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A N T H R O P O L O G Y

Ancient genomes reveal long-range influence 
of the pre-Columbian culture and site of Tiwanaku
Danijela Popović1*, Martyna Molak1,2, Mariusz Ziółkowski3, Alexei Vranich4, Maciej Sobczyk3,5, 
Delfor Ulloa Vidaurre6, Guido Agresti3, Magdalena Skrzypczak1, Krzysztof Ginalski1, 
Thiseas Christos Lamnidis7, Nathan Nakatsuka8,9, Swapan Mallick8,10,11, Mateusz Baca1*

Tiwanaku civilization flourished in the Lake Titicaca basin between 500 and 1000 CE and at its apogee influenced 
wide areas across the southern Andes. Despite a considerable amount of archaeological data, little is known 
about the Tiwanaku population. We analyzed 17 low-coverage genomes from individuals dated between 300 and 
1500 CE and demonstrated genetic continuity in the Lake Titicaca basin throughout this period, which indicates 
that the substantial cultural and political changes in the region were not accompanied by large-scale population 
movements. Conversely, the ritual center of Tiwanaku revealed high diversity, including individuals with primarily 
local genetic ancestry and those with foreign admixture or provenance from as far as the Amazon. Nonetheless, 
most human offerings associated with the Akapana platform exhibited pure Titicaca basin ancestry and dated to 
ca. 950 CE—the onset of Tiwanaku’s decline as a sociopolitical center. Our results strengthen the view of Tiwanaku 
as a complex and far-reaching polity.

INTRODUCTION
The motivations and intentions shaping the transition from small-
scale societies to settled life—i.e., villages and cities—are one of the 
primary questions in archaeology. Located 3850 m above sea level 
near the shores of Lake Titicaca, Tiwanaku represents the unlikeliest 
case of the spontaneous and primary rise of social complexity on par 
with a handful of other locations on Earth (Fig. 1A). For almost half a 
millennium (500 to 1000 CE), Tiwanaku was one of the most influential 
centers in the southern Andes (Fig. 1B). More than 100 years of archaeo-
logical research has revealed how cultural and demographic changes 
in the Lake Titicaca basin preceded Tiwanaku’s emergence as the 
primary ritual center around 500 CE. The southeastern basin enjoys 
a milder climate than the other parts of the Altiplano and was densely 
inhabited from at least the Early Middle Formative Period (1500 to 
100 BCE), during which small, politically independent villages existed. 
Trade intensification and the appearance of a common religious 
tradition led to the formation of multicommunity polities and cul-
minated with the initial formation of Tiwanaku around 300 CE.

The emergence of Tiwanaku was apparently accompanied by so-
cioeconomic, ideological, and demographic transformations (1–5). 
For example, Khonkho Wankane, a major center in the Desaguadero 
Valley, was largely abandoned by the end of the Late Formative 
Period (100 to 500 CE), whereas Lukurmata remained an important 

settlement in the adjacent Katari Valley (4). Tiwanaku is remark-
able in that it was the first archaic state in the Titicaca basin to ex-
pand beyond its core area and, in this process, subordinated or 
otherwise influenced a large territory in the southern Titicaca re-
gion [Fig. 1C; (3)].

Tiwanaku was the first large urban center in the Titicaca area, 
with an estimated population of as many as 20,000 inhabitants during 
peak ceremonial events (4, 6). The monuments of Tiwanaku are 
spread over several kilometers of a flat plain that lies to the south-
east of the colonial and modern town of Tiwanaku (Fig. 1D) and 
include a half dozen primary ceremonial buildings accompanied by 
numerous minor constructions. As in other Andean cultures, the 
ritual practices of Tiwanaku forged a degree of political unity among 
diverse groups (7). The ritual core of the city of Tiwanaku was de-
signed according to beliefs concerning the unity between cosmolog-
ical, mythical, and physical spaces (8). The earliest monument at the 
site, the semi-subterranean temple, was complemented in the third 
to fifth century CE by the adjacent Kalasasaya platform and Kheri 
Khala complex (9). Around the seventh century CE, a substantial 
transformation at the site took place with the construction of the 
Akapana platform (10). A few centuries later, earlier buildings were 
razed, provisioning the construction of the Putuni complex (11). The 
construction of another stepped platform, the Pumapunku temple, 
started to the southeast in the mid-seventh century CE, and the 
structure continued to be modified for centuries (Fig. 1D). Between 
and around these monuments’ plaza areas were walled compounds 
that included homes, kitchens, and large patios (4).

The site is dominated by Akapana, a monumental 17-m-tall plat-
form constructed in the shape of a half Andean cross. This con-
struction consisted of seven stepped terraces composed of stone 
revetments and earthen fill (1, 10). Archaeological evidence sug-
gests that it was a place of ritual ceremonies, including commensal 
feasting and offerings. At the platform’s base, deposits of human 
remains were found alongside mixed camelid bones and ceramic 
sherds; these human remains were interpreted by the excavators as 
ritual offerings (12–16). The analysis of these remains found evi-
dence of dismemberment at the time of, or soon after, death (16). 
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According to the authors of this analysis, these sacrifices were used 
by elites to attest their power by manifesting their connection with 
the deities. Another interpretation is an emerging elite class dis-
membering sacred ancestors of recently conquered and now subju-
gated populations (1, 2).

