) X :=

(
−i 1
1 i

)
∈ gl2

be the SO(2)-raising operator. Then, up to scalar,

(86) W ′ = X ·W+
m,ψ−1 =

(
−i 0
0 i

)
W+
m,ψ−1 + 2

(
0 1
0 0

)
·W+

m,ψ−1 − imW+
m,ψ−1 .
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In particular, W ′
(
t1/2 0
0 t−1/2

)
= 0 and

(87) W ′
(
−t1/2 0
0 t−1/2

)
= −2imtm/2e−2πt + 8πitm/2+1e−2πt

(up to scalar) for t > 0. To complete the proof, we will show the integral

(∗)
∫
N\PGL2(Fv)

W ′(g1)[ϕ2](g1)W
+
m,ψ−1(g1) dg1

vanishes. Since [ϕ2] is a section of weight zero, (∗) is proportional to

(∗∗) =
∫ ∞

0

(−2imtm/2 + 8πitm/2+1) · t · tm/2e−4πt dt

t2

= −2im
∫ ∞

0

tm−1e−4πt dt+ 8πi

∫ ∞

0

e−4πttm dt

= −2im (m− 1)!

(4π)m
+ 8πi

m!

(4π)m+1

= 0.

□

7.2. Cohomological span of special cycle.

7.2.1. Let H = GL2×Gm GL2 ⊂ GSp4, viewed as an algebraic group over F . Then H possesses a Shimura
datum, and we have a natural embedding of pro-algebraic varieties

ι : S(H) ↪→ S(GSp4)× S(GL2),

induced from the map on the level of groups: (h1, h2) 7→ ((h1, h2), h1). For all weights m as in (5.3.1) above,
abbreviate by Wm the local system V∨

(m−2,0) ⊠ Vm−2 on S(GSp4)× S(GL2). Note that the constant local

system Q(m) on S(H) is a direct factor with multiplicity one of the pullback ι∗(Wm), and in particular, we

have a composite map (well-defined up to a scalar):

(88) H4d
c (S(GSp4)× S(GL2),W∨

m)→ H4d
c (S(H), ι∗(W∨

m))→ H4d
c (S(H),Q(m)).

Definition 7.2.2. The cycle class [Z] ∈ H4d(S(GSp4)×S(GL2),Wm)(2d) is the image of the fundamental
class of S(H) under the map

H0(S(H),Q(m))→ H2d(S(GSp4)× S(GL2),Wm)(2d)

induced by the dual of (88). We write

[Z]∗ : H3d
c (S(GSp4),V(m−2,0))(d)→ Hd(S(GL2),Vm−2)

for the induced map.

7.2.3. Let π be an automorphic cuspidal representation of GL2(AF ) of weight m whose central character
has infinity type ωm. If π is defined over E, recall that the trace map induces a perfect pairing:

⟨·, ·⟩ : Hd
c (S(GL2),Vm−2,E)[πf ]×Hd(S(GL2),V∨

m−2,E)[π
∨
f ]→ H2d

c (S(GL2), E)→ E(d).

Proposition 7.2.4. Let π be as above, and let π1, π2 be as in (5.3.1), with Π = ΠS(π1, π2), for some
S = Sf ⊔ S∞ such that |S| is even.

(1) For choices of signs ϵ, ϵ′, let σϵ,ϵ′ : τ
ϵ
m,S∞

→ C be the projection onto the weight (−ϵ′m, 0)-component

(hence σ is trivial unless S∞ = ∅ and ϵ = ϵ′). Then the following diagram commutes up to a nonzero
scalar:
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(
Π⊗ τ ϵ

m,S∞

)K2 ⊗
(
π∨ ⊗ χ∨

−ϵ′m

)K1
Π⊗ π

H∗
(2)(S(GSp4),V(m−2,0),C)[ΠSf

]⊗H∗
(2)(S(GL2),V∨

m−2,C)[π
∨
f ]

H3d
c (S(GSp4),V(m−2,0),C)[ΠSf

]⊗Hd
c (S(GL2),V∨

m−2,C)[πf ]

Hd(S(GL2),Vm−2,C)⊗Hd
c (S(GL2),V∨

m−2,C)

C C

σϵ,ϵ′⊗id

clϵS ⊗ cl′
ϵ′

PS

∼

[Z]∗⊗id

⟨·,·⟩

(2) Suppose S∞ = ∅ and ϵ = ϵ. After fixing isomorphisms

Πf ≃
(
Π⊗ τ ϵ

m,∅
)K2

, π∨
f ≃

(
π∨ ⊗ χ∨

−ϵm

)K1
,

the composites with the map from (1):

Πf ⊗ π∨
f

∼−−→
(
Π⊗ τ ϵ

m,∅
)K2 ⊗

(
π∨ ⊗ χ∨

−ϵm

)K1 −→ C

are independent of ϵ up to a nonzero scalar.

Proof. Let ℓ : V(m−2,0)⊗V ∨
m−2 → Q(m) be an H(F )-invariant projection. There exists a basis 1H of ∧4dpH

such that ∫
S(H)

ω =

∫
[ZH\H]

h∗ω(1H) dh

for all top-degree forms ω on S(H). Then by definition,

⟨[Z]∗α, β⟩ =
∫
[ZH\H]

ℓ [h∗ι∗(α ∧ β)(1H)] dh.

The composite map:

τ ϵ
m,S∞

⊗ χ∨
−ϵ′m → ∧p(ϵ,S∞),q(ϵ,S∞)p∗GSp4

⊗ ∧1−p(ϵ′),1−q(ϵ′)p∗GL2
⊗ V(m−2,0) ⊗ Vm−2

ι∗⊗ℓ−−−→ ∧p(ϵ,S∞)+1−p(ϵ′),q(ϵ,S∞)+1−q(ϵ′)pH
1H−−→ C

(89)

is a map of U(1)d × U(1)d-modules, where the action on χ−ϵ′m, ∧p(ϵ′),q(ϵ′)pGL2
, and Vm−2 is through

projection to the first factor. In particular, (89) is trivial unless S∞ = ∅ and ϵ = ϵ′, in which case it is
proportional to the projection onto the weight (−ϵm, 0)-component of τ ϵ

m,∅; moreover, a direct calculation

shows it is nonzero, and (1) follows.
For (2), let

gϵ =


ϵv

ϵv
1

1


v|∞

∈ G(F ⊗ R) ⊂ G(AF ), g′ϵ =

(
ϵv

1

)
v|∞
∈ G′(F ⊗ R) ⊂ G′(AF ).

