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Abstract. Let E/Q be an elliptic curve and let K be an imaginary quadratic field. Under a certain Heegner

hypothesis, Kolyvagin constructed cohomology classes for E using K-CM points and conjectured they did
not all vanish. Conditional on this conjecture, he described the Selmer rank of E using his system of classes.

We extend work of Wei Zhang to prove new cases of Kolyvagin’s conjecture by considering congruences of

modular forms modulo large powers of p. Additionally, we prove an analogous result, and give a description
of the Selmer rank, in a complementary “definite” case (using certain modified L-values rather than CM

points). Similar methods are also used to improve known results on the Heegner point main conjecture of

Perrin-Riou. One consequence of our results is a new converse theorem, that p-Selmer rank one implies
analytic rank one, when the residual representation has dihedral image.
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1. Introduction

Let f be a weight 2 cuspidal newform for Γ0(N), without complex multiplication. The Birch and
Swinnerton-Dyer Conjecture predicts:

(1) r(Af/Q) = [Ef : Q] ords=1 L(f, s),

where Af is the associated abelian variety to f , r denotes the Mordell-Weil rank, and Ef is the coefficient
field of f . In pioneering works on this problem, Perrin-Riou [46] and Kolyvagin [35, 36] studied ranks of
elliptic curves over an auxiliary imaginary quadratic fieldK through the theory of Heegner points on modular
curves. We prove, in new cases, conjectures made by both authors.

Fix a quadratic imaginary field K, and a prime ℘ of Ef of residue characteristic p, with O = Of,℘ the
completion at ℘ of the ring of integers of Ef . Assume the following generalized Heegner hypothesis:

(Heeg) N = N+N−, where all ℓ|N+ are split in K,

all ℓ|N− are inert in K, and N− is squarefree,

as well as:

(unr) p ∤ 2N disc(K).

The p-adic Tate module VpAf of Af is equipped with an action of Ef ; write Vf := VpAf ⊗Ef
Ef,℘ for the

℘-adic Galois representation attached to f , and let Tf ⊂ Vf be a Galois-stable O-lattice. We shall assume

that T f := Tf/℘Tf is absolutely irreducible as a representation of the Galois group GK := Gal(K/K).
For purposes of exposition in this introduction, we also assume:

(sclr) The image of the GK action on T f contains a nonzero scalar.

To state Kolyvagin’s conjecture, assume that the number of prime factors ν(N−) is even. If m is a
squarefree product of primes inert in K, one can use Heegner points of conductor m on the Shimura curve
XN+,N− to construct classes

c(m) ∈ H1(K,Tf/Im),

where Im is the ideal of O = Of,℘ generated by ℓ + 1 and aℓ for all ℓ|m. (In the text, c(m) is denoted
c(m, 1).) These classes are a mild generalization of the ones constructed by Kolyvagin [36]. We are able to
prove the following result towards Kolyvagin’s conjecture that the system {c(m)} is nontrivial:
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Theorem A ((Theorem 8.1.1, Corollary 7.3.7)). Assume (Heeg), (unr), and (sclr) hold for f, ℘, and K,
and ν(N−) is even. Suppose the following conditions hold:

(♢)



• The modulo ℘ representation T f associated to f is absolutely

irreducible; if p = 3, then T f is not induced from a character of
GQ(

√
−3).

• If p is inert in K, then there exists some prime ℓ0||N .
• If ap is not a ℘-adic unit, then either there exists ℓ0||N+ such that

T f |GQℓ0
is ramified and T

GQℓ0

f = 0; or there exist primes ℓ1, ℓ2|N−

such that T f |GQℓi
is ramified for i = 1, 2, T

GQℓ1

f = 0, and T
GQℓ2

f ̸=
0.

Then there exists a nonzero Kolyvagin class

0 ̸= c(m) ∈ H1(K,Tf/Im).

As Kolyvagin observed, Theorem A can be used to give a description of the Selmer ranks r± = rkO Sel(K,Tf )
±,

where superscripts refer to the action of complex conjugation. Indeed, define the vanishing order of the sys-
tem {c(m)} as

(2) ν := min {ν(m) : c(m) ̸= 0}

where as before ν denotes the number of prime factors. Then we have:

Corollary B ((Corollary 7.3.7)). Under the assumptions of Theorem A,

max
{
r+, r−

}
= ν + 1.

Moreover r+ + r− is odd, and the larger eigenspace has sign (−1)ν+1ϵf , where ϵf is the global root number
of f .

Of course, the latter two assertions follow from the parity conjecture for f , already proven by Nekovár̆
[42].

Since c(1) ∈ Sel(K,Tf ) is the Kummer image of the classical Heegner point, the Gross-Zagier formula
implies that L′(f/K, 1) ̸= 0 if and only if c(1) ̸= 0. Hence Corollary B yields a so-called p-converse theorem
(in fact, under a slightly weaker hypothesis):

Corollary C ((Theorem 7.3.6)). Assume that (Heeg), (unr), and Condition ♢ hold for f , ℘, and K, and
ν(N−) is even. Then L′(f/K, 1) ̸= 0 if and only if rkO Sel(K,Tf ) = 1, in which case Af has Mordell-Weil
rank 1.

Now suppose instead that ν(N−) is odd; it turns out that Kolyvagin’s construction, suitably modified,
may still be used to relate Selmer ranks and CM points. The Jacquet-Langlands correspondence associates
to f a quaternionic modular form

(3) ϕf : XN+,N− → Of ,

where XN+,N− is a double coset space for a definite quaternion algebra, usually called a Shimura set. If
m is a squarefree product of primes inert in K, there exist analogues of CM points of conductor m on the
Shimura set. Using the values of ϕf at these points, we construct certain special elements (well-defined up
to units)

(4) λ(m) ∈ O/Im
(λ(m, 1) in the text). Here the ideal Im ⊂ O is as before. The analogues of the elements λ(m) for p-power
conductor have long been used in anticyclotomic Iwasawa theory, e.g. [2]. However, for squarefree m, a novel
observation of this work is that the elements λ(m) encode the same information about the Selmer ranks of
Af/K as Kolyvagin’s classes c(m).

Theorem D ((Theorem 8.1.1, Corollary 7.3.7)). Suppose that (Heeg), (unr), (sclr), and Condition ♢ hold
for f, ℘, and K, and that ν(N−) is odd. Then the vanishing order

ν := min {ν(m) : λ(m) ̸= 0}
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is finite and
ν = max

{
r+, r−

}
.

Moreover (−1)ν = ϵf and r+ + r− is even.

As before, the final statement is a consequence of the parity conjecture; we include it only to emphasize
that it follows from the non-vanishing of some λ(m), in analogy to the indefinite case.

1.1. Comparison to previous results. In the indefinite case, the first results towards Kolyvagin’s con-
jecture were obtained by Zhang [69], under a number of additional assumptions: that p ≥ 5, that the Galois
representation associated to T f is surjective, and additional hypotheses on the residual ramification. In

particular, under the hypotheses of [69], there exists a class c(m) whose reduction in H1(K,T f ) is nonzero;
this is not the case in general. In the definite case, the classes λ(m) are a novel feature of this work and
were not considered in [69].

The converse theorem we obtain (Corollary C) is new in several cases, most notably when the image of
the Galois action on T f is dihedral, or when p = 3. Previous results, under various additional hypotheses,
were obtained by Zhang as a corollary of his work on Kolyvagin’s conjecture, and by Skinner [59] by a
purely Iwasawa-theoretic method. For converse theorems in other settings, see Burungale [7] for the CM
case, Castella-Grossi-Lee-Skinner [9] for the residually reducible case, Castella-Wan [10] for the supersingular
case, and Skinner-Zhang [61] for the case of multiplicative reduction.

1.2. Iwasawa theory. Now suppose again that ν(N−) is even. While the Kolyvagin classes are constructed
by varying the conductor of CM points on XN+,N− over squarefree integers, one may instead p-adically
interpolate CM points of p-power conductor to obtain a class:

(5) κ∞ ∈ H1(K,Tf ⊗ Λ(Ψ)),

where Λ = OJGal(K∞/K)K is the anticyclotomic Iwasawa algebra, given GK-action by the tautological
character Ψ. (Note that the specialization of κ∞ at the trivial character is a multiple of c(1).) The methods
used to prove Theorem A also yield the following result towards Perrin-Riou’s Heegner point main conjecture.

Theorem E ((Corollary 7.2.2)). Suppose that (Heeg), (unr), and Condition ♢ hold for f, ℘, and K, and
that ν(N−) is even. Suppose further that ap is a ℘-adic unit and p splits in K. Then there is a pseudo-
isomorphism of Λ-modules:

Sel(K∞,Wf )
∨ ≈ Λ⊕M ⊕M

for some torsion Λ-module M , and

charΛ

(
Sel(K,Tf ⊗ Λ)

Λ · κ∞

)
= charΛ(M)

as ideals of Λ⊗Qp. If (sclr) holds, then the equality is true in Λ.

Here, Wf is the divisible Galois module Vf/Tf . For precise definitions of the above Selmer groups and of
κ∞, which is denoted κ(1) in the text, see §5.2.

Finally, we have the following result on the anticyclotomic main conjecture for f when ν(N−) is odd.
Evaluating the quaternionic modular form ϕf on CM points of p-power conductor on the Shimura set
XN+,N− , one constructs the algebraic p-adic L-function

(6) λ∞ ∈ Λ,

denoted λ(1) in the text. The square of λ∞ has an interpolation property for twisted L-values of f .

Theorem F ((Corollary 7.2.3)). Suppose that (Heeg), (unr), and Condition ♢ hold for f, ℘, and K, and that
ν(N−) is odd. Suppose further that ap is a ℘-adic unit and p splits in K. Then there is a pseudo-isomorphism
of Λ-modules:

Sel(K∞,Wf )
∨ ≈M ⊕M

for some torsion Λ-module M , and
(λ∞) = charΛ(M)

as ideals of Λ⊗Qp. If additionally (sclr) holds, then the equality is true in Λ.

One direction of this equality is due to Skinner-Urban’s work on the three-variable main conjecture [60];
indeed, this is an essential ingredient in all of our results, as explained below.
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1.3. Comparison to previous results. The hypotheses in Zhang’s proof of Kolyvagin’s conjecture were
carried over to Burungale, Castella, and Kim’s proof [6] of the lower bound on the Selmer group in the
Heegner point main conjecture, where it is also assumed that p is not anomalous. While the methods used
in this paper build on those of [6], Castella and Wan [11] have given a completely independent proof of a
three-variable main conjecture when ν(N−) is even. Their result also requires some hypotheses on residual
ramification avoided here, and that N be squarefree.

For upper bounds on the Selmer group in Theorem E and Theorem F, various technical assumptions on
the residual representation and on the image of the Galois action were used in prior works by Howard [27, 28]
and Chida-Hsieh [12]. The lower bound on the Selmer group in Theorem F is contained in [60].

1.4. Overview of the proofs. To prove Theorems A and D, we extend Kolyvagin’s construction to a larger
system of classes

(7) c(m,Q1) ∈ H1(K,Tf/℘
M ), λ(m,Q2) ∈ O/℘M ,

where M is a fixed integer, and m,Q1, Q2 are squarefree products of auxiliary primes satisfying certain
congruence conditions, such that ν(N−Q1) is even and ν(N−Q2) is odd. The classes (7) form a bipartite
Euler system in the sense of Howard [28] for each fixed m and a Kolyvagin system for each fixed Q1. If
ν(N−) itself is even, then the classes c(m, 1) agree with Kolyvagin’s original construction. The Euler system
relations are of the form:

(8) locq c(m,Q1) ∼ λ(m,Q1q) ∼ ∂q′c(m,Q1qq
′),

where q, q′ are two additional auxiliary primes not dividing Q1; and

(9) loc±ℓ c(m,Q1) ∼ ∂∓ℓ c(mℓ,Q1),

where ℓ is an additional auxiliary prime not dividing m. (Here locq, ∂q′ , loc
±
ℓ , ∂

±
ℓ are certain localization

maps landing in subspaces of the local cohomology free of rank one over O/℘M .) The classes c(m,Q1) were
introduced by Zhang, although the λ(m,Q2) are only implicit in [69].

If c(m,Q1) ̸= 0, then one can use (8) and (9) to find an auxiliary ℓ — either prime or equal to 1 —
such that ∂qc(mℓ,Q1) ̸= 0 for some q|Q1. By (8), this implies λ(mℓ,Q1/q) ̸= 0. On the other hand, if
λ(m,Q2) ̸= 0 and q|Q2, then by (8) c(m,Q2/q) ̸= 0. Combining these two observations, we reduce the
non-vanishing of some class c(m, 1) or λ(m, 1) — depending on the parity of ν(N−) — to exhibiting a single
Q2 such that λ(1, Q2) ̸= 0.

Now, if there exists a newform g of level NQ2 with a congruence to f modulo ℘M , then λ(1, Q2) is
essentially the reduction of the algebraic L-value Lalg (g/K, 1) modulo ℘M , which is related to the length of
the Selmer group of g by the Iwasawa main conjecture [60, 65]. To complete the proof, it therefore suffices
to choose a suitable Q2 and construct such a g with a small Selmer group. We remark that our results can
only be obtained by working modulo ℘M for a large M , since in general it will not be possible to choose g
such that Lalg(g/K, 1) is a ℘-adic unit; in [69], M = 1 is fixed throughout, and the need to show that the
L-value is a unit is responsible for most of the additional hypotheses.

To construct g, we use the deformation-theoretic techniques developed by Ramakrishna [49]. Standard
level-raising methods work by producing a modulo ℘ eigenform of the desired level, and then using that all
modulo ℘ eigenforms lift to characteristic zero, but this is not the case modulo ℘M . Instead, we deform
the representation Tf/℘

M to a ℘-adic Galois representation of a suitable auxiliary level, and then apply
modularity lifting to ensure the resulting representation is modular. The auxiliary level Q2 must be chosen
to control two Selmer groups: the adjoint Selmer group governing the deformation problem, and the Selmer
group Sel(K,Wg) that is related to the L-value. (Here, Wg is the divisible O-Galois module constructed
analogously to Wf .)

We now make some remarks on the construction of the Euler system. The elements c(m,Q1) (resp.
λ(m,Q2)) are constructed from CM points of conductor m on the Shimura curve XN+,N−Q1

(resp. Shimura
set XN+,N−Q2

). Similar Euler system constructions have been made by many authors, e.g. in [12, 2] as
well as in [69], but all have relied on certain hypotheses ensuring an integral multiplicity one property for
the space of algebraic modular forms on XN+,N−Qi

, which we do not impose here. Instead, we obtain a
control on the failure of multiplicity one, using the work of Helm [25] on maps between Jacobians of modular
curves and Shimura curves. The construction of the Euler system is intimately related to level-raising, and
so our method also improves results on level-raising of f to algebraic eigenforms modulo ℘M new at multiple
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auxiliary primes, which had previously been restricted to the multiplicity one case. A precise statement is
given in Theorem 4.5.7.

The proof of Theorem E is similar to that of Theorem A: the p-adically interpolated Heegner class κ∞
is viewed as the bottom layer of an Euler system {κ(Q1),λ(Q2)}. (The squarefree conductor m no longer
plays a role.) If g, as above, is a newform of level NQ2 with a congruence to f , then λ(Q2) is congruent to
Bertolini and Darmon’s anticyclotomic p-adic L-function of g [2]. Using this and an Euler system argument,
we reduce the lower bound on the Selmer group in the Heegner point main conjecture to the lower bound on
the Selmer group in the anticyclotomic main conjecture for g, which was proven in [60]. Finally, the upper
bound on the Selmer group in Theorems E and F follows by standard arguments from the construction of
the Euler system.

In the text, the arguments described above are phrased in the language of ultrapatching, which amounts
to a formalism for letting M tend to infinity; this also forces each prime factor of m, Q1, Q2 to tend to
infinity in order to satisfy the congruence conditions. (The number of prime factors of m, Q1, and Q2

remains bounded.) This method was inspired by [57], where ultrapatching was applied to the Taylor-Wiles
construction. Our setting is different in that we patch Galois cohomology groups and Selmer groups rather
than geometric étale cohomology groups. The benefit of ultrapatching is that it allows us to consider the
Euler system classes as characteristic zero objects in patched Selmer groups, significantly streamlining the
Euler system arguments. For instance, with patching, we are able to make precise the heuristic that the
non-vanishing of each Euler system class c(m,Q1) or λ(m,Q2) is equivalent to the (m,Qi)-transverse Selmer
group being rank one or zero, respectively, cf. Lemma 7.3.4.

Structure of the paper. In §2, we review basic properties of ultrafilters and introduce patched cohomology
and Selmer groups. In §3, we present a simplified version of the theory of bipartite Euler systems that
appeared in [28], using patched cohomology. In §4, we establish the geometric inputs that will be used to
construct bipartite Euler systems: the work of Helm on maps between modular curves and Shimura curves,
the modulo ℘M level-raising result, and the behavior of Heegner points on Shimura curves under reduction
and specialization. In §5, we present a general framework for constructing bipartite Euler systems out of
CM points, which we then specialize for our applications. In §6, we give the deformation-theoretic input to
construct the newform g (in fact a sequence gn satisfying increasingly deep congruence conditions). Finally,
we prove the main results in the split ordinary case in §7. An additional calculation in cyclotomic Iwasawa
theory and a comparison of periods are required for Kolyvagin’s conjecture when p is non-ordinary or inert
in K; this is done in §8.

Notational conventions.

• If N is a squarefree positive integer, then ν(N) denotes its number of prime factors.
• If L is a number field, we write GL = Gal(L/L) for its absolute Galois group and AL (resp. Af,L)
for its ring of adèles (resp. finite adéles).

• The symbol Frobv always denotes an arithmetic Frobenius element.
• If K is a number field and A is a GK-module, then K(A) is the smallest algebraic extension of K

such that GK(A) acts trivially on A.

• We fix, for each place v of Q, an embedding Q ↪→ Qv. For any number field L ⊂ Q, and any place v
of L, we denote by GLv

↪→ GL the resulting embedding of the local Galois group.
• The p-adic cyclotomic character is denoted χ : GQ → Z×p .
• For a cuspidal eigenform f with trivial character, its global root number is denoted ϵf .

Acknowledgments. I am grateful to Mark Kisin for suggesting this problem and for his ongoing encour-
agement. Special thanks are additionally due to Francesc Castella, who first alerted me to the relation
between Kolyvagin’s conjecture and the Heegner point main conjecture. It is also a pleasure to thank many
other people with whom I had helpful conversations and correspondence over the course of this project:
Olivier Fouquet, Aaron Landesman, Sam Marks, Alexander Petrov, Robert Pollack, Christopher Skinner,
Alexander Smith, Florian Sprung, Matteo Tamiozzo, and Xin Wan. Finally, I wish to thank the anonymous
referee for extremely careful reading and many valuable suggestions. This work was supported by NSF Grant
#DGE1745303.
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2. Ultrafilters and patching

2.1. Ultraproducts. The following discussion is inspired by the unpublished notes of Manning [37, §I.1].

2.1.1. A (non-principal) ultrafilter F for the natural numbers N = {0, 1, . . .} is a collection of subsets of N
satisfying the following properties:

(1) Every set S ∈ F is infinite.
(2) For every S ⊂ N, either S ∈ F or N− S ∈ F.
(3) If S1 ⊂ S2 ⊂ N and S1 ∈ F, then S2 ∈ F.
(4) If S1, S2 ∈ F, then S1 ∩ S2 ∈ F.

Throughout this paper, we fix once and for all a non-principal ultrafilter F on N, which is possible assuming
the axiom of choice. We will say that a statement P holds for F-many n ∈ N if the set S of n for which P
holds lies in F.

Proposition 2.1.2. Suppose that C is a finite set and S ⊂ N lies in F. Then for any function t : S → C,
there is a unique c ∈ C such that t(n) = c for F-many n.

Proof. The function t defines a finite partition of N:

N = (N− S) ⊔
⊔
c∈C

t−1(c).

An easy induction argument shows that, for any partition of N into a finite number sets, exactly one of the
sets lies in F. Since N− S ̸∈ F, the result follows. □

2.1.3. If M = {Mn}n∈N is a sequence of sets indexed by N, then F defines an equivalence relation ∼ on∏
Mn:

(mn)n∈N ∼ (m′n)n∈N ⇐⇒ {n : mn = m′n} ∈ F.

The quotient
∏
Mn/ ∼ is called the ultraproduct of the sequence M and is denoted U(M). The ultra-

product is functorial: let M′ = {M ′n} be another sequence of sets and suppose given, for F-many n, maps
φn : Mn → M ′n. Then there is a natural map φU : U(M) → U(M′). In particular, if each Mn is endowed
with the structure of an abelian group (resp. R-module for a fixed ring R), then U(M) is naturally an
abelian group (resp. R-module).

Proposition 2.1.4. (1) Let M = {Mn}n∈N and M′ = {M ′n}n∈N be sequences of nonempty sets, and
suppose given maps φn : Mn →M ′n for F-many n. If φn is injective (resp. surjective, bijective) for
F-many n, then φU is injective (resp. surjective, bijective).

(2) Suppose M = {Mn}n∈N, where each Mn is a nonempty finite set such that #Mn < C for F-many
n. Then U(M) is finite and #U(M) = #Mn for F-many n.

Proof. (1) Suppose φn is injective for F-many n and let m,m′ ∈ U(M) be the equivalence classes of
sequences (mn)n∈N and (m′n)n∈N. If φU (m) = φU (m′), then for F-many n, φn(mn) = φn(m

′
n).

Hence for F-many n, mn = m′n, so m = m′ in U(M). Therefore φU is injective.
Now suppose φn is surjective for F-many n, and let m′ ∈ U(M′) be an element represented by

(m′n)n∈N. We will show that m′ lies in the image of φU . Let S ∈ F be such that φn is surjective for
n ∈ S. Define a new sequence (mn)n∈N by choosing mn ∈ Mn arbitrarily for n ̸∈ S, and choosing
mn ∈Mn such that φn(mn) = m′n for n ∈ S. Then the equivalence class m of this sequence satisfies
φU (m) = m′. Hence, φU is surjective.

(2) By Proposition 2.1.2, there exists some c < C such that #Mn = c for F-many n. Let [c] =
{0, . . . , c− 1} and choose isomorphisms of sets

φn :Mn
∼−→ [c]

for F-many n. By (i), φU induces an isomorphism from U(M) to the ultraproduct C of the constant
sequence {[c]}n∈N. However, C is canonically isomorphic to [c] by Proposition 2.1.2.

□

Proposition 2.1.5. Let S be the category of sequences of abelian groups indexed by N. Then U is exact as
a functor from S to the category of abelian groups.
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Proof. Let A = (An)n∈N, B = (Bn)n∈N, and C = (Cn)n∈N be three sequences of abelian groups, and suppose
given exact sequences

0→ An
φn−−→ Bn

ψn−−→ Cn → 0

for all n ∈ N. We wish to show that

0→ U(A) φU

−−→ U(B) ψU

−−→ U(C)→ 0

is exact. By Proposition 2.1.4(i), it suffices to show that the kernel of ψU is the image of φU . Suppose
(bn)n∈N represents an element b ∈ kerψU . Then, by definition, ψn(bn) = 0 for F-many n, so for F-many
n there exists an ∈ An with φn(an) = bn. Hence, there exists a sequence (an)n∈N representing an element
a ∈ U(A) with φU (a) = b. We have shown that kerψU ⊂ imφU . Since the opposite inclusion is clear, this
completes the proof. □

2.2. Ultraprimes.

2.2.1. Fix a number field L ⊂ Q and let ML be its set of places. If ML is the constant sequence of sets
{ML}n∈N, then we define the set of ultraprimes of L as

ML = U(ML).

By definition, an ultraprime v ∈ ML is an equivalence class of sequences (vn)n∈N, where each vn is a place
of L. The map v 7→ (v, v, . . .) induces an embedding ML ↪→ ML, written v 7→ v, and we say an ultraprime
is constant if it lies in the image of this embedding.

Proposition 2.2.2. Let v be a non-constant ultraprime. Then there exists a unique Frobenius element
Frobv ∈ Gal(L/L) with the following property: for each finite Galois extension L ⊂ E ⊂ L, and for any
representative (vn) of v, there are F-many n such that vn is unramified in E/L and the Frobenius of vn in
Gal(E/L) is the natural image of Frobv.

Proof. Let (vn)n∈N be a representative of v, and fix for the time being a finite Galois extension E/L inside Q.
If vn is archimedian or ramified in E for F-many n, then Proposition 2.1.2 implies that v is constant. Thus for
F-many n, the Frobenius of vn is a well-defined element of Gal(E/L) (determined exactly, and not only up to
conjugacy, by the fixed embeddings E ↪→ Q ↪→ Qv). By Proposition 2.1.2, the map n 7→ Frobvn ∈ Gal(E/L)
sends F-many n to a (unique) common value gE ∈ Gal(E/L). Note that gE does not depend on the
representative (vn). By the uniqueness of gE , the association E 7→ gE is compatible with restriction to
subextensions E′ ⊂ E, hence defines an element of the absolute Galois group. □

2.2.3. Let v be an ultraprime. We define its abstract Galois group Gv as Gal(Lv/Lv) if v = v is constant,
and as the semi direct product

Ẑ(1)⋊ ⟨Frobv⟩

otherwise. Here, ⟨Frobv⟩ denotes the free profinite group on one generator, acting on Ẑ(1) by Frobv. We
define the inertia group Iv ⊂ Gv of v to be the usual inertia group if v is constant, and the normal subgroup

Ẑ(1) ⊂ Gv otherwise.

2.3. Local cohomology.

2.3.1. For any (continuous) Galois module A defined over L and unramified at almost all places, and for
any v ∈ ML, there is a natural action of Gv on A (factoring through the quotient Gv → ⟨Frobv⟩ if v is
nonconstant). We define local cohomology groups by:

Hi(Lv, A) := Hi
cts(Gv, A),

Hi(Lnrv , A) := Hi
cts(Iv, A), i ≥ 0.

Note that the local cohomology commutes with direct limits and countable inverse limits of finite, discrete
Galois modules; the former is essentially by definition of continuous cohomology and the latter is by [44,
Corollary 2.6.7] applied to Gv, Iv.
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Proposition 2.3.2. Let v ∈ ML be an ultraprime represented by a sequence (vn)n∈N. If A is a finite, discrete
Galois module over L, then for F-many n there are canonical isomorphisms (functorial in A, compatible with
cup products, and compatible with the natural restriction maps):

Hi(Lvn , A) ≃ Hi(Lv, A),

Hi(Lnrvn , A) ≃ Hi(Lnrv , A), i ≥ 0.