The Tiwanaku culture was preliterate, which means that archae-
ological research is the sole source of primary information. The past 
century of research has provided layout, size, and distribution of the 
buildings present at the site. However, fundamental questions re-
garding the site’s population demography remain. Scholarly opin-
ions range from a densely occupied city to a near-empty ceremonial 
center that cyclically pulsated with life from seasonal pilgrims (6). 
Regardless of the habitation pattern of the city of Tiwanaku, the 
archaeological and bioarcheological investigations suggest the pres-
ence of diverse groups of individuals at the site (4, 17, 18). These 
findings were recently supported by the first genomic data from 
three individuals excavated at the site, one of whom exhibited non-
local ancestry (19).

Explanations of the mechanism behind the apparent population 
diversity at the site range from bellicose to benign—from forced 
migration to voluntary pilgrimage and trade. Tiwanaku had the ca-
pacity to incorporate other polities and mobilize labor in its heart-
land territory and selected enclaves (Fig. 1C). Its political economy 
was based not only on local production, including raised field agri-
culture, camelid herding, and lake exploitation, but also on exten-
sive trade and colonial relationships throughout the South-Central 
Andes to secure access to lowland resources, especially maize (3, 20).

In this study, we use a combination of archaeological and pa-
leogenomic approaches to gain insight into the population structure 
and dynamics in the Central Andes, with a focus on the Tiwanaku 
ceremonial center. We examine genome-wide information for 13 an-
cient individuals from the Bolivian Lake Titicaca region associated 
with the Tiwanaku culture (500 to 1000 CE) and four from the re-
gion of Coropuna volcano in southern Peru associated with the 
Wari (500 to 1000 CE) and Inca (ca. 1400 to 1540 CE, in this region) 
cultures. We analyze the genetic makeup of these groups, compare 
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their affinities to other ancient and modern populations, and review 
the absolute ages of the examined remains. The results of our study 
reveal the complex demographic history of the population at 
Tiwanaku.

Ethics statement
All samples for the individuals included in this study were obtained 
under permission from the local authorities. Individuals from 
Bolivia were sampled for analyses under permission from La Unidad 
de Arqueologia y Museos (UDAM) Ministerio de Culturas y Turismo 
de Bolivia nos. 052/2016 and 086/2016. The samples from Peruvian 
individuals were collected under permission granted by the Peruvian 
Ministerio de Cultura (formerly Instituto Nacional de Cultura). 
The results obtained in this study will be provided to authorities in 
the Centro de Investigaciones Arqueológicas, Antropológicas y Ad-
ministración de Tiwanaku (CIAAAT) and the Museo Arqueológico 
de la Universidad Católica de Santa María in Arequipa (UCSM). 
The results of this study will be made available and disseminated 
among the local communities through these institutions.

RESULTS
Sequencing statistics and authenticity
We screened 93 specimens sampled from pre-Columbian sites near 
Lake Titicaca in Bolivia and southern Peru (dataset S1, A and B) for 
DNA preservation. We used various approaches to increase the 
very low content of endogenous DNA, including whole-genome 
capture (21), predigestion (22), and drilling only the outer layer 
of the root (cementum) in the case of teeth (23). We generated 
low-coverage genome sequences for 18 individuals with a depth of 
coverage ranging from 0.15× to 2.56×. The sequencing data showed 
deamination patterns at 5′ and 3′ ends and mean fragment lengths 
that were characteristic of ancient DNA (dataset S1B). The authen-
ticity of the data was corroborated by a lack of detectable contami-
nation in the nuclear DNA, low estimates of contamination for the 
mitochondrial DNA, and a lack of heterozygosity on the X chromo-
some in male specimens (all estimated to be below 5%) (dataset 
S1A). One individual (TW098) did not meet the quality control 
threshold for ancient DNA authenticity, with nuclear contamina-
tion estimated at approximately 9%, and was removed from fur-
ther analyses. We estimated slightly higher contamination for the 
X chromosome (5.5%) for individual TW059, but considering that 
it was based on a limited number of single nucleotide polymorphisms 
(SNPs) and all other contamination estimates met the threshold, we 
decided to retain this individual for downstream analyses.

Archeological context and radiocarbon dating
Dating of the ancient individuals based on archaeological context 
and stratigraphy was confirmed by direct radiocarbon dating of 
each individual’s skeletal remains (Table 1, dataset S1C, and figs. S1 
and S2). Our dataset contains 13 individuals from the Lake Titicaca 
basin, spanning the period between ca. 300 and 1500 CE. The residen-
tial group from outside the Tiwanaku ritual core site consisted of five 
individuals. Of these, four originated from the site of Lukurmata in 
the nearby Katari Valley (TW013, TW020, TW027, and TW028; 
hereafter LUK). Individual TW033 (hereafter ORU) was excavated in 
Totocachi, Oruro, separated from Katari Valley by 200 km.