We have an obvious commutative diagram(
Π⊗ τ ϵ

m,∅

)K2

⊗
(
π∨ ⊗ χ∨

−ϵm

)K1
Π⊗ π∨

(
Π⊗ τ+

m,∅

)K2

⊗
(
π∨ ⊗ χ∨

−m

)K1
Π⊗ π∨

σϵ,−ϵ⊗id

σ+,−⊗id
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in which the vertical arrows are translation by (gϵ, g
′
ϵ) and ± stands for the constant sign (±)v|∞. However,

since (gϵ, g
′
ϵ) lies in H(AF ) ⊂ G(AF )×G′(AF ), this translation has no effect on the period integral PS , and

(2) follows. □

Theorem 7.2.5. Let π1, π2, π be cuspidal automorphic representations of G′(A) of weights m+ 2, m, and
m, respectively, where m = (mv)v|∞ for positive integers mv. Assume that the central characters of π1 and
π2 agree, and that the the central characters of π1, π2, and π all have infinity type ωm. Let ΠSf

be as in
(5.3.1) for set Sf of finite places of F . Then, for any coefficient field E ⊃ F c such that Π, πi, and π are
defined over E, the induced map

[Z]∗ : H3d
! (S(GSp4),V(m−2,0))(d)[ΠSf

]→ Hd
! (S(GL2),Vm−2)[πf ]

is trivial unless π = π2 and Sf = ∅. In the latter case, [Z]∗ takes the form:

Π∅ ⊗H3d
! (S(GSp4),V(m−2,0))Π∅(d)

ℓ⊗s−−→ π2,f ⊗Hd
! (S(GL2),Vm−2)π2,f

,

where s is an surjection and ℓ is a nontrivial E-linear map.

Proof. Without loss of generality, suppose E = C. By Proposition 7.2.4, Theorem 6.2.2, and Theorem 6.5.2,
we immediately reduce to the case Sf = ∅ and π = π2. In this case, write Π = Π∅(π1, π2). Under the
decomposition

H3d
! (S(GSp4),V(m−2,0),C)[Πf ] =

⊕
S∞

⊕
ϵ

H
p(ϵ,S∞),q(ϵ,S∞)
(2) (S(GSp4),V(m−2,0),C)[Πf ]

provided by 5.3.3 and 5.3.5, Proposition 7.2.4(1) implies that [Z]∗ is trivial on components with S∞ ̸=
∅, and maps H

p(ϵ,∅),q(ϵ,∅)
(2) (S(GSp4),V(n−2,0),C)(d)[Πf ] to H

p(ϵ),q(ϵ)
(2) (S(GL2),Vm−2,C)[π2,f ]. Moreover, by

Proposition 7.2.4(2) and Proposition 3.5.3, [Z]∗ is a pure tensor ℓ ⊗ s, and s is surjective provided it is
nontrivial. Thus, for any single choice of ϵ, it suffices to show that

H
p(ϵ,∅),q(ϵ,∅)
(2) (S(GSp4),V(m−2,0),C)[Πf ]⊗H

1−p(ϵ),1−q(ϵ)
(2) (S(GL2),Vm−2,C)[π

∨
2,f ]

⟨[Z]∗·,·⟩−−−−−−−→ C(90)

is nontrivial.
Indeed, let

φϵ
∞ = ⊗v|∞φϵvmv

∈ SF⊗R(⟨e2, e4⟩ ⊗ V )⊗ τ ϵ
m,∅ ⊗ χ∨

−ϵ,

where φϵvmv
is the vector-valued Schwartz function of Proposition 7.1.7. Also let

(91) θϵ : SAF,f
(⟨e2, e4⟩ ⊗ V ) ↠

(
Π⊗ τ ϵ

m,∅
)K2

be the C-linear map

ϕf 7→ θϕf⊗φϵ
∞
(f1 ⊗ f2),

where f1 ∈ π1 and f2 ∈ π2 are nonzero newforms of weights −(m+ 2) and ϵm, respectively.
Now Proposition 7.2.4 and Proposition 7.1.8 imply that the composite map

(92) SAF,f
(⟨e2, e4⟩ ⊗ V )⊗ (π∨

2 ⊗ χ∨
−ϵm)K1

θϵ⊗id−−−−→
(
Π⊗ τ ϵ

m,∅
)K2 ⊗ (π∨

2 ⊗ χ∨
−ϵm)K1

⟨[Z]∗◦clϵ∅,cl
′
ϵ⟩−−−−−−−−→ C

is given by

(93) ϕf ⊗ β 7→ P∅(θϕf⊗φϵ
∞
(f1 ⊗ f2), β)

up to a nonzero scalar, where

φϵ
∞ = ⊗vφϵvmv

for φϵvmv
∈ SFv (⟨e2, e4⟩ ⊗ V ) as in Proposition 7.1.8. Suppose given factorizable test data

ϕi,f = ⊗v∤∞ϕi,v ∈ SAF,f
(V ), i = 1, 2

and

β = ⊗vβv ∈ (π∨
2 ⊗ χ∨

−ϵm)K1 ;
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we also fix decompositions of the global Whittaker functionals as in Theorem 6.5.2. Then, from Theorem
6.5.2 and Proposition 7.1.10, we conclude the formula
(94)

⟨[Z]∗◦clϵ∅(θϵ(ϕ1,f⊗ϕ2,f )), cl
′
ϵ(β)⟩

.
=
LS(1, π1 × π∨

2 )L
S(1,Adπ2)

ζSF (2)

∏
v∈S
v∤∞

Zv(ϕ1,v, ϕ2,v, f1,v ⊗ f2,v, βv)
1− q−1

v

·
∏
v|∞

Wβv (1)

e−2π
,

where
.
= denotes equality up to a nonzero constant. The nonvanishing of the right-hand side, which follows

from Theorem 6.5.2, concludes the proof. □

Remark 7.2.6. In fact, since the formula (94) is uniform in ϵ, Proposition 7.2.4(2) was not strictly necessary
for the proof of the theorem.

8. Non-tempered theta lifts on GSp6

8.1. Arthur parameters.

8.1.1. LetG be a split reductive group over F , and recall that a local Arthur parameter forG is a Ĝ-conjugacy
class of homomorphisms

ψv :WDFv
× SL2(C)→ Ĝ,

such that the restriction to WDFv is a bounded Langlands parameter. If v is non-archimedean and ψv is
unramified, then it determines a local Langlands parameter φv by the rule

(95) φv(w) = ψv

(
w,

(
|w|1/2v 0

0 |w|−1/2
v

))
.

An unramified representation of G(Fv) is said to have Arthur parameter ψv if its Langlands parameter is
determined by the rule (95).

8.1.2. In [4], Arthur defines discrete global parameters for Sp2n to be formal (unordered) sums

(96) ⊕πi[di],
where:

• πi are cuspidal automorphic representations of PGLni
;

• di ≥ 0 are integers such that
∑
nidi = 2n+ 1;

• πi is conjugate symplectic if di is even, and conjugate orthogonal if di is odd;
• the pairs (πi, di) are distinct.