Proof. If v is the constant ultraprime v, then vn = v for F-many n, and the desired isomorphisms are given
by the identity maps; so suppose v is nonconstant. For F-many n, the action of the decomposition group Gvn
at vn on A is unramified and the Frobenius of vn acts by Frobv. Let ℓn be the prime of Q lying under vn;
since L/Q is a finite extension and A is a finite Galois module, for F-many n we have ℓn ∤ |A|. Restricting
to these n, the inflation map induces isomorphisms:

Hi(Gtvn , A) ≃ H
i(Lvn , A), Hi(Itvn , A) ≃ H

i(Lnrvn , A),

where Gtvn and Itvn denote the tame quotients. The tame Galois group Gtvn is identified with the semi direct
product:

Itvn ⋊ ⟨Frobvn⟩ ≃ Ẑ(ℓn)(1)⋊ ⟨Frobvn⟩.
Since Frobvn and Frobv may act differently on the Tate twist, Gtvn and Gv cannot be compared directly;

however, for F-many n, Frobvn and Frobv act the same way on any finite quotient of Ẑ(1). The cohomology
groups are therefore canonically isomorphic for F-many n by the following easy lemma in group cohomology
(applied to both Gtvn and Gv). □

Lemma 2.3.3. Let G = I ⋊ ⟨F ⟩ be a group, where I is abelian and profinite of cohomological dimension at
most one, and ⟨F ⟩ denotes the free profinite group on one generator, acting on I by an automorphism. If A
is a finite Z[F ]-module, viewed as a G-module via G↠ ⟨F ⟩, then there are canonical isomorphisms:

Hi
cts(I, A) = Hi(I/|A|, A), i = 0, 1,

Hi
cts(G,A) = Hi

cts(I/|A|⋊ ⟨F ⟩, A), i ̸= 2,

H2
cts(G,A) = H1

cts(⟨F ⟩,Hom(I/|A|, A)).

Proof. The isomorphisms Hi
cts(I, A) ≃ Hi

cts(I/|A|, G) are immediate for i = 0, 1. For the cohomology groups
Hi(G,A), note first that G has cohomological dimension at most 2. The Hochschild-Serre spectral sequence
gives a canonical isomorphism

H2
cts(G,A) = H1

cts(⟨F ⟩, H1
cts(I,A)) = H1

cts(⟨F ⟩,Hom(I/|A|, A)),

since both ⟨F ⟩ and I have cohomological dimension at most 1.
It remains to show that the inflation map induces an isomorphism

H1
cts(I/|A|⋊ ⟨F ⟩, A)

∼−→ H1
cts(G,A).

Equivalently, if H ⊂ G is the subgroup |A|I ⊂ I, we wish to show that the restriction map H1
cts(G,A) →

H1
cts(H,A) is trivial. Indeed, the restriction map factors through H1

cts(I, A)→ H1
cts(H,A), which is the zero

map since I acts trivially on A.
□

2.4. Patched cohomology.

2.4.1. Let S ⊂ ML be a finite set of ultraprimes {s1, s2, . . . , sr}. A representative of S is a sequence of
sets Sn ⊂ ML such that Sn = {sn1 , · · · , snr } for some sequences (sni )n∈N representing si. If A is a Gal(L/L)
module, we say A is unramified outside S ⊂ ML if it is unramified outside S ∩ML.

Definition 2.4.2. Let A be a topological Gal(L/L)-module unramified outside a finite set S ⊂ ML, rep-
resented by a sequence Sn ⊂ ML. If A is profinite, then we define the ith unramified-outside-S patched
cohomology, for all i ≥ 0, by:

Hi(LS/S,A) = lim←−
A↠A′

U
({
Hi(LS

n

/L,A′)
})

n∈N
,
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where the inverse limit runs over continuous finite quotients of A. If A is ind-finite, then its unramified-
outside-S patched cohomology is defined as:

Hi(LS/L,A) = lim−→
A′⊂A

U
({

Hi(LS
n

/L,A′)
}
n∈N

)
,

where the direct limit runs over finite submodules. If A is either profinite or ind-finite, then the totally
patched cohomology is defined as

Hi(L,A) = lim−→
S⊂ML

Hi(LS/L,A),

where the direct limit is over finite subsets such that A is unramified outside S and the transition maps are
induced by the functoriality of the ultraproduct.

Remark 2.4.3. (1) To see that these cohomology groups are well-defined, first note that they are
independent of the choice of Sn since any two representatives of a finite set S ⊂ ML agree for F-
many n. Moreover, if A is both profinite and ind-finite, then it is finite, and it is clear that either
definition gives the same cohomology groups.

(2) There is a canonical isomorphism H0(LS/L,A) = H0(L,A) for all profinite or ind-finite A and all
finite S ⊂ ML such that A is unramified outside S.

(3) The assignment A 7→ Hi(LS/L,A) is functorial in GL-modules A unramified outside S, hence A 7→
Hi(L,A) is functorial in A. If A is an R-Galois module unramified outside S, then each patched
cohomology group Hi(LS/L,A), Hi(L,A) has a natural R-module structure.

(4) In practice, we will want our profinite Galois modules to be countably profinite, i.e. to have a
presentation as a countable inverse limit of finite, discrete topological Galois modules. The signifi-
cance of this technical hypothesis is that countable inverse limits of finite abelian groups are exact.
For example, see [44, Corollary 2.7.6].

(5) Suppose A is ind-finite or countably profinite and unramified outside S. If every ultraprime in S
is constant, and S ⊂ ML is the corresponding finite set of places, then Hi(LS/L,A) is canonically
isomorphic to Hi(LS/L,A).

(6) Suppose A is ind-finite or countably profinite. For each ultraprime v, there are natural localization
maps

Resv : H
i(L,A)→ Hi(Lv, A)

deduced from Proposition 2.3.2 (and from [44, Corollary 2.7.6] applied to Gv in the profinite case).
(7) If the Galois action on A is the restriction of an action of GK , where L/K is a Galois extension,

then Gal(L/K) acts naturally on Hi(L,A), again by functoriality of ultraproducts; this is compatible
with the localization maps in the obvious way.

Lemma 2.4.4. Let A be a finite Galois module over L, and let S ⊂ ML be a finite set of primes outside
which A is unramified. Then the cardinality of Hi(LS/L,A) is uniformly bounded, with a bound depending
only on A, L, and |S|. In particular, if S ⊂ ML is finite, then the patched cohomology groups Hi(LS/L,A)
are finite for each finite Galois module A and each i ≥ 0.

Proof. The second claim follows from the first by Proposition 2.1.4(ii). The first claim is immediate for
i = 0, and the case i ≥ 3 is handled by [41, Chapter 1, Theorem 4.10(c)]. For i = 1 and 2, let S0 be the set
of primes at which A is ramified, or with residue characteristic dividing |A|; without loss of generality, we
may assume S0 ⊂ S. Now the map

Hi(LS/L,A)→
∏
v∈S

Hi(Lv, A)

has kernel contained in Xi
S0
(A), which is finite by part (a) of loc. cit. Since |Hi(Lv, A)| ≤ |A|2 for v ̸∈ S0,

the lemma follows. □

Proposition 2.4.5. If A is either countably profinite or ind-finite, then, for all i, the natural map induces
an isomorphism

Hi(LS/L,A) ≃ ker

(
Hi(L,A)→

∏
v∈ML−S

Hi(Lnrv , A)

)
.
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Proof. It suffices to show that, for all finite sets T ⊂ ML − S,

Hi(LS/L,A) ≃ ker

(
Hi(LS∪T, A)→

∏
t∈T

Hi(Lnrt , A)

)
.

This holds when A is finite by Lemma 2.4.4 and Proposition 2.1.5; the general case follows by taking
limits. □

Lemma 2.4.6. Let

0→ A→ B → C → 0

be an exact sequence of either countably profinite or ind-finite Galois modules unramified outside S. Then
there is an induced long exact sequence beginning:

0→ H0(LS/L,A)→ H0(LS/L,B)→ H0(LS/L,C)→

→ H1(LS/L,A)→ H1(LS/L,B)→ · · ·

Proof. If A, B, and C are all finite, then this follows from Proposition 2.1.5 and Lemma 2.4.4.
Now suppose that A, B, and C are all profinite. Let I, J , and K be directed sets indexing the finite

quotients A↠ Ai, B ↠ Bj , and C ↠ Ck, respectively. We define morphisms of directed sets t : J → I and
s : J → K by

At(j) = im(A→ Bj), Cs(j) = Bj/At(j).

Because the subgroup and quotient topologies on A and C agree with the profinite topologies, the images of
t and s are cofinal in I and K, respectively. We therefore have:

H∗(LS/L,A) = lim←
j∈J

H∗(LS/L,At(j)), H∗(LS/L,C) = lim←
j∈J

H∗(LS/L,Cs(j)).

For each j, we have a long exact sequence associated to the short exact sequence of finite Galois modules

0→ At(j) → Bj → Cs(j) → 0;

by Lemma 2.4.4, each term in the long exact sequence is finite. Since countable inverse limits of finite abelian
groups are exact, taking limits completes the proof. The ind-finite case is completely analogous. □

2.5. Selmer structures and patched Selmer groups.

Definition 2.5.1. Let A be a countably profinite or ind-finite Zp[GL]-module. A generalized Selmer
structure (F ,S) for A consists of:

• a finite set S ⊂ ML containing all Archimedian places, all places over p, and all ramified places for
A;

• for each v ∈ ML, a closed Zp-submodule (the local condition)

H1
F (Lv, A) ⊂ H1(Lv, A)

such that

H1
F (Lv, A) = H1

unr(Lv, A) := ker
(
H1(Lv, A)→ H1(Lnrv , A)

)
for all v ̸∈ S.

If A is an R-module for some ring R and GL acts on A by R-module automorphisms, a Selmer structure for
A over R is a Selmer structure such that every local condition is an R-submodule.

2.5.2. If B ⊂ A is any closed Galois-stable submodule, then a Selmer structure (F ,S) for A induces Selmer
structures on B and A/B defined in the usual way:

H1
F (Lv, B) = ker

(
H1(Lv, B)→ H1(Lv, A)

H1
F (Lv, A)

)
,

H1
F (Lv, A/B) = im

(
H1
F (Lv, A)→ H1(Lv, A/B)

)
.

Note that these Selmer structures are well-defined because, if A is unramified at v, then the unramified local
condition for A induces the unramified local condition for B and A/B.
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2.5.3. To a generalized Selmer structure we associate the patched Selmer group, defined by the exact
sequence:

(10) 0→ SelF (A)→ H1(LS/L,A)→
∏
s∈S

H1(Ls, A)

H1
F (Ls, A)

,

or equivalently (by Proposition 2.4.5):

(11) 0→ SelF (A)→ H1(L,A)→
∏
s∈S

H1(Ls, A)

H1
F (Ls, A)

×
∏
s ̸∈S

H1(Lnrs , A).

(Note that the Selmer group attached to a Selmer structure does not depend on the choice of set S but
only on the local conditions; we will therefore sometimes omit S from the notation when there is no risk of
confusion.)

2.5.4. If B ⊂ A is Galois-stable, and B,A/B are equipped with the induced Selmer structures, then by
definition there are natural maps:

SelF (B)→ SelF (A)→ SelF (A/B).

Proposition 2.5.5. Let (F ,S) be a generalized Selmer structure for A. If A is countably profinite and each
continuous finite quotient A↠ A′ is equipped with the Selmer structure induced by F , then:

lim
←−

SelF (A
′) ≃ SelF (A).

If instead A is ind-finite and each finite submodule A′ ⊂ A is given its induced Selmer structure, then:

lim
−→

SelF (A
′) ≃ SelF (A).

Proof. We show the countably profinite case; the ind-finite case is similar. By definition, SelF (A) is the
kernel of

lim
←−

H1(LS/L,A′)→
∏
s∈S

H1(Ls, A)

H1
F (Ls, A)

,

whereas

lim
←−

SelF (A
′) = lim

←−
ker

(
H1(LS/L,A′)→

∏
s∈S

H1(Ls, A
′)

H1
F (Ls, A′)

)

= ker

(
H1(LS/L,A)→ lim

←−

H1(Ls, A
′)

H1
F (Ls, A′)

)
.

Since H1
F (Ls, A) is a closed subgroup of H1(Ls, A), it is isomorphic to the inverse limit:

H1
F (Ls, A) = lim

←−
im
(
H1
F (Ls, A)→ H1(Ls, A

′)
)
= lim
←−

H1
F (Ls, A

′).

This implies the result. □

2.5.6. Given two Selmer structures (F ,S) and (G,T) for A, we may define Selmer structures (F + G,S ∪ T)
and (F ∩ G,S ∪ T) by the local conditions:

H1
F+G(Lv, A) = H1

F (Lv, A) + H1
G(Lv, A),

H1
F∩G(Lv, A) = H1

F (Lv, A) ∩ H1
G(Lv, A).

2.6. Dual Selmer groups.
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2.6.1. Fix an ultraprime v ∈ ML. If A is a countably profinite Zp-Galois module and A∗ denotes the Cartier
dual, then the cup product induces pairings:

(12) ⟨·, ·⟩v : Hi(Lv, A)× H2−i(Lv, A
∗)→ Qp/Zp, i = 0, 1, 2.

Proposition 2.6.2. The pairing (12) is perfect if v is non-Archimedean. Moreover, the induced pairing

H1(LS/L,A)× H1(LS/L,A∗)→
∏
s∈S

H1(Ls, A)× H1(Ls, A
∗)

Σ⟨·,·⟩s−−−−→ Qp/Zp

is identically zero.

Proof. For the perfectness of (12), the usual proof of Poitou-Tate duality applies equally well to Gv; alterna-
tively, one may take limits using Proposition 2.3.2. The second claim is clear when A is finite by functoriality
of the ultraproduct, and the general case follows by taking limits. □

2.6.3. Suppose that A is either countably profinite or countably ind-finite, i.e. the Pontryagin dual of a
countably profinite Galois module. If (F ,S) is any Selmer structure for A, then we define the dual Selmer
structure (F∗,S) for A∗ by:

H1
F∗(Ls, A

∗) = H1
F (Ls, A)

⊥.

Here ⊥ denotes the orthogonal complement under either the pairing of (2.6.1), or the usual modified Tate
pairing of [15, Theorem 2.17] at Archimedian places. We observe that the dual Selmer structure to (F∗,S)
is again (F ,S). When A is finite, the dual Selmer groups are related by the Greenberg-Wiles formula:

Proposition 2.6.4. Let (F ,S) be a Selmer structure for a finite Zp[GL]-module A. We have:

#SelF (A)

#SelF∗(A∗)
=

#H0(LS/L,A)

#H0(LS/L,A∗)

∏
s∈S

#H1
F (Ls, A)

#H0(Ls, A)
.

Proof. This follows from [15, Theorem 2.19] by the exactness of ultraproducts and Proposition 2.1.4(ii). □

2.7. Selmer groups over discrete valuation rings.

2.7.1. Let R be a discrete valuation ring with uniformizer π which is a finite, flat extension of Zp, and
suppose that A = T is a free R-module of finite rank, with GL action through R-module automorphisms. In
particular, T is countably profinite. Suppose S ⊂ ML is a finite set containing all Archimedian places and
all places over p, such that T is unramified outside S. If T † = HomZp

(T,Zp(1)) is the dual, then the cup
product induces a local Tate pairing

(13) ⟨·, ·⟩v : H1(Lv, T )× H1(Lv, T
†)→ Zp.

Proposition 2.7.2. The kernels on the left and right of (13) are the Zp-torsion submodules; moreover, the
induced pairing

H1(LS/L, T )× H1(LS/L, T †)→
∏
v∈S

H1(Lv, T )× H1(Lv, T
†)

∑
⟨·,·⟩v−−−−→ Zp

is identically zero.

Proof. This follows from Proposition 2.6.2. □

Given a Selmer structure (F ,S) for T over R, taking the orthogonal complement of each local condition
under (13) yields a Selmer structure (F†,S) for T †.
Definition 2.7.3. A Selmer structure (F ,S) for T is said to be saturated if the quotients

H1(Lv, T )

H1
F (Lv, T )

are torsion-free for all v. (The condition is automatic for v ̸∈ S.)

Proposition 2.7.4. Let (F ,S) be a saturated Selmer structure. Then, for all j and all v ∈ ML,

H1
F∗(Lv, T

∗[πj ]) = H1
F†(Lv, T

†/πj)

under the natural identification T ∗[πj ] ≃ T †/πj, and in particular

SelF∗(T ∗[πj ]) = SelF†(T †/πj).
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Hence, saturation ensures that all the induced local conditions on subquotients of T † are Cartesian in the
sense of [28, 38].

Proof. Although this fact is presumably standard, we give a proof for lack of a reference. For ease of notation,
we abbreviate Hi(T †) = Hi(Lv, T

†), etc. We have an identification T † ⊗Zp
(Qp/Zp) ≃ T ∗ and an embedding

T †/πj ↪→ T ∗; let H1
F∗(T †/πj) be the induced local condition from this embedding. Consider the following

commutative diagram with exact rows:

0 H0(T ∗)/ div H1
F†(T

†) Hom(H1(T ),Zp) Hom(H1
F (T ),Zp) 0

0 H0(T ∗)/πj H1
F∗(T †/πj) Hom(H1(T )/πj ,Qp/Zp) Hom(H1

F (T )/πj ,Qp/Zp) 0.

α β γ δ

Here, the first horizontal map on each row is the Kummer map, and the subscript / div refers to the
quotient by the maximal divisible submodule. By the hypothesis on H1

F (T ), the maps coker γ → coker δ and
ker γ → ker δ are injective and surjective, respectively. Also, α is clearly surjective. Breaking the diagram
into two and applying the snake lemma, it follows that β is surjective. □

Proposition 2.7.5. Let (F ,S) be a Selmer structure for T over R. Then:

rkR SelF (T )− rkR SelF†(T †) = rkRH
0(L, T )− rkRH

0(L, T †)+∑
s∈S

(
rkR H1

F (Ls, T )− rkR H0(Ls, T )
)
.

Proof. We first reduce to the case that (F ,S) is saturated. Indeed, if we define

H1
F̃ (Lv, T ) :=

(
H1(Lv, T )→

H1(Lv, T )

H1
F (Lv, T )

⊗Qp
)

for all v, then (F̃ ,S) is a saturated Selmer structure for T (the local conditions outside S do not change).
Now, there is an exact sequence

0→ SelF (T )→ SelF̃ (T )→
∏
v∈S

H1
F̃
(Lv, T )

H1
F (Lv, T )

.

Since the final term is a finitely generated torsion R-module, we have

rkR SelF (T ) = rkR SelF̃ (T ).

So, replacing F with F̃ if necessary, we may assume F is saturated. By Propositions 2.6.4 and 2.7.4, we
have for each j:

lg SelF (T/π
j)− lg SelF†(T †/πj) = lgH0(L, T/πj)− lgH0(L, T †/πj)

+
∑
v∈S

(
lgH1

F (Lv, T/π
j)− lgH0(Lv, T/π

j)
)
.

Since SelF (T ) is a finitely generated R-module, it follows from [38, Lemma 3.7.1] that

lg SelF (T/π
j) = (rkR SelF (T )) · lgR/πj +O(1)

as j varies, and likewise for SelF†(T †) and each term on the right-hand side; the proposition follows. □

3. Bipartite Euler systems

3.1. Admissible primes.
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3.1.1. Let f be a cuspidal newform of weight two, trivial character, and level N , and let ℘ ⊂ Of be a prime
ideal of the ring of integers of its field of coefficients. We assume the rational prime p lying under ℘ is odd,
and write O for the completion of Of at ℘. The ℘-adic Galois representation Vf associated to f is equipped
with a non-degenerate, symplectic, Galois-equivariant pairing:

(14) Vf × Vf → Qp(1).

Fix a Galois-stable O-lattice Tf ⊂ Vf , and let T f be the residual representation Tf/℘; we also write Wf for

Tf ⊗Qp/Zp. Also let K/Q be an imaginary quadratic field. We assume throughout this section that T f is
absolutely irreducible as an O[GK ]-module. Since the dual lattice to Tf is also O[GK ]-stable, after rescaling
we may assume that (15) restricts to a Zp(1)-valued pairing

(15) Tf × Tf → Zp(1),

identifying Tf with HomZp(Tf ,Zp(1)). We will sometimes use the condition:

(sclr) The image of the GK action on T f contains a nonzero scalar.

Definition 3.1.2. A nonconstant ultraprime q ∈ MQ is said to be admissible with sign ϵq = ±1 for f
if Frobq has nonzero image in Gal(K/Q), χ(Frobq) ̸≡ 1 (mod p), and there is a rank-one direct summand

Fil+q,ϵq Tf ⊂ Tf on which Frobq acts as χ(Frobq)ϵq. (Equivalently, χ(Frobq) ̸≡ 1 (mod p) and Tf admits a

basis of eigenvectors for Frobq with eigenvalues ϵq and χ(Frobq)ϵq.)

For example, if Frobq ∈ GQ is a complex conjugation, then q is admissible with either choice of ϵq. We

abusively write q for the unique ultraprime in MK lying over q ∈ MQ, whose Frobenius is Frob2q .

Definition 3.1.3. If q is admissible with sign ϵq for f , then we define the ordinary local condition (with
sign ϵq) as:

H1
ord,ϵq(Kq, Tf ) = im

(
H1(Kq,Fil

+
q,ϵq Tf )→ H1(Kq, Tf )

)
.

The subscript ϵq will often be omitted (from this and future notation) when there is no risk of confusion.

Note that the ordinary local condition is well-defined because Fil+q,ϵq is uniquely determined by the pair

(q, ϵq).

Example 3.1.4. Suppose Frobq ∈ GQ is a complex conjugation and let e1, e2 be a basis of Tf such that
Frobq e1 = −e1 and Frobq e2 = e2. Then as noted above, q is admissible with either choice of ϵq; if ϵq = +1,

then Fil+q,ϵq Tf = ⟨e1⟩, and if ϵq = −1, then Fil+q,ϵq Tf = ⟨e2⟩. The local cohomology group H1(Kq, Tf ) is free
of rank 4, with a canonical decomposition into rank 2 subspaces:

H1(Kq, Tf ) = H1(Kq, ⟨e1⟩)⊕ H1(Kq, ⟨e2⟩).

The former is the ordinary local condition if ϵq = +1, and the latter if ϵq = −1. The unramified subspaces
H1

unr(Kq, ⟨ei⟩) are free O-modules of rank one.

Proposition 3.1.5. Let q be admissible with sign ϵq. Then H1
ord,ϵq

(Kq, Tf ) is its own exact annihilator

under the local Tate pairing

H1(Kq, Tf )× H1(Kq, Tf )→ O
induced by (13) and (15).

Proof. The Frobenius Frobq ∈ GQ acts on Tf with eigenvalues χ(Frobq)ϵq and ϵq. Let e1, e2 ∈ Tf be

generators of the corresponding eigenspaces, so Fil+q,ϵq Tf = ⟨e1⟩. Then

(16) H1(Kq, Tf ) = H1(Kq, ⟨e1⟩)⊕ H1(Kq, ⟨e2⟩),

and H1
ord,ϵq

(Kq, Tf ) = H1(Kq, ⟨e1⟩). Since the pairing (15) is symplectic, each of the direct summands in (16)

is isotropic for the pairing on H1(Kq, Tf ). Now note that:

(17) H1(Kq, Tf )tors ⊂ H1(Kq, ⟨e1⟩).

Indeed, in the exact sequence

0→ H1
unr(Kq, ⟨e2⟩)→ H1(Kq, ⟨e2⟩)→ H1(Iq, ⟨e2⟩),
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the last term is automatically torsion-free, and the first is as well since Frob2q acts trivially on e2. We claim

(17) implies the proposition. Suppose y ∈ H1(Kq, Tf ) pairs trivially with H1
ord,ϵq

(Kq, Tf ), and write

y = y1 + y2

in the decomposition (16). Since y1 pairs trivially with H1
ord,ϵq

(Kq, Tf ), y2 does as well. But y2 also pairs

trivially with H1(Kq, ⟨e2⟩), so y2 lies in the kernel of the local Tate pairing, hence is a torsion class, hence
trivial by (17). □

3.1.6. For any finite set S ⊂ MK such that Tf is unramified outside S, and any admissible q ̸∈ S with sign
ϵq, define a localization map

locq,ϵq : H
1(KS/K, Tf )→ H1

unr(Kq, Tf )→
H1

unr(Kq, Tf )

H1
unr(Kq, Tf ) ∩ H1

ord,ϵq
(Kq, Tf )

= H1
unr(Kq, Tf/Fil

+
q,ϵq Tf ) ≈ O.

(18)

Define as well a residue map

∂q,ϵq : H
1(K,Tf )→ H1(Kq, Tf )→ H1

ord,ϵq(Kq, Tf )→
H1

ord,ϵq
(Kq, Tf )

H1
unr(Kq, Tf ) ∩ H1

ord,ϵq
(Kq, Tf )

= H1(Iq,Fil
+
q,ϵq Tf )

Frob2
q=1 ≈ O,

(19)

where the second map is given by the projection Tf ↠ (Frobq−ϵq)Tf ≃ Fil+q,ϵq Tf . The maps locq,ϵq and

∂q,ϵq may be extended in the obvious way to the patched cohomology for Wf and all Tf/℘
j .

3.2. Euler systems for anticyclotomic twists.

3.2.1. Let R be a complete flat Noetherian local O-algebra with finite residue field, equipped with an anti-
cyclotomic character φ : GK → R× which is trivial modulo the maximal ideal of R. We write Tφ for the
anticyclotomic twist Tf ⊗O R(φ), which is a countably profinite Galois module. If q is admissible with sign

ϵq, then φ(Frob
2
q) = 1, so

H1(Kq, Tφ) = H1(Kq, Tf )⊗O R.
We extend the ordinary local condition of the previous subsection by linearity to define the local condition
H1

ord,ϵq
(Kq, Tφ), and likewise the maps locq,ϵq , ∂q,ϵq .

3.2.2. Suppose given a finite set S ⊂ MK and a generalized Selmer structure (F ,S) for Tφ. Let N = NS be
the set of pairs {Q, ϵQ} where Q ⊂ MK − S is a finite set of ultraprimes and ϵQ : Q → {±1} is a function
such that q is admissible with sign ϵQ(q) for all q ∈ Q. (We will drop the subscript S when it is clear from
context, or when S contains only constant ultraprimes.) Given a pair {Q, ϵQ} ∈ N, define a generalized
Selmer structure (F(Q, ϵQ),S ∪ Q) for Tφ by the local conditions:

(20) H1
F(Q,ϵQ)

(Kv, Tφ) =

{
H1
F (Kv, Tφ), v ̸∈ Q

H1
ord,ϵQ(q)

(Kq, Tφ), v = q ∈ Q.

For δ ∈ Z/2Z, let Nδ ⊂ N be the collection of pairs {Q, ϵQ} ∈ N such that |Q| ≡ δ (mod 2). Also, given

two pairs {Q, ϵQ} ∈ Nδ and {Q′, ϵQ′} ∈ Nδ
′
such that Q ∩ Q′ = ∅, write

{QQ′, ϵQQ′} ∈ Nδ+δ
′

for the pair formed in the obvious way from Q ∪ Q′ and the sign functions ϵQ, ϵQ′ . The pair {∅, ∅} ∈ N will
be abbreviated as 1.

Definition 3.2.3. A bipartite system (κ, λ) for (Tφ,F ,S) of parity δ ∈ Z/2Z consists of the following
data:

(1) for each pair {Q, ϵQ} ∈ Nδ, a cyclic submodule

(κ(Q, ϵQ)) ⊂ SelF(Q)(Tφ);

(2) for each pair {Q, ϵQ} ∈ Nδ+1, a principal ideal

(λ(Q, ϵQ)) ⊂ R.
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A bipartite Euler system is a bipartite system satisfying the “reciprocity laws”:

(1) For each {Qq, ϵQq} ∈ Nδ+1,

locq((κ(Q))) = (λ(Qq)) ⊂ R.
(2) For each {Qq, ϵQq} ∈ Nδ,

∂q((κ(Qq))) = (λ(Q)) ⊂ R.
We say (κ, λ) is nontrivial if there exists some {Q, ϵQ} ∈ N such that either λ(Q, ϵQ) ̸= 0 or κ(Q, ϵQ) ̸= 0
depending on the parity of |Q|+ δ.