Radiocarbon dating revealed that the LUK group contained in-
dividuals representing three periods. Individual TW013 was dated 

to ca. 300 CE and predated the incorporation of the Katari Valley 
into the later Tiwanaku polity. Two other individuals (TW020 and 
TW027) were dated to 1100 and 1010 CE, respectively, i.e., to the 
period in which Tiwanaku lost its status as a sociopolitical center. 
Last, individual TW028 was dated to 1470 CE—to the period of the 
occupation of the area by the Inca Empire. The ORU individual is 
dated to after the abandonment of the Tiwanaku site and perhaps 
already represents a later culture.

The other eight individuals originated from five different loca-
tions within the ritual core of the Tiwanaku site (TIW): TW060, a 
part of a complex collection of human and animal bones interpreted 
as an offering, and TW061, an infant, were placed in alluvia accu-
mulating along the base of the Akapana platform. TW059 is a full 
individual placed face down and covered in construction fill of the 
Pumapunku and thus a strong candidate for a sacrifice marking a 
substantial modification to this platform. TW063 is a solitary skull 
found in the disturbed and heavily quarried south exterior wall of 
the Putuni platform. TW097 individual was placed in a fill for a 
pebbled surface constructed between the semi-subterranean temple 
and the Akapana, with the position of the limbs consistent with a 
person wrapped in a burial bundle. TW056 is a partial individual 
mixed with a midden of ceramics, bones (human and animal), and 
ash adjacent to a monolith (Monolito Descabezado) along the north-
eastern corner of the Kalasasaya platform (Fig. 1D). A position of a 
more complete individual from this location, consistent with some-
one that was bound, suggests a sacrificial character of this deposit. 
However, DNA preservation was insufficient for pursuing down-
stream analyses for this individual (dataset S1A). Two individuals 
do not have a precise provenience (TW004 and TW008), but they 
are suspected of having come from excavations at the Akapana plat-
form. In the “TIW” group used in downstream analyses, we also 
include three previously published individuals from Akapana: I0976, 
I0977, and I0978 (19).

Two individuals (TW059 and TW063) lived in a period of strong 
Tiwanaku influence throughout the basin and the southern Andes 
(700 to 800 CE). Six are dated to approximately 950 CE, during 
what is considered to be the onset of decline, and one dates to 
around 1100 CE, the period after active maintenance of the Tiwanaku 
site. In addition to the individuals directly associated with the 
Tiwanaku culture, genomic data were generated for four individu-
als from the Late Intermediate Period (1000 to 1450 CE) to Late 
Horizon (1400 to 1540 CE in this region) sites surrounding the 
Coropuna volcano in southern Peru (hereafter COR) (Fig.  1A, 
Table 1, and dataset S1B). This region was an important ritual and 
pilgrimage center not only during but also before the Inca period, 
with traces of Wari and Tiwanaku influence (24, 25). Individual 
CO001, dated to 920 CE, comes from a pastoralist burial at Culcunche 
and most probably represents a local population that later hosted 
the ceremonial center of Maucallacta. Individual CO066 (1500 CE) 
originated from Maucallacta, whereas individual CO154 (1560 CE) 
was from Antaura, settlement located near Maucallacta. The last 
individual (CO193; 1320 CE) was a mummy from the nearby 
Cotahuasi Valley.

Genetic affinities—PCA and ADMIXTURE
We first performed a qualitative assessment of the genetic affinities 
of the individuals using principal components analysis (PCA) and 
unsupervised ADMIXTURE analyses. Principal components (PCs) 
were computed using data from present-day South American 
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individuals without European ancestry. Genomic datasets for the 
present-day individuals were generated using different techniques, 
and their final intersection resulted in 199,175 SNPs in common 
(dataset S1D). Ancient individuals from this study and other avail-
able ancient South American individuals were projected onto the 
computed PCs (Fig. 2, A and B). PCA plot showed that most of the 
individuals clustered within their populations. We found a split be-
tween the Amazonian and the Andean populations, which corrob-
orates the results of previous studies (26, 27). COR individuals from 
this study clustered together with other ancient Peruvian individuals, 
closest to those from the SouthernPeruvianHighlands (Laramate) 
and SouthernPeruvianCoast (Ullujaya and Palpa) (19).

Present-day Bolivians made up a tight cluster with ancient indi-
viduals from the Lake Titicaca basin. However, two of the TIW 
individuals fell outside this ancient Titicaca cluster. TW056 was 

projected within the dispersed cluster of modern Amazonians, 
Columbians, and ancient individuals from the NorthernPeruvianCoast, 
whereas TW059 was projected between the ancient northern and 
southern Peruvian groups (Fig. 2, A and B). Unsupervised ADMIXTURE 
analysis showed that, for K = 5 [the lowest cross-validation (-CV) 
error; dataset S1E], two of the ancestral components were dominant 
and characteristic for two Amazonian populations from Brazil: 
Karitiana and Surui (red and blue, respectively; Fig. 2C). One com-
ponent (yellow) was characteristic for Wichi, a population from the 
Gran Chaco (northern Argentina). The last two components were 
dominant in the Peruvian Amazonian (green) and Andean (violet) 
populations.

LUK individuals, together with other ancient Lake Titicaca indi-
viduals (ORU, Rio Uncallane, Iroco, and Miraflores), trace their 
ancestry mostly (>95%) to a single (violet) component. On the 

Table 1. Radiocarbon dates and main genetic indices of the individuals analyzed in this study. n.a., not applicable.  