The integers di are to be interpreted as the dimensions of irreducible representations of SL2(C). Moreover, a
global Arthur parameter ψ induces a local Arthur parameter ψv for each place v of F via the local Langlands
classification for GLm. The reason we must take this rather circuitous definition of global Arthur parameters
is the lack of a global Langlands group.

8.1.3. In [4], Arthur classified discrete automorphic representations of Sp2n by constructing local and global
packets for these parameters, denoted Πψv and Πψ, respectively. An automorphic representation π ⊂
A(2)(Sp2n(AF )) belongs to Πψ if and only if, for almost all places v, πv is the spherical representation
determined by φv. Although a full endoscopic classification for GSp2n is not available, one can obtain
partial results using the pullback along the natural map

ι : Sp2n → GSp2n .

Indeed, for our purposes the following rather weak result is sufficient.

Proposition 8.1.4. Let π1, π2 ⊂ A(2)(GSp2n(AF )) be nearly equivalent discrete automorphic representations
of GSp2n(AF ), and suppose that some irreducible constituent of ι∗π1 has parameter ψ. Then for all places v
of F , any irreducible constituent of the admissible Sp2n(Fv)-module ι∗π2 belongs to the Arthur packet Πψv

.

Proof. Let π0,v be an irreducible constituent of ι∗π2,v. There exists a vector f ∈ π2 generating an irreducible
Sp2n(AF ))-module π0 ⊂ A(2)(AF ) whose component at v is π0,v. By construction, π0 has Arthur parameter
ψ, and so the result follows from [4]. □

8.2. Theta lift from GSO(VB) to GSp6.
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8.2.1. For the remainder of this section, fix a non-split quaternion algebra B over F , and let π be a tempered
automorphic representation of PB×. We consider the representation π⊠1 of GSO(VB) ≃ B××B×/Gm and
its theta lift Θ(π⊠1) to GSp6(AF ); this is well-defined because VB is anisotropic, and descends to PGSp6(AF )
because the similitude theta lift preserves central characters. Although this is not strictly necessary for our
argument, it follows from [9] that Θ(π ⊠ 1) ̸= 0 for any such π. However, Θ(π ⊠ 1) need not be irreducible.

Proposition 8.2.2. The theta lift Θ(π ⊠ 1) lies in the L2 subspace A(2)(PGSp6(AF )).

By the usual criterion for square-integrability [22, Lemma I.4.11], we must check that, for each standard
parabolic subgroup P =MN of GSp6, the characters of Z(M) appearing in the cuspidal component of the
normalized Jacquet module

Θ(π ⊠ 1)N ⊗ δ−1/2
P

all lie in the interior of the cone spanned by the negatives of the characters appearing in the action of Z(M)
on N . Since π⊠1 is not a theta lift from GSp2 = GL2, [26, Theorem I.1.1] implies that the Jacquet modules
are given by:

(97) Θ(π ⊠ 1)N =

{
| · |2Θ′(π ⊠ 1), M = GSp4×GL1

0, otherwise.

Here Θ′(π⊠1) denotes the theta lift to GSp4, and | · | is the norm character of GL1 . On the other hand, the
action of Z(M) on N is through positive powers of |·|, and δP = |·|6; thus the criterion for square-integrability
is satisfied.

Proposition 8.2.3. Suppose Π is an irreducible constituent of Θ(π ⊠ 1).

(1) For all non-archimedean v, if πv is unramified with local Langlands parameter ϕv, then Πv is un-
ramified with an Arthur parameter ψv such that the composite

WFv

ψv−−→ P̂GSp6 = Spin7
rspin−−−→ GL8

is given by
ϕv ⊗ S2 ⊕ S3 ⊕ S1,

where Si is the i-dimensional irreducible representation of SL2.
(2) Any irreducible constituent of ι∗Π has global Arthur parameter

JL(π)[2]⊕ 1[3].

Proof. For (1), Propositions 8.2.2 and 4.2.3 imply that Πv is an irreducible constituent of Θv(πv⊠1) for all v.

Since πv is tempered at all unramified v, Ind
GO(V )(Fv)
GSO(V )(Fv)

πv⊠1 is irreducible. Adopting the notation of (4.3.2)

with G = GSO(V ) and H = GSp6, πv ⊠ 1 is the spherical representation πχ for the unramified character
of TG(Fv) defined by (− logq αv − 1/2, 1/2 − logq αv, logq αv), where

{
αv, α

−1
v

}
are the Sataka parameters

of πv. Then Proposition 4.3.3 implies that Θv(πv ⊠ 1) is the irreducible representation σµ with µ(αv) =
(− logq αv − 1/2, 1/2 − logq αv,−1, 1/2 + logq αv). Recall that any µ determines an unramified Langlands

parameter for H: the characters xi, λ ∈ HomFv
(TG,Gm) correspond to cocharacters in HomC(Gm, T̂G), and

any unramified character µ = (β1, · · · , β3, t) may be viewed as the element

λ(q−t)
∏
i

xi(q
−βi) ∈ T̂H(C).

Then the Langlands parameter of σµ is the conjugacy class of the unramified map

ϕµ :WFv → T̂H(C) ↪→ Ĥ(C)
such that ϕ(Frobv) is the element corresponding to µ. Now, the eigenvalues of rspin ◦ ϕµ on C8 are given by
q−t

∏
i∈S q

−βi as S ranges over subsets of {1, 2, 3}. Hence in our case, the eight Frobenius eigenvalues are

(with multiplicity) q±1/2α±1
v , q, q−1, 1, and 1. These Frobenius eigenvalues correspond to the unramified

Arthur parameter ϕv ⊗ S2 ⊕ S3 ⊕ S1 according to (95).
The second claim follows from the endoscopic classification for Sp6, since the local Arthur parameter for

any irreducible constituent of ι∗Πv is the composition of ψv with the projection Spin7 → SO7 (cf. [25]). □

8.3. Archimedean Arthur packet and cohomology.
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8.3.1. In order to construct Hodge classes from Θ(π ⊠ 1), it is essential to understand the structure of the
cohomological local Arthur packet Πψv , where ψ is a global parameter for Sp6 of the kind in Proposition
8.2.3(2) and v is archimedean. We now recall the construction of Πψv

due to Adams and Johnson [2]. (This
construction agrees with [4] by [1, 3].)

8.3.2. We first fix an anisotropic maximal torus T ofG = Sp6. However, we depart from our usual coordinates
for G, and choose a complex basis of the 2n-dimensional symplectic space with respect to which

(98) gC =

{(
A B
C −AT

) ∣∣∣∣A,B,C ∈ gl3,C, B = BT , C = CT
}
,

(99) TC =




λ1

λ2
λ3

λ−1
1

λ−1
2

λ−1
3




≃ (C×)3 ⊂ GC,

and complex conjugation acts by

(100)

(
A B
C −AT

)
7→

(
−AT C
B A.