3.3. Euler systems over discrete valuation rings.

3.3.1. Suppose that R is a discrete valuation ring with uniformizer π, and let Wφ = Tφ ⊗ Qp/Zp. Exactly
as in [27], there is a perfect pairing Tφ × Tφ → R(1), GK-equivariant up to a twist, which induces local
pairings:

H1(Kv, Tφ)× H1(Kv,Wφ)→ R⊗Qp/Zp,

H1(Kv, Tφ/π
j)× H1(Kv,Wφ[π

j ])→ R/πj ,

H1(Kv, Tφ)× H1(Kv, Tφ)→ R.

Here v ∈ MK is the complex conjugate of v; the first two pairings are perfect, and the third is perfect modulo
torsion. A Selmer structure (F ,S) for Tφ induces a Selmer structure for Wφ, denoted the same way, by
taking orthogonal complement local conditions.

Definition 3.3.2. We say (F ,S) is self-dual if, for all v ∈ MK , H1
F (Kv, Tφ) and H1

F (Kv, Tφ) are exact
annihilators under the local pairing.

Proposition 3.3.3. Suppose that (F ,S) is a self-dual Selmer structure for Tφ. Then, for each {Q, ϵQ} ∈ N,
(F(Q),S) is self-dual. Moreover:

(1) There is a non-canonical isomorphism of R-modules:

SelF(Q)(Wφ) ≈ (R⊗Qp/Zp)rQ ⊕MQ ⊕MQ

for some finite-length R-module MQ and an integer rQ.
(2) rQ = rkR SelF(Q)(Tφ).

Proof. The self-duality claim is clear since H1
ord(Kq, Tf ) is self-dual. For (i), the proof of [27, Theorem 1.4.2]

applies without change to show that SelF(Q)(Wφ)[π
s]/π SelF(Q)(Wφ)[π

s+1] is an even-dimensional vector
space for all s. The claim follows from this since SelF(Q)(Wφ)[π] is finitely generated. For (ii), note that
self-duality implies saturation. So by Proposition 2.7.4, we have

SelF(Q)(Tφ/π
j) = SelF(Q)(Wφ)[π

j ]

for all j ≥ 0. Moreover, since H0(K,Tφ/π) = 0, the natural map induces an isomorphism

SelF(Q)(Wφ[π
j ]) = SelF(Q)(Wφ)[π

j ].

Because

SelF(Q)(Tφ) = lim←−
j

SelF(Q)(Tφ/π
j),

(ii) follows.
□

Proposition 3.3.4. For any {Qq, ϵQq} ∈ N, one of the following holds:

(1) locq(SelF(Q)(Tφ)) = 0, ∂q(SelF(Qq)(Tφ)) ̸= 0, rQq = rQ + 1, and

lgRMQq = lgRMQ − lgR locq(SelF(Q)(Wφ)).

Moreover,

lg locq(SelF(Q)(Wφ)) = lg coker ∂q(SelF(Qq)(Tφ)).
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(2) locq(SelF(Q)(Tφ)) ̸= 0, ∂q(SelF(Qq)(Tφ)) = 0, rQq = rQ − 1, and

lgRMQq = lgRMQ + lgR ∂q(SelF(Qq)(Wφ)).

Moreover,

lg ∂q(SelF(Qq)(Wφ)) = lg coker locq(SelF(Q)(Tφ)).

Proof. Consider the Selmer structures Fq(Q) = F(Q)+F(Qq) and Fq(Q) = F(Q)∩F(Qq). By Proposition
2.7.5,

rkR SelFq(Q)(Tφ) = rkR SelFq(Q)(Tφ) + 1.

Moreover, because F(Q) is self-dual, Proposition 2.7.2 implies that the image of

SelFq(Q)(Tφ)

SelFq(Q)(Tφ)
↪→

H1
Fq(Q)(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

=
H1

unr(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

⊕ H1
ord(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

≈ R2

is self-annihilating under the induced local pairing, hence is contained either in the ordinary or unramified
part. (The induced pairing is non-degenerate, and therefore cannot admit three distinct isotropic lines.)

For the relation between MQ and MQq, we suppose we are in case (a), because the two arguments are
identical. Using the perfect pairing between Wφ and Tφ, we see by Proposition 2.6.2 that

locq(SelF(Q)(Wφ))⊕ ∂q(SelF(Q)(Wφ))

is the exact annihilator of ∂q(SelF(Qq)(Tφ)) under the perfect induced local pairing

H1
Fq(Q)(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

×
H1
Fq(Q)(Kq,Wφ)

H1
Fq(Q)(Kq,Wφ)

→ R⊗Qp/Zp.

This implies that ∂q(SelF(Qq)(Wφ)) is divisible and

lg locq(SelF(Q)(Wφ)) = lg coker ∂q(SelF(Qq)(Tφ)).

Now, for any short exact sequence of R-modules

0→ A→ B → C → 0,

there is an induced exact sequence

(∗) 0→
(
A ∩Bdiv

Adiv

)
→ A/div → B/div → C/div → 0,

where the subscript div denotes the maximal π-divisible submodule and M/div =M/Mdiv for any R-module
M .

Consider the short exact sequences:

0→ SelFq(Q)(Wφ)→ SelF(Q)(Wφ)→ locq
(
SelF(Q)(Wφ)

)
→ 0(21)

0→ SelFq(Q)(Wφ)→ SelF(Qq)(Wφ)→ ∂q
(
SelF(Qq)(Wφ)

)
→ 0.(22)

By (∗) and the discussion above, we obtain the exact sequences of finite-length R-modules:

0→ SelFq(Q)(Wφ)/div → SelF(Q)(Wφ)/div → locq
(
SelF(Q)(Wφ)

)
→ 0(23)

0→ coker ∂q
(
SelF(Qq)(Tφ)

)
→ SelFq(Q)(Wφ)/div → SelF(Qq)(Wφ)/div → 0.(24)

From this, we deduce

lgR SelF(Q)(Wφ)/div = lgR SelF(Qq)(Wφ)/div + 2 lgR locq
(
SelF(Q)(Wφ)

)
,

which gives the result. □

The following result will allow us to control the alternative in Proposition 3.3.4.

Theorem 3.3.5. Let c ∈ H1(KT/K, Tφ) be any nonzero element, where T ⊃ S is a finite set. Then there
are infinitely many admissible ultraprimes q ̸∈ T, with associated signs ϵq, such that locq c ̸= 0.

The proof is via a series of lemmas.
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Lemma 3.3.6. There is an integer j such that, for all n ≥ 0,

πjH1(K(Tφ)/K, Tφ/π
n) = 0.

If (sclr) holds, then we may take j = 0.

Proof. Let G = Gal(K(Tφ)/K), and let Z ⊂ G be its center; since Tf is absolutely irreducible over K, Z
acts on Tφ by scalars. We claim:

(25) Z ̸= {1} .
Assuming (25), the lemma follows from the inflation-restriction exact sequence

H1(G/Z,H0(Z, Tφ/π
n)) ↪→ H1(G,Tφ/π

n)→ H1(Z, Tφ/π
n).

Let us now prove (25). Let G′ = Gal(K(Tf )/K), and let L/K be the Galois subfield of K(Tf ) cut out by
the center Z ′ = Z(G′) ⊂ G′. By a result of Momose [51], Z ′ is nontrivial. Let E/K be the Galois extension
determined by the kernel of φ; then it suffices to show that EL/L and K(Tf )/L are linearly disjoint. Both
EL and K(Tf ) are Galois over Q, so GQ acts on Gal(EL/L) and Gal(K(Tf )/L) by conjugation. If τ ∈ GQ
is a complex conjugation, then τ acts trivially on Gal(K(Tf )/L) but nontrivially on Gal(EL/L), so the two
groups have no nontrivial common quotient compatible with the GQ-action; hence EL ∩K(Tf ) = L. □

Lemma 3.3.7. Suppose given a cocycle

c ∈ H1(K,Tφ/π
n)

such that πjc ̸= 0, where j is as in Lemma 3.3.6. Then, for any integer N ≥ n, there exists a sign ϵ = ±1
and infinitely many rational primes q such that:

(1) q is inert in K and unramified in the splitting field Q(Tf , c).
(2) Frobq ∈ Gal(Q(Tf )/Q) has distinct eigenvalues ±1 on Tf⊗R/πN (where R has trivial Galois action).

(3) For any cocycle representative, c(Frob2q) has nonzero component in the ϵ eigenspace for Frobq.

Proof. Abbreviate L = K(Tφ/π
N ), and let ϕ ∈ HomGK

(GL, Tφ/π
n) be the image of c under restriction;

by hypothesis ϕ ̸= 0. Without loss of generality, we may suppose that the image of ϕ is contained in
Tφ/π

n[π] ≃ Tφ/π, which, since φ is residually trivial, is an extension of scalars T f ⊗O/℘ k. Now,

HomGK
(GL, T f ⊗ k)

has a natural action of Gal(K/Q), and we may assume without loss of generality that ϕ lies in the ϵ eigenspace
for some ϵ ∈ {±1} . Fix a complex conjugation τ ∈ GQ. Since T f is absolutely irreducible over GK , there
exists g ∈ GL such that ϕ(g) has nonzero component in the ϵ eigenspace of τ . Then

ϕ(τgτg) = ϵτϕ(g) + ϕ(g)

has nonzero component in the ϵ eigenspace as well. Any q with Frobenius τg in L(ϕ) satisfies the desired
conditions. □

Remark 3.3.8. If p ≥ 5 and the image of the Galois action on Tf is sufficiently large, then we can instead
use primes q such that p ∤ q2 − 1, as is more common in the literature.

Proof of Theorem 3.3.5. Since H0(K,Tφ/π) = 0, Lemma 2.4.6 implies that

H1(KT/K, Tφ)[π] = 0.

Thus there exists some n such that the image c of c in H1(KT/K, Tφ/π
n) satisfies πjc ̸= 0, for some j as in

Lemma 3.3.6. By definition, c is represented by a sequence of classes cm ∈ H1(KTm/K, Tφ/π
n) such that

πjcm ̸= 0 for F-many m, where {Tm}m∈N represents T. For each m, apply Lemma 3.3.7 (with N = m) to
obtain a prime qm ̸∈ Tm and a sign ϵm. If q ∈ MQ is the equivalence class of the sequence {qm}m∈N, and
ϵ ∈ U({±1}m∈N) ≃ {±1} is the equivalence class of the sequence {ϵm}m∈N , then the pair {q, ϵ} has the
desired properties. Since there are infinitely many choices for each qm, there are also infinitely many choices
for q. □

Corollary 3.3.9. For any {Q, ϵQ} ∈ N, there exists some {QQ′, ϵQQ′} ∈ N such that rQQ′ = 0.

Proof. This is an obvious induction argument using Theorem 3.3.5 and Proposition 3.3.4. □
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Combining Proposition 3.3.4 and Theorem 3.3.5 allows us to prove the main result of this subsection.

Theorem 3.3.10. Suppose that (F ,S) is self-dual and that (κ, λ) is a nontrivial bipartite Euler system with
sign δ for (Tφ,F ,S). Then there exists an integer C (possibly negative) such that:

(1) For all {Q, ϵQ} ∈ Nδ, rQ is odd, rQ = 1 if and only if κ(Q) ̸= 0, and in that case

lgRMQ = lgR

(
SelF(Q)(Tφ)

(κ(Q))

)
+ C.

(2) For all {Q, ϵQ} ∈ Nδ+1, rQ is even, rQ = 0 if and only if λ(Q) ̸= 0, and in that case

lgRMQ = ordπ λ(Q) + C.

In particular,
δ = rkR SelF (Tφ) + 1 (mod 2).

Proof. The proof will be in several steps.

Step 1. If λ(Q) ̸= 0 for some {Q, ϵQ} ∈ Nδ+1, then rQ = 0.

Proof. If 0 ̸= c ∈ SelF(Q)(Tφ), then by Theorem 3.3.5, there exists an admissible ultraprime q with sign ϵq
such that locq c ̸= 0. By Proposition 3.3.4, ∂q(κ(Qq)) = 0, which contradicts the reciprocity laws. □

Step 2. If κ(Q) ̸= 0 for some {Q, ϵQ} ∈ Nδ, then rQ = 1.

Proof. Choose an admissible ultraprime q with sign ϵq such that locq κ(Q) ̸= 0. Then by the reciprocity laws,
λ(Qq) ̸= 0, so by Step 1 rQq = 0. Proposition 3.3.4 implies rQ = 1. □

Step 3. For all {Q, ϵQ} ∈ N, rQ ≡ δ + |Q|+ 1 (mod 2).

Proof. If {QQ′, ϵQQ′} ∈ N, then by Proposition 3.3.4

rQ − rQQ′ ≡ |Q′| (mod 2).

So Steps 1 and 2 imply Step 3. □

Step 4. Suppose rQ = 0 for some {Q, ϵQ}. Then, for all admissible ultraprimes q ̸∈ Q ∪ S with sign ϵq,
rQq = 1 and

lgRMQq + ordπ λ(Q) = lgRMQ + lgR

(
SelF(Qq)(Tφ)

(κ(Qq))

)
.

Proof. By Step 3, λ(Q) and κ(Qq) are well-defined. Then Step 4 follows from Proposition 3.3.4, since

lgR

(
SelF(Qq)(Tφ)

(κ(Qq))

)
+ lgR coker ∂q(SelF(Qq)(Tφ) = ordπ λ(Q).

□

The exact same reasoning implies:

Step 5. Suppose that rQ = 1 and q ̸∈ Q∪S is an admissible ultraprime with sign ϵq such that rQq = 0. Then

lgRMQq + lgR

(
SelF(Q)(Tφ)

(κ(Q))

)
= lgRMQ + ordπ λ(Qq).

Now consider the graph X whose vertices are the elements of N, and where the edges are between vertices
of the form {Q, ϵQ} and {Qq, ϵQq}, for some admissible ultraprime q with sign ϵq (cf. [28]). We say {Q, ϵQ}
is a core vertex if rQ ≤ 1. The core subgraph X0 of X is the full subgraph on core vertices.

Step 6. Assume X0 is path-connected. Then the theorem holds.

Proof. For every {Q, ϵQ} ∈ X0, set

CQ =

{
lgRMQ − lgR

(
SelF(Q)(Tφ)

(κ(Q))

)
, if {Q, ϵQ} ∈ Nδ,

lgRMQ − ordπ λ(Q), if {Q, ϵQ} ∈ Nδ+1.

By Steps 4 and 5, CQ is constant along paths contained in X0.Moreover, if (κ, λ) is nontrivial, X0 is nonempty
by Steps 1 and 2. Under the additional assumption that X0 is path-connected, the common value of CQ for
Q ∈ X0 is the global constant C of the theorem. □
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In the rest of the proof, we will establish the path-connectedness of X0.

Step 7. If v = {Q, ϵQ} and v′ = {QQ′, ϵQQ′} are core vertices, then they are connected by a path in X0.

Proof. We proceed by induction on |Q′|, where the base case is trivial. If rQQ′/q ≤ 1 for any q ∈ Q′,
then we may apply the inductive hypothesis, so assume otherwise. By Proposition 3.3.4, rQQ′ = 1 and
∂q(SelF(QQ′)(Tφ)) = 0 for all q ∈ Q′. Hence

SelF(QQ′)(Tφ) ⊂ SelF(Q)(Tφ).

Then, by Theorem 3.3.5 and Proposition 3.3.4, there exists an admissible ultraprime q ̸∈ Q∪Q′∪S with sign
ϵq such that rQq = rQQ′q = 0. If q′ ∈ Q′ is any factor, then

{
QQ′q/q′, ϵQQ′q/q′

}
∈ N is a core vertex, which is

connected to v′ in X0. By the inductive hypothesis,
{
QQ′q/q′, ϵQQ′q/q′

}
is also connected to the core vertex

{Qq, ϵQq}, hence to v, by a path in X0. This completes the inductive step. □

Step 8. If v = {Q, ϵQ} is a core vertex and T ⊂ MQ is any finite set, then there exists a core vertex
v′ = {Q′, ϵQ′} such that v and v′ are connected by a path in X0 and Q′ ∩ T = ∅.

Proof. By iterating, it suffices to assume that Q∩T consists of exactly one ultraprime q ∈ Q. If rQ/q ≤ 1, then
the conclusion is obvious, so suppose otherwise. As in the proof of Step 7, choose an admissible ultraprime
q′ ̸∈ Q ∪ S ∪ T with associated sign ϵq′ such that rQq′ = 0, which implies rQq′/q = 1. The core vertex

v′ =
{
Qq′/q, ϵQq′/q

}
has the desired properties. □

Finally, we have:

Step 9. The core subgraph X0 is path-connected.

Proof. Let {Q1, ϵQ1} and {Q2, ϵQ2} be two core vertices. Without loss of generality, by Step 8, we may
assume Q1 ∩ Q2 = ∅. (This step is necessary because the sign functions ϵQ1 and ϵQ2 need not agree on
Q1 ∩ Q2.) Consider {Q1Q2, ϵQ1Q2

} ∈ N. This may not be a core vertex, but, by Corollary 3.3.9, there exists
{Q3, ϵQ3

} ∈ N such that {Q1Q2Q3, ϵQ1Q2Q3
} is a core vertex. We may then conclude by Step 6. □

□

Proposition 3.3.11. Under the hypotheses of Theorem 3.3.10, there exists a constant C ′ ≥ 0 depending on
|S|, Tf , and the ramification index of R/O, but not on φ, such that C ≥ −C ′. If (sclr) holds, then we may
take C = 0.

Proof. By Theorem 3.3.10, it suffices to show that there exists a constant with the desired dependencies and
a pair {Q, ϵQ} ∈ Nδ such that lgRMQ ≤ C ′. We first note that the constant j in Lemma 3.3.7 depends only
on Tf and the ramification index of R/O, and can be taken to be 0 under (sclr).

Moreover, if k is the residue field of R, then d = dimk H
1(KS/K,Wφ[π]) is also bounded with the desired

uniformity. We now construct a sequence {Qi, ϵQi
} recursively (starting from Q1 = 1) by the following rules:

• If rQi
> 0, then choose any qi+1 ̸∈ Qi with sign ϵqi+1

such that

lg coker(locq SelF(Qi)(Tφ)) ≤ j.

• If rQi
= 0 and the exponent of SelF(Qi)(Wφ) ̸= 0 is ni > i · j, then choose any qi+1 ̸∈ Qi with sign

ϵqi+1
such that the exponent of locq(SelF(Qi)(Wφ)) is at least ni − j.

These choices are possible by Lemma 3.3.7. In either of the above two cases, set
{
Qi+1, ϵQi+1

}
=
{
Qiqi+1, ϵQiqi+1

}
;

if neither holds, then end the construction. For each i, let r′Qi
be the minimal number of generators of the

R-module πi·jMQi . In the first case of the construction, r′Qi+1
≤ r′Qi

; in the second case, r′Qi+1
< r′Qi

(by

Proposition 3.3.4 respectively). After r1 ≤ d steps, we alternate between the two cases of the construction,
taking at most 2r′1 ≤ 2d more steps. Hence for some i ≤ 3d, r′Qi

= 0 and rQi
= 0, and the construction halts.

For this i,

lgRMQi
≤ ij dimk SelF(Qi)(Wφ)[π] ≤ 3dj(d+ 3d),

the last inequality by the reasoning of [28, Corollary 2.2.10]. (Less precisely, we could deduce the bound
3dj(d+ 6d) directly from Proposition 3.3.4.)

Since d and j have bounds of the desired sort, the claim follows. □



22 NAOMI SWEETING

3.4. Euler systems over Λ. Let Λ be the anticyclotomic Iwasawa algebra OJGal(K∞/K)K with canonical
character

Ψ : GK → Λ×.

If γ is a topological generator of Gal(K∞/K), then as a ring Λ = OJT K where T = Ψ(γ) − 1. For each
height-one prime P ⊂ Λ, let SP be the integral closure of Λ/P in its field of fractions, so that Ψ induces a
character GK → Λ× → S×P. We write TP for the twist Tf ⊗O SP(Ψ), WP for TP ⊗Qp/Zp, and T = Tf for

the interpolated twist Tf ⊗O Λ(Ψ). Also let W = Wf = T∗f be the Cartier dual with Λ action twisted by
the canonical involution ι, so that for each P there is a natural map

WP →W

of Λ[GK ]-modules (see, e.g., [27]). As in (3.3.1), a Selmer structure FΛ for T induces a dual Selmer structure
F∗Λ for W. The following definition is motivated by [38, Lemma 5.3.13] and its applications in [27, 28].

Definition 3.4.1. An interpolated self-dual Selmer structure

(S,FΛ,FP,ΣΛ)

for T consists of the following data:

• A finite set S ⊂ MK .
• For each height-one prime P ⊂ Λ, a self-dual Selmer structure (FP,S) for TP.
• A finite set ΣΛ of height-one primes P ⊂ Λ, such that ℘Λ ∈ ΣΛ.
• A Selmer structure (FΛ,S) for T such that, for all v ∈ MK and all P ⊂ Λ with ℘Λ ̸= P, the natural
maps induce well-defined homomorphisms:

H1
FΛ

(Kv,T/P)→ H1
FP

(Kv, TP),

H1
F∗

P
(Kv,WP)→ H1

F∗
Λ
(Kv,W[P]).

(26)

Moreover, for all P ̸∈ ΣΛ, the maps (26) have finite kernel and cokernel with order bounded by a
constant depending only on [SP : Λ/P] as P varies.

Proposition 3.4.2. Suppose (S,FP,FΛ,ΣΛ) is an interpolated self-dual Selmer structure for T. Then for
all P ⊂ Λ with ℘Λ ̸= P, the natural map induces well-defined homomorphisms:

SelFΛ
(T)/P→ SelFP

(TP)

SelFP
(WP)→ SelFΛ

(W)[P].

Moreover, after possibly expanding the finite set ΣΛ, the following holds: for all P ̸∈ ΣΛ, these maps have
finite kernel and cokernel with a bound depending on F and on [SP : Λ/P], but not on P itself.

Proof. See [38, Proposition 5.3.14]. □

3.4.3. Recall that, for any finitely generated Λ-module M , there exists a unique Λ-module N of the form
Λr ⊕

⊕
Λ/Pei

i such that M admits a map to N with finite kernel and cokernel, where Pi are height-one
primes; we denote this relationship by M ∼ N . The characteristic ideal charΛ(M) is zero if r ≥ 1, and equal
to
∏

Pei
i otherwise. The following easy lemma is implicit in [38, p. 66].

Lemma 3.4.4. Let P ⊂ Λ be a height-one prime. Then there exists an integer d and a sequence of height-one
primes Pm such that, for all finitely generated torsion Λ-modules M ,

lgO(M/Pm) = md ordP charΛ(M) +O(1)

as m varies (holding M fixed). Moreover [SPm : Λ/Pm] is constant for large enough m, and if P ̸= ℘Λ,
then the rings Λ/Pm are abstractly isomorphic.

Proof. If P ̸= ℘Λ is generated by a distinguished polynomial f ∈ Λ, and π is a uniformizer for O, then
we may take Pm = f + πm (for sufficiently large m) and d = [SP : O]. If P = ℘Λ, then we may take
Pm = Tm + π and d = 1. □

Proposition 3.4.5. Suppose that (S,FP,FΛ,ΣΛ) is an interpolated self-dual Selmer structure for T. Then
for all {Q, ϵQ} ∈ N:
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(1) (S ∪ Q,FP(Q),FΛ(Q),ΣΛ) is an interpolated self-dual Selmer structure for T and

SelF∗
Λ(Q)(W)∨ ∼ ΛrQ ⊕MQ ⊕MQ

for some torsion Λ-module MQ and an integer rQ.
(2) rQ = rkΛ SelFΛ(Q)(T).

Proof. At places q ∈ Q,

H1
FΛ(Q)(Kq,T) = H1

ord(Kq, Tf )⊗ Λ

and

H1
FP(Q)(Kq, TP) = H1

ord(Kq, Tf )⊗ SP,

so we clearly have local maps with kernel and cokernels bounded as desired (and similarly for Wf and WP);
so indeed (S∪Q,FP(Q),FΛ(Q),ΣΛ) is an interpolated self-dual Selmer structure. The rest of the claims are
deduced from Proposition 3.4.2 and Proposition 3.3.3 exactly as in [27, Theorem 2.2.10]. □

Theorem 3.4.6. Suppose that (S,FP,FΛ,ΣΛ) is an interpolated self-dual Selmer structure for T and {κ,λ}
is a nontrivial bipartite Euler system with parity δ for the triple (T,FΛ,S). Then there exists a nonzero
fractional ideal I ⊂ Λ⊗Qp such that:

(1) For all {Q, ϵQ} ∈ Nδ, rQ is odd, rQ = 1 if and only if κ(Q) ̸= 0, and in that case

charΛ(MQ) · I = charΛ

(
SelFΛ(Q)(T)

(κ(Q))

)
.

(2) For all {Q, ϵQ} ∈ Nδ+1, rQ is even, rQ = 0 if and only if λ(Q) ̸= 0, and in that case

charΛ(MQ) · I = (λ(Q)).

In particular,

δ = rkR SelF (T) + 1 (mod 2).

If (sclr) holds, then I ⊂ Λ.

Proof. Let P ⊂ Λ be any height-one prime; via the natural maps SelFΛ(T)→ SelFP
(TP) and Λ→ SP, the

Euler system (κ,λ) defines an Euler system (κP, λP) of parity δ for the triple (TP,FP,S). In particular,
Theorem 3.3.10 applies.

Since T f is absolutely irreducible, SelFΛ(Q)(T) is torsion-free (by the long exact sequence in Lemma 2.4.6).
Hence, if κ(Q) ̸= 0, then by Proposition 3.4.2 κP(Q) ̸= 0 for all but finitely many P. Similarly, if λ(Q) ̸= 0,
then clearly λP(Q) ̸= 0 for all but finitely many P. Because

rkΛ SelFΛ
(T) ≤ rkSP

SelFP
(TP)

with equality for all but finitely many P, the claims about rQ follow from Theorem 3.3.10.
For any P and {Q, ϵQ} ∈ Nδ+1 such that λ(Q) ̸= 0, by Proposition 3.4.5 and Lemma 3.4.4 we have

eP(Q) := ordP(λ(Q))− ordP charΛ(MQ)

= lim
m→∞

lgO(SPm
/λPm

(Q))− lgOMQ,Pm

md
.

Applying Theorem 3.3.10, this quantity does not depend on {Q, ϵQ} (as long as λ(Q) ̸= 0); it is also clearly
zero for almost all P, so that

∏
P PeP defines a fractional ideal I of Λ satisfying (ii). The same calculation

shows that I satisfies (i) as well, and the integrality properties follow from Proposition 3.3.11. □

4. Geometry of modular Jacobians

4.1. Multiplicity one.
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4.1.1. Let N1 and N2 be coprime positive integers, with N2 squarefree. Consider the Hecke algebra T =
TN1,N2 generated over Z by operators Tℓ for all primes ℓ ∤ N = N1N2 and Uℓ for all ℓ|N, acting on the
modular forms of weight two and level Γ0(N) which are new at all factors ℓ|N2. If I is the kernel of the
projection TN1N2,1 → T, then we set

(27) JN1,N2

min := J0(N)/IJ0(N),

an abelian variety with a (faithful) action of T. If N1, N2 are clear from context, we will omit the superscript.
For any abelian variety A with an action of T, and any maximal ideal m ⊂ T, the m-adic Tate module is

defined to be the localization

(28) TmA := TpA⊗T Tm,

where p is the residue characteristic of m. (Note that this is dual to the notation of [25].) For any m which
is non-Eisenstein with odd residue characteristic p ∤ N , it follows from [62] that TmJmin is free of rank two
over Tm; by [25, Corollary 4.7], the natural map then induces an isomorphism

(29) Tm
∼−→ EndT(Jmin)m.