ID Group Site cal CE* Genome 
coverage Genetic sex mtDNA 

haplogroup Y haplogroup

TW004

TIW

Akapana 870–990 0.32 M C1b Q1b1a1a1

TW008 Akapana 880–990 0.15 M B2 Q1b1a1a1w

TW056 Monolito 
Descabezado 890–990 1.20 F C1d1 n.a.

TW059 Pumapunku 680–740 (21.3%), 
760–880 (74.1%) 0.19 M B2 Low cov

TW060 Akapana
900–930 (10.9%), 

960–1030 
(84.5%)

0.19 F D1 n.a.

TW061 Akapana 1020–1150 0.14 F B2b n.a.

TW063 Putuni 670–780 (93.5%), 
820–840 (1.9%) 0.58 F C1c n.a.

TW097 Akapana 880–970 0.21 M C1c Q1b1a

TW013

LUK

Lukurmata 200–370 2.56 F C1b n.a.

TW020 Lukurmata 1020–1150 0.17 F B2 n.a.

TW027 Lukurmata

980–1050 
(95.0%), 

1100–1110 
(0.4%)

0.34 M B2 Q1b1

TW028 Lukurmata

1430–1510 
(82.7%), 

1580–1620 
(12.7%)

1.23 M B2 Q1b1a1a1i

TW033 ORU Totocachi 1390–1440 0.14 F B2 n.a.

CO001

COR

Culcunche 770–820 (5.1%), 
840–980 (90.3%) 0.43 F B2 n.a.

CO066 Maucallacta

1450–1510 
(61.2%), 

1570–1630 
(34.2%)

0.4 M B2b Q1b1a1a1i

CO154 Antaura 1490–1630 0.9 F A2d1 n.a.

CO193 Cotahuasi

1280–1320 
(48.7%), 

1350–1390 
(46.7%)

0.45 F B2 n.a.

*Dates (95.4% probability) calibrated in OxCal v4.3.2 (42) using SHcal13 calibration curve (41).
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other hand, most of the TIW individuals showed at least some pro-
portion of other components. The exceptions are TW004, TW0097, 
and I0977 (19) individuals, which comprise the violet component 
almost exclusively (Fig. 2C).

Ancestry modeling—f-statistics
To investigate the genetic makeup of the studied individuals in 
greater depth, we computed outgroup f3- and f4-statistics. In all cal-
culations, Mbuti, a hunter-gatherer population from the Central Africa, 
was used as an “outgroup.” Shared genetic drift was measured 
between each of the 17 individuals from this study (“Ind”) and all 
other individuals/populations (“Test”) from the dataset in the form 
f3(Ind, Test, Mbuti). We generated a multidimensional scaling (MDS) 

plot and a neighbor-joining tree based on outgroup f3-statistics 
(Figs. 2D and 3). We performed exhaustive calculations of f4-statistics 
in the form f4(Mbuti, Population; Ind1, Ind2) and f4(Mbuti, Ind; 
Group1, Group2). Here, Ind represents an individual from this 
study, whereas Population or Group represents a population or a 
group of ancient individuals from a specified region and period as 
defined in (19) or a present-day population. Significantly negative 
Z score values (Z < −3) suggest that Ind1 shared more alleles with 
test Population than with Ind2 (dataset S2A) or with Group1 than 
with Group2 (dataset S2B).

According to both f3- and f4-statistics, all LUK individuals showed 
the highest affinities with each other or with other ancient individ-
uals from the Lake Titicaca area (Figs. 2D and 3 and dataset S2B). 
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Fig. 2. Genetic affinities of the ancient and present-day South American individuals. (A) PCA plot of SNP-based genomic variation of 217 present-day South American 
individuals (empty markers) with ancient individuals projected (filled markers). Label for each marker is provided in (C). The covered part of this panel does not contain 
any data points. (B) Close-up of the most relevant section of the plot. (C) ADMIXTURE plot for K = 5. (D) MDS plot for the outgroup f3-statistic [1-f3(IND, Test, Mbuti)] matrix.
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The homogeneity of the Lukurmata individuals was further tested 
using f4-statistics in the form f4(Mbuti, Test; LUKind1, LUKind2), 
where LUKind1 and LUKind2 represented each possible combina-
tion of Lukurmata individuals (dataset S2C). Neither of these tests, 
nor any in the form f4(Mbuti, Test; LUK, ancientTiticaca), were sig-
nificant. This result shows that none of the Lukurmata individuals 
shares significantly more alleles with either Test group than with 
either individual from Lukurmata or the group of ancient individuals 
from the Titicaca area. We used qpWave/qpAdm, which summarizes 

multiple f4-statistics to determine the minimal number of distinct 
ancestry sources required for two tested populations, and found 
that, to the limits of our statistical resolution, the Lukurmata popu-
lation was genetically homogeneous and, together with ancient 
Titicaca population, could be explained with a single wave of ances-
try (Fig. 4 and dataset S3A).