)
We choose the Borel subgroup B of GC given by

(101) B =

{(
A B
0 A−T

)
∈ GC

∣∣∣∣A is upper triangular

}
.

Let θ be the Cartan involution of G that acts on gC by

(102)

(
A B
C −AT

)
7→
(
A −B
−C −AT

)
.

The corresponding maximal compact subgroup of G is K = U(3). The absolute Weyl group of G is

(103) W (G,T ) = {±1}3 ⋊ S3,

where S3 acts on T by permuting (λ1, λ2, λ3) and {±1}3 acts by

(e1, e2, e3) · (λ1, λ2, λ3) = (λe11 , λ
e2
2 , λ

e3
3 ).

The relative Weyl group WR(G,T ) of G may be identified with S3.

8.3.3. Let L ⊂ G be the unique R-subgroup isomorphic to U(2)× SU(1, 1) such that

(104) LC =




A

a b

A−T

c d


∣∣∣∣∣A ∈ GL2,

(
a b
c d

)
∈ SL2


⊂ GC.

Then LC is the Levi factor of a θ-stable standard parabolic Q ⊂ GC, which does not descend to R. The
absolute Weyl group W (L, T ) is given by

(105) W (L, T ) = {(1, 1,±1)} × {(1), (12)} ⊂W (G,T ).

Note that the local Arthur parameter factors as

(106) ψv :WFv
× SL2(C)→ LL→ LG.

If JL(πv) is the discrete series representation of GL2(R) of weight 2k ≥ 6, then, in the notation of [2],

(107) Πψv
=
{
Aqw

(w−1 · (k − 3, k − 3, 0)) : w ∈ S
}
,

where (k − 3, k − 3, 0) is viewed as a character of T ,

(108) S =W (L, T )\W (G,T )/WR(G,T ),
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and, for w ∈ S, Qw is the θ-stable parabolic subgroup w−1Qw of GC.

8.3.4. Choose representatives

(109) w0 = 1, w1 = (−1, 1, 1), w2 = (−1,−1, 1)

of S in W (G,T ), and label the elements of Πψv
as

(110) Πψv,i = Aqwi
(w−1

i · (k − 3, k − 3, 0)), 0 ≤ i ≤ 2.

Proposition 8.3.5. For any complex, irreducible algebraic representation V of G,

H∗(g,K; Πψv,i ⊗ V ) = 0

unless V is the highest weight representation V(k−3,k−3,0). If V = V(k−3,k−3,0), then the dimensions of the
nonzero cohomology groups of the representations Πψv,i are computed as follows.

dimCH
5,0(g,K; Πψv,0 ⊗ V ) = dimCH

6,1(g,K; Πψv,0 ⊗ V ) = 1

dimCH
2,2(g,K; Πψv,1 ⊗ V ) = dimCH

4,4(g,K; Πψv,1 ⊗ V ) = 1

dimCH
3,3(g,K; Πψv,1 ⊗ V ) = 2

dimCH
0,5(g,K; Πψv,2 ⊗ V ) = dimCH

1,6(g,K; Πψv,2 ⊗ V ) = 1

Proof. Write Qwi
= LiUi. The proposition follows from [32, Proposition 6.19], together with the calculations:

u0 =


∗ ∗ ∗ ∗

I ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ 0

0
I

0
∗ ∗ 1

 , WR(L0, T ) = {1, (12)} ,

u1 =


1
∗ 1 ∗ ∗ ∗
∗ 1 ∗
∗ ∗ ∗

1
∗ ∗ 1

 , WR(L1, T ) = {1} ,

u2 =


0

I
0

∗ ∗ 1
∗ ∗ ∗ ∗
∗ ∗ ∗ I ∗
∗ ∗ 0 0 0 1

 , WR(L2, T ) = {1, (12)} .

□

8.3.6. If V = V(k−3,k−3,0), then V has a K-stable Hodge decomposition of weight m = 2k − 6 defined by

(111) V p,q =
{
v ∈ V : z · v = zn−2pv, ∀z ∈ ZK ≃ U(1)

}
, p+ q = m.

The decomposition (111) induces a refined decomposition of the Lie algebra cohomology, cf. [36]:

Hp,q(g,K; Πψv,i ⊗ V ) =
⊕

r+s=m
r,s≥0

H(p,q);(r,s)(g,K; Πψv,i ⊗ V ).

For later use, we now calculate this decomposition.
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Proposition 8.3.7. Let V = V(k−3,k−3,0). The dimensions of the nonzero refined components of the coho-
mology groups of the representations Πψv,i are computed as follows.

dimCH
(5,0);(2k−6,0)(g,K; Πψv,0 ⊗ V ) = dimCH

(6,1);(2k−6,0)(g,K; Πψv,0 ⊗ V = 1

dimCH
(2,2);(k−3,k−3)(g,K; Πψv,1 ⊗ V ) = dimCH

(4,4);(k−3,k−3)(g,K; Πψv,1 ⊗ V ) = 1

dimCH
(3,3);(k−3,k−3)(g,K; Πψv,1 ⊗ V ) = 2

dimCH
(0,5);(0,2k−6)(g,K; Πψv,2 ⊗ V ) = dimCH

(1,6);(0,2k−6)(g,K; Πψv,2 ⊗ V ) = 1

Proof. The proof is similar to [14, Proposition 11.4]. Consider the set of coset representatives forWR(G,T )\W (G,T )
given by

(112) W0 :=
{
w ∈W (G,T ) : w−1(∆+

c ) ⊂ ∆+
}
,

where ∆+ is the set of positive roots with respect to the Borel subgroup (101) and ∆+
c ⊂ ∆+ is the subset

of compact roots (i.e. the positive roots of K). In the notation of [36], let µ and λ be the highest characters
of ZK appearing in the action of K on gC and V , respectively; identifying characters of ZK with Z, µ = 2
and λ = 2k− 6 = m (the weight of V ). Also let Λ = (k− 3, k− 3, 0), considered as a character of T . By [36,
§5], if

H(p,q);(n−p,m+p−n)(g,K; Πψv,i ⊗ V ) ̸= 0

for any i, then there exists w ∈ W0 with ℓ(w) = p, such that the K-representation of highest weight
w(Λ + ρ)− ρ has central character λ− nµ = 2k − 2n− 6. Here ρ = (3, 2, 1) is the half sum of positive roots
for gC. Thus each w ∈W0 defines exactly one choice of p and n such that a nonzero contribution of bidegree
(p, q); (n− p,m+ p− n) is possible. These choices are summarized in the following table.