4.1.2. Now suppose that A is an abelian variety with faithful T-action, admitting a T-equivariant isogeny
to Jmin. For any ℓ|N2, let A/Zℓ

be the Néron model of A. The neutral connected component A0
Fℓ

of the

special fiber of A is a torus, and we write Xℓ(A) = Hom(A0
Fℓ
,Gm) for its character group. The association

A 7→ Xℓ(A) is contravariantly functorial.

Proposition 4.1.3 ((Helm)). Let m ⊂ T be non-Eisenstein of residue characteristic p ∤ 2N . Then the
natural maps induce Tm-module isomorphisms:

TmJmin ⊗Hom(Jmin, A)m
∼−→ TmA,

Xℓ(J∨min)⊗Hom(Jmin, A)m
∼−→ Xℓ(A∨),

Hom(A, Jmin)m
∼−→ HomTm

(Hom(Jmin, A)m,End(Jmin)m) .

Here, all Hom-sets are understood to be T-equivariant morphisms, and tensor products are taken modulo
Z-torsion.

Proof. This follows by duality from [25, Corollary 4.1, Theorem 4.11, Proposition 4.14]. □

We record the following elementary lemma for later use.

Lemma 4.1.4. Let X = Xℓ(J∨min)m for some ℓ|N2 and m ⊂ T, where m is non-Eisenstein of odd residue
characteristic p. If the associated residual representation ρm is ramified at ℓ, then X is free of rank one over
Tm. In general, there exist Tm-module maps

ϕi : X → Tm, ψi : Tm → X , i = 1, 2

such that

ϕi ◦ ψi = ψi ◦ ϕi = ti ∈ Tm ⊂ End(X )
and

t1 + t2 = ℓ− 1 ∈ Tm.

Proof. If ℓ − 1 is a p-adic unit, or if ρm is ramified, then this follows from [25, Lemma 6.5]. In general, we
have

(30) X = Hom((J ∨min)
0
Fℓ
[m∞], µp∞)

so that X may be identified with a Tm[GQℓ
]-module quotient

π : TmJmin → X ;
the Galois action on X is unramified and Frobenius acts as Uℓ, which is a constant ±1 because the residue
characteristic of m is p > 2.

Because TmJmin is free of rank two over Tm, it may be equipped with a basis {e1, e2}, and moreover an
alternating Tm-module pairing

(31) ⟨·, ·⟩ : TmJmin × TmJmin → Tm
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such that

(32) y = ⟨e1, y⟩e2 − ⟨e2, y⟩e1
for all y ∈ TmJmin. Define maps

ϕi : TmJmin → Tm, i = 1, 2

ϕ1 : y 7→ ⟨y, (F − Uℓ)e2⟩
ϕ2 : y 7→ ⟨y, (F − Uℓ)e1⟩,

where F ∈ GQℓ
is any lift of Frobenius. We first claim that the maps ϕi factor through π. Since Tm is

p-torsion-free, it suffices to check this after inverting p. On TmJmin⊗Qp, F acts with distinct eigenvalues Uℓ
and ℓUℓ, and π ⊗Qp : TmJmin ⊗Qp → X ⊗Qp coincides with the projection onto the Uℓ-eigenspace. Since
⟨·, ·⟩ is alternating and Tm-linear, it follows that each ϕi does indeed descend to a Tm-module map X → Tm.
Now define maps

ψi : Tm → X , i = 1, 2

ψ1 : 1 7→ Uℓπ(e1)

ψ2 : 1 7→ −Uℓπ(e2).

We claim that ψi and ϕi satisfy the conclusion of the lemma. One readily calculates:

ϕ1 ◦ ψ1(1) = Uℓ⟨e1, (F − Uℓ)e2⟩
ψ1 ◦ ϕ1(e1) = Uℓ⟨e1, (F − Uℓ)e2⟩π(e1)
ψ1 ◦ ϕ1(e2) = Uℓ⟨e2, (F − Uℓ)e2⟩π(e1)

= Uℓ⟨e1, (F − Uℓ)e2⟩π(e2)− Uℓ(F − Uℓ)π(e2)
= Uℓ⟨e1, (F − Uℓ)e2⟩π(e2),

where in the last two steps we have used (32) and the fact that F = Uℓ on X . Similarly,

ϕ2 ◦ ψ2 = ψ2 ◦ ϕ2 = −Uℓ⟨e2, (F − Uℓ)e1⟩,
and

Uℓ⟨e1, (F − Uℓ)e2⟩ − Uℓ⟨e2, (F − Uℓ)e1⟩ = trTmJmin Uℓ(F − Uℓ) = ℓ− 1.

□

4.2. Shimura curves.

4.2.1. If ν(N2) is even, then there exists a Shimura curve XN1,N2 , with Γ0(N1) level structure, associated to
the indefinite quaternion algebra B = BN2

over Q of discriminant N2. Let

JN1,N2 := J(XN1,N2),

an abelian variety with a natural action of T by correspondences (induced by Picard functoriality). When N1

and N2 are understood, we abbreviate J = JN1,N2 . By the Jacquet-Langlands correspondence and Faltings’
Theorem [18], there is a noncanonical Hecke-equivariant isogeny J → Jmin. Consider the following technical
hypothesis on the residual representation ρm : GQ → GL2(T/m) associated to m:

If p = 3 and ρm is induced from a character of GQ(
√
−3), ∃ ℓ||N2

such that either ℓ ≡ −1 (mod 3) or ρm is ramified at ℓ.
(∗)

Theorem 4.2.2 ((Helm)). Let m ⊂ T be a non-Eisenstein maximal ideal of residue characteristic p ∤ 2N
satisfying (∗). Then there is an isomorphism of Tm-modules:

Hom(Jmin, J)m ≃ ⊗ℓ|N2
Xℓ(J∨min)m,

modulo Z-torsion on the right-hand side. Here, the tensor products are over Tm.

Proof. This is essentially [25, Theorem 8.7]; to complete the case p = 3, by [25, Remark 8.12] one only needs
a level-raising input that is provided by [16]. □

4.3. Shimura sets.
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4.3.1. Let B = BN2 be the quaternion algebra over Q ramified at N2 (and possibly ∞). Recall [40, 52] that
an oriented Eichler order (R,ϕ) of level N1 in B is an Eichler order R of level N1 equipped with a local
orientation ϕℓ for each ℓ|N . If ℓ|N1, then R⊗Zℓ is of the form R1 ∩R2 for a uniquely determined unordered
pair (R1, R2) of maximal orders of B ⊗ Qℓ; ϕℓ is the data of a choice of ordering of (R1, R2). If ℓ|N2, then
ϕℓ is the data of an isomorphism of the residue field of R with a fixed field Fℓ2 of cardinality ℓ2.

4.3.2. If ν(N2) is odd, then we define the Shimura set XN1,N2
to be the set of isomorphism classes of oriented

Eichler orders of level N1 in B. Because B×(Af ) has a natural transitive action on the set of oriented Eichler
orders of level N1, choosing an oriented Eichler order (R,ϕ) as a base point identifies XN1,N2 with the finite
double coset space

(33) B×(Q)\B×(AQ)/R̂
×.

When N1 and N2 are clear from context, the subscripts on XN1,N2
may be omitted.

4.3.3. The Z-module Z[X]0 of formal degree-zero divisors in X has two natural actions of T = TN1,N2
by

correspondences: an “Albanese” action induced by viewing an element of Z[X]0 as a formal sum of points in
a double coset space, and a “Picard” action induced by identifying Z[X] = HomSet(X,Z). We will consider
Z[X]0 as a T-module through the latter action. The analogue of Theorem 4.2.2 is:

Theorem 4.3.4. Let m ⊂ T be a non-Eisenstein maximal ideal of residue characteristic p ∤ 2N satisfying
(∗). Then there is an isomorphism of Tm-modules:

Z[X]0m ≃ ⊗ℓ|N2
Xℓ(J∨min)m,

modulo Z-torsion on the right-hand side. Here, the tensor products are taken over Tm.

Proof. Choose any prime q|N2, so that ν(N2/q) is even. Let T′ = TN1q,N2/q, and write m as well for the
maximal ideal of T′ induced by the map T′ → T.

Applying Theorem 4.2.2 to the pair N1q,N2/q, we obtain an isomorphism of T′m-modules (modulo Z-
torsion)

(34) Hom(J
N1q,N2/q
min , JN1q,N2/q)m ≃ ⊗ℓ|N2/qXℓ(J

N1q,N2/q,∨
min ).

By [25, Corollary 5.3, Lemma 8.2], this implies an isomorphism of Tm-modules

(35) Hom(JN1,N2

min , JN1q,N2/q
q -new )m ≃ ⊗ℓ|N2/qXℓ(J

N1,N2,∨
min ),

where J
N1q,N2/q
q -new is the q-new quotient of JN1q,N2/q. Then, by Proposition 4.1.3, we have

(36) Xq(JN1q,N2/q,∨
q -new )m ≃ Xq(JN1,N2,∨

min )m ⊗ℓ|N2/q Xℓ(J
N1,N2,∨
min )m.

By [2, Proposition 5.3], Xq(JqN1,N2/q,∨) is identified with Z[XN1,N2
]0. It remains to show that the inclusion

J
N1q,N2/q,∨
q -new ↪→ JN1q,N2/q,∨ induces an isomorphism on character groups at q. Indeed, since J

N1q,N2/q,∨
q -new has

purely toric reduction at q, there is a surjection of character groups

(37) Xq(JN1q,N2/q,∨) ↠ Xq(JN1q,N2/q,∨
q -new ).

After tensoring both sides with Q, (37) is an isomorphism because the q-old isogeny factors of JN1q,N2/q,∨

have good reduction at q. Since the source of (37) is a free Z-module, the surjection is an isomorphism. □

4.4. Special fibers of Shimura curves.

4.4.1. Assume ν(N2) is even. We choose an oriented maximal order OB ⊂ B = BN2 , and a positive
involution ∗ on OB . Then the Shimura curve XN1,N2 has a moduli interpretation as a space of triples
(A, ι, C), where A is an abelian surface, ι is an embedding OB ↪→ End(A), and C is a Γ0(N1) structure in
the sense of [52]. Details can be found, e.g., in [5]. In this subsection, we will recall (following [52]) the
geometry of the special fiber of the canonical model of XN1,N2

over Zq in two cases: q ∤ N1N2, and q|N2.
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4.4.2. Consider the following hypothesis on the residual representation ρm associated to a non-Eisenstein
maximal ideal m ⊂ TN1,N2 of residue characteristic p (for any Hecke algebra TN1,N2):

(TW) if p = 3, then ρm is absolutely irreducible over Q(
√
−3).

Note that this is strictly stronger than condition (∗) above.

Proposition 4.4.3. Suppose ν(N2) is even, and fix a prime q ∤ N1N2. Then:

(1) The supersingular locus XN1,N2
(Fq2)ss = XN1,N2

(Fq2)ss is canonically identified with XN1,N2
. This

identification is compatible with the action of TN1q,N2
, where Uq acts on XN1,N2

(Fq2)ss by Frobq.
(2) If m ⊂ TN1q,N2

is a non-Eisenstein maximal ideal of residue characteristic p ∤ 2Nq satisfying (TW),
then the induced map

Z[XN1,N2q]
0
m → JN1,N2(Fq2)m

is surjective.

Proof. The first part is proven in [52], but we recall the construction for use below in Proposition 4.6.12.
If (A, ι, C) is a point of XN1,N2

(Fq2)ss, then End0(A, ι) is isomorphic to BN2q, and R := End(A, ι, C) ⊂
End0(A, ι) is an Eichler order of level N1. Moreover, R has a natural orientation at all primes dividing ℓ|Nq,
which we now recall. For ℓ|N1, the local orientation is determined by the inclusion R ⊂ End(A, ι), where
the latter is a maximal order.

For ℓ|N2, if mℓ ⊂ OB is the unique maximal ideal of residue characteristic ℓ, then A[mℓ] is a vector space
of dimension one over OB/mℓ ≃ Fℓ2 , where the isomorphism is chosen according to the orientation of OB .
The action of R on A[mℓ] therefore defines a homomorphism R → Fℓ2 , which we take to be the orientation
of R at ℓ.

Finally, the Lie algebra of A is a Fq2 -vector space of dimension 2, on which R acts by scalars valued in
Fq2 , cf. [52, p. 24]. This defines a map R→ Fq2 , which we take to be the local orientation q. Thus for every

(A, ι, C) ∈ XN1,N2
(Fq2)ss, we have described an oriented Eichler order of level N1 in BN2q, well-defined up

to the choice of isomorphism End0(A, ι) ≃ BN2q, i.e. up to B×N2q
(Q)-conjugacy. This describes a map

XN1,N2
(Fq2)ss → XN1,N2q,

and [52, Theorem 3.4] shows that this map is an isomorphism.
The Hecke compatibility for operators coprime to q is clear from the construction. We can also see that

replacing (A, ι, C) by its Frobenius twist has the effect of switching the orientation of End(A, ι, C) at q,
which is precisely the action of Uq on XN1,N2q. In particular, Frob2q acts trivially on XN1,N2

(Fq2)ss, so all
the supersingular points are in fact defined over Fq2 .

Part (ii) is a well-known application of Ihara’s Lemma which can be deduced from the argument in [2,
Proposition 9.2]: we add auxiliary level of the form Γ1(ℓ), where ℓ ∤ N is a prime such that ℓ−1, Tℓ−ℓ−1 ̸∈ m.
That such a prime exists follows from condition (TW) by [16, Lemma 3]. □

4.4.4. Now suppose instead that q|N2. The Shimura curve XN1,N2
has a canonical, semistable integral model

over Zq. We denote by X±N1,N2/q
the set XN1,N2/q × {±}.

Proposition 4.4.5. The set of irreducible geometric components of the special fiber at q of XN1,N2 is
canonically identified with X±N1,N2/q

. Each component is defined over Fq2 , and the Frobenius action switches

the sign without changing the value in XN1,N2/q.

This identification is equivariant for the action of TN1q,N2/q, where Uq acts on X
±
N1,N2/q

as the correspon-

dence (
Tq q
−1 0

)
.

Proof. This follows from [52, Theorem 5.4], but once again we recall the construction for use in Proposition
4.6.12 below. First, [52, Theorem 5.3] identifies the set of irreducible components with the set of so-called
pure triples (A, ι, C), where A is a superspecial abelian surface over Fq2 with an embedding ι : OB ↪→ End(A)
and C is a Γ0(N1)-level structure. The purity condition means that OB acts on the 2-dimensional Fq2-vector
space LieA via scalars, i.e. through a homomorphism OB → Fq2 . Since OB is given with an orientation at q,
we say a pure triple is of type + if this homomorphism agrees with the orientation, and of type − otherwise.
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Now for any pure triple (A, ι, C), End0(A, ι) is isomorphic to BN2/q, and End(A, ι, C) is canonically an

oriented Eichler order of level N1 in End0(A, ι). (The orientation is defined as in the proof of Proposition
4.4.3.) Thus we have a well-defined map from the set of irreducible components to X±N1,N2/q

, sending a pure

triple (A, ι, C) of type δ ∈ {±} to (End(A, ι, C), δ). This map is an isomorphism by [52, Theorem 4.13], and
the Frobenius action is described in the following remark of loc. cit. The Hecke equivariance it is clear away
from q, and at q it is given by [2, Proposition 5.8(ii)]. (The Uq operator there is the adjoint of ours since
they are describing the Picard action.) □

4.4.6. We continue to assume q|N2 and ν(N2) is even. The Néron model Jq of the Jacobian JN1,N2 has purely
toric reduction, and we write X and Φ for the character group and the group of connected components,
respectively, of its special fiber. Recall the rigid-analytic uniformization of JN1,N2 , which gives rise to an
exact sequence:

(38) 0→ X → X † ⊗Qq → JN1,N2(Qq)→ 0.

Here, X † = Hom(X ,Z), and the maps are Hecke-equivariant if X is given Hecke action through Albanese
functoriality, and the actions on X † and Jq(Qq) are induced by Picard functoriality. Importantly for our
later applications, (38) is compatible with the Galois action of GQq

[4], where the action on X is unramified
and Frobenius acts through Uq [53, Proposition 3.8]. The rigid analytic uniformization is related to the
monodromy pairing j : X → X † of Grothendieck [24] by the commutative diagram with exact rows:

(39)

0 X X † ⊗Qq2 JN1,N2(Qq2) 0

0 X X † Φ 0.

ord Spq

j

Since U2
q = 1 on Φ, Proposition 4.4.5 induces a canonical map of TN1q,N2/q-modules

Z[X±N1,N2/q
]0

(U2
q − 1)

→ Φ.

Proposition 4.4.7. Suppose m ⊂ TN1q,N2
is a non-Eisenstein maximal ideal. Then the induced map

Z[X±N1,N2/q
]0m

(U2
q − 1)

→ Φm

is an isomorphism.

Proof. This is [2, Proposition 5.13]. □

4.5. Geometric level raising.

4.5.1. Let f be a cuspidal eigenform of weight two and trivial character, new of level N , and let ℘ ⊂ Of
be a prime ideal of the ring of integers of its coefficient field, with residue characteristic p ∤ 2N . We write
O for the completion of Of at ℘, and π for a uniformizer of O. We assume the residual representation T f
associated to f and ℘ is absolutely irreducible. We also fix a factorization N = N1N2, where N1 and N2

are coprime, and N2 is squarefree. If Q and Q′ are coprime squarefree positive integers, then we abbreviate

TQQ′ = TN1Q,N2Q′ , omitting any superscript or subscript which is equal to 1.

Definition 4.5.2. We say a prime q ∤ N is weakly j-admissible with sign ϵq = ±1 if aq ≡ ϵq(q + 1)

(mod πj) and q ̸≡ 1 (mod p). In this case, Tj := Tf/π
j has a unique subspace Fil+q,ϵq Tj , free of rank one over

Oj := O/πj , on which Frobq acts as qϵq. We will omit the subscript ϵq when there is no risk of confusion. We
say (q, ϵq) is weakly admissible if it is j-admissible for some j ≥ 1. A weakly admissible pair {Q, ϵQ} is
an ordered pair of a squarefree number Q and a function ϵQ : {q|Q} → {±1} such that q is weakly admissible
with sign ϵQ(q) for all q|Q. If {Q, ϵQ} is a weakly admissible pair, then for all q|Q, there is a unique root
uq ∈ O of the polynomial y2− yaq+ q such that uq ≡ ϵQ(q) (mod ℘). We view O as a TQ-algebra by letting
Uq act through uq, and letting the other Hecke operators act through their eigenvalues on f ; let m

ϵQ
Q be the
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associated maximal ideal (we will usually drop the superscript). Finally, a weakly admissible pair {Q, ϵQ} is
called j-level-raising if

lgO (TQ ⊗TQ O) ≥ j.

Remark 4.5.3. If {Q, ϵQ} is j-level-raising, then each q|Q is j-admissible. Indeed, in TQ we have U2
q = 1,

but Uq acts on O by the unique root of y2 − yaq + q congruent to ϵQ(q); hence aq = ϵq(q + 1) in TQ ⊗TQ O.

4.5.4. In light of the structural similarity of Theorems 4.2.2 and 4.3.4, let

(40) MQ =

{
Hom(JN1,N2Q

min , JN1,N2Q), ν(N2Q) even,

Z[XN1,N2Q]
0, ν(N2Q) odd.

It is well-known that MQ is a faithful TQ-module, and indeed MQ ⊗Q is free of rank one over TQ ⊗Q.

Lemma 4.5.5. Suppose {Q, ϵQ} is a weakly admissible pair, and let

C =
∑
ℓ|N2

T f unram at ℓ

ordπ(ℓ− 1).

Then there exists an O-module map
MQ ⊗TQ O → TQ ⊗TQ O

with kernel and cokernel annihilated by πC ; in particular, πC(MQ ⊗TQ O) is principal of length at least
lg(TQ ⊗TQ O)− 2C.

Proof. We may assume that mQ ⊂ TQ descends to TQ. Now, by Theorems 4.2.2 and 4.3.4, we have

MQ,mQ
≃ ⊗ℓ|N2QXℓ

(
JN1,N2Q,∨
min

)
mQ

,

modulo Z-torsion on the right. Lemma 4.1.4 implies that there exists a collection of TQ-module maps

ϕi :MQ,mQ
→ TQ,mQ

, ψi : TQ,mQ
→MQn,mQn

, i = 1, . . . , r

such that
ϕi ◦ ψi = ψi ◦ ϕi = ti ∈ TQ,mQ

⊂ End(MQn,mQn
)

and
t1 + . . .+ tr =

∏
ℓ|N2

T f unram at ℓ

(ℓ− 1) ∈ TQ,mQ
.

Since O is principal, we may choose some i such that the image of ti in TQ ⊗TQ O divides πC . Then ϕi and
ψi induce O-module maps

MQ ⊗TQ O → TQ ⊗TQ O, TQ ⊗TQ O →MQ ⊗TQ O
whose composition in either direction is multiplication by a divisor of πC , which implies the result. □

The following corollary is not needed for geometric level raising, but will be used later in the construction
of bipartite Euler systems.

Corollary 4.5.6. Let {Q, ϵQ} be a weakly admissible pair that is (j +2C)-level raising. Then there exists a
map of TQ-Galois modules

TmQ
JN1,N2Q → Tj

the factors through multiplication by πC and is surjective after O-linearization.

Proof. By Lemma 4.5.5 and Proposition 4.1.3, there is a unique (up to scalars) map of TQ[GQ]-modules

TmQ
JQ → TmQ

JN
+,N−Q

min ⊗TQ O that is surjective after O-linearization. Since TmQ
JN

+,N−Q
min is free of rank 2

over TQ,mQ
and satisfies the Eichler-Shimura relation

Frob2ℓ −Tℓ Frobℓ+ℓ = 0 on TmQ
JN

+,N−Q
min , ∀ℓ ∤ Np,

it follows that TmQ
JN

+,N−Q
min ⊗TQ O is isomorphic to Tj . (Here we are using the absolute irreduciblity of

T f .) □
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Theorem 4.5.7. Assume T f satisfies (TW).

(1) If {Qq, ϵQq} is a weakly admissible pair, then

lg(TQq ⊗TQq O) ≥ lg

(
TQ ⊗TQ O

(aq − ϵq(q + 1))

)
− C,

where C is the number of Lemma 4.5.5.
(2) If {Q, ϵQ} is a weakly admissible pair such that q is j-admissible with sign ϵQ(q) for all q|Q, then
{Q, ϵQ} is (j − ν(Q) · C)-level-raising.

Proof. (ii) follows from (i) by induction, so we prove (i). There are two cases, depending on the parity of
ν(N2Q).

Case 1. ν(N2Q) is even.

Let us abbreviate JQ = JN1,N2Q and JQmin = JN1,N2Q
min . Consider the composite

MQq,mQq
→ JQ(Fq2)mQq

→ H1
(
F2
q, TmQ

JQ
)
mQq
≃MQ ⊗

TmQ
JQmin

(Uq − ϵq)
induced from Proposition 4.4.3, the Kummer map, and Proposition 4.1.3. These are surjective maps of

TqQ-modules, where Uq acts on the three latter modules through Frobq. Since TmQ
JQmin is free of rank two

over TQ,mQ
and Frobq acts with the characteristic polynomial Frob2q −Tq Frobq +q (whose roots are distinct

modulo mQ), we may fix an identification

TmQ
JQmin

(Uq − ϵq)
≃

TQ,mQ

(Tq − ϵq(q + 1))
,

considered as a TqQ,mQq
-module again through Uq acting by ϵq. Tensoring with O, we obtain a surjective

map

MQq →MQ ⊗TQq

O
(aq − ϵq(q + 1))

,

hence (by Lemma 4.5.5) a map of TQq-modules MQq → TQ⊗O
(aq−ϵq(q+1)) with cokernel annihilated by πC . Since

the action of TQq on MQq factors through TQq, we obtain, by taking eigenvalues, a surjection TQq → O/πj
for some

j ≥ lg

(
TQ ⊗TQ O

(aq − ϵq(q + 1))

)
− C.

Case 2. ν(N2Q) is odd.

By Proposition 4.4.7, the action of TqQ,mQq
on

MQ,mQ
⊗TQ

(
T2
Q/ im

(
Tq − ϵq q
−1 −ϵq

))
,

with Uq acting by ϵq, factors through TQq,mQq
. Hence the action of TqQ on

A =MQ ⊗TQ

O
(aq − ϵq(q + 1))

likewise factors through TQq (again with Uq acting by ϵq). The conclusion of Lemma 4.5.5 implies that A
has a TqQ-module map to

TQ ⊗TQ O
(aq − ϵq(q + 1))

with cokernel annihilated by πC , from which the result follows. □

Remark 4.5.8. If {Q, ϵQ} ∈ N in the notation of (3.2.2), then for F-many n there is a corresponding weakly
admissible pair {Qn, ϵQn

}, where Qn is a sequence representing Q. To be precise, if Q = {q1, . . . , qr}, we
choose sequences qni representing each qi; for F-many n, the product Qn = qn1 · · · qnr , equipped with sign
function ϵQn(q

n
i ) = ϵQ(qi), forms a weakly admissible pair {Qn, ϵQn}. It follows from the definition of N and

from the theorem that, for any j ≥ 0, there exist F-many n which are j-level-raising. We say that a sequence
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of weakly admissible pairs {Qn, ϵQn} (defined for F-many n) represents the pair {Q, ϵQ} if it is obtained from
this construction for some choice of representatives qni .

4.6. CM points.

4.6.1. Let us now fix an imaginary quadratic field K ⊂ Q, and a positive integer N = N+N− such that
every prime factor of N+ is split in K, and N− is a squarefree product primes inert in K. Let B = BN−

be the quaternion algebra over Q ramified exactly of the factors of N−, and possibly ∞. For each ℓ|N , we
have a fixed embedding K ↪→ Q ↪→ Qℓ. If ℓ|N+, this determines a distinguished prime l of K above ℓ. We
write lc for its conjugate. If ℓ|N−, this determines a distinguished isomorphism OK/ℓ ≃ Fℓ2 . Finally, for
each positive integer m, let Om,K ⊂ OK be the order of conductor m.

4.6.2. Assume ν(N−) is even. We choose an oriented maximal order OB ⊂ B to give a moduli interpretation
to XN+,N− as in (4.4.1).

Definition 4.6.3. Let m be a positive integer coprime to N , and write K[m] for the ring class field of
conductor m. The set of (positively oriented) CM points of conductor m,

CMN+,N−(m) ⊂ XN+,N−(K[m]),

is the set of triples (A, ι, C) over K[m] admitting an isomorphism Om,K
∼−→ End(A, ι, C) such that:

(1) The action of Om,K on the K[m]-vector space LieA agrees with the fixed embedding Om,K ⊂ K ↪→
Q ↪→ K[m].

(2) For all ℓ|N+, Om,K ⊗ Zℓ = OK,l × OK,lc acts on the ℓ-primary component Cℓ ⊂ C through the
projection to OK,l.