Using the same strategy, we found that the group of individuals 
from the Tiwanaku ritual core was heterogeneous, and we could 
recognize various patterns of ancestry (datasets S2 and S3). Individ-
uals TW004, TW008, TW060, and TW097, as well as the published 
Akapana individuals I0977 and I0978 (19), together with ancient 
Titicaca, could be modeled using one source of ancestry. Individu-
als TW059 and TW063 showed strong evidence of admixture, as 
they could not be modeled using a single source of ancestry and 
instead required at least two sources. The additional source of 
ancestry is likely Amazonian, because only models with ancient 
Titicaca and either Amazonian or Gran Chaco sources fit the data 
(dataset S3C). Individual TW061’s very low genomic coverage lim-
ited the resolution of our analysis, and we could not distinguish be-
tween ancient Titicaca and north Chile as a single source of ancestry 
(dataset S3B). The highest values of outgroup f3-statistic between 
TW061 and two north Chilean groups (Pukara and Pica Ocho) sug-
gested that this individual might have had north Chile–related an-
cestry (Fig. 3 and fig. S4). Individual I0976 (19) could be modeled 
with a single source of ancestry, although we were not able to dis-
criminate between southern Peru highlands [consistent with (19)] 
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Fig. 3. Neighbor-joining tree based on inverted outgroup f3-statistics. 
Distance: 1/f3(IND, Test, Mbuti). Individuals from the current study are shown in bold, 
TIW in red, LUK and ORU in blue, and COR in black. Previously published ancient 
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Fig. 4. Ancestry modeling for Tiwanaku site and Lukurmata individuals. 
Ancestral source of the Tiwanaku (TIW) and Lukurmata (LUK) individuals, as estimated 
by qpWave and qpAdm using all possible South American populations as potential 
sources. Multiple columns for a single individual represent all of the potential sin-
gle sources of ancestry that fit the data. For admixed individuals with more than 
one source of ancestry, we display significant results (P > 0.05) of the fitted two-source 
model from qpAdm (including SE). Provenience of each of the Tiwanaku ritual core 
remains is labeled with a silhouette of the corresponding monument. nd, not dated.
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and north Chile ancestry (dataset S3B). However, outgroup f3-statistics 
showed close affinities between this individual and the Peruvian 
groups (Figs. 2D and 3). The greatest outlier was TW056, which 
showed exclusively Amazonian-related ancestry, as indicated by 
both f4-statistics (dataset S2A) and qpWave (Fig. 4 and dataset S3B). 
Outgroup f3-statistics and f4-statistics indicated that the Peruvian 
Amazonian populations showed the greatest degree of shared ge-
netic drift with this individual (Fig. 3 and dataset S2B). The distinc-
tiveness of this individual was also expressed in the analysis of stable 
nitrogen (15N) and carbon (13C) isotopes, given that her profile 
was outlying from other Titicaca basin individuals tested here and 
previously (dataset S1C and Supplementary Text Information).

The single individual from Totocachi (TW033) was modeled 
with a single source of ancestry, although we were not able to dis-
criminate between the SouthernPeruHighlands and NorthChile groups. 
The f4-statistics also showed that TW033 had greater affinity to 
SouthernPeruHighlands than to the ancientTiticaca group (fig. S5 
and dataset S2F). We did not find any significant differentiation 
among the Coropuna individuals, as none of the f4-statistics com-
puted in the form f4(Mbuti, AncientGroup, COR1, COR2) was sig-
nificant (dataset S2G). Outgroup f3-statistics, f4-statistics, and qpWave 
modeling indicated closeness to South Peruvian populations (Fig. 3; 
datasets S2, B and H, and S3D; and fig. S5). Only individual CO066 
could not be modeled with a single source, and it was best modeled 
as a combination of SouthernPeruCoast with a minor component 
from one of the groups to the north (dataset S3E).

DISCUSSION
Our results show that the population of the Titicaca basin was rath-
er genetically homogeneous from at least 300 CE until the arrival of 
Europeans. This is well illustrated for the Lukurmata site, for which 
we have the widest time transect consisting of four individuals from 
between ca. 300 and 1500 CE. These individuals exhibit genetic 
similarity indicating that, over at least 12 centuries, no major genetic 
turnovers took place, despite the occurrence of substantial cultural 
and political changes. Earlier genetic studies of present-day South 
American populations, using either uniparental markers (28, 29) or 
genomic data (27), suggested that both precontact and present-day 
Central Andean populations were genetically homogeneous and 
characterized by high levels of gene flow between them. In contrast, 
we find little overlap between precontact individuals from central/
southern Peru and those from the Lake Titicaca basin (Figs. 2 and 
3). Our results corroborate the findings in (19) that also suggested 
homogeneity within distinct regions of the Central Andes during 
the past ca. 2000 years. However, contact between various parts of the 
Andes was not entirely absent, as shown by the individual from the 
Coropuna region who had affinity to northern Peru and an individual 
from the Totocachi site who showed genetic affinity to the populations 
from the south Peruvian Andes or northern Chile.