w · (a, b, c) p = ℓ(w) w(Λ + ρ)− ρ n possible types
(a, b, c) 0 (k − 3, k − 3, 0) 0 (0, q); (0, 2k − 6)
(a, b,−c) 1 (k − 3, k − 3,−2) 1 (1, q); (0, 2k − 6)
(a, c,−b) 2 (k − 3,−1,−k) k − 1 (2, q); (k − 3, k − 3)
(b, c,−a) 3 (k − 4,−1,−k − 1) k (3, q); (k − 3, k − 3)
(a,−c,−b) 3 (k − 3,−3,−k) k (3, q); (k − 3, k − 3)
(b,−c,−a) 4 (k − 4,−3,−k − 1) k + 1 (4, q); (k − 3, k − 3)
(c,−b,−a) 5 (−2,−k − 1,−k − 1) 2k − 1 (5, q); (2k − 6, 0)
(−c,−b,−a) 6 (−4,−k − 1,−k − 1) 2k (6, q); (2k − 6, 0)

Comparing with Proposition 8.3.5 completes the proof. □

8.4. Contributions to the cohomology of Shimura varieties.

8.4.1. Consider the Shimura variety for GSp6 as in §3.4. Following the notation of (3.1.1), we obtain a local
system V(m−2,m−2,0) of Q(m)-vector spaces. Let σmv be the unique irreducible representation of K3,v with
trivial central character and whose restriction to U(3) has highest weight (mv + 1, 0,−mv − 1), and let σm

be the representation ⊗v|∞σmv of K3. One calculates that

(113) dimHomK3

(
σm, V(m−2,m−2,0),C ⊗ ∧2,2p∗GSp6

)
= 1,

where (2,2) is the constant plectic Hodge type. Thus we have, from (31), a class map

(114)
(
A(2)(GSp6(AF ))⊗ σm

)K3 → H2,2
(2) (S(GSp6),V(m−2,m−2,0),C).

8.4.2. We now choose a totally indefinite, non-split quaternion algebra B over F . Let π be an auxiliary
automorphic representation of PB×(AF ) of weight 2m+ 2 = (2mv + 2)v|∞.

Lemma 8.4.3. If Π̃ is a discrete automorphic representation of GSp6(AF ) which is nearly equivalent to a
constituent of the theta lift ι∗Θ(π ⊠ 1), then we have:
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(1) View V(m−2,m−2,0),C as a variation of structures of weight 0. Then the L2-cohomology

H4d
(2)(S(GSp6),V(m−2,m−2,0),C)[Π̃f ]

is purely of Hodge type (2d, 2d) for the (non-plectic) Hodge structure on L2 cohomology defined in
[36].

(2) The Galois group Gal(Q/F c) acts on the intersection cohomology

IH4d(S(GSp6)Q,V(m−2,m−2,0),Qℓ
)[Π̃f ]

via χ−2d, where χ is the ℓ-adic cyclotomic character.

Proof. For (1), it follows from Propositions 8.1.4, 8.2.3, and 8.3.5 that

H4d
(2)(S(GSp6),V(m−2,m−2,0),C)[Π̃f ] ≃ Π̃f ⊗

⊗
v|∞

H2,2(GSp6,R,K3;π
sm
v ⊗ V(mv−2,mv−2,0),C).

Thus it follows from Proposition 8.3.7 and from [36] that the cohomology is pure of Hodge type (m,m) in
Zucker’s normalization, where m =

∑
mv. However, since Vm,C has trivial central character and hence total

weight 0 in the algebraic normalization, we must twist by (2d−m, 2d−m), which shows the claim. For (2),
choose a compact open subgroup K =

∏
Kv ⊂ GSp6(AF,f ). It suffices to show that Frobp acts trivially on

H := IH4d(SK(GSp6)Q,V(m−2,m−2,0),Qℓ
)[Π̃f ]

for almost all p such that p splits completely in F c and Kp is hyperspecial. Assume without loss of generality

that Π̃p is unramified with local Langlands parameter

ϕp :WQp → LGSp6 = GSpin7(C)d ×WQp ,

and consider the 8d-dimensional representation defined by the composite:

(115) WQp

ϕp−→ GSpin7(C)d
r⊗d
spin−−−→ GL8d(C).

After picking an isomorphism C ∼= Qℓ, (115) defines an 8d-dimensional ℓ-adic unramified local Galois repre-
sentation Vp. By [20, §2], since p splits in F (m), the action of the geometric Frobenius Frob−1

p on H satisfies

the characteristic polynomial of p3 Frob−1
p on Vp. Now by Proposition 8.2.3, for almost every such p the

representation Vp is given by ⊗
v|p

(
Qℓ(−1)⊕Q2

ℓ ⊕Qℓ(1)⊕ ρπ|Fv ⊕ ρπ|Fv (1)
)
,

where ρπ is the 2-dimensional ℓ-adic Galois representation associated to π, which we normalize to have weight
one. (Recall that ρπ is pure since π is discrete series at a finite place of F [24].) On the other hand, it is
known that H is pure of weight 4d; comparing with the weights in Vp, it follows that Frobp acts as p−2d on
H. □

9. Triple product periods

9.1. The vector-valued period problem.

9.1.1. Let m, π1, π2, ϵ, τ
ϵ
m, and σm be as in (5.3.1) and (8.4.1), and let B be a non-split totally indefinite

quaternion algebra over F , ramified at a set S of places of F at which πi are both discrete series.

9.1.2. For auxiliary automorphic representations π of PB(AF )× of weight 2m + 2, we will consider triple
product period integrals of Θ(π ⊠ 1) along the subgroup

(116) H̃ := (GSp4×Gm
GL2) ⊂ GSp6 .

The maximal compact-modulo-center subgroup of H̃(F ⊗ R) is

(117) (K2 ×K1)0 := (K2 ×K1) ∩ H̃(F ⊗ R).
To define the vector-valued period integral, note that (by the classical branching law for unitary groups),
the space

(118) Hom(K2×K1)0(σm ⊗ τ ϵ
m ⊗ χ∨

−ϵm,C)
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is one-dimensional, say with generator ℓ.
We then define, for any auxiliary representation π of PB(AF )× of weight 2m + 2, the triple product

period:

P̃ϵ
S,π1,π2,π(α, β, γ) =

∫
[H̃]

ℓ(α(g, g′)⊗ β(g)⊗ γ(g′)) d(g, g′) ̸= 0,

α ∈ (Θ(π ⊠ 1)⊗ σm)K3 , β ∈ (ΠS(π1 ⊗ π2)⊗ τ ϵ
m)K2 , γ ∈ (π∨

2 ⊗ χ∨
−ϵm)K1 .

(119)

Since we will not give a precise formula for P̃ϵ
S,π1,π2,π

and are only interested in its non-vanishing, we ignore

the problem of normalization. The non-vanishing of (119), for a good choice of π, is the key input to the
non-vanishing of the Hodge classes we construct in the next section.

9.1.3. The strategy for calculating (119) is to use the seesaw diagram:

GSO(VB)×Gm
GSO(VB) GSp6

GSO(VB) H̃

There are two main inputs to the non-vanishing of our period integral (for a good choice of π): the first
is a vector-valued version of the usual global seesaw identity, and the second is a non-vanishing result for
the vector-valued theta lifts along the “other” diagonal in the seesaw diagram, i.e. from GSp4 and GL2 to
GSO(VB).