(3) For all ℓ|N−, let mℓ ⊂ OB be the unique maximal ideal of residue characteristic ℓ. Then A[mℓ](K[m])
is a rank-one vector space over OB/mℓ ≃ Fℓ2 , where the isomorphism comes from the orientation of
OB at ℓ. We require that the action of Om,K/ℓ on this vector space correspond to our distinguished
isomorphism Om,K/ℓ ≃ Fℓ2 .

4.6.4. If A is an abelian variety, any element γ ∈ (End(A)⊗ Af )× defines an abelian variety Aγ with a map
f : Aγ → A in the isogeny category of abelian varieties such that f∗(TℓAγ) = γℓTℓA for all ℓ. In this way,
we obtain a canonical action of

PicOm,K = K×\A×f,K/Ô
×
f,K

on CMN+,N−(m). We denote by

rec : Gal(K[m]/K)→ K×\A×f,K/Ô
×
f,K

the reciprocity map of class field theory, normalized so that uniformizers correspond to geometric Frobenius
elements.

Proposition 4.6.5. (1) Via the reciprocity map, the action of Gal(K[m]/K) on CMN+,N−(m) agrees

with the action of K×\A×f,K/Ô
×
m,K described above.

(2) CMN+,N−(m) is a torsor under the action of Gal(K[m]/K).

Proof. Part (i) follows from Shimura’s reciprocity law. For (ii), see the discussion in [67, p. 55]; it is an
elementary exercise using the complex uniformization of XN+,N− to see that our definition of the positively
oriented CM points of conductor m agrees with the adelic description given in loc. cit. (Recall that any
C-valued point ofXN+,N− admitting extra endomorphisms byOm,K is automatically defined overK[m].) □

4.6.6. Now assume that ν(N−) is odd. In this case, we fix an embedding K ↪→ B.

Definition 4.6.7. Suppose m is coprime to N . Then CMN+,N−(m) is defined as the set of isomorphism
classes of oriented Eichler orders (R,ϕ) of B of level N+ such that:

(1) R ∩K = Om,K .
(2) For primes ℓ|N+, let R1 ⊃ R⊗Zℓ be the maximal order determined by ϕℓ. If ℓ

k||N , then we require
that the natural mapOm,K → (R⊗Zℓ)/ℓkR1 ≃ Z/ℓk is given by the projectionOm,K/ℓk ↠ Om,K/lk.

(3) For all ℓ|N−, let mℓ ⊂ R be the unique ideal of residue characteristic ℓ. Then we require that the
isomorphism Om,K/ℓ = R/mℓ ≃ Fℓ2 determined by ϕℓ agrees with the fixed isomorphism OK/ℓ
chosen above.
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Here the equivalence relation is conjugation by K×. (Properties (i)-(iii) are not stable under conjugation by
B×(Q).)

Notice that CMN+,N−(m) comes equipped with a natural projection map

(41) CMN+,N−(m)→ XN+,N− .

4.6.8. We define an action of Gal(K[m]/K) on CMN+,N−(m) as follows. Let

rec : Gal(K[m]/K)
∼−→ K×\A×f,K/Ô

×
m,K

be the reciprocity map of class field theory, normalized so that uniformizers correspond to geometric
Frobenius elements. Then for σ ∈ Gal(K[m]/K), σ · (R,ϕ) is rec(σ) · (R,ϕ): that is, the Eichler order

rec(σ)R̂ rec(σ)−1 ∩B(Q) with the induced orientation.

Proposition 4.6.9. Suppose m is coprime to N . Then CMN+,N−(m) is a torsor for Gal(K[m]/K).

Proof. It is clear that Gal(K[m]/K) acts with trivial stabilizers on CMN+,N−(m), so we will show transitivity.
Let (R,ϕ) and (R′, ϕ′) be two elements of CMN+,N−(m). Since the orientations ϕ and ϕ′ are determined by

properties (ii) and (iii) of the definition of CMN+,N−(m), it suffices to show that there exists k ∈ A×f,K such
that

kR̂′k−1 = R̂.

We do this by working locally at all primes ℓ. To ease notation, abbreviate

Rℓ = R⊗ Zℓ, R′ℓ = R′ ⊗ Zℓ, Bℓ = B ⊗Qℓ, Om,K,ℓ = Om,K ⊗ Zℓ, Kℓ = K ⊗Qℓ.

Suppose first that ℓ ∤ N . Because R∩K = R′∩K = Om,K , [13, Lemma 6.2] implies there exists kℓ ∈ K×ℓ such

that kℓR
′
ℓk
−1
ℓ = Rℓ. For ℓ|N−, the maximal order in Bℓ is unique, so R

′
ℓ = Rℓ. For ℓ|N+, let j = ordℓ(N

+),
and fix an isomorphism Bℓ ∼=M2(Qℓ) that identifies OK,ℓ with(

Zℓ 0
0 Zℓ

)
⊂M2(Qℓ).

Eichler orders of level ℓj in Bℓ are all of the form End(L1) ∩ End(L2), where L1 ⊂ L2 are lattices in Q2
ℓ

with L2/L1 ≃ Z/ℓjZ. If End(L) contains Om,K,ℓ, then L is of the form Zℓ ⊕ ℓnZℓ (up to homothety). The
possible Eichler orders of level ℓj containing Om,K,ℓ are therefore(

Zℓ ℓ−nZℓ
ℓn+jZℓ Zℓ

)
, n ∈ Z.

These are evidently all conjugate by diagonal matrices, so we may choose kℓ ∈ K×ℓ such that kℓR
′
ℓk
−1
ℓ = Rℓ.

Setting k =
∏
ℓ∤N− kℓ, we have

kR̂′k−1 ∩B(Q) = R̂.

□

Remark 4.6.10. We will soon be varying N− (keeping K and N+ fixed). The choices made in the definition
of the CM points – i.e. the maximal order OB if ν(N−) is even, and the embedding K ↪→ B if ν(N−) is odd
– will be considered to be fixed, once and for all, for each possible N−.

4.6.11. In the remainder of this section, we recall the geometric ingredients for the explicit reciprocity laws
originally studied in [2].

Proposition 4.6.12. Suppose ν(N−) is even. Let m be coprime to N , and let q ∤ Nm be a prime inert in K,

with q a prime of K[m] above q. Then there is an isomorphism tN+,N−,q : CMN+,N−(m)
∼−→ CMN+,N−q(m)

of Gal(K[m]/K)-torsors fitting into a canonical commutative diagram:

CMN+,N−(m) XN+,N−(K[m])

CMN+,N−q(m) XN+,N−q XN+,N−q(Fq2)ss XN+,N−q(Fq2).

tN+,N−,q Redq

∼
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Proof. Choose any (A, ι, C) ∈ CMN+,N−(m), and let (A0, ι0, C0) denote its reduction modulo q. Since
q is inert in K, A0 is supersingular. Moreover we have a distinguished action Om,K ↪→ End(A0, ι0, C0)

coming from the reduction of the complex multiplication. Choose an isomorphism End0(A0, ι0, C0) ≃ BN−q

identifying the corresponding embedding K ↪→ End0(A0, ι0, C0) with our fixed inclusion K ↪→ BN−q. The
choice of this isomorphism is unique up to K×-conjugacy. Therefore End(A0, ι0, C0) yields a well-defined
point of CMN+,N−q(m) – note that conditions (ii) and (iii) of Definition 4.6.7 are satisfied by conditions
(ii) and (iii) of Definition 4.6.3. This defines the map tN+,N−,q, and it is Galois-equivariant by Shimura’s
reciprocity law for the Galois action on CM points, cf. [66, §5.3-5.4]. Since the Gal(K[m]/K)-action is
simply transitive, it is automatically an isomorphism. The commutativity of the diagram follows from the
construction in the proof of Proposition 4.4.3. □

Proposition 4.6.13. Suppose ν(N−) is odd. Let m be coprime to N , and let q ∤ Nm be a prime inert
in K, with q a prime of K[m] above q. Then every point of CMN+,N−q(m) lies in XN+,N−q(K[m]/K)sm,
the subset of points which reduce modulo q to smooth points of the special fiber. Moreover, there is an
isomorphism sN+,N−,q : CMN+,N−q(m)

∼−→ CMN+,N− of Gal(K[m]/K)-torsors fitting into a canonical
commutative diagram:

CMN+,N−q(m) XN+,N−q(K[m])sm

CMN+,N−(m) X±N+,N− .

sN+,N−,q Spq

(41)×{+}

Proof. That each point of CMN+,N−q(m) has smooth reduction modulo q follows from [2, p. 55]. For the
rest, let (A, ι, C) be a point of CMN+,N−q(m), and (A0, ι0, C0) its reduction modulo q. Since (A0, ι0, C0)
is a nonsingular OK[m]/q-valued point of the special fiber, by [52, Proposition 4.4, Theorem 5.3], there
is a unique OBN−q

-stable subgroup scheme H ⊂ A0 which is isomorphic to αp; since H is unique, it is

automatically Om,K-stable as well. Let ι0 and C0 denote the induced OBN−q
-action and Γ0(N

+)-structure

on A0/H. Then (A0/H, ι0, C0) is a pure triple over OK[m]/q ≃ Fq2 in the notation of the proof of Proposition
4.4.5, and the irreducible component of the special fiber of XN+,N−q containing (A0, ι0, C0) is parameterized

by the q-Frobenius twist (A0, ι0, C0)
(q). As in the proof of Proposition 4.6.12, the induced Om,K-action

on (A0/H)(q) allows us to view End(A0/H, ι0, C0) as a point of CMN+,N−(m), and the resulting map
CMN+,N−q(m)→ CMN+,N−(m) is then an isomorphism of Gal(K[m]/K)-torsors (by Proposition 4.6.5).

To finish the proof, we must show that (A0/H, ι0, C0)
(q) is pure of type +, or equivalently that (A0/H, ι0, C0)

is pure of type −. By [52, Proposition 4.7], it suffices to show that H is of type + in the following sense:
if M is the Dieudonné module of A0, then H corresponds to a submodule (F, V )M ⊂ N ⊂ M; OBN−q

on the one-dimensional Fq2-vector space M/N by the map OBN−q
→ Fq2 ⊂ Fq2 determined by the fixed

orientation. Indeed, let A denote the Néron model of A over OK[m],q, with special fiber A0. By Raynaud’s
Theorem [50] and the orientation condition of Definition 4.6.3(iii), the actions of OBN−q

and Om,K on the

group scheme A[mq] coincide under the fixed composite isomorphism OBN−q
/mq ≃ Fq2 ≃ Om,K/qOm,K .

So it suffices to show that the action of Om,K on M/N is by the fixed isomorphism Fq2 ≃ Om,K/qOm,K .
But M/FM is dual to LieA0 = LieA ⊗ OK[m]/q, and Om,K acts on LieA by the canonical embedding
Om,K ↪→ OK[m],q (using the orientation condition of Definition 4.6.3(i)). Hence Om,K acts onM/FM via
the reduction map to Om,K/q ≃ Fq2 . SinceM/FM surjects ontoM/N , this completes the proof. □

5. Construction of bipartite Euler systems

5.1. The CM class construction.

5.1.1. Fix a quadratic imaginary field K ⊂ Q, and let f be as in (4.5.1), such that T f satisfies (TW). We
assume that N admits a factorization N = N+N−, where all ℓ|N+ are split in K, and N− is a squarefree
product of primes inert in K. We continue the notation of §4.5 (using N1 = N+ and N2 = N−). Fix an
integer m which is coprime to N , and let Gm = Gal(K[m]/K). If q ∤ m is a prime inert in K, we fix a prime
q of K[m] above q; for instance, this can be done by choosing an embedding K[m] ↪→ Q. If q is weakly



34 NAOMI SWEETING

j-admissible with sign ϵq, we define the ordinary subspace:

(42) H1
ord,ϵq (Kq, Tj) = im

(
H1(Kq,Fil

+
q,ϵq Tj)→ H1(Kq, Tj)

)
.

Using the map obtained from Shapiro’s Lemma (e.g. [60, §3.1.2])

(43) Resq : H1(K[m], Tj)→ HomSet(Gm, H
1(Kq, Tj)),

we also have maps:

∂q,ϵq : H1(K[m], Tj)→ HomSet(Gm, H
1(Iq,Fil

+
q Tj)) ≈ Oj [Gm],

locq,ϵq : H1(K[m]Σ/K[m], Tj)→ HomSet(Gm, Tj/Fil
+
q Tj),≈ Oj [Gm], q ̸∈ Σ,

defined as in (18,19).
For notational convenience, we temporarily denote by Nj the collection of weakly admissible pairs {Q, ϵQ}

which are (j + 2C)-level-raising, and such that all primes q|Q are inert in K.

Construction 5.1.2. If Σ ⊂ MQ is the set of places dividing Np∞, then for all {Q, ϵQ} ∈ Nj, there exist
maps (well-defined to a unit scalar):

κj(·, Q, ϵQ) : CMN+,N−Q(m)→ H1(K[m]Σ∪Q/K[m], Tj), ν(N−Q) even,

λj(·, Q, ϵQ) : CMN+,N−Q(m)→ HomSet(Gm,Oj) = Oj [Gm], ν(N−Q) odd,

compatible under the natural reduction maps for j′ ≤ j, Gal(K[m]/K)-equivariant, and such that the follow-
ing properties hold.

(1) If {Q, ϵQ} ∈ Nj where ν(N−Q) is even, then for all q|Q and all y ∈ CMN+,N−Q(m),

Resq(κj(y,Q, ϵQ)) ∈ H1
ord,ϵQ(q)(Kq, Tj).

(2) If {Qq, ϵQq} , {Q, ϵQ} ∈ Nj where ϵQ = ϵQq|Q and ν(N−Qq) is even, then there is an isomorphism

i : H1(Iq,Fil
+
q,ϵQ(q) Tj) ≃ Oj such that, for all y ∈ CMN+,N−Qq(m),

i
(
∂q,ϵQq(q)κj(y,Qq, ϵQq)

)
= λj(sN+,N−Q,q(y), Q, ϵQ).

Here sN+,N−Q,q : CMN+,N−Qq(m)
∼−→ CMN+,N−Q(m) is the map of Proposition 4.6.13.

(3) If {Qq, ϵQq} , {Q, ϵQ} ∈ Nj where ϵQ = ϵQq|Q and ν(N−Qq) is odd, then there is an isomorphism

i : H1
unr(Kq, Tj/Fil

+
q,ϵQ(q) Tj) ≃ Oj such that, for all y ∈ CMN+,N−Q(m),

i
(
locq,ϵQq(q)(κj(y,Q, ϵQ)

)
= λj(tN+,N−Q,q(y), Q, ϵQ).

Here tN+,N−Q,q : CMN+,N−Q(m)
∼−→ CMN+,N−Qq(m) is the map of Proposition 4.6.12.

Proof. The specifications ϵQ will be dropped to ease notation. We fix throughout a prime ℓ0 ∤ Nmp such
that aℓ0(f)− ℓ0 − 1 is a unit in O.

Suppose first that ν(N−Q) is odd. By Lemma 4.5.5, there is a unique map (up to scalars) MQ → Oj
of TQ-modules that factors through multiplication by πC and is surjective after O-linearization. For y ∈
CMN+,N−Q(m) and g ∈ Gm, we define λj(y)(g) to be the image of gy by the composite map

CMN+,N−Q(m)→ XN+,N−Q

Tℓ0
−ℓ0−1−−−−−−→MQ → Oj .

(The notation MQ was defined in (4.5.4).)
Now suppose that ν(N−Q) is even. For each y ∈ CMN+,N−Q(m), (Tℓ0 − ℓ0 − 1)y is a degree zero divisor

on XN+,N−Q, and its image in the Jacobian JQ is defined over K[m]. Let

d(y,Q) ∈ H1(K[m]Σ∪Q/K[m], TmQ
JQ)

be the Kummer image. We define κj(y,Q) to be the image of d(y,Q) under the map

H1(K[m]Σ∪Q/K[m], TmQ
JQ)→ H1(K[m]Σ∪Q/K[m], Tj)

induced by Corollary 4.5.6.
We now establish properties (i)-(iii).
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(1) This follows from the rigid analytic uniformization (38) by the argument of [23, p. 15]. Indeed, the
argument there shows that the image of the Kummer map

JQ(Qq2)→ H1(Qq2 , TmQ
JQ)

agrees with the image of the map

H1(Qq2 ,X (JQ)(1))→ H1(Qq2 , TmQ
JQ),

where X (JQ)(1)→ (TmQ
JQ)[Frobq −Uqq] is a canonical isomorphism. Since p ∤ q− 1, the surjection

TmQ
JQ ↠ Tj

induces

X (JQ)(1) ↠ Fil+q Tj ,

and the claim follows.
(2) We claim that the composite

JQq(Qq2)→ H1(Qq2 , TmQq
JQq)→ H1(Iq, Tj)

factors through

Spq : J
Qq(Qq2)→ ΦmQ

.

Indeed, the target of the composite map has Frobenius eigenvalue Uq, and, because p ∤ q − 1, a
diagram chase using (38) shows that the pro-p part of the kernel of Spq has Frobenius eigenvalue
−Uq (if it is nontrivial at all).

By Proposition 4.6.13, ∂q(κj(y,Qq))(g) is therefore the image of gy under the composite the
natural map

CMN+,N−Q(m)→ XN+,N−Q

Tℓ0
−ℓ0−1−−−−−−→MQ

with some surjective map of Hecke modules MQ → Oj , which factors through multiplication by πC

by the choice of map TmQq
JQq → Tj . We may conclude by Lemma 4.5.5.

(3) By Proposition 4.6.12, locq κj(y,Q)(g) is the image of tN+,N−Q,q(y) under the composite map

CMN+,N−Qq(m)→ XN+,N−Qq

Tℓ0
−ℓ0−1−−−−−−→MQq ↠ JQ(Fq2)ss ↠

H1
unr(Fq2 , TmQ

JQ) ↠ H1
unr(Fq2 , Tj) ↠ H1

unr(Fq2 , Tj/Fil
+
q Tj).

(44)

(The third arrow is surjective by Proposition 4.4.3(ii).) The final map in this composition projects
onto the ϵq eigenspace of Frobq; hence, applying Proposition 4.4.3(i) for the Uq action, the composite

(45) MQq ↠ H1
unr(Fq2 , Tj/Fil

+
q Tj) ≈ Oj

is equivariant for the full Hecke algebra TqQ,mQq
. Hence by Lemma 4.5.5 it coincides (up to a unit

scalar) with the map used to construct λj(y,Qq), which gives (iii).

□

5.2. p-adic interpolation.

5.2.1. Suppose for this subsection that:

(spl) p splits in K

and

(ord) ap ̸∈ ℘.

We denote by Km ⊂ K[pm] the mth layer of the anticyclotomic Zp-extension.

Proposition 5.2.2. Suppose Q is a squarefree product of primes inert in K. Then there exists a sequence
y(m) ∈ CMN+,N−Q(p

m) such that

Tpy(m) = trK[pm+1]/K[pm] y(m+ 1) + y(m− 1), ∀m ≥ 1,

as formal divisors on XN+,N−Q.



36 NAOMI SWEETING

Proof. This is a standard calculation, but we give a sketch of the proof for lack of a precise reference. The
set

CMN+,N−Q(p
∞) := ∪m≥0 CMN+,N−Q(p

m)

has a natural action of the Hecke operator Tp, compatible with its action on XN+,N−Q and commuting
with the action of Gal(K[p∞]/K). If y is a CM point of conductor pm with m ≥ 1, then (since p is split
in K) Tpy contains a CM point of conductor pm−1, and another of conductor pm+1. Since Tpy is fixed by
Gal(K[pm+1]/K[pm]), the proposition follows formally. □

5.2.3. Suppose given any {Q, ϵQ} ∈ N, and let {Qn, ϵQn
} be a representative sequence of weakly admissible

pairs as in Remark 4.5.8, with each Qn a squarefree product of primes inert in K. For each n, let y(m)n ∈
CMN+,N−Qn

(pm) be a sequence of CM points which are compatible in the sense of Proposition 5.2.2.
Since Tp ̸∈ m, Hensel’s Lemma implies that the Hecke algebras TQn,mQn

contain a (unique) element

u ̸∈ mQn
such that u2 − uap + p = 0. Let αp ∈ O× be the image of u.

5.2.4. We now suppose that |Q| + ν(N−) is even. Adopting the notation of Construction 5.1.2, it follows
from the compatibility relation of the y(m)n that the classes

d(m,Qn) := CoresK[pm]/Km

(
u−m+1d(y(m)n, Qn)− u−mResK[pm]/K[pm−1] d(y(m− 1)n, Qn)

)
are compatible under the corestriction maps

H1(Km, TmQn
JQn)→ H1(Km−1, TmQn

JQn).

Let κj(m,Qn) be the image of d(m,Qn) under the map of Corollary 4.5.6; this is well-defined for F-many n
depending on j, and the classes κj(m,Qn) are compatible under corestriction. We let

κ(Q) ∈ lim←−
m,j

H1(KΣ∪Q
m /Km, Tj) ≃ H1(K,Tf ⊗ Λ(Ψ))

be the class represented by the family κj(m,Qn). (The isomorphism follows from Shapiro’s Lemma.)

5.2.5. Similarly, if |Q|+ ν(N−) is odd, the elements

λj(m,Qn) := α−m+1
p λj(y(m)n, Qn)− α−mp λj(y(m− 1)n, Qn) ∈ Oj [Gal(K[pm]/K)]

are compatible under the natural projection maps

Oj [Gal(K[pm]/K)]→ Oj [Gal(K[pm−1]/K)].

Taking the trace to Gal(Km/K), we then obtain an element

λ(Q) ∈ lim←
m,j

U
(
{Oj [Gal(Km/K)]}n∈N

)
≃ OJGal(K∞/K)K ≃ Λ.

5.2.6. Let S ⊂ MK be the set of constant ultraprimes v such that v|Np∞. We define a Selmer structure
(FΛ,S) for Tf := Tf ⊗ Λ as follows:

(46) H1
FΛ

(Kv,Tf ) =


im
(
H1(Kv,Fil

+
v T ⊗ Λ)→ H1(Kv,Tf )

)
, v = v, v|p,

H1(Kv,Tf ), v = v, v|N∞,
ker(

(
H1(Kv,Tf )→ H1(Iv,Tf )⊗Qp)

)
, otherwise.

Here, if v|p, Fil+v T ⊂ T is the unique free, rank-one direct summand on which Iv acts by the cyclotomic
character. This Selmer structures is well-defined because, if Iv acts trivially on Tf , then H1(Iv,Tf ) is
torsion-free; hence for v ̸∈ S, H1

FΛ
(Kv,Tf ) = H1

unr(Kv,Tf ).

Remark 5.2.7. (1) The local conditions at v = v for v|N∞ are a reformulation of those in [28,
§3.1]. Indeed, if v|N+, then H1(Kv,Tf ) = H1

unr(Kv,Tf ) by [55, Corollary B.3.4]. If v|N−, then
H1(Kv,Tf ) = H1(Kv, Tf ) ⊗O Λ, and a direct calculation shows that the whole local cohomology
group H1(Kv, Tf ) is ordinary in the sense of [28].

(2) Some authors take the unramified local condition at v|N− when defining a Selmer structure. As ex-
plained in [47], the effect of this alternative definition is to increase the µ-invariant of SelF∗

Λ
(K,Wf )

∨

(since restricting the local condition for Tf corresponds to relaxing the local condition for Wf ).

By [28, Proposition 3.3.1, Lemma 3.3.4], FΛ fits into an interpolated self-dual Selmer structure (S,FΛ,FP,ΣΛ)
for Tf .
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Proposition 5.2.8. The pair (κ,λ) is a nontrivial bipartite Euler system for the triple (Tf ,FΛ,S).

Proof. We first show that κ(Q) lies in SelFΛ(Q)(Tf ) for all {Q, ϵQ} ∈ Nν(N
−). The only local conditions to

verify are those at v|p; the local conditions for q ∈ Q follow from Construction 5.1.2(i), and the rest are
trivial. If Q is represented by the sequence Qn, let Fil

+
v TmQn

JQn be the maximal TmQn
submodule on which

Iv acts by the cyclotomic character (adopting the notation of Construction 5.1.2 and if necessary restricting
our attention to F-many n). As in [12, Proposition 4.7], it suffices to show that, for all m and n and a fixed
extension of v to K∞, the image dn,m of the class d(m,Qn) under the composite

H1(Km, TmQn
JQn)→ H1(Km,v, TmQn

JQn/Fil+ TmQn
JQn)

is trivial. Since d(m,Qn) is a Tm-linear combination of Kummer images over Km, by [3, Example 3.11] and
[42, Proposition 12.5.8] dn,m lies in the kernel of

H1(Km,v, TmQn
JQn/Fil+ TmQn

JQn)→ H1(Km,v,Qp ⊗ TmQn
JQn/Fil+ TmQn

JQn).

Since the classes dn,m are corestriction-compatible as m varies, the argument of [29, Proposition 2.4.5] shows
that indeed dn,m = 0 for all n,m.

The explicit reciprocity laws are a consequence of Construction 5.1.2(ii,iii), and the nonvanishing of either
κ(1) or λ(1) (according to the parity of ν(N−)) is due to the work of Cornut [13] and Vatsal [64]. □

5.3. Kolyvagin classes.

5.3.1. Before defining the Kolyvagin classes in patched cohomology, we begin by recalling a calculation
explained in [22].

Let m be a squarefree product of primes ℓ inert in K. We have

Gal(K[m]/K[1]) ≃
∏
ℓ|m

Gal(K[ℓ]/K[1]);

each Gal(K[ℓ]/K[1]) is cyclic of order ℓ + 1. For a place λ of K[m] over some ℓ|m, let Frobλ ∈ GQ be a
lift of absolute Frobenius, and let σλ ∈ Iλ ⊂ GK be a generator of Gal(K[ℓ]/K[1]). Recall the Kolyvagin
derivative operators [22]:

Dℓ =

ℓ∑
i=1

iσiλ ∈ Z[Gal(K[ℓ]/K[1])], Dm =
∏
ℓ|m

Dℓ.

Finally, let Q be a squarefree product of primes inert in K that is coprime to Nmp, and choose a CM point
y(m,Q) ∈ CMN+,N−Q(m). We define

P (m,Q) = Dmy(m,Q),

viewed as a formal divisor on XN+,N−Q.

Proposition 5.3.2. For any ℓ|m, there exists a CM point y(m/ℓ,Q) ∈ CMN+,N−Q(m/ℓ) such that:

(1) (σλ − 1)P (m,Q) = (ℓ+ 1)Dm/ℓy(m,Q)− TℓP (m/ℓ,Q).

(2) If ν(N−Q) is even, then

Dm/ℓy(m,Q) ≡ Frobλ P (m/ℓ,Q) (mod λ).

Proof. This is [22, p. 240] in the modular curve case; the same reasoning applies to Shimura curves by
[43, Proposition 4.13]. The argument for (i) formally applies to Shimura sets as well, along the lines of
Proposition 5.2.2. □

Fix ℓ0 as in the proof of Construction 5.1.2, and let

P ′(m,Q) = (Tℓ0 − ℓ0 − 1)P (m,Q),

a formal degree zero divisor on XN+,N−Q.

Proposition 5.3.3. Suppose mQ ⊂ TQ = TN+,N−Q is a maximal ideal whose associated residual represen-
tation has no GK[m]-fixed points, and let Im ⊂ TQ be the ideal generated by ℓ+ 1 and Tℓ for all ℓ|m. Then

if ν(N−Q) is even:

(1) Restriction induces an isomorphism

Resm : H1(K[1], TmQ
JQ/Im)

∼−→ H1(K[m], TmQ
JQ/Im)Gal(K[m]/K[1]).
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(2) The Kummer image d(m,Q) of P ′(m,Q) in H1(K[m], TmQ
JQ/Im) lies in the image of Resm.