Given the genetic homogeneity of the Bolivian Altiplano popu-
lations, the group of individuals from the Tiwanaku ritual core 
stands out because of its diversity. We found that several individu-
als show a close affinity to the Titicaca basin population, whereas 
others show distinct or admixed ancestry. At the peak of its influ-
ence, the Tiwanaku state reached outside the Titicaca basin to the 
fertile valleys of Moquegua (southern Peru), Cochabamba (Bolivia), 
and Azapa (northern Chile) (Fig. 1C) (3, 4). A pronounced presence 
of foreign ceramic clusters found at the Tiwanaku site supports a 

scenario in which ethnic groups settled in particular compounds 
around the complex (1, 4). Previous studies based on strontium iso-
topes (17) and cranial modifications (18) suggested the presence of 
individuals from neighboring areas, probably from Tiwanaku-affiliated 
sites at the peripheries of the polity. The evidence for contacts with 
populations from farther away, such as Amazonia, has been much 
more limited and based solely on isolated artifacts like a jaguar ca-
nine necklace (4), iconographic representations of tropical lowland 
fauna (30), tropical botanical remains (31), and the consumption of 
lowland hallucinogenic substances (32). The on-site presence of an 
individual with entirely Amazonian ancestry (TW056), although it 
is only one individual in the rather special circumstance of sacrifi-
cial offering, demonstrates that contact between the Tiwanaku site 
and Amazonia was not limited to the exchange of goods but included 
the physical movement of people. Contacts with remote regions 
were further confirmed by the finding of two individuals (TW059 
and TW063) who showed a combination of Lake Titicaca basin and 
Amazonia and/or Gran Chaco ancestry. On the basis of the genomic 
data, we could not determine whether these individuals were al-
ready admixed incomers to Lake Titicaca basin or descendants of 
incomers and people with local ancestry. The latter scenario, in 
which the admixture between incomers and Titicaca individuals oc-
curred locally, seems more probable, considering that no signs of 
foreign genetic ancestry have hitherto been found in Titicaca basin 
individuals outside the Tiwanaku ritual core.

A crucial element for understanding of the organization of the 
Tiwanaku society and the eventual abandonment of the site is the 
interpretation of numerous coeval human remains surrounding 
the Akapana platform. The accumulation of ritual offerings can be 
interpreted as the public destruction of captives and ancestors of 
vanquished peoples by an emerging elite, as exemplified by the his-
torically described sacrifices in the Aztec capital after successful 
wars of conquest (33). This model carries the expectation that the 
sample will contain victims from various origins. TIW dataset con-
sisted of eight individuals associated with Akapana, five of whom had 
confirmed context at the base of the platform. All but one (I0976) of 
them trace their full ancestry to the Titicaca basin, although the ge-
netic homogeneity of Titicaca basin populations makes it impossi-
ble to track the provenance of these individuals precisely within the 
region. However, it is worth noting that they differ from individuals 
excavated at other parts of the ritual core, who show traces of more 
distant ancestries from outside the Titicaca basin. Direct radiocar-
bon dating puts most of the Akapana-associated individuals toward 
the end of the Tiwanaku phenomenon in the mid-10th century. 
This dating is too late to support the use of organized violence as a 
means of establishing and consolidating a hierarchy. Placed on allu-
via that had accumulated over a prepared surface associated with 
the base of the platform, they present a pattern more reminiscent of 
individual visitations and offerings to local sacred sites known as 
huacas (4). Perhaps, as the sociopolitical organization associated 
with the monuments lost power and/or the elites at Tiwanaku no 
longer had the capacity to hold big formal feasts and clean up after-
ward, groups of people could leave offerings at their own discretion.

There are documented cases where the intensification of human 
sacrifice, such as that observed at Tiwanaku, indicates a society that 
is in crisis and grasping for a solution (34). The manner and process 
of the abandonment of the site of Tiwanaku are a subject of debate, 
but some scholars consider the last portion of the 10th century as 
the beginning of a gradual or sharp slide toward the abandonment 
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of the site (35, 36). Some ascribe the end of the Tiwanaku site and, 
later, Tiwanaku culture to a long-term drought that started ca. 1100 CE, 
collapsing the raised field agricultural system (1, 2). Others find this 
explanation too environmentally deterministic and point to the fact 
that there is little evidence of Tiwanaku presence after 1000 CE, 
although the raised fields persisted for several centuries (37).

The new genomic and radiocarbon data reported here demon-
strate that, in the mostly static genetic landscape of the Central Andes, 
in which each region seems to have maintained an inner homoge-
neity with little exchange with outside populations, people from 
both neighboring valleys and places much further afield—even out-
side the direct influence of the polity—found their way to the Tiwanaku 
site. Although we may never know the reason why certain individ-
uals took or were taken for such a journey, our data suggest that 
they, and/or their descendants, left a trace at Tiwanaku. The con-
trasting local ancestry of the human remains associated with Akapana 
is an intriguing finding. It remains uncertain whether this offering 
selection was based on some provenance-based social stratification 
within the Tiwanaku polity, a result of a change in its sociopolitical 
organization, or whether the offered individuals were members of 
some adversarial political power within the Titicaca basin. Re-
solving this question would require more genetic, isotopic, and ar-
chaeological data from within the Tiwanaku site, as well as from 
Tiwanaku-influenced regions.

MATERIALS AND METHODS
DNA extraction and library preparation
Samples from a total of 93 individuals from modern-day Bolivia 
and Peru were selected for genetic analyses. These human remains 
originated from archaeological sites with contexts and chronologies 
relating to Tiwanaku or Inca cultures (dataset S1A).