9.2. Vector-valued seesaw identity.

9.2.1. Continuing with the notation from (7.1.1), let m ≥ 2 be an integer and let σm be the unique represen-
tation of K3 of trivial central character and whose restriction to U(3) has highest weight (m+1, 0,−m− 1).
Let

φ̃m ∈ (S0
≤2m+2(3)⊗ σm ⊗ χ−(2m+2),0)

(K3×L)0

be a generator, which makes sense by Proposition 7.1.3. If (K2 × K1)0 is the intersection of K3 with
GSp4,R×Gm GL2,R inside GSp6,R, then we have, for any ϵ = ±1,

(120) dimHom(K2×K1)0(σm, τ
ϵ
m ⊗ χ∨

−ϵm) = 1;

let ℓϵ denote a generator. Also let (K1 ×K2 × L)0 = (K1 ×K2)0 × L ∩ (K3 × L)0.

Proposition 9.2.2. The Schwartz function

ℓϵ(φ̃m) ∈
(
SR(⟨e2, e4, e6⟩ ⊗ V )⊗ τ ϵm ⊗ χ∨

−ϵm ⊗ χ2m+2,0

)(K1×K2×L)0

is a nonzero scalar multiple of the tensor product

φϵm⊗ϕϵm ∈
((
SR(⟨e2, e4⟩ ⊗ V )⊗ τ ϵm ⊗ χ∨

m+2,−ϵm
)(K2×L)0 ⊗

(
SR(⟨e6⟩ ⊗ V )⊗ χ∨

−ϵm ⊗ χ−m,ϵm
)(K1×L)0

) ∣∣∣∣
(K1×K2×L)0

.

Proof. Assume ϵ = +; the other case is similar. Let ϕ ∈ S0
≤2m+2(3) be the contraction of φϵm⊗ ϕϵm with any

nonzero vector. Then ϕ generates the irreducible U(2)×U(1)-representation of highest weight (1,−m−1,m),
and it suffices to show that U(3) · ϕ is the irreducible representation of highest weight (m + 1, 0,−m − 1).
Without loss of generality, assume U(3) · ϕ is irreducible, say with highest weight (a, b, c). It follows (using
the branching law for unitary groups) that

a ≥ 1 ≥ b ≥ −m− 1 ≥ c,
a+ b+ c = 0.

(121)

On the other hand, considering Proposition 7.1.3(2), we have

(122) |a|+ |b|+ |c| ≤ 2m+ 2.

The combination of (121) and (122) force (a, b, c) = (m+ 1, 0,−m− 1). □
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9.2.3. We now return to the global situation. Choose an isomorphism VB ⊗F R ≃ V ⊗F R, which induces an
isomorphism GSO(VB)(F ⊗R) ≃ GSO(V )(F ⊗R). Then let L =

∏
v|∞ L ⊂ GSO(VB)(F ⊗R), and similarly

for (Kn ×L)0, etc. We fix vector-valued Schwartz functions as follows:

φ−ϵ
m = ⊗v|∞φ−ϵv

mv
∈
(
SF⊗R(⟨e2, e4⟩ ⊗ V )⊗ τ−ϵ

m ⊗ χ∨
(m+2),ϵm

)(K2×L)0
(Proposition 7.1.7)

≃
(
SF⊗R(⟨e2, e4⟩ ⊗ VB)⊗ (τϵm)∨ ⊗ χ−(m+2),−ϵm

)(K2×L)0

ϕ−ϵ
m = ⊗v|∞ϕ−ϵvmv

∈
(
SF⊗R(⟨e6⟩ ⊗ V )⊗ χ−ϵm ⊗ χ∨

m,−ϵm

)(K1×L)0
(Proposition 7.1.4)

≃
(
SF⊗R(⟨e6⟩ ⊗ VB)⊗ χ−ϵm ⊗ χ∨

m,−ϵm

)(K1×L)0

φ̃m = ⊗v|∞φ̃mv
∈
(
SR(⟨e2, e4, e6⟩V )⊗ σm ⊗ χ−(2m+2),0

)(K2×L)0

≃
(
SR(⟨e2, e4, e6⟩ ⊗ VB)⊗ σm ⊗ χ−(2m+2),0

)(K2×L)0

(123)

Proposition 9.2.4. Let ℓ be as above. For all

α ∈ (A0(PGSO(VB)(AF ))⊗ χ2m+2,0)
L
, β ∈ (ΠS(π1, π2)⊗ τ ϵ

m)
K2 , γ ∈

(
π∨
2 ⊗ χ∨

−ϵm

)K1
,

ϕ1,f ∈ SAF,f
(⟨e2, e4⟩ ⊗ VB), ϕ2,f ∈ SAF,f

(⟨e6⟩ ⊗ VB),
and up to a nonzero scalar depending on the normalizations, we have the identity:∫

[Z
H̃
\H̃]

ℓ
(
θϕ1,f⊗ϕ2,f⊗φ̃m

(α)(g, g′)⊗ β(g)⊗ γ(g′)
)
d(g, g′) =∫

[PGSO(VB)]

α(g)θϕ1,f⊗φ−ϵ
m
(β)(g)θϕ2,f⊗ϕ−ϵ

m
(γ)(g) dg.

(124)

Proof. This is formal from Proposition 9.2.2 and the usual seesaw identity, i.e. exchanging the order of
integration. □

9.3. Proof of the non-vanishing result.

Proposition 9.3.1. Let πBi be the Jacquet-Langlands transfers of πi to B(AF )×.
(1) The map

θφ−ϵ
m

: SAF,f
(⟨e2, e4⟩ ⊗ VB)⊗ (ΠS(π1, π2)⊗ τ ϵ)K2 →

(
A(GSO(VB))(AF )⊗ χ−(m+2),−ϵm

)L
,

defined by

(ϕ, α) 7→ θϕ⊗φ−ϵ
m
(α),

has image containing
(
(πB1 ⊠ πB2 )⊗ χ−(m+2),−ϵm

)L
.

(2) The map

θϕ−ϵ
m

: SAF,f
(⟨e6⟩ ⊗ VB)⊗

(
π∨
2 ⊗ χ∨

−ϵm

)K1 →
(
A(GSO(VB))(AF )⊗ χ∨

m,−ϵm

)L
,

defined by

(ϕ, α) 7→ θϕ⊗ϕ−ϵ
m
(α),

has image containing
(
((πB2 )∨ ⊠ (πB2 )∨)⊗ χ∨

m,−ϵm

)L
.