(3) If c(m,Q) = CoresK[1]/K Res−1m d(m,Q), then for all ℓ|m and any choices of representatives,

c(m,Q)(σλ) = Frob−1λ d(m/ℓ,Q)(Frob2λ) (mod Im).

(4) The class c(m,Q) is unramified at any place v ∤ NpmQ∞.

Proof. (i) follows from the inflation restriction exact sequence as in [22], and (ii) is immediate from Proposi-
tion 5.3.2. Also (iv) is clear from the construction. For (iii), it suffices to check the corresponding statement
for c′(m,Q) = Res−1m d(m,Q). The proof is a modification of the argument in [39]. Fix division points
P ′(m,Q)
ℓ+1 and P ′(m/ℓ,Q)

ℓ+1 in JQ(K), and a lift σ̃λ of σλ to Gal(K/K[1]). One may verify that c′(m,Q)(σλ) is

the unique element A ∈ TmQ
JQ/Im such that, for all g ∈ GK[m/ℓ],

(g − 1)A ≡ (g − 1)(σ̃λ − 1)
P ′(m,Q)

ℓ+ 1
∈ TmQ

JQ/Im.

By Proposition 5.3.2(i), A is also the image of the (unique) point T ∈ JQ[ℓ+ 1] such that

T ≡ Dm/ℓ CMN+,N−Q(P
′(m,Q))− Tℓ

P ′(m/ℓ,Q)

ℓ+ 1
(mod λ).

But by Proposition 5.3.2(ii), this is equivalent to

(47) T ≡ Frob−1λ P (m/ℓ,Q)− Tℓ
P ′(m/ℓ,Q)

ℓ+ 1
(mod λ).

By the Eichler-Shimura relation, and the fact that ℓ splits completely inK[m/ℓ], the image of T in TmQ
JQ/Im

is precisely
Frob−1λ d(m/ℓ,Q)(Frob2λ).

□

Definition 5.3.4. For a squarefree product m of primes inert in K, let Im(f) ⊂ O be the ideal generated
by aℓ(f) and ℓ+ 1 for all ℓ|m. Suppose given {Q, ϵQ} ∈ Nj (notation as before Construction 5.1.2), with all
q|Q inert in K and with j ≥ v℘(Im(f)). If ν(N−Q) is even, then the Kolyvagin class

(48) c(m,Q) ∈ H1(KΣ∪Q∪m/K, Tf/Im(f))

is defined to be the image of c(m,Q). If ν(N−Q) is odd, then Construction 5.1.2, extended linearly to formal
sums of CM points, defines an element

λj(P (m,Q), Q) ∈ Oj [Gal(K[m]/K)].

Its reduction modulo Im is constant on cosets of Gal(K[m]/K[1]) by Proposition 5.3.2(i) and therefore
descends to

(49) λ′(m,Q) ∈ (O/Im)[Gal(K[1]/K)].

The Kolyvagin element is then defined as:

(50) λ(m,Q) = trK[1]/K λ
′(m,Q) ∈ O/Im.

Remark 5.3.5. When Q = 1 and ν(N−) is even, this agrees with Kolyvagin’s construction [36].

Recall that ϵf is the global root number of f . For applications to the parity conjecture, we will require
the following:

Proposition 5.3.6. If ν(N−) is even, then c(m, 1) lies in the ϵf · (−1)ν(m)+1-eigenspace for the action of

τ . If ν(N−) is odd and λ(m, 1) ̸= 0, then ϵf = (−1)ν(m).

Proof. Since f is a newform of level N , the maps φ : TmJ
N+,N− → Tf/π

j or φ : Z[XN+,N− ]0 → O/πj used
in Construction 5.1.2 satisfy

φ(UNx) = ϵf · (−1)ν(N
−)+1φ(x),

where UN =
∏
ℓ|N Uℓ is the Atkin-Lehner involution; the minus signs appear because the local root number

of f at ℓ|N− is the negative of the Uℓ eigenvalue of f when viewed as automorphic representation of B×N− .
(We note that this Atkin-Lehner equivariance may not be true of the corresponding maps at level N+N−Q,
which are not necessarily reductions of genuine modular parameterizations.)



KOLYVAGIN’S CONJECTURE AND CONGRUENCES 39

Now suppose ν(N−) is even. If τ ∈ Gal(K[m]/K) is a lift of complex conjugation, then, for all y(m) ∈
CMN+,N−(m), we claim that UNτy(m) lies in CMN+,N−(m) as well. Indeed, this is clear from Definition
4.6.3: applying UNτ reverses all the orientation conditions (i)-(iii), but then we can replace the action
of Om,K with its complex conjugate so the conditions are again satisfied. Since c(m, 1) is independent
of the choice of y(m) by Proposition 5.3.3, the calculation in [22, Proposition 5.4] applies to show that
τc(m, 1) = −ϵf · (−1)ν(m)c(m, 1), as desired.

The case when ν(N−) is odd is similar: if y(m) ∈ CMN+,N−(m) is represented by a pair (R,ϕ) satisfying
Definition 4.6.7 for the fixed embedding K ↪→ B, then UNy(m) is represented by the pair (R,ϕop), with

all orientations reversed. But (R,ϕop) satisfies Definition 4.6.7 for the embedding K
τ−→ K ↪→ B, which is

conjugate to K ↪→ B by an element of B×(Q), so UNy(m) lies in the image of CMN+,N−(m) → XN+,N− .

Applying formally the calculations in [22, Proposition 5.4], it follows that λ(m, 1) = ϵf · (−1)ν(m)λ(m, 1),
which gives the claim. □

Definition 5.3.7. An ultraprime l is called Kolyvagin-admissible if

Frobl ∈ Gal(K(Tf )/Q)

is a complex conjugation. A Kolyvagin-admissible set is a finite set of Kolyvagin-admissible ultraprimes, and
the collection of all Kolyvagin-admissible sets is denoted K.

5.3.8. If l is Kolyvagin-admissible, then the local cohomology

H1(Kl, Tf )

is free of rank four over O, and carries a natural action of the complex conjugation τ ∈ Gal(K/Q). It has a
canonical splitting of the finite-singular exact sequence:

H1(Kl, Tf ) = H1
unr(Kl, Tf )⊕ H1

tr(Kl, Tf ),

defined as follows. If the sequence ℓn represents l, then for any j and for F-many n, Frobℓn acts as complex
conjugation on Tf/π

j , and

H1
tr(Kℓn , Tf/π

j) = ker
(
H1(Kℓn , Tf/π

j)→ H1(K[ℓn]λn
, Tf/π

j)
)

is isomorphic to H1(Iℓn , Tf/π
j)Frob

2
ℓn

=1, where λn is a prime of K[ℓn] over ℓn. Then

H1
tr(Kl, Tf ) = lim

←
U
({
H1

tr(Kℓn , Tf/π
j)
}
n∈N

)
⊂ H1(Kl, Tf )

is our transverse subspace. We denote by loc±l and ∂±l the composites H1(K,Tf ) → H1
unr(Kl, Tf )

± and
H1(K,Tf ) → H1

tr(Kl, Tf )
±, respectively, where ± is the Frobenius eigenvalue. The codomain of each is free

of rank one over O.
Let S ⊂ MK be the set of constant ultraprimes v such that v|Np∞. We will consider the Kolyvagin-

transverse Selmer structure (F(m),S ∪m) on Tf , for any m ∈ K:

(51) H1
F(m)(Kv, Tf ) =


ker
(
H1(Kv, Tf )→ H1(Kv,Vf )

H1
f (Kv,Vf )

)
, v = v,

H1
tr(Kl, Tf ), v = l ∈ m,

H1
unr(Kv, Tf ), otherwise.

Here H1
f (Kv, Vf ) is the Bloch-Kato local condition on Vf = Tf ⊗Qp. Note that (F(m),S ∪m) is a self-dual

Selmer structure by the self-duality of H1
f (Kv, Vf ) – the transverse local conditions at m are self-dual by [38,

Proposition 1.3.2]. If {Q, ϵQ} ∈ Nm, then we denote by (F(m,Q),S ∪m ∪ Q) the modified Selmer structure
of (3.2.2).

5.3.9. Let {Q, ϵQ} ∈ N
ν(N−)
m , and fix representatives Qn and mn, which we may assume to be disjoint. Our

patched Kolyvagin class is the element

κ(m,Q) ∈ H1(KS∪m∪Q/K, Tf )

whose image in Tj is represented by the sequence of images of the classes c(mn, Qn), well-defined for F-many
n.
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If {Q, ϵQ} ∈ Nν(N
−)+1, then we similarly set

λ(m,Q) ∈ O ≃ lim
←−
U
({
O/πj

})
to be the element whose image in O/πj is represented by the sequence λ(mn, Qn).

Proposition 5.3.10. For any m ∈ K and {Q, ϵQ} ∈ N
ν(N−)
m ,

(κ(m,Q)) ⊂ SelF(m,Q)(Tf ).

Moreover:

(1) For all l ∈ m,

(loc±l (κ(m/l,Q))) = (∂∓l (κ(m,Q)))

as submodules of O.
(2) For all q ∈ Q,

(∂q(κ(m,Q))) = (λ(m,Q/q))

as submodules of O.
(3) For all q ̸∈ Q, admissible with sign ϵq,

(locq(κ(m,Q))) = (λ(m,Qq))

as submodules of O.
In particular, for any fixed m, (κ(m, ·), λ(m, ·)) forms a bipartite Euler system with sign ν(N−) for the triple
(Tf ,F(m),S ∪m).

Proof. We verify the local conditions for each v ∈ S ∪ m ∪ Q. If v = v for a prime v|N∞, then the local
condition is all of H1(Kv, Tf ), so there is nothing to show. (Indeed, H1(Kv, Tf ) is torsion for any v|N∞.)
If v|p, then by [19] it suffices to show, for all j, that the image cj of Resv κ(m,Q) in H

1(Kv, Tf/π
j) lies in

the image of the canonical map

Ext1f.f.g.s.(O/πj , Tf/πj)→ Ext1GKv
(O/πj , Tf/πj) = H1(Kv, Tf/π

j).

Let E be the extension of O/πj by Tf/πj corresponding to cj , viewed as a group scheme over SpecKv. Now,
for F-many n, the restriction of cj to K[mn]v is the image of a Kummer class in H1(K[mn]v, J

Qn [pM ]) by
a map of Galois representations JQn [pM ]→ Tf/π

j , which extends to a map of finite flat group schemes by
Raynaud’s theorem [50]. (Here we have extended v to a place of K[mn]. Let OKv

and OK[mn]v denote the
corresponding completions of the rings of integers of K and K[mn], respectively.) As a consequence, for
F-many n E extends to a finite flat group scheme E over SpecOK[mn]v . Then by Raynaud’s theorem once
again [50], the action of GKv on E gives a descent datum for E over SpecOKv . Hence E extends to a finite
flat group scheme over SpecOKv , as desired.

If v = l|m, then, adopting as well the notation of (5.3.1), the class c(P (mn), Qn) is zero when restricted to
K[mn]λn

because Dℓn = ℓn(ℓn + 1) on Fλn
; hence Resv κ(m,Q) ∈ H1

tr(Kl, Tf ). The local conditions at q ∈ Q
are satisfied because every factor of Qn splits completely in K[mn]; for the same reason, (ii, iii) follow from
Construction 5.1.2(ii, iii). Moreover (i) is clear from Proposition 5.3.3(iii). □

Remark 5.3.11. The Euler system (κ(1, ·), λ(1, ·)) may be viewed as a specialization of (κ,λ). Indeed, by
the usual Heegner point norm relations [14, Proposition 3.10], if p splits in K, 1(λ(Q)) = (αp − 1)2(λ(1,Q))

and 1(κ(Q)) = (αp − 1)2(κ(1,Q)) when {Q, ϵQ} ∈ Nν(N
−)+1 and {Q, ϵQ} ∈ Nν(N

−), respectively. (Here
1 : Λ→ O is specialization at the trivial character.)

6. Deformation theory

Theorem 4.5.7 allows us to produce weak eigenforms (i.e. ring maps) TN+,N−Q → O/πj for arbitrarily
large j, simply by requiring sufficiently deep congruence conditions on all q|Q. However, in general these
maps do not lift to characteristic zero. To prove the main results, we also need to be able to π-adically
approximate f by genuine level-raised newforms. In this section, we provide this input via the relative
deformation theory of Fakhruddin-Khare-Patrikis [17].

6.1. Review of relative deformation theory.
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6.1.1. We recall the setting of (3.1.1). Let f be a cuspidal newform of weight 2, trivial character, and level
N , and let ℘ ⊂ Of be a prime ideal of the ring of integers of its field of coefficients, with uniformizer π and
residue characteristic p > 2. (For this section, we allow p|N .) As usual, write O for the completion of Of at
℘, and Tf for a O-stable lattice in the ℘-adic Galois representation associated to f , with a perfect Zp-valued
pairing. We assume throughout that the residual representation T f := Tf/π is absolutely irreducible. We
will also consider the hypotheses:

(non-CM) f does not have complex multiplication.

(TW) If p = 3, then T f is absolutely irreducible when restricted to GQ(
√
−3).

Consider the adjoint representation

L = ad0 Tf

and its Zp-dual, L† ≃ L(1), and let L and L
∗ ≃ L†/π be the associated residual representations.

6.1.2. We now recall the construction in [17, Proposition 4.7] of certain local conditions for the Galois

cohomology of L. For all primes ℓ ̸= p, let R̃ℓ denote the framed universal deformation ring of T f |GQℓ
,

of fixed determinant χ. (As usual χ is the p-adic cyclotomic character.) For ℓ = p, let R̃p denote the

framed potentially semistable deformation ring [33] of T f |GQp
, with fixed Hodge-Tate weights 0 and 1, fixed

determinant χ, and fixed Galois type agreeing with that of Tf . For any ℓ, the generic fiber R̃ℓ[1/π] is of

pure dimension 3 + δℓ=p. A choice of framing for Tf defines a formally smooth point yℓ of Spec R̃ℓ[1/π] by

[1, Theorem D, Proposition 1.2.2]; let SpecRℓ ⊂ Spec R̃ℓ be the Zariski closure of the irreducible component

of Spec R̃ℓ[1/π] containing yℓ. The following is proved in [17, Proposition 4.7].

Proposition 6.1.3. There exists a nonempty open set Yℓ ⊂ SpecRℓ(O) containing yℓ, and a collection of
submodules Zr ⊂ Z1(GQℓ

, L/πr) which are free of rank 3 + δℓ=p over O/πr for all r ≥ 0, satisfying the
following properties.

(1) Let Y ℓn be the image of Yℓ in SpecR(O/πn) and denote by πYℓ
n,r : Y

ℓ
n+r → Y ℓn the reduction maps for

n, r ≥ 0. Then given r0 > 0, there exists n0 > 0 such that, for all n ≥ n0 and all 0 ≤ r ≤ r0, the
fibers of πYℓ

n,r are nonempty principal homogeneous spaces for Zr.

(2) The natural O-module maps O/πr → O/πr−1 and O/πr−1 → O/πr induce surjections Zr ↠ Zr−1
and inclusions Zr−1 ↪→ Zr.

We define the local condition

H1
S(Qℓ, L/πr) ⊂ H1(Qℓ, L/πr)

to be the image of Zr for all ℓ; if ℓ ∤ Np, these are just the unramified local conditions. The proposition
implies that, taking inverse limits, we obtain a saturated local condition

H1
S(Qℓ, L) ⊂ H1(Qℓ, L).

(In [17], these local conditions are denoted Lρ,r.)

6.1.4. Now suppose q is a j-admissible prime with sign ϵq, and let ϵq denote the unramified character of GQq

sending Frobq to ϵq. Let SpecR
ord
q,ϵq ⊂ Spec R̃q be the Zariski closure of the unique irreducible component of

Spec R̃q[1/π] containing a Steinberg representation.

Recall from Definition 4.5.2 the uniquely determined subspace Fil+q,ϵq Tj ⊂ Tj free of rank one over O/πj ,
on which the Galois group acts by χϵq. We define

Fil+q,ϵq L/π
j = Hom

(
Tj/Fil

+
q,ϵq Tj ,Fil

+
q,ϵq Tj

)
⊂ L/πj ,

a free O/πj-submodule of rank one, and

H1
ord,ϵq (Qq, L/π

j) = im
(
H1(Qq,Fil+q,ϵq L/π

j)→ H1(Qq, L/πj)
)
.

As always the subscripts ϵq will usually be omitted when they are clear from context.
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Proposition 6.1.5. Suppose q is j-admissible with sign ϵq and ρn ∈ SpecRord
q (O/πn) is a lift of Tj |GQq

(with any framing). Then for all r ≤ j, the fiber of the reduction map

SpecRord
q (O/πn+r)→ SpecRord(O/πn)

over ρn is a principal homogeneous space under

Z1
ord(Qq, L/πr) := ker

(
Z1(Qq, L/πr)→

H1(Qq, L/πr)
H1

ord(Qq, L/πr)

)
,

which is free of rank 3 over O/πr.

Proof. Without loss of generality, we choose a basis for Tj such that Frobq acts via the diagonal matrix(
qϵq 0
0 ϵq

)
.

By the explicit calculations in [58, Lemma 5.4, Proposition 5.6], Rord
q is a power series ring OJX,Y,BK

with universal deformation

ρordq (σ) =

(
1 X
Y 1

)−1(
1 B
0 1

)(
1 X
Y 1

)
ρordq (ϕ) =

(
1 X
Y 1

)−1(
qϵq 0
0 ϵq

)(
1 X
Y 1

)
,

where σ is a generator of tame inertia and ϕ is a lift of arithmetic Frobenius. (We note this calculation
crucially uses q ̸≡ 1 (mod p).) In particular, SpecRord

q is formally smooth, and by the discussion in [17,

§4.1, Lemma 4.5], the fiber is a principal homogeneous space under a submodule Zr of Z1(Qq, L/πr) which
is free of rank three over O/πr and contains all coboundaries. It is also clear that the cocycles of the form

ϕ 7→ 0, σ 7→
(
0 ∗
0 0

)
are contained in Zr, and these generate H1

ord(Qq, L/πr). By counting dimensions, we

find Zr = Z1
ord(Qq, L/πr). □

6.1.6. Let Nj denote the set of weakly admissible pairs {Q, ϵQ} such that each q|Q is weakly j-admissible
with sign ϵQ(q). If {Q, ϵQ} ∈ Nj is a weakly admissible pair, we will consider the (non-patched) Selmer
groups

SelQ(Q, L/πj) := ker

H1(QS∪Q, L/πj)→
∏

v|Np∞

H1(Qv, L/πj)
H1
S(Qv, L/πj)

×
∏
q|Q

H1(Qq, L/πj)
H1

ord,ϵQ(q)(Qq, L/πj)

 ,

where S is the set of places dividing NpQn∞. We also have the dual Selmer group SelQ(Q, L∗[πj ]) defined
using orthogonal complement local conditions.

Finally, define, for any finite set of places Σ containing all v|Np∞:

(52) X1
Σ(L

∗
) = ker

(
H1(QΣ/Q, L∗)→

∏
v∈Σ

H1(Qv, L
∗
)

)
.

Proposition 6.1.7. There exists a finite set of places Σ, containing all v|Np∞, such that

X1
Σ = 0.

Proof. We claim it suffices to show that

(53) H1(Q(L
∗
)/Q, L∗) = 0.

Indeed, suppose Σ is a finite set of places containing all v|Np∞, and

c ∈X1
Σ

is nonzero. Then by (53), the restriction map

H1(GQ, L
∗
)→ H1(GQ(L

∗
), L
∗
)

is injective, so c restricts to a nonzero homomorphism c′ : GQ(L
∗
) → L

∗
. Let ℓ ̸∈ Σ be a prime which is totally

split in Q(L
∗
) but not in the extension cut out by c′ (which is possible by the Chebotarev Density Theorem).
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Then locℓ c ̸= 0, hence the inclusion X1
Σ∪{ℓ} ⊂X1

Σ is strict. Since X1
Σ is always finite dimensional, iterating

this process produces a set Σ such that X1
Σ = 0.

We now show (53). If µp ̸⊂ Q(L), then the center of Gal(Q(L
∗
)/Q) contains elements that act by nontrivial

scalars on L
∗
, and (53) follows from inflation-restriction. So suppose that µp ⊂ Q(L); then the projective

image G = Gal(Q(L)/Q) of the (irreducible) Galois action on T f has a cyclic quotient of order p − 1, and

a classical result of Dickson implies that p = 3 and G is either a dihedral group, or S4. In the former case,

the order of Gal(Q(L
∗
)/Q) is prime to p, so (53) still holds. We are left to consider the case G = S4 and

p = 3. Let G = Gal(Q(T f )/Q) be the image of the Galois action; since we have assumed that det : G→ F×3
factors through G, a complex conjugation c in G projects to a transposition in G. Let H ⊂ G be a copy
of S3 containing the image of c, and H the normalizer of its preimage in G, which is contained in a unique
Borel subgroup B. Let N be the unipotent radical of B ∩G. To prove (53), it suffices to check that

H1(H,L
∗
) = H1(N,L

∗
)H/N = 0.

This holds because im(N − 1) is isomorphic to the subgroup

(
∗ ∗
0 ∗

)
⊂ L

∗
, while c ∈ H acts on N by −1

and on L
∗
/ im(N − 1) by 1. □

Theorem 6.1.8. Let f be as above, satisfying (TW). Suppose given a weakly admissible pair {Q, ϵQ} ∈ Nj
and an integer k ≤ j satisfying the following conditions:

(1) The maps

SelQ(L/π
k)→ SelQ(L), SelQ(L

∗[πk])→ SelQ(L
∗
)

are identically zero.
(2) For each ℓ|Np, let n0(ℓ, k) be the number guaranteed by Proposition 6.1.3 for r0 = k, and let N0(k) =

maxℓ|Np {n0(ℓ, k)}. Then j − k + 1 ≥ N0(k).

Then there is a newform g of weight 2, level NQ, and trivial character, with a prime ℘g of the ring of
integers of its coefficient field Og, such that:

• The completion Og,℘g
is a subring of O.

• There is a congruence of Galois representations (in some basis)

ρf ≡ ρg,℘g
(mod πj−k+1).

• The inertial types of ρg,℘g
|GQℓ

and ρf |GQℓ
agree for all ℓ|N with ℓ ̸= p.

• ρg,℘g
|GQp

has the same Galois type as ρf and is potentially crystalline if and only if ρf is.

• For all q|Q, ρg,℘g
|GQq

is a Steinberg representation twisted by the unramified character Frobq 7→
ϵQ(q).

Proof. We will construct a Galois representation

τ : GQ → GL2(O)

satisfying the following properties:

• τ ≡ ρf (mod πj−k+1) (for some choice of basis of Tf ).
• det τ = χ.
• For all ℓ ∤ Q, τ |GQℓ

defines a point of SpecRℓ.

• For all q|Q, τ |GQq
defines a point of SpecRord

q,ϵQ(q).

Let us first show that the existence of the representations τ is sufficient for the theorem. Since τ is odd
and potentially semistable with distinct Hodge-Tate weights 0 and 1, we may apply the modularity lifting
theorem of [45, Theorem 1.0.4] (see [63] for the case p = 3, using (TW)) to conclude that τ arises from
a modular form g, which is automatically of weight two and trivial character. Now by modularity and [1,

Theorem D, Proposition 1.2.2], τ |GQℓ
defines not only a point of SpecRℓ but a smooth point of Spec R̃ℓ for

all ℓ. Since the potentially crystalline locus of Spec R̃p is a union of irreducible components (cf. [34]), τ
is potentially crystalline if and only if ρf is. By construction, τ |GQp

has the same Galois type as ρf |GQp
.

Hence g and f have the same conductor at p [56]. For ℓ ̸= p, the inertial type is constant on components

of Spec R̃ℓ[1/π], except possibly at the nonsmooth points (cf. [58]); it follows that τ has the same inertial
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type as ρf at all ℓ ∤ Q, and is Steinberg for all q|Q. Since for all ℓ, the ℓ-part of the conductor of g is the
conductor of the Weil-Deligne representation associated to τ |GQℓ

[8], we see that g has level NQ.
We now construct τ , as the inverse limit of representations

τm : GQ → GL2(O/πm),

compatible under reduction maps, with the following key property: for all m, τm|GQℓ
lies in the subset Y ℓm of

Proposition 6.1.3 if ℓ ∤ Q, and τm|GQq
defines a point of SpecRord

q (O/πm) if q|Q. The representations τm are
constructed inductively, but when constructing τm+1, we will allow ourselves to modify the representations
τm−k+2, . . . , τm. (This is the “relative” aspect of the construction.) Before we begin the construction, let
us fix once and for all a set Σ of places containing all v|NpQ∞ such that X1

Σ = 0 (possible by Proposition
6.1.7). Our base case is τj = ρf (mod πj), with any fixed framing for ρf . We use the same global framing
for the local constructions in (6.1.2). Suppose we have defined τm for some m ≥ j. For each ℓ ∈ Σ, we
may fix a local lift ρm+1,ℓ of τm|GQℓ

with the following property: if ℓ ∤ Q, then ρm+1,ℓ lies in Y ℓm+1, and if

ℓ = q|Q, then ρm+1,q lies in SpecRord
q (O/πm+1). This is possible by Propositions 6.1.3 and 6.1.5, and by

the key property of τm. In particular, the obstruction to lifting ρm modulo πm+1 vanishes locally. Then
since X1

Σ = 0, there exists by [48, p. 551] a representation ρm+1 : GQ → GL2(O/πm+1) which is unramified
outside Σ. Comparing ρm+1,ℓ to ρm+1 as lifts of τm−k+1|GQℓ

, they differ by local cocycles

(cv) ∈
⊕
v∈Σ

(Qv, L/πk).

Moreover, since ρm+1 lifts τm, Propositions 6.1.3 and 6.1.5 imply that (cv) has trivial image in⊕
v∈Σ

H1(Qv, L/πk−1)
H1
S(Qv, L/πk−1)

.

By the argument in [17, p. 3578], it follows from the hypothesis on the vanishing of the Selmer group that
there is a global cocycle c ∈ H1(Q, L/πk) whose localizations at v ∈ Σ agree with (cv). Adjusting ρm+1

by the cocycle c, we obtain a representation τm+1 with the desired key property. (Note that we are using
m+1−k ≥ j+1−k ≥ N0 to apply Proposition 6.1.3.) We now redefine τm−k+2, . . . , τm to be the reductions
of τm+1; since τm+1 is a lift of τm−k+1 by construction, the representations τ1, . . . , τm−k+1 do not need to
be redefined. This completes the inductive step of the construction, hence the proof of the theorem. □

6.2. Patching adjoint Selmer groups.

6.2.1. Patched Selmer groups provide a convenient framework to produce weekly admissible pairs {Q, ϵQ}
satisfying the conditions of Theorem 6.1.8.

Suppose that q is an admissible ultraprime with sign ϵq. Using the exact sequence of O[Gq]-modules in
Definition 3.1.2,

0→ Fil+q Tf → Tf → Tf/Fil
+
q Tf → 0,

we define
Fil+q L = Hom(Tf/Fil

+
q Tf ,Fil

+
q Tf ) ⊂ L

and
H1

ord(Qq, L) = im
(
H1(Qq,Fil

+
q L)→ H1(Qq, L)

)
.