All work with human remains, DNA extraction, and library 
preparation were performed in facilities dedicated to working with 
ancient DNA. The laboratory was ultraviolet (UV)–irradiated when 
not in use. We followed all protocols recommended to prevent sam-
ple contamination with modern DNA. DNA was extracted from 
teeth or long bones. The samples were washed with ultrapure water 
and UV-irradiated (245 nm) for 10 min on each side in a laminar 
flow cabinet and powdered in a cryogenic mill (SPEX CentriPrep). 
In addition, for some teeth, we tried drilling only cementum as de-
scribed in (23). We performed extraction following the protocol 
commonly used for retrieving short fragments of ancient DNA (38). 
Extractions were performed for up to 15 samples accompanied by 
negative controls.

Double-indexed sequencing libraries were constructed using 20 l 
of DNA extract according to the protocol proposed in (39) with 
the following minor modification: After blunt-end repair and fill-in 
steps, the enzymes were heat-inactivated for 20 min at 75° and 80°C, 
respectively. Every library had a unique pair of P7 and P5 indexes. 
The number of cycles in the indexing PCR was determined using 
quantitative polymerase chain reaction (qPCR) with primers I7 and 
I8 (39). Indexing PCR was performed using PfuTurbo Cx DNA 
polymerase (Agilent) and 10 l of DNA. Three independent PCRs 
were performed for each library to increase complexity. PCR prod-
ucts were pooled and purified using SPRI beads. For a few samples, 
we performed whole-genome enrichment using the myBaits WGE 
Human Kit (Arbor Biosciences) according to the manufacturer’s 
protocol (dataset S1B). Sequencing libraries were pooled in equimolar 

ratios and were sequenced on Illumina platforms: NextSeq550 
(HighOutput, 75 cycles, single-end; MidOutput, 150 cycles, paired-
end), HiSeq4000 (50 cycles, single-end), or NovaSeq6000 (S1, 100 cycles, 
single-end).

Radiocarbon dating
Radiocarbon dating was performed at the University of Waikato 
Radiocarbon Dating Laboratory (Wk) and the Poznan Radiocarbon 
Laboratory (dataset S1C). The quality and purity of the extracted 
collagen were assessed using its chemical composition (%N, %C, 
and C:N ratio). In the case of three individuals (TW020, TW027, 
and TW098), the amount of extracted collagen was sufficient only 
to perform accelerator measurement but not assessment of the chem-
ical composition of collagen nor measurement of stable isotope ratios. 
For these three individuals, the sole criterion of collagen quality was 
the gelatin yield, and this was above 0.5% in all three cases. The %C 
and %N values were in the accepted ranges for well-preserved ancient 
collagen (40) in all cases. The C:N ratio was in the acceptable range 
(2.9 to 3.6) in all but one individual (3.66 in CO193). In the case of this 
individual, we used a phalanx with mummified tissue for dating. The 
laboratory (Wk) reported that the slightly elevated C:N ratio may 
have resulted from the incomplete removal of tissue fragments during 
pretreatment. All dates were corrected for isotopic fractionation using 
accelerator mass spectrometry (AMS)–measured 13C values.

We measured the carbon and nitrogen isotopic ratios (13C and 
15N) to obtain information on the diet of the individuals studied 
(Supplementary Information Text and fig. S1). Measurements were 
made using isotope-ratio mass spectrometry at three laboratories 
(University of Waikato Radiocarbon Dating Laboratory; Stable Iso-
tope Laboratory at the Institute of Geological Sciences, Polish Acad-
emy of Sciences; and Institute of Geosciences at Goethe University). 
We did not find evidence of substantial consumption of freshwater 
fish, which could affect the calibration of radiocarbon dates. For 
calibration, we used the SHCal13 curve (41) in OxCal 4.3.2 (fig. S2) 
(42). In addition, because of air currents that probably affect the 
carbon concentrations by carrying air from the Northern Hemi-
sphere into the Titicaca region (43), we calibrated the dates using a 
mixed-curve model (dataset S1C). The median ages of three sam-
ples differed by more than 10 years and up to 60 years between the 
SHCal13 and the mixed-curve calibration. Throughout this study, 
we report SHCal13-calibrated dates, rounded to the nearest 10 years.

Data processing
Adapter sequences were trimmed, and paired-end reads were col-
lapsed using AdapterRemoval2 (44). The sequencing reads were 
mapped to human reference genome h37d5, applying the default 
parameters of the Burrows-Wheeler Aligner (BWA) mem algorithm 
(45). We used SAMtools (46) to remove duplicates. Only reads lon-
ger than 30 base pairs (bp) and with mapping quality over 30 were 
used in subsequent analyses. To minimize the impact of deamina-
tion on genotyping, we trimmed 7 bp from both ends of all reads 
using the trimBam tool from bamUtils (47).

Authentication
We used mapDamage 2.0 (48) to assess the damage and fragmenta-
tion patterns of the obtained sequencing reads. Contamination with 
present-day human DNA was estimated using schmutzi (49) and 
contamMix (50). In addition, for male individuals, we investigated 
nuclear contamination based on polymorphic sites on the X chromosome 
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using ANGSD (51). We set the minimum base quality to 30 and the 
minimum mapping quality to 30; other parameters were left at the 
default. Last, for both females and males, we estimated autosomal 
contamination using ContamLD version 1.0 (52) (estimate based 
on breakdown of the linkage disequilibrium). For ContamLD anal-
yses, default settings were used with PEL as a reference population 
for all samples. All contamination results are reported in dataset S1B.