Proof. In the general setup of §4, suppose ΘV,W (π) = Π for cuspidal automorphic representations π of
G(V )(AF ) and Π of H(W )(AF ). Then by definition we have a surjective composite

(125) SAF
(W2 ⊗ V )

θ−→ A(R0(AF )) ↠ Π⊗ π∨.

Now, the theta kernel satisfies

θ(ϕ)(g, h) = θ(ϕ)

((
1 0
0 −1

)
g

(
1 0
0 −1

)
, h

)
(cf. [27]), so we deduce that Π⊗ π∨ = Π∨⊗π also appears in the spectrum of the theta kernel. (Recall that
the central characters of Π and π must agree since the central character of the Weil representation is trivial.)
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In particular ΘW,V (Π) contains the nonzero irreducible constituent π. For (1), take W =W4, V = VB , and
Π = ΠS(π1, π2). As in the proof of Proposition 4.2.3, the global theta lift gives rise to a nontrivial map:

(126) SAF
(⟨e2, e4⟩ ⊗ VB) ↠ ΠS(π1, π2)

∨ ⊗ΘW4,VB
(ΠS(π1, π2)).

(Since GSO(VB) is anisotropic, all theta lifts are square-integrable.) The map (126) is a restricted tensor
product of local maps. To prove the proposition, it suffices to show that, for all v|∞ and for some vector
0 ̸= ℓ ∈ τ ϵvmv

, the contraction ℓ(φ−ϵv
mv

) has nontrivial image under the local component

(127) SFv (⟨e2, e4⟩ ⊗ VB) ↠ Π+(π1,v, π2,v)
∨ ⊗

(
πB1,v ⊠ πB2,v

)
of (126). Now, by local Howe duality for the disconnected similitude group GO(VB), the local theta lift
ΘW4,VB

(Π+(π1,v, π2,v) is irreducible when viewed as a representation of GO(VB)(Fv) [13, 27]. Hence

ΘW4,VB
(Π+(π1,v, π2,v) = πB1,v ⊠ πB2,v ⊕ πB2,v ⊠ πB1,v,

and the map (127) factors as

SFv
(⟨e2, e4⟩ ⊗ VB) ↠ Π+(π1,v, π2,v)

∨ ⊗
(
πB1,v ⊠ πB2,v ⊕ πB2,v ⊠ πB1,v

)
↠ Π+(π1,v, π2,v)

∨ ⊗
(
πB1,v ⊠ πB2,v

)
.

We now note that ℓ(φϵvmv
) is a harmonic in the sense of [13] by Proposition 7.1.3, and generates a U(2)-type

that appears in Π+(π1,v, π2,v)
∨. It follows from [13] that its image under

SFv (⟨e2, e4⟩ ⊗ VB) ↠ Π+(π1,v, π2,v)
∨ ⊗

(
πB1,v ⊠ πB2,v ⊕ πB2,v ⊠ πB1,v

)
is nontrivial. However, ℓ(φϵvmv

) generates the L-type χ∨
−(mv+2),ϵvmv

, which does not appear in πB2,v ⊠ πB1,v. It

follows that ℓ(φϵvmv
) has nonzero image under (127). This proves (1). The proof of (2) is analogous. □

Finally we come to the main result of this section:

Lemma 9.3.2. There exists an automorphic representation π of PB(AF )× of weight 2m + 2, along with
vectors

α ∈ (Θ(π ⊠ 1)⊗ σm)K3 , β ∈ (ΠS(π1 ⊗ π2)⊗ τ ϵ
m)K2 , γ ∈ (π∨

2 ⊗ χ∨
−ϵm)K1 ,

such that:

P̃ϵ
S,π1,π2,π(α, β, γ) =

∫
[H̃]

ℓ(α(g, g′)⊗ β(g)⊗ γ(g′)) d(g, g′) ̸= 0.

Proof. First, fix newforms

f1 ∈ πB1 , fϵ2 ∈ πB2 , f∨2 ∈ (πB2 )∨, (fϵ2 )
∨ ∈ (πB2 )∨

of weights m+2, ϵm, m, and −ϵm, respectively. Then Proposition 9.3.1 implies that we may choose vectors

β ∈ (ΠS(π1, π2)⊗ τ ϵ
m)

K2 , γ ∈ (π∨
2 ⊗ χ∨

−ϵm)K1

and Schwartz functions

ϕ1,f ∈ SAF,f
(⟨e2, e4⟩ ⊗ VB), ϕ2,f ∈ SAF,f

(⟨e6⟩ ⊗ VB)
such that:

(128) θϕ1,f⊗φ−ϵ
m

= f1 ⊗ fϵ2 ; θϕ2,f⊗φ−ϵ
m
(γ) = f∨2 ⊗ (fϵ2 )

∨.

Now, the automorphic function g 7→ f1(g) · f∨2 (g) corresponds to a Hilbert modular form on B× of weight
2m + 2 and trivial central character. We may therefore choose some automorphic representation π of
PB(AF )× of weight 2m+ 2, with a vector α0 of weight −(2m+ 2), such that∫

[PB×]

α0(g)f1(g)f
∨
2 (g) dg ̸= 0.

Now, we turn α0 into an automorphic form α on PGSO(VB)(AF ) by setting α(pZ(g1, g2)) = α0(g1). It is

clear that α is a vector in ((π ⊠ 1)⊗ χ2m+2,0)
L
. Then Proposition 9.2.4 allows us to compute:

P̃S,π1,π2,π(θϕ1,f⊗ϕ2,f⊗φ̃m
(α), β, γ) =

(∫
[PB×]

α0(g)f1(g)f
∨
2 (g) dg

)
·

(∫
[PB×]

fϵ2 (g)(f
ϵ
2 )

∨(g) dg

)
̸= 0.

□
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10. Proof of main result: Hodge classes in the non-generic case

10.1. Construction.

10.1.1. Consider the inclusions of Shimura varieties:

(129) S(GSp6)
ι1←− S(H̃)

ι2−→ S(GSp4)× S(GL2),

where
H̃ := GSp4×Gm GL2 ⊂ GSp6 .

Note that ι∗1V(m−2,m−2,0) contains ι∗2Wm as a direct factor with multiplicity one. Since ι2 is an open and
closed embedding at sufficiently small level, one obtains from (129) a map

(130) Hi(S(GSp6),V(m−2,m−2,0))→ Hi(S(GSp4)× S(GL2),Wm).

The Hodge classes we construct will be the images of classes on S(GSp6) under the map (130).

10.1.2. Let π1, π2, and ΠSf
be as in (5.3.1), where |Sf | ≥ 2 is even. We let B be the unique quaternion

algebra over F which is ramified at Sf and split at all archimedean places. For any finite set Σ ⊃ Sf of
places of F , including all infinite ones, we consider the unramified Hecke algebra with Q-coefficients:

(131) T̃Σ = ⊗v ̸∈ΣH(GSp6(Fv),GSp6(Ov)).
For an auxiliary automorphic representation π of PB× which is tempered, unramified outside of Σ, and of

weight 2m+ 2, the Hecke action on Θ(π ⊠ 1) defines a maximal ideal IΣ ⊂ T̃Σ.