It is clear that, if q is represented by sequence qn, then

H1
ord(Qq, L) = lim←−

j

U
(
H1

ord,ϵq(Qqn , L/π
j)
)
,

where H1
ord,ϵq

(Qqn , L/πj) is well-defined for all n such that qn is j-admissible with sign ϵq. We also define

H1
ord(Qq, L

†) as the orthogonal complement of H1
ord(Qq, L) under the local Tate pairing. Note that, since

H1(Qq, L) is torsion-free, H
1
ord(Qq, L

†) and H1
ord(Qq, L) are exact annihilators. We will require the restriction

maps

locq : H
1(Q, L)→ H1(Qq, L)

H1
ord(Qq, L) ∩ H1

unr(Qq, L)
,

loc†q : H
1(Q, L†)→ H1(Qq, L

†)

H1
ord(Qq, L†) ∩ H1

unr(Qq, L†)
.

(54)



KOLYVAGIN’S CONJECTURE AND CONGRUENCES 45

Analogously, if q ∈MQ is j-admissible with sign ϵq, then we may define the local conditions H1
ord(Qq, L/πj),

H1
ord(Qq, L†/πj), and the localization maps locq, loc

†
q.

6.2.2. Let S ⊂ MQ be the set of constant ultraprimes v for v|Np∞. For any {PQR, ϵPQR} ∈ N, we define the
Selmer structure (SRP (Q),S ∪ PQR) for L:

(55) H1
SP
R (Q)(Qv, L) =


H1
S(Qv, L), v ̸∈ PQR

H1
ord(Qq, L), v = q ∈ Q,

H1
ord(Qq, L) + H1

unr(Qq, L), v = q ∈ P,

H1
ord(Qq, L) ∩ H1

unr(Qq, L), v = q ∈ R.

The corresponding dual Selmer structure for L† will be written SR,†P (Q). When P, Q, or R is empty, it is
omitted from the notation.

Proposition 6.2.3. For all {Q, ϵQ} ∈ N,

dQ := rkO SelS(Q)(L) = rkO SelS†(Q)(L
†).

Proof. It follows from Proposition 6.1.3 that

rkOH
1
S(Qℓ, L) = rkOH

0(Qℓ, L) + δℓ=p.

Since
rkO H1

ord(Qq, L) = rkO H0(Qq, L) = 1

for all q ∈ Q, the claim results from Proposition 2.7.5. □

In the language of patching, we can reformulate Theorem 6.1.8 as follows.

Theorem 6.2.4. Assume f satisfies (TW), and suppose given a pair {Q, ϵQ} ∈ N such that dQ = 0. Fix a
sequence {Qn, ϵQn

} of weakly admissible pairs representing {Q, ϵQ} and an integer j ≥ 0. Then there is a
sequence (defined for F-many n) of newforms gn of weight 2, level NQn, and trivial character, with a prime
℘gn of the ring of integers of its coefficient field Ogn , such that:

• The completion Ogn,℘gn
is a subring of O.

• The inertial types of ρgn,℘gn
|GQℓ

and ρf |GQℓ
agree for all ℓ|N with ℓ ̸= p.

• ρgn,℘gn
|GQp

has the same Galois type as ρf and is potentially crystalline if and only if ρf is.

• For all qn|Qn, ρgn,℘gn
|GQqn

is a Steinberg representation twisted by the unramified character Frobqn 7→
ϵQn(qn).

• For any fixed j, there is a congruence of Galois representations (in some basis)

ρf ≡ ρgn,℘gn
(mod πj)

for F-many n.

In particular, the maps
TQn

= TN+,N−Qn
→ O/πj

of Remark 4.5.8 admit O-valued lifts for F-many n.

Proof. Since dQ = 0, Proposition 2.5.5 implies that there exists some k ≥ 0 such that the natural maps

(56) SelS(Q)(L/π
k)→ SelS(Q)(L), SelS(Q)(L

†/πk)→ SelS(Q)(L
∗
)

are identically zero. Thus for F-many n, the maps

SelQn
(L/πk)→ SelQn

(L)

are identically zero. Also, since Proposition 6.1.3 implies S is saturated, Proposition 2.7.4 shows that
SelS(Q)(L

†/πk) = SelS(Q)(L
∗[πk]). Hence for F-many n, the maps

SelQn
(L∗[πk])→ SelQn

(L
∗
)

are also identically zero. Since k is fixed independently of n, the theorem is now immediate from Theorem
6.1.8.

□

6.3. Annihilating two Selmer groups.
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6.3.1. For our application of Theorem 6.2.4, we will want to choose {Q, ϵQ} ∈ N such that dQ = 0, and
rQ = rkO SelF(Q)(Tf ) = 0, where F is a self-dual Selmer structure for Tf . In this subsection, we show that
such a choice is possible (Proposition 6.3.5 below). The proof is inspired by [9], and begins with a series of
lemmas. For the entirety of this subsection, we assume (non-CM).

Lemma 6.3.2. There exists an integer j that, for all n ≥ 0,

πjH1(K(Tf )/Q, L/πn) = πjH1(K(Tf )/Q, L†/πn) = 0.

Proof. Let E = Q(µp∞) ⊂ K(Tf ), and note that L and L† are isomorphic GE-modules. Since f is non-CM,
(L⊗Qp)GE = 0, and so (L/πn)GE is uniformly bounded in n.

The pro-p-Sylow subgroup of Gal(K(Tf )/E) is a compact p-adic Lie group with semisimple Lie algebra;
hence, by [17, Lemma B.1], the cohomology H1(K(Tf )/E,L/π

n) is uniformly bounded in n.
Now, by inflation-restriction, we have exact sequences

0→ H1(E/Q, (L/πn)GE )→ H1(K(Tf )/Q, L/πn)→ H1(K(Tf )/E,L/π
n),

0→ H1(E/Q, (L†/πn)GE )→ H1(K(Tf )/Q, L†/πn)→ H1(K(Tf )/E,L
†/πn),

(57)

where the outer terms are isomorphic and uniformly bounded in n; the lemma follows. □

For the next lemma, we abbreviate Lm := L/πm, L†m := L†/πm, and Tm := Tf/π
m. Moreover, if y ∈ M

for any torsion O-module M , let ord(y) be the smallest integer t ≥ 0 such that πty = 0.

Lemma 6.3.3. There is a constant C, depending only on Tf , with the following property. Given cocycles
ϕ ∈ H1(Q, Lm), ψ ∈ H1(Q, L†m), and c1, c2 ∈ H1(K,Tm)δ for some δ = ±1, there exist infinitely many
primes q ∤ Np such that all the cocycles are unramified at q and:

• The Frobenius of q in Gal(K(Tm)/Q) is a complex conjugation; in particular, q is m-admissible with
sign δ.

• ord locq ϕ ≥ ordϕ− C.
• ord loc†q ψ ≥ ordψ − C, or loc†q ψ = 0, as desired.
• ord locq ci ≥ ord ci − C for i = 1, 2.

Proof. Let us first fix a complex conjugation c ∈ GQ and choose a basis for Tm in which c acts as

(
−δ 0
0 δ

)
.

The restriction of the cocycles ϕ, ψ, ci to GK(Tm) may be considered as a homomorphism

h : GK(Tm) → Lm ⊕ L†m ⊕ (Tm)2

compatible with the action of GK ; let H be the image of this homomorphism. Since there exists an element
of gz ∈ GK that acts by a scalar z ̸= ±1 on Tf , we have:

H ⊃(gz − z)(gz − z2)H + (gz − z)(gz − 1)H + (gz − z2)(gz − 1)H

⊃ (z − 1)(z2 − 1)(z2 − z)
(
πLm

(H)⊕ πL†
m
(H)⊕ πT 2

m
(H),

)
where π• are the projection operators. Now, since L and L† are absolutely irreducible, the natural maps
Qp[GK ] → End(L ⊗ Qp) and Qp[GK ] → End(L† ⊗ Qp) are surjective. Combining these observations with
Lemma 6.3.2, we see that, for some constant C depending only on Tf , there exists γ ∈ GK(Tf ) satisfying:

• The

(
1 0
0 −1

)
component of ϕ(γ) has order at least ordϕ− C.

• The

(
0 0
1 0

)
component of ψ(γψ) has order at least ordψ − C, or is 0, as desired.

• The components of ci(γ) and c2(γ) in the δ eigenspace have order at least ord ci−C, where i = 1, 2.

For the final item, we are using the elementary fact that a group cannot be the union of two nontrivial
subgroups, as well as the irreducibility of Tf .

Since ϕ(c2) = cϕ(c)+ϕ(c) = 0, ϕ(c) lies in the −1 eigenspace for complex conjugation, whereas

(
1 0
0 −1

)
has eigenvalue 1; hence the

(
1 0
0 −1

)
component of ϕ(cγ) has order at least ordϕ− C. Similarly, the

(
0 0
1 0

)
component of ψ(cγψ) has order at least ordψ − C, or is 0, as desired.
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Any prime with Frobenius cγ in kerh satisfies the conclusion of the lemma; cf. the proof of Lemma 3.3.7
for the assertions about ci. □

Corollary 6.3.4. Suppose given a finite set of ultraprimes T and non-torsion cocycles:

• ϕ ∈ H1(QT/Q, L);
• ψ ∈ H1(QT/Q, L†);
• c1, c2 ∈ H1(KT/K, Tf )

δ for δ = ±1.
Then there exist infinitely many admissible ultraprimes q ̸∈ T with sign δ such that:

• locq ϕ ̸= 0.

• Either loc†q ψ ̸= 0 or loc†q ψ = 0, as desired.
• locq ci ̸= 0.

Proof. Choose a sequence Tn representing T and sequences ϕn, ψn, c
1
n, c

2
n representing the respective cocycles

in H1(QTn/Q, L/πn), etc. For each n, apply Lemma 6.3.3 with m = n and the appropriate desideratum for
ψn; by definition, any resulting admissible ultraprime q, represented by a sequence qn, satisfies the desired
conclusion. □

Proposition 6.3.5. Assume f satisfies (non-CM), and suppose given a self-dual Selmer structure (F ,T)
for Tf . Then there exists {Q, ϵQ} ∈ NT such that

rQ = dQ = 0.

(Recall that rQ = rkO SelF(Q)(Tf ).)

Proof. Without loss of generality, by Corollary 3.3.9 we may assume that r1 = 0; for if not, choose any
{Q, ϵQ} ∈ NT with rQ = 0, and then relabel F(Q) as F .

We will show that, if d1 > 0, we may find {Q, ϵQ} such that rQ = 0 and dQ < d1; this clearly suffices by
induction. By Proposition 6.2.3, there exist non-torsion elements ϕ ∈ SelS(L), ψ ∈ SelS†(L†). We choose

any admissible q ̸∈ T with sign ϵq such that locq ϕ ̸= 0, loc†q ψ ̸= 0. Then by Proposition 2.7.5,

rkO SelS†,q(L†) + rkO SelSq(L) = 2 + rkO SelS†
q
(L†) + rkO SelSq(L)

(in the notation of (55)). The images of the localization maps

locq :
SelSq(L)

SelSq(L)
↪→ H1

ord(Qq, L)

H1
ord∩ unr(Qq, L)

⊕ H1
unr(Qq, L)

H1
ord∩ unr(Qq, L)

and

loc†q :
SelS†,q(L

†)

SelS†
q
(L†)

↪→ H1
ord(Qq, L

†)

H1
ord∩ unr(Qq, L†)

⊕ H1
unr(Qq, L

†)

H1
ord∩ unr(Qq, L†)

have total rank two and annihilate each other under the induced Tate pairing by Proposition 2.7.2. Hence
the image in the ordinary part is zero for both maps, and dq < d1. However, by adding q, we have made
rq = 1. Let c ∈ SelF(q)(Tf ) be a generator; since ∂qc ̸= 0 by Proposition 3.3.4, c has nonzero component in
the ϵq eigenspace for τ .

Now consider the set P of admissible ultraprimes s with sign ϵs = ϵq such that locs c ̸= 0. If, for any s ∈ P,
dqs ≤ dq, then we may take Q = qs and complete our induction step. For example, this will occur provided
dq > 0, by the argument above; so without loss of generality, dq = 0 and dqs = 1 for all s ∈ P. By definition,
we therefore have non-torsion elements ϕ(s) ∈ SelS(qs)(L) and ψ(s) ∈ SelS†(qs)(L

†) such that locs ϕ(s) and
locs ψ(s) do not lie in the unramified subspace of the ordinary cohomology.

Choose any s1 ∈ P, and then choose s2 ∈ P such that locs2 ϕ(s1) ̸= 0 but locs2 ψ(s1) = 0. By another
application of Proposition 3.3.4, rqs1s2 = 1, and a generator c′ of SelF(qs1s2)(Tf ) again has nonzero component
in the ϵq eigenspace. We now choose s3 ∈ P such that locs3 c

′ ̸= 0, locs3 ϕ(s2) ̸= 0, and locs3 ψ(s1) ̸= 0. Clearly
rqs1s2s3 = 0. Note that rkO SelSs1s2s3 (q) = 3; up to torsion, ϕ(si) are generators. So to show that dqs1s2s3 = dq,
it suffices to show that the images of ϕ(si) form a rank-three subspace of

S :=

3⊕
i=1

H1
unr+ ord(Qsi , L)

H1
ord(Qsi , L)
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under the localization

loc :
SelSs1s2s3 (q)(L)

SelSs1s2s3 (q)
(L)

↪→ S.

By pairing ϕ(si) and ψ(sj) for i ̸= j and applying Proposition 2.7.2 once more, we see that locsi ϕ(sj) ̸= 0 if
and only if locsj ψ(si) ̸= 0. Hence, the images of ϕ(si) in S are of the form:

loc(ϕ(s1)) = (0, ∗, ·)
loc(ψ(s2)) = (0, 0, ∗),
loc(ψ(s3)) = (∗, 0, 0),

where ∗ is nonzero and · may or may not be zero. This completes the inductive step since dqs1s2s3 = dq <
d1. □

7. Proof of main results: split ordinary case

For this section, let f be a non-CM cuspidal eigenform of weight two and trivial character, with ring of
integers Of of its coefficient field. Suppose f is new of level N , and let ℘ ⊂ Of be an ordinary prime lying
over p ∤ 2N. Denote by O the completion.

7.1. A result of Skinner-Urban. The following result is a corollary to the proof of the main conjecture
[60].

Theorem 7.1.1 ((Skinner-Urban)). Let K be an imaginary quadratic field of discriminant prime to Np in
which p splits. Assume that ℘ is ordinary for f and that:

• the mod ℘ representation T f is absolutely irreducible;
• N = N1N2, where every factor of N1 is split in K and N2 is the squarefree product of an odd number

primes inert in K.

If SelF∗
Λ
(Wf ) is Λ-cotorsion, then

charΛ SelF∗
Λ
(Wf )

∨ ⊂ (λ(1))2

as ideals of Λ, where λ(1) ∈ Λ is the element constructed in (5.2).

Here the Selmer structure F∗Λ for Wf is the dual of the Selmer structure in (46).

Proof. We must explain some details and notations of [60], in which it is assumed that T f is ramified at
every ℓ|N2. As in [60], we let OL be the ring of integers of a suitable finite extension of Qp and consider f
as a specialization of a suitable Hida family f . This family is parametrized by I, which is a normal domain
and a finite integral extension of OLJW K. We write ΓK = Γ+

K × Γ−K for the Galois group of the maximal
Zp-extension of K and its decomposition into cyclotomic/anticyclotomic components. For a sufficiently large
finite set of primes Σ containing all those dividing N∞, there is [60, Theorem 12.3.1] a three-variable p-adic
L-function LΣ

f ,K ∈ IJΓKK. (Here the superscript Σ refers to removing Euler factors at primes in Σ, or relaxing

local conditions for a Selmer group.) Letting γ− be a topological generator of Γ−K , we may expand:

(58) LΣ
f ,K = a0 + a1(γ

− − 1) + a2(γ
− − 1)2 + . . .

where ai ∈ IJΓ+
KK. Let ChΣK∞

(f) ⊂ IJΓKK be the characteristic ideal of the three-variable Selmer group as
considered in [60]. Skinner and Urban deduce

(59) ChΣK∞
(f) ⊂ (LΣ

f ,K)

by proving (see [60, Theorem 6.5.4, Proposition 12.3.6, Proposition 13.4.1]):

(1) If P ⊂ IJΓKK is a height one prime which is not of the form P+IJΓKK for some P+ ⊂ IJΓ+
KK, then

ordP Ch
Σ
K∞

(f) ≥ ordP (LΣ
f ,K).

(2) If T f is ramified at every ℓ|N2, then ordP (LΣ
f ,K) = 0 for all height one primes P of the form P+IJΓKK

for some P+ ⊂ IJΓ+
KK.
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Although (ii) does not apply, we claim that we may replace (59) by the weaker inclusion:

(60) ChΣK∞
(f) · (ai) ⊃ (LΣ

f ,K)

where ai is any of the terms in (58). Indeed, because both sides of (60) are divisorial, it suffices to check that
ordP (LΣ

f ,K) ≤ ordP (ai) for all P as in (ii). But this is clear: if (LΣ
f ,K) is zero modulo P k for such a prime P ,

then ai is as well. By [64] ai may be chosen so that its image under the specialization map 1 : IJΓ+
KK→ OL

is nonzero. Fix such a choice α̃.
The divisibility (60) also (trivially) implies a divisibility for the Fitting ideal of the 3-variable Selmer

group:

(61) (α̃)FittΣK∞
(g) ⊂ (LΣ

g,K).

Specializing (61) to the anticyclotomic variable, we obtain

charΛ SelΣ(K∞, f) ⊂ LΣ
p (K∞, f) in Λ⊗Qp,

where LΣ
p (K∞, f) is a certain Σ-primitive anticyclotomic L-function, and SelΣ(K∞, f) is the Σ-primitive

Selmer group. Replacing [60, Proposition 3.3.19] by [47, Proposition A.2] (and using the hypothesis that the
Selmer group is Λ-cotorsion), we may convert this to an imprimitive divisibility

(62) charΛ SelF∗
Λ
(Wf )

∨ ⊂ (λ(1))2 in Λ⊗Qp.

NB: The anticyclotomic p-adic L-function appearing in [60, §12.3.5], which emerges naturally from the
specialization of the three-variable p-adic L-function, is normalized using Hida’s canonical period, whereas
λ(1)2 is the L-function constructed in [2], normalized using Gross’s period. However, these L-functions
differ only by a power of p. Similarly, our SelF∗

Λ
(Wf ) differs from the Sel(K∞, f) used in [60] by the local

conditions used at ℓ|N2. Since the local cohomology groups H1(Kℓ,Wf ) for ℓ|N2 have characteristic ideal
a power of ℘Λ, this choice of local condition does not change the characteristic ideal in Λ⊗Qp. See §8 and
[47] for a detailed discussion.

To upgrade (62) to a divisibility in Λ, we simply note that the µ-invariant of λ(1) is 0 by [64]. □

7.2. The Heegner point main conjecture. In this subsection, we prove the following main theorem.

Theorem 7.2.1. Let f be a non-CM cuspidal eigenform of weight two and trivial character, new of level
N , with ring of integers Of of its coefficient field. Let ℘ ⊂ Of be a prime of ordinary residue characteristic
p, and let K be an imaginary quadratic field. Suppose:

• N = N+N−, where every factor of N+ is split in K, and N− is a squarefree product of primes inert
in K.

• p does not divide 2DKN , and p splits in K.
• The modulo ℘ representation T f associated to f is absolutely irreducible; if p = 3, assume that T f

is not induced from a character of GQ(
√
−3).

Then, for all {Q, ϵQ} ∈ Nν(N
−) such that (κ(Q, ϵQ)) ̸= 0, we have

rkΛ SelFΛ(Q)(Tf ) = crkΛ SelF∗
Λ(Q)(Wf ) = 1

and

charΛ

((
SelF∗

Λ(Q)(Wf )
∨)

tors

)
= charΛ

(
SelFΛ(Q)(Tf )

(κ(Q))

)2

in Λ⊗Qp.

For all {Q, ϵQ} ∈ Nν(N
−)+1 such that λ(Q) ̸= 0,

rkΛ SelFΛ(Q)(Tf ) = crkΛ SelF∗
Λ(Q)(Wf ) = 0

and
charΛ

(
SelF∗

Λ(Q)(Wf )
∨) = (λ(Q))2 in Λ⊗Qp.

If moreover the image of the GQ action on T f contains a nontrivial scalar, then the equalities hold in Λ.

Proof. Given f , apply Proposition 6.3.5 to the standard Selmer structure (F ,S) on Tf (with local conditions
the image of the Kummer map at all v such that v|Np). Let {Qn, ϵQn} be a sequence of weakly admissible
pairs representing the resulting pair {Q, ϵQ} ∈ N. Let gn be the resulting sequence of newforms of level NQn
obtained from Theorem 6.2.4; gn may only be defined for F-many n.
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Step 1. {Q, ϵQ} ∈ Nν(N
−)+1.

Proof. The prime (T ), corresponding to the trivial character, does not lie in the exceptional set Σ for the
interpolated self-dual Selmer structure associated to FΛ (see the proofs of [38, Lemma 5.3.13] and [27,
Lemma 2.2.7]). Hence SelFΛ(Q)(Tf ) = 0, which by Theorem 3.4.6 and the nontriviality of (κ,λ) implies the
claim. □

Step 2. For any fixed j,
(λ(Q)) ≡ (λgn(1)) (mod πj , T j)

for F-many n.

Proof. Recall notations of (4.5) and (5.2). By definition, the image of λ(Q) modulo (πj , T j) is a map
Gal(Kj/K)→ O obtained, for F-many n, by evaluating a surjective map Fn : MQn

⊗TQn O(f)→ O(f)/πj
of TQn -modules at certain CM points, where O(f) is O with TQn -action by f . Recall that the map is
chosen to factor through multiplicatation by O(f)/πj+C for the constant C of Lemma 4.5.5, and that
πC(MQn

⊗TQnO(f)) is principal. When gn has a sufficiently deep congruence to f , O(gn)/πj+C = O(f)/πj+C
as TQn -modules, and the composite Gn : MQn → O(gn) → O(gn)/πj induces a unit multiple of Fn, where
MQn → O(gn) is the quaternionic modular form associated to gn. But Gn is the very map whose evaluation
at CM points is used to define λgn(1), and the claim follows. □

Step 3. For any fixed j,

FittΛ SelF∗
Λ(Q)(Wf )

∨ ≡ FittΛ SelF∗
gn,Λ

(Wgn)
∨ (mod πj , T j)

for F-many n.

Proof. Since fitting ideals are stable under base change and T f has no GK-fixed points, it suffices to show
that

(63) FittΛ
(
SelF∗

Λ(Q)(Wf [π
j , T j ])

)
= FittΛ

(
SelF∗

gn,Λ
(Wgn [π

j , T j ])
)

for F-many n. Note that, for F-many n, Wf [π
j , T j ] = Wgn [π

j , T j ] as finite Galois modules, and

SelF∗
Λ(Q)(Wf [π

j , T j ])

is isomorphic to a submodule of H1(KΣ∪Qn/K,Wf [π
j , T j ]) defined by certain local conditions. We will

show that these local conditions coincide with the ones defining SelFgn,Λ
(Wgn [π

j , T j ]). At a j-admissible

prime qn|Qn, this is clear. At v|N , since H1
FΛ

(Kv,Tf ) = H1(Kv,Tf ), we have H1
F∗

Λ
(Kv,Wf ) = 0, and

similarly for gn. So the induced local conditions are simply the kernels

ker
(
H1(Kv,Wf [π

j , T j ])→ H1(Kv,Wf )
)
,

ker
(
H1(Kv,Wgn [π

j , T j ])→ H1(Kv,Wgn)
)
.

(64)

If v|N is a prime of multiplicative reduction for f , then Wf = Wgn as GKv
modules for F-many n, so the

local conditions clearly coincide. For other places of bad reduction, the inertia co-invariants Tf,Iv and Tgn,Iv
are finite and isomorphic for F-many n. If Tf,Iv is annihilated by πM−j for some M ≥ 0, then the local
conditions are also given by the kernels of

ker
(
H1(Kv,Wf [π

j , T j ])→ H1(Kv,Wf [π
M ])
)
,

ker
(
H1(Kv,Wgn [π

j , T j ])→ H1(Kv,Wgn [π
M ])
)
,

(65)

which agree for F-many n.
For primes v|p, it suffices to compare the kernels(

H1(Kv, grWf [π
j , T j ])→ H1(Kv, grWf )

)
,

ker
(
H1(Kv, grWgn [π

j , T j ])→ H1(Kv, grWgn)
)
.

(66)

A similar argument as above applies provided that

H0(Kv, grWf ) =
∏
w|v

H0(K∞,w, grWf )

is finite, which it is because ap cannot be a root of unity. □
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Step 4. Conclusion of the proof.

Step 1 shows that N−Qn is the squarefree product of an odd number of primes inert in K for F-many
n, and by Theorem 3.4.6 applied to the Euler system (κgn ,λgn) for Tgn , SelF∗

gn,Λ
(Wgn) is then Λ-cotorsion.

By Theorem 7.1.1, for such n we have:

(67) FittΛ SelF∗
gn,Λ

(Wgn)
∨ ⊂ (λgn(1))

2 ⊂ Λ.

On the other hand, by Theorem 3.4.6, the theorem would follow from:

(68) FittΛ SelF∗
Λ(Q)(Wf )

∨ ⊂ (λ(Q))2 ⊂ Λ.

For the passage between characteristic ideal and fitting ideals, recall that the characteristic ideal of any
Λ-module is the smallest divisorial ideal containing the Fitting ideal; cf. [60, Corollary 3.2.9]. Steps 2 and 3
allow us to pass from (67) to (68). □

Corollary 7.2.2. Under the hypotheses of Theorem 7.2.1, if additionally ν(N−) is even, then the Heegner
point main conjecture holds for f in Λ⊗Qp; that is, there is a pseudo-isomorphism of Λ-modules:

SelF∗
Λ
(Wf )

∨ ≈ Λ⊕M ⊕M

for some torsion Λ-module M , and

charΛ

(
SelFΛ(K,Tf )

Λκ(1)

)
= charΛ(M)

as ideals of Λ⊗Qp. If additionally the image of the Galois action on T f contains a nontrivial scalar, then
the equality is true in Λ.

Corollary 7.2.3. Under the hypotheses of Theorem 7.2.1, if additionally ν(N−) is odd, then the anticyclo-
tomic main conjecture holds for f in Λ⊗Qp; that is, there is a pseudo-isomorphism of Λ-modules:

SelF∗
Λ
(Wf )

∨ ≈M ⊕M

for some torsion Λ-module M , and

(λ(1)) = charΛ(M)

as ideals of Λ⊗Qp. If additionally the image of the Galois action on T f contains a nontrivial scalar, then
the equality is true in Λ.

Corollary 7.2.4. Under the hypotheses of Theorem 7.2.1, the bipartite Euler system

(κ(1, ·), λ(1, ·))

of (5.3.9) is nontrivial.

Proof. Let {Q, ϵQ} ∈ N be such that SelF(Q)(Tf ) = 0, where again F is the standard Selmer structure
for Tf (cf. Corollary 3.3.9). By the same reasoning as in Step 1 of the proof of Theorem 7.2.1, we have
charΛ(SelF∗

Λ(Q)(Wf ) ̸⊂ (T ), so (λ(Q)) ̸⊂ (T ); this implies λ(1,Q) ̸= 0 by Remark 5.3.11. □

Corollary 7.2.4 is generalized by Theorem 8.1.1 below.