Sex determination
The genetic sex of each individual was determined by calculating 
the ratio of sequence reads aligning to the X and Y chromosomes, as 
described in (53). We also compared the coverage of the X and Y 
chromosomes with the coverage of autosomal chromosomes, as de-
scribed in (54).

Genotyping and datasets
Genotypes were called by choosing one random read for every SNP 
from the 1240K SNP list (55) using the script pileupCaller, a part of 
sequenceTools (https://github.com/stschiff/sequenceTools). The 
analyzed individuals yielded between 142,180 and 926,465 SNPs 
overlapping with the 1240K set (dataset S1B). These data were 
merged with the available modern and ancient genome data from 
South America (dataset S1D) (19, 27, 56–59). Because present-day 
genotypes were obtained using various techniques, including shot-
gun sequencing and different Illumina microarrays, the final inter-
section resulted in 199,175 SNPs in common. The number of SNPs 
intersected in the samples from this study ranged from 24,601 to 
161,748 (dataset S1B). In downstream analyses, we used published 
ancient genomes that yielded more than 20,000 SNPs and were dated 
to the past 2000 years (dataset S1D). The exception was an individ-
ual I0977 from Tiwanaku (19) with 11,710 overlapping SNPs.

Genetic affinities
We computed PCA using the smartpca script from the EIGENSOFT 
package (60) applying lsqproject=YES and shrinkmode=YES op-
tions. Ancient individuals were projected on a PC plot computed 
using 37 modern unadmixed South American populations (dataset 
S1D). To investigate the genetic structure of the Tiwanaku popula-
tions, we performed an unsupervised admixture analysis using 
ADMIXTURE (61). Before the ADMIXTURE analysis, we pruned 
genotypes for minor allele frequency below 0.01 (--maf 0.01) and 
linkage disequilibrium using a window size of 200, a step size of 5, 
and an R2 threshold of 0.5 using plink (--indep-pairwise 200 5 0.5) 
(62). Following these pruning steps, we retained 100,290 SNPs. 
Every individual from this study met the requirement of minimum 
10,000 SNPs and was used in this analysis. We ran five replicates for 
each value of K (K = 2 to K = 15), and the optimal K was chosen on 
the basis of the lowest cross-validation error.

Ancestry modeling
Outgroup f3-statistics were estimated using qp3pop from ADMIXTOOLS 
(63) in the form f3(Ind, Test, Mbuti). In all calculations, we ascribed 
each of the individuals analyzed in this study as Ind and every other 
individual/population from the dataset as Test (dataset S1D). Higher 
f3-value means a higher genetic affinity between two tested individ-
uals or between an individual and a population. All obtained values 
were plotted using the ggplot2 package in R (fig. S4). We created a 
dissimilarity matrix from the f3-statistics, calculating the 1-f3 values. 
We performed MDS using the cmdscale and plotted the principal 

coordinates. We generated a neighbor-joining tree using PHYLIP (64) 
and used the ancient Beringian individual USA_USR1_AncientBeringian_ 
11400BP.SG as an outgroup (65).

The R package admixR (66), which uses the ADMIXTOOLS 
software suite, was used to calculate f4-statistics and for qpWave 
and qpAdm modeling. SEs were computed using a jackknife block 
size of 0.050. We used qpWave (version: 600) to determine the min-
imum number of ancestry sources for each individual and groups of 
individuals using ancient and modern populations (dataset S1D). 
The same populations were used as a left (“Source”) in qpAdm 
modeling (version: 1000, allsnps:YES). A “rotating” strategy was 
used to set the right (“Reference”) populations, as suggested in (67). 
In this strategy, the basic set of reference populations included 
Argentina_ArroyoSeco2_7700BP, Peru_Cuncaicha_4200BP, Peru_
Lauricocha_3500BP, Brazil_LapaDoSanto_9600BP, and Wichi as 
well as all the populations from the Source list, except for the one 
population used as a Source in the particular estimation. Under this 
rotating approach, populations are consistently moved from the 
Source set to the set of Reference populations.

Mitochondrial DNA and Y-chromosome haplotyping
For every studied individual, we obtained a complete sequence of 
mitochondrial genome. The sequencing reads were mapped to a 
reference mitochondrial DNA sequence (rCRS, NC_012920) using 
BWA mem. Several programs from SAMtools (46) were used to re-
move sequences shorter than 30 bp that had mapping quality under 
30 and that were duplicates. Variants and consensus sequences 
were called using bcftools (46). Positions with coverage below 3 
were masked. BAM files were manually checked using Tablet (68). 
Nucleotide positions 309 to 311, 523 to 524, 3107, 8271 to 8279, 
16,182, and 16183 were masked and omitted in haplogroup calls. 
The obtained mitochondrial genomes were assigned to haplogroups 
using Haplogrep2 (Phylotree 17) (69). Y-chromosome haplogroups 
were determined using Yleaf v2.1 (70).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg7261
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