Definition 10.1.3. Fix π and Σ as above, a sufficiently small compact open subgroup K =
∏
Kv ⊂

GSp6(AFf
) such that Kv = GSp6(Ov) for v ̸∈ Σ, and a coefficient field E ⊃ Q(m) over which ΠSf

is defined.
Then we define

HdgE(π,K,Σ) ⊂ H4d(S(GSp4)× S(GL2),Wm,E)(2d)
[
Π∨
Sf

⊠ π2

]
to be the image of the Tate twist of the composite map

IH4d(SK(GSp6)
∗,V(m−2,m−2,0),E)[I

Σ]→ H4d(S(GSp6),V(m−2,m−2,0),E)
(130)−−−→ H4d(S(GSp4)× S(GL2),Wm,E)

↠ H4d
! (S(GSp4)× S(GL2),Wm,E)

[
Π∨
Sf

⊠ π2

]
.

Lemma 10.1.4. Any ξ ∈ HdgE(π,K,Σ) is a Hodge class of weight (0, 0). Moreover, the image of ξ in

H4d
ét,!

(
(S(GSp4)× S(GL2)Q,Wm,Eλ

)
(2d)

[
Π∨
Sf

⊠ π2,f

]
is Gal(Q/F c)-invariant, where λ is any finite prime of E.

Proof. Consider the following commutative diagram:

H4d
(2)(SK(GSp6),V(m−2,m−2,0),C)(2d)[I

Σ] H4d(SK(GSp6),V(m−2,m−2,0),C)(2d)

H4d
(2)(S(GSp4)× S(GL2),Wm,C)(2d)

[
Π∨
Sf

⊠ π2

]
H4d

! (S(GSp4)× S(GL2),Wm,C)(2d)
[
Π∨
Sf

⊠ π2

]
.∼

The left and bottom arrows in this diagram are maps of pure Hodge structures, and by construction
HdgE(π,K,Σ) ⊗E C is the image of the composite from the top left to the bottom right. We wish to

show that every element of H4d
(2)(SK(GSp6),V(m−2,m−2,0),C)(2d)[I

Σ] has weight (0, 0). If Π̃ is an automor-

phic representation of GSp6(AF ) such that Π̃Kf ̸= 0 is annihilated by IΣ, then there exists a Galois element

σ ∈ Gal(Q/Q) such that Π̃ is nearly equivalent to a constituent of Θ(π ⊠ 1)σ. Since the spherical theta

correspondence is defined over Q, it follows that Π̃ is nearly equivalent to a constituent of Θ(πσ ⊠1). Thus,
by Lemma 8.4.3, HdgE(π,K,Σ) consists of hodge classes of weight (0, 0).

The Galois invariance is similar, replacing C with Qℓ and L2 cohomology with absolute intersection
cohomology in the diagram above. □

10.2. Nonvanishing.
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10.2.1. To test the non-degeneracy of the subspace Hdg( π,K,Σ), we will use the following proposition.

Proposition 10.2.2. Let Π = ΠS , where S = Sf ⊔ S∞, and choose an auxiliary π as above. Suppose given

α ∈ (Θ(π ⊠ 1)⊗ σm)
K3 .

(1) Fix choices of signs ϵ = {ϵv}v|∞ and ϵ′ = {ϵv}v|∞. Then:

⟨ι2,∗ ◦ ι∗1(cl(α)), cl
ϵ
S∞

(β)⊠ cl′ϵ′(γ) =

{
P̃S,π1,π2,π(α, β, γ), if S∞ = ∅ and ϵ = ϵ′;

0, otherwise.

(2) After choosing isomorphisms

ΠSf
≃ (Π⊗ τ ϵ

m)
K3 , π∨

2,f ≃ (π∨
2 ⊗ χ−ϵm)K1 ,

the composite maps

ΠSf
⊗ π∨

2,f
clϵ ⊗ cl−ϵ

−−−−−−→ H4d
(2)(S(GSp4)× S(GL2),Wm,C)

⟨ι2,∗ι∗1ζ,·⟩−−−−−−→ C
are independent of ϵ up to a scalar.

Proof. The proof is essentially identical to Proposition 7.2.4. The only new ingredient is the calculation of
the (K2 ×K1)0-equivariant composite:

σm ⊗ τ ϵ
m,S∞

⊗ χ∨
−ϵ′m → ∧2,2p∗GSp6

⊗ V(m−2,m−2,0),C ⊗ ∧p(ϵ,S∞),q(ϵ,S∞)p∗GSp4
⊗ V(m−2,0),C

⊗ ∧1−p(ϵ′),1−q(ϵ′) p∗GL2
⊗ V ∨

m−2,C → ∧3+p(ϵ,S∞)−p(ϵ′),3+q(ϵ,S∞)−q(ϵ′)p∗
H̃

1
H̃−−→ C,

(132)

which is automatically trivial unless S∞ = ∅ and ϵ = ϵ′, in which case one can check that it is not trivial. □

Theorem 10.2.3. Let π1 and π2 be cuspidal automorphic representations of GL2(A) of weights m+ 2 and
m, respectively, where m = (mv)v|∞ for positive integers mv. Assume that the central characters of π1 and
π2 agree and have infinity type ωm. Let ΠSf

be as in (5.3.1) for a set Sf of finite places of F such that
|Sf | ≥ 2 is even, and choose a coefficient field E ⊃ Q(m) over which πi and ΠSf

are defined. Then there
exists a triple (π,K,Σ) as in Definition 10.1.3 and a Hodge class

ξ ∈ HdgE(π,K,Σ) ⊂ H4d
! (S(GSp4)× S(GL2),Wm,E)(2d)

[
ΠSf

⊠ π∨
2

]
such that the induced map

ξ∗ : H3d
! (S(GSp4),Vm,E)(d)[ΠSf

]→ Hd
! (S(GL2),V ′

m,E)[π2,f ]

is of the form

ΠESf
⊗H3d

! (S(GSp4),Vm,E)ΠSf
(d)

ℓ⊗s−−→ πE2,f ⊗Hd
! (S(GL2),V ′

m,E)π2,f
,

where s is a surjection and ℓ is a nontrivial E-linear map. Moreover, the image of ξ in ℓ-adic étale cohomology
is Gal(Q/F c)-equivariant for all ℓ.

Proof. The same argument as for Theorem 7.2.5 implies ξ∗ is always a pure tensor ℓ ⊗ s, and the map s
is always either trivial or a surjection. Thus it suffices to show that there exists a complex Hodge class
ξ ∈ HdgC(π,K,Σ) with ξ∗ ̸= 0. However, this is guaranteed by Lemma 9.3.2 and Proposition 10.2.2. □
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