7.3. Kolyvagin’s conjecture. Let f , ℘, K, and N+N− be as in (3.1.1) and (4.5.1).

7.3.1. For any m ∈ K and any {Q, ϵQ} ∈ Nm, define the m-transverse Selmer ranks

(69) r±m(Q) = rkO SelF(m,Q)(Tf )
±,

where ± refers to the τ eigenvalue; note that this is well-defined because the local conditions defining F(m)
are all τ -stable. When Q = 1, we simply write r±m . When m = 1, the r±1 are the classical Selmer ranks of f .

Proposition 7.3.2. For all ml ∈ K and {Q, ϵQ} ∈ Nml, and for each δ ∈ {±}, either:
• rδml(Q) = rδm(Q)− 1, locδl (SelF(m,Q)(Tf ))

δ ̸= 0, and ∂δl (SelF(ml,Q)(Tf ))
δ = 0.

• rδml(Q) = rδm(Q) + 1, locδl (SelF(m,Q)(Tf ))
δ = 0, and ∂δl (SelF(ml,Q)(Tf ))

δ ̸= 0.
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Proof. If F l(m,Q) = F(ml,Q) + F(m,Q) and Fl(m,Q) = F(ml,Q) ∩ F(m,Q), then we have a τ -equivariant
exact sequence

0→ SelFl(m,Q)(Tf )→ SelF l(m,Q)(Tf )→ H1(Kl, Tf ),

where the image of the final arrow has rank two and is self-annihilating under the local Tate pairing by
Propositions 2.7.2 and 2.7.5. Since the Tate pairing of two classes with opposite τ eigenvalues is necessarily
zero, the proposition follows as in the proof of Proposition 3.3.4. □

Lemma 7.3.3. Suppose given elements c± ∈ H1(K,Tf )
±, where ± is the τ eigenvalue. Then there exists a

Kolyvagin-admissible ultraprime l such that

c± ̸= 0 =⇒ loc±l c
± ̸= 0.

If (sclr) holds for Tf , then the same is true for elements c± ∈ H1(K,Tf/π
j).

Proof. The proof of Theorem 3.3.5 applies almost verbatim, except that in the proof of Lemma 3.3.7 we will
have two homomorphisms

ϕ± ∈ HomGK
(GL, T f )

±,

and we must choose g ∈ GL so that ϕϵ(g) has nonzero component in the ϵ eigenspace of τ for both signs ϵ
(unless ϕϵ is itself 0); for each ϵ, this condition is satisfied outside a proper subgroup of GL, so indeed there
exists g ∈ GL such that both conditions are satisfied. With this modification, the rest of the proof applies
unchanged. □

Lemma 7.3.4. Suppose that the bipartite Euler system (κ(1, ·), λ(1, ·)) of (5.3.9) is nontrivial. Then, for
all m ∈ K, (κ(m, ·), λ(m, ·)) is nontrivial.

In particular, for all m ∈ K and {Q, ϵQ} ∈ Nm:

rkO SelF(m,Q)(Tf ) ≡ ν(N−) + 1 (mod 2);

and

rkO SelF(m,Q)(Tf ) ≤ 1 ⇐⇒

{
κ(m,Q) ̸= 0, ν(N−) + |Q| even
λ(m,Q) ̸= 0, ν(N−) + |Q| odd.

Proof. Recall that, for fixed m, the pair (κ(m, ·), λ(m, ·)) forms a bipartite Euler system with sign ν(N−) for
the self-dual Selmer structure (F(m),S ∪m) on Tf . We will prove that, for any ml ∈ K, if (κ(m, ·), λ(m, ·))
is nontrivial then so is (κ(ml, ·), λ(ml, ·)).

Choose {Q, ϵQ} ∈ N
ν(N−)+1
m such that SelF(m,Q)(Tf ) = 0 and l ̸∈ Q; this is possible by Corollary 3.3.9. By

Proposition 7.3.2, we may choose a nonzero

d ∈ SelF(ml,Q)(Tf ).

Applying Theorem 3.3.5 to d, let q be admissible with sign ϵq such that q ̸∈ Qml and locq d ̸= 0. By
Proposition 3.3.4 for the Selmer structures F(m,Qq) and F(m,Q),

(70) rkO SelF(m,Qq)(Tf ) = 1.

Hence, by hypothesis, κ(m,Qq) generates SelF(m,Qq)(Tf ) up to finite index, and in particular ∂qκ(m,Qq) ̸= 0.
Now, taking the sum of local pairings and using Proposition 2.7.2,

(71) 0 =
∑
v

⟨d, κ(m,Qq)⟩v = ⟨d, κ(m,Qq)⟩l + ⟨d, κ(m,Qq)⟩q.

Since the latter pairing is nonzero by construction, the former is as well, and so, by Proposition 5.3.10(i),

Resl κ(m,Qq) ̸= 0 =⇒ κ(ml,Qq) ̸= 0.

□
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7.3.5. For any m ∈ K, define the vanishing order of the Kolyvagin system at m:

(72) νm =

{
min {|n| : mn ∈ K, λ(mn, 1) ̸= 0} , ν(N−) odd,

min {|n| : mn ∈ K, κ(mn, 1) ̸= 0} , ν(N−) even.

Theorem 7.3.6. If (κ(1, ·), λ(1, ·)) is nontrivial, and in particular under the hypotheses of Theorem 8.1.1,
we have for all m ∈ K:

• If ν(N−) is odd, then νm = max {r+m , r−m} and ϵf = (−1)r±m +|m|.

• If ν(N−) is even, then νm = max {r+m , r−m} − 1 and ϵf · (−1)|m|+νm+1 is the larger τ eigenspace.

In particular, if rkO Sel(K,Tf ) = 1, then L′(f/K, 1) ̸= 0.

Proof. For ease of notation, let δ = 0 if ν(N−) is odd, and δ = 1 if ν(N−) is even. Suppose given mn ∈ K
such that λ(mn, 1) or κ(mn, 1) is nontrivial; then

rkO SelF(mn)(Tf ) = δ

by Lemma 7.3.4. In particular, the kernel of the localization map

SelF(m)(Tf )
± →

⊕
l∈n

H1
unr(Kl, Tf )

±

has rank at most δ. It follows that max {r+m , r−m} − δ ≤ νm. We now show that equality holds by induction
on max {r+m , r−m}. If max {r+m , r−m} ≤ δ, then Lemma 7.3.4 implies νm = 0 = max {r+m , r−m} − δ.

Now suppose that max {r+m , r−m} > δ, and let ϵ be the sign of the larger value of r±m (choose either if
they agree). If r−ϵm > 0, then by Lemma 7.3.3 and Proposition 7.3.2, there exists l ∈ K not in m such that
r±ml = r±m − 1. In this case, max

{
r+ml, r

−
ml

}
= max {r−m , r−m} − 1. Hence (by the inductive hypothesis)

νm ≤ νml + 1 = max
{
r+ml, r

−
ml

}
− δ + 1 = max

{
r+m , r

−
m

}
− δ.

Since we have already shown the opposite equality, this completes the inductive step under the assumption
r−ϵm > 0.

If on the other hand r−ϵm = 0, then rϵm ≥ δ + 2, since r+m + r−m ≡ δ (mod 2). Then by Lemma 7.3.3 and
Proposition 7.3.2 again, we may choose l ∈ K such that rϵml = rϵm−1, while necessarily r−ϵml = 1 ≤ δ+1 ≤ rϵml.

Hence max
{
r+ml, r

−
ml

}
= rϵm − 1, and the same argument as above again completes the inductive step.

Finally, we consider the parity assertions of the theorem. If ν(N−) is even, i.e. if δ = 1, then the Selmer
ranks r±m are always distinct. As we pass from m to ml in the inductive step above, the sign of the larger
eigenspace is preserved, and νm + |m| = νml + |ml|. It therefore suffices to show that ϵ · (−1)|m|+νm+1 is the
sign of the larger τ eigenspace when νm = 0, i.e. when κ(m, 1) ̸= 0. In this case it follows from Proposition
5.3.6.

When ν(N−) is odd, then whenever λ(mn) ̸= 0, Proposition 5.3.6 implies that ϵf = (−1)|mn|. Hence

ϵf = (−1)νm+|m| = (−1)max{r+m ,r−m }+|m|,

which proves the claim since r±m have the same parity when ν(N−) is odd.
For the final statement, take m = 1. If r+1 + r−1 = 1, the theorem implies ν1 = 0, so κ(1, 1) ̸= 0. Since

κ(1, 1) is the Kummer image of the classical Heegner point yK , the result follows from the Gross-Zagier
theorem of [66]. □

It remains to relate the vanishing of the patched Kolyvagin classes to the classical vanishing order

(73) νclassical :=

{
min

{
ν(m) : λ(m, 1) ̸= 0

}
, ν(N−) odd,

min {ν(m) : c(m, 1) ̸= 0} , ν(N−) even.

Corollary 7.3.7. If (κ(1, ·), λ(1, ·)) is nontrivial, and in particular under the hypotheses of Theorem 8.1.1,
νclassical is finite. If (sclr) holds for f , then νclassical = ν1, and in particular:

• If ν(N−) is odd, then νclassical = max
{
r+1 , r

−
1

}
and r±1 ≡

ϵf−1
2 (mod 2).

• If ν(N−) is even, then νclassical = max
{
r+1 , r

−
1

}
− 1 and ϵf · (−1)1+νclassical is the larger τ eigenspace.
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Proof. The finiteness of the classical vanishing order is clear by construction: if a patched Kolyvagin class
or element is nontrivial, then infinitely many of the classical Kolyvagin classes or elements defining it are
nontrivial. This also shows νclassical ≤ ν1. We will check that equality holds under the condition (sclr).
Suppose first ν(N−) is even. We abbreviate by cj(m, 1) ∈ H1(K,Tj) the image of c(m, 1) when v℘(Im) ≥ j.
Given some nonzero cj(m, 1), one may show as in [39, p. 309] that there exist classes cj(mn, 1) ̸= 0 with
v℘(Imn

)→∞ and ν(mn) = ν(m). (In [39], additional hypotheses are put on the image of the Galois action,
but the argument goes through by invoking Lemma 7.3.3.) In particular, the sequence mn defines a nonzero
κ(m, 1) witnessing ν1 ≤ νclassical.

Now suppose that ν(N−) is odd, and that λj(m, 1) ̸= 0 where ν(m) = νclassical. We choose an auxiliary
{q, ϵq} ∈ N with the following properties:

• ϵq is the sign of the larger τ eigenspace in SelF (Tf ).
• The localization map locq is trivial on SelF (Tf ).

To ensure the second condition, we may choose Frobq ∈ GQ to be a complex conjugation. Let {qn, ϵqn}
represent {q, ϵq} as in Remark 4.5.8. Once again, the argument of [39, p. 309] implies that, for each n, there
exists mn with cj(mn, qn) ̸= 0 and v℘(Imn

)→∞. We therefore obtain a nonzero patched class κ(m, q) with
|m| = νclassical. Repeating the argument of Lemma 7.3.4, it follows that ν1 ≤ νclassical +1. For contradiction,
we assume that

νclassical = ν1 − 1 = rϵq − 1.

This implies ∂qκ(m, q) = 0, so by Lemma 7.3.4 and Proposition 3.3.4, we conclude

rkO SelF(m,1)(Tf ) = 2.

However, by Proposition 7.3.2 and the assumption |m| = ν1 − 1 = rϵq − 1, rkO SelF(m,1)(Tf )
ϵq is odd, hence

equal to one. Proposition 7.3.2 then implies

SelF(m,1)(Tf )
ϵq ⊂ SelF (Tf )

ϵq ,

so

locq(SelF(m,1)(Tf )) = 0

by the choice of q. However, this contradicts Proposition 3.3.4, so we must have ν1 = νclassical.
□

8. Kolyvagin’s conjecture for inert or non-ordinary p

8.1. The main result. In this section, we shall prove the following main result:

Theorem 8.1.1. Let f be a non-CM cuspidal eigenform of weight two and trivial character, new of level N ,
with ring of integers Of of is coefficient field. Let ℘ ⊂ Of be a prime, and let K be an imaginary quadratic
field. Assume:

• N = N+N−, where every factor of N+ is split in K, and N− is a squarefree product of an even
number of primes inert in K.

• The residue characteristic p of ℘ does not divide 2DKN .
• The modulo ℘ representation T f associated to f is absolutely irreducible; if p = 3, assume that T f

is not induced from a character of GQ(
√
−3).

• If p is inert in K, then there exists some prime ℓ0||N .

• If ap is not a ℘-adic unit, then either there exists ℓ0||N+ such that T f |GQℓ0
is ramified and T

GQℓ0

f = 0;

or there exist primes ℓ1, ℓ2|N− such that T f |GQℓi
is ramified for i = 1, 2, T

GQℓ1

f = 0, and T
GQℓ2

f ̸= 0.

Then (κ(1, ·), λ(1, ·)) is nontrivial.

8.1.2. If p is split in K, then this is simply Corollary 7.2.4. If p is non-ordinary or inert in K, then the
anticyclotomic main conjecture is currently not known in full generality; however, since all we are interested
in specialization the trivial character, we will show that the result may instead be obtained, more circuitously,
by combining main conjectures for quadratic twists of f . The proof applies equally well to the split ordinary
case.

8.2. Comparing periods.
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8.2.1. Let f be a modular form of weight two, level N , and trivial character, with ring of integers Of of
its coefficient field, and let ℘ ⊂ Of be an ordinary prime lying over p ∤ 2N , with associated completion

O and uniformizer π; we assume that T f is absolutely irreducible. There are two ways to normalize the
anticyclotomic p-adic L-function, as explained in [64, 47]. For any factorization N = N1N2, where N1 and
N2 are coprime, the congruence ideal ηf (N1, N2) ⊂ Of is defined as

(74) πf (AnnTN1,N2
(kerπf ))·,

where πf : TN1,N2 → Of is the projection giving the Hecke eigenvalues of f . Hida’s canonical period [26] is
defined (up to ℘-adic units) by:

(75) Ωcanf =
(f, f)

ηf (N, 1)
,

where (f, f) is the Peterson inner product.
On the other hand, if N = N1N2 where N2 is squarefree with an odd number of prime factors, then the

f -isotypic part of the Hecke module Of [XN1,N2
] is locally free of rank one, say with φf,N2

a generator up to
℘-adic units of Of . Gross’s period is defined (up to ℘-adic units) by:

(76) Ωf,N2
=

(f, f)

⟨φf,N2
, φf,N2

⟩
,

where ⟨·, ·⟩ is the canonical intersection pairing onOf [XN1,N2 ]. This period occurs naturally in anticyclotomic
Iwasawa theory due to the well-known special value formula of Gross.

Proposition 8.2.2. Let K be an imaginary quadratic field of discriminant prime to Np, and suppose that
N = N+N− where all factors of N+ are split in K, and N− is a squarefree product of an odd number primes
inert in K. Then L(f/K, 1) ∈ Q · Ωf,N− and the element λ(1) ∈ Λ constructed in (5.3.9) satisfies:

(77)
L(f/K, 1)

Ωf,N−
= λ(1)2

up to ℘-adic units.

Proof. This is [68, Theorem 7.1]. □

8.2.3. For any ℓ|N , let cf (ℓ) be the maximal exponent e such that Tf/π
e is unramified at ℓ. The following

theorem generalizes [54, 31] and [47, Theorem 6.8].

Proposition 8.2.4. Suppose N = N1N2 where N2 is squarefree with an odd number of prime factors and
coprime to N1. For any ℓ0||N , we have:

v℘ηf (N, 1)− v℘⟨φf,N2
, φf,N2

⟩ ≥
∑
ℓ|N2

cf (ℓ)− σ(N2)cf (ℓ0).

Proof. For a decomposition N = N ′1N
′
2 with N ′2 the squarefree product of an even number of primes that

do not divide N ′1, one defines δ(N ′1, N
′
2) ⊂ O to be the “degree” of an optimal modular parametrization

JN ′
1,N

′
2
→ Af as explained in [47, 31]. By [47, Proposition 6.6], we have:

(78) v℘δ(N, 1) = cf (ℓ0) + v℘⟨φf,ℓ0 , φf,ℓ0⟩.
On the other hand, [15, Lemma 4.17] implies that:

(79) v℘ηf (N/ℓ0, ℓ0) ≥ v℘⟨φf,ℓ0 , φf,ℓ0⟩.
Because TN/ℓ0,ℓ0 is a quotient of TN,1, we conclude that:

(80) v℘ηf (N, 1) ≥ v℘δ(N, 1)− cf (ℓ0).
We apply [47, Proposition 6.6] again, this time to the decomposition N = N1N2 and any r|N2. This yields:

(81) v℘δ(N1r,N2/r) = cf (r) + v℘⟨φf,N2
, φf,N2

⟩.
If N2 is prime, this is sufficient to conclude. If not, we may choose r ̸= ℓ0.

The results of Ribet-Takahashi and Khare [54, 31] imply that:

(82) v℘δ(N, 1) ≥ v℘δ(N1r,N2/r) +
∑
ℓ|N2/r

cf (ℓ)− ν(N2/r) · cf (ℓ0).
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(If ℓ0|N1, we are using the fact that both r and ℓ0 exactly divide N1r.) Combining (80), (81), and (82)
completes the proof.

□

Remark 8.2.5. If ℓ0 is residually ramified, the inequality is an equality. In [69, Theorem 6.4], more
restrictive conditions are given under which this result holds.

8.2.6. We will also require the following related result:

Proposition 8.2.7. Let f and ℘ be as above and suppose ℓ0||N . Then, in the notation of the proof of
Theorem 8.2.4,

v℘ηf (N, 1)− v℘⟨φf,ℓ0 , φf,ℓ0⟩ ≤ cf (ℓ0).

Proof. Let J = J0(N) be the modular Jacobian and let T be the full Hecke algebra of level N . Write
πf : T → Of for the projection associated to f , with associated maximal ideal m, and let I = kerπf . The
claim will follow from (78) once we establish

(83) v℘ηf (N, 1) ≤ v℘δ(N, 1).
Indeed, if J → Af is an optimal parametrization, then the dual map A∨f → J∨ is an inclusion. The
composition

ϕ : J → Af → A∨f → J∨
wN−−→ J

is a Hecke-equivariant endomorphism; by (29), its image in End(J)m may be identified with some y ∈ Tm.
Because imϕ ⊂ J [I], we have y ∈ Ann(I). By the definition of δ(N, 1),

(π(y)) = δ(N, 1) ⊂ O.
This implies (83). □

8.3. Ordinary cyclotomic Iwasawa theory.

8.3.1. Let ΛQ∞ = OJGal(Q∞/Q)K be the cyclotomic Iwasawa algebra. We denote by 1 : ΛQ∞ → O and
1 : Λ→ O the specializations at the trivial character. If ℘ is ordinary and Σ is a finite set of rational primes,
we consider the Σ-ordinary cyclotomic Selmer group

SelΣ(Q∞,Wf ) = ker

H1(Q,Wf )→
∏

v ̸∈Σ∪{p}

H1(Iv,Wf )×
H1(Qp,Wf )

H1
ord(Qp,Wf )

 ,

and denote by ChΣQ∞,f ⊂ ΛQ∞ the characteristic ideal of its Pontryagin dual. Kato [30] has proven one
direction of the main conjecture in this setting:

Theorem 8.3.2 ((Kato)). Let f be a modular form of weight two, level N , and trivial character, and ℘ ⊂ Of
a prime of good ordinary reduction with odd residue characteristic. Then Sel(Q∞,Wf ) is ΛQ∞-cotorsion and

Lp(Q∞, f) ⊂ ChQ∞,f

in ΛQ∞ ⊗ Qp. If the image of the Galois action on Tf contains SL2(Zp), then all of the inclusions hold in
ΛQ∞ .

For the opposite direction of the main conjecture, we deduce the following result from the work of Skinner-
Urban [60].

Theorem 8.3.3 ((Skinner-Urban)). Let K be an imaginary quadratic field of discriminant prime to Np in
which p splits. Assume that ℘ is good ordinary for f and that:

• the mod ℘ representation T f is absolutely irreducible;
• N = N1N2, where every factor of N1 is split in K and N2 is the squarefree product of an odd number

primes inert in K.

Then there exists an element α ∈ ΛQ∞ such that 1(α) divides

Ωf,N2

Ωcanf
∼ ηf (N, 1)

⟨φf,N2
, φf,N2

⟩
in O and

(α)ChQ∞,fChQ∞,f⊗χK
⊂ (Lp(Q∞, f))(Lp(Q∞, f ⊗ χK)).
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Proof. Let Σ be a finite set of primes containing all factors of N∞. Recall the divisibility established in the
course of the proof of Theorem 7.1.1 for the Fitting ideal of the 3-variable Selmer group:

(84) (α̃)FittΣK∞
(g) ⊂ (LΣ

f ,K),

where α̃ ∈ I[Γ+
K ] may be chosen such that α̃ specializes to a unit multiple of Ωf,N2/Ω

can
f at the trivial

character (by [64]). By Lemma 3.2.5, Corollary 3.2.9(i), and Corollary 3.2.20(iii) of [60], specializing to the
cyclotomic variable yields a divisibility

(85) (α)ChΣQ∞,fCh
Σ
Q∞,f⊗χK

⊂ (LΣ
p (Q∞, f))(LΣ

p (Q∞, f ⊗ χK)),

where α is the image of α̃. The desired divisibility for the imprimitive L-functions and Selmer groups follows
by [60, Proposition 3.2.18]. □

8.3.4. Denote by µ(f) the µ-invariant of ChQ∞,f . To control the powers of ℘ in Theorem 8.3.2, we will use
the following.

Lemma 8.3.5. Let f and g be modular forms of weight two and trivial character such that T f is absolutely
irreducible. Suppose that f and g have a congruence modulo πj, i.e. there is a common completion O of Of
and Og and, in some basis, a congruence of O-valued associated Galois representations

Tf ≡ Tg (mod πj).

If f and g are ℘-ordinary and µ(f) < j, then µ(g) = µ(f).

Proof. By [21], µ(f) is also the µ-invariant of ChΣQ∞,f for any finite set of primes Σ, and likewise for g. If Σ
contains all primes dividing the level of either f or g, then we have:

(86) SelΣ(Q∞,Wf )[π
j ] ≃ SelΣ(Q∞,Wg)[π

j ]

as ΛQ∞ -modules. Let Mf and Mg be the Pontryagin duals of SelΣ(Q∞,Wf ) and SelΣ(Q∞,Wg)[℘
j ], respec-

tively, and let P = (℘) ⊂ ΛQ∞ . Then we have an isomorphism

Mf ⊗ ΛQ∞/P
j ≃Mg ⊗ ΛQ∞/P

j .

Since µ(f) = lgMf,(P) < j, where (P) denotes the localization,

(87) Mf,(P) ⊗ ΛQ∞/P
j =Mf,(P) ⊗ ΛQ∞/P

j−1,

which implies the same for g. Therefore Mg,(P) ⊗ ΛQ∞/P
j =Mg,(P) and the result follows. □

Proof of Theorem 8.1.1. If ℘ is ordinary, fix once and for all an auxiliary quadratic imaginary field K, not
contained in the fixed field K(Tf ), such that ℓ0 is inert in K and every other factor of Np is split in K.
As in the proof of Theorem 7.2.1, begin by applying Proposition 6.3.5 and Theorem 6.2.4 to obtain some
{Q, ϵQ} ∈ N, represented by Qn, and a resulting sequence of newforms gn of NQn; we make sure to choose
each q ∈ Q such that Frobq has trivial image in Gal(K/Q), which is clearly possible.

Claim. There exists a constant C, depending only on f , such that

(88) v℘

(
L(gn/K, 1)

Ωcangn

)
≤ lgO Sel(K,Wgn) + 2

∑
ℓ|NQn

cgn(ℓ) + C

for F-many n.

Here Sel(K,Wgn) is defined using the dual local conditions to (51), with m = 1.

Proof of claim. The non-ordinary case (in fact with C = 0) follows from the main result of [20], applied to
gn and gn ⊗ χK ; see Corollary 5.4 of loc. cit. Additional details on the passage between the equivariant
Tamagawa number conjecture and the BSD formula may be found in [32].

Now consider the ordinary case. By Lemma 8.3.5 and Theorem 8.3.2,

(89) ℘µ(f⊗χK) · (Lp(Q∞, gn ⊗ χK)) ⊂ ChQ∞,gn⊗χK in ΛQ∞

for F-many n. By Theorem 8.3.3 for gn, for F-many n we have

(90) (α) · ℘µ(f⊗χK) · ChQ∞,gn · ChQ∞,gn⊗χK ⊂ (Lp(Q∞, gn)) · ChQ∞,gn⊗χK ,
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where, by Proposition 8.2.7, 1(α) divides ℘cf (ℓ0) in O. Since ChQ∞,gn⊗χK ̸= 0, and since characteristic ideals
are divisorial, we conclude that

(91) (α) · ℘µ(f⊗χK) · ChQ∞,gn ⊂ (Lp(Q∞, gn)).
Applying the same argument to gn ⊗ χK , we have:

(α)2 · ℘µ(f⊗χK⊗χK)+µ(f⊗χK) · ChQ∞,gn · ChQ∞,gn⊗χK

⊂ (Lp(Q∞, gn) · (Lp(Q∞, gn ⊗ χK)).
(92)

The result now follows from standard interpolation properties of both sides of (92), cf. e.g. [60, Theorem
3.6.11].

□

As in Step 3 of the proof of Theorem 7.2.1,

#Sel(K,Wgn [π
j ]) = #SelF(Q)(Wf [π

j ])

for any j and for F-many n (the local conditions at v|N may be compared in the same way, and at v|p we
use [23, Lemma 7]). Since SelF(Q)(Wf ) is finite, it follows that #Sel(K,Wgn) = #SelF(Q)(Wf ) for F-many
n.

Now, by combining the claim above with Proposition 8.2.4, we have for F-many n:

(93) v℘

(
L(gn/K, 1)

Ωgn,N−Qn

)
≤ lgO Sel(K,Wgn) + 2

∑
ℓ|N+

cgn(ℓ) + C ′

for a constant C ′ that does not depend on n. In particular, for F-many n, L(gn/K, 1) ̸= 0, which by parity
considerations implies that ν(N−) + |Q| is odd. Exactly as in Step 2 of the proof of Theorem 7.2.1, we then
conclude from (93) that λ(1,Q) ̸= 0.

□
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[51] Kenneth A Ribet. On ℓ-adic representations attached to modular forms II. Glasgow Mathematical Journal, 27:185–194,

1985.

[52] Kenneth A. Ribet. Bimodules and abelian surfaces. Advanced Studies in Pure Mathematics, 17:359–407, 1989.

[53] Kenneth A. Ribet. On modular representations of Gal(Q/Q) arising from modular forms. Invent. math, 100(2):431–476,

1990.
[54] Kenneth A Ribet and Shuzo Takahashi. Parametrizations of elliptic curves by Shimura curves and by classical modular

curves. Proceedings of the National Academy of Sciences, 94(21):11110–11114, 1997.

[55] Karl Rubin. Euler systems. Number 147. Princeton University Press, 2000.
[56] Takeshi Saito. Hilbert modular forms and p-adic Hodge theory. Compositio Mathematica, 145(5):1081–1113, 2009.

[57] Peter Scholze. On the p-adic cohomology of the Lubin-Tate tower. Annales scientifiques de l’École normale supérieure,
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