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Abstract

We propose a framework to understand the distribution of individual well-
being and its change over time with an application to the U.S. elderly population.
Using data from the Health and Retirement Study, we estimate life-cycle dyna-
mics and simulate individual outcome paths starting from age sixty. We use an
expected utility framework and the simulated profiles to construct a measure of
individual welfare that incorporates differences in consumption, leisure, health,
and mortality. Our measure suggests substantial variation in welfare across in-
dividuals driven foremost by gaps in health and mortality followed by gaps in
consumption. Incorporating the utility cost of living with poor health into elderly
welfare substantially increases overall inequality. Elderly welfare inequality has
increased over time due to growing gaps in consumption, health, and mortality.
Disparity measures based on cross-sectional income or consumption at age sixty
underestimate aggregate welfare inequality. Moreover, health at age sixty is a
better indicator of individual well-being rank than income or consumption.
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1 Introduction
Inequality has been a subject of great interest to researchers and policymakers on
grounds of both fairness and potential consequences.1 However, the most widely used
disparity measures are often based on either income or consumption which provide
an incomplete metric of social welfare inequality. Leisure, health, social interactions,
political and natural environments, and other factors have all been linked to indivi-
dual well-being. Moreover, strong socioeconomic gradients have been found in related
metrics such as life expectancy (Chetty et al., 2016). Given the potential correlation
across these factors, a more comprehensive understanding of social welfare and its
distribution has significant implications for policy evaluation and prioritization.

We provide a framework to understand how economic circumstances, health, and
mortality jointly influence the dispersion of welfare in a given population. Using stan-
dard expected utility theory and microsimulations from a model of life-cycle dynamics,
we construct a measure of well-being at the individual level—measured as an ex-ante
consumption equivalent. This allows us to analyze the entire distribution of welfare.
Our measure is based on comparing expected lifetime utility across individuals of a
given age. We incorporate differences in the uncertain evolution of consumption, lei-
sure, health, and mortality over remaining life, providing a more complete measure of
well-being than consumption or life expectancy alone.

We apply our methods to estimate the welfare distribution among sixty year olds in
the U.S. using data from the Heath and Retirement Study (HRS). As our measure at
sixty incorporates individual expectations about outcomes over the entirety of remai-
ning life, it provides a useful single metric of ex-ante elderly well-being. For example,
we intend to understand questions such as: how much better do we expect remaining
life to be for the median sixty year old in the U.S., compared to the sixty year old
who is the worst off? Moreover, how much of the difference in well-being is driven by
expected gaps in consumption versus gaps in leisure or health? With these questions in
mind, we refer to our measure of well-being as elderly welfare, though strictly speaking
we are referring to ex-ante welfare at age sixty.

We conduct our analysis on multiple cohorts in the HRS to examine how the dis-
tribution of elderly welfare has changed over time. While income and consumption
inequality have increased in the United States over the past three decades, the im-
plications for the distribution of individual welfare are unclear.2 Growing economic
inequality may overstate welfare disparities if, for example, some of the effects are mi-
tigated through improvements in public health and health equity. The opposite may be

1Fairness is tied to the importance of luck in determining well-being (see Rawls (1971); Dworkin
(1985); Roemer (1998)). Inequality has been directly tied to a wide range of outcomes including educa-
tion, crime, economic growth and mobility, civic engagement, and political influence and polarization.
See Kenworthy (2008) for a comprehensive literature review.

2See Piketty and Saez (2014); Heathcote et al. (2010); Autor et al. (2008); Katz et al. (1999); Gott-
schalk et al. (1994) for evidence on income inequality and Attanasio and Pistaferri (2014); Attanasio
et al. (2014, 2010); Cutler and Katz (1992) for consumption.
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true if health gains accrue disproportionately to the financially well-off, making chan-
ges in welfare inequality larger than what would be suggested by economic variables
alone.

The influence of health on welfare inequality is particularly relevant among the
elderly where most health differences are concentrated (Deaton and Paxson, 1998).
Compression of morbidity in the elderly U.S. population (Cutler et al., 2013) has been
accompanied by evidence of a strong socioeconomic gradient in disability incidence
rates in later life (Minkler et al., 2006). More generally, recent evidence suggests that
there has been a widening gap in life expectancy and an increase in the socioeconomic
gradient of mortality rates.3 Our focus on the elderly is further motivated by the rapid
aging of the U.S. population—more than 20% of people are estimated to be aged 65
and older by 2050 (Colby et al., 2015).

Our approach to welfare analysis can be summarized in three broad steps. First,
we propose a “welfare model” for evaluating individual well-being using an expected
utility framework. This model accounts for the impact of consumption, leisure, he-
alth, and mortality on well-being and provides a simple analytic decomposition of the
contribution of each channel. Next, we propose a dynamic system of equations to ap-
proximate the joint evolution of outcomes over the elderly life-cycle. The parameters of
the system are estimated using HRS data and a mix of multivariate probit and linear
dynamic panel data estimators. Finally, using the estimated system and data from a
subset of HRS respondents as initial conditions, we repeatedly simulate potential out-
come paths. These paths are embedded in the welfare model to compute an ex-ante
measure of well-being for each individual in our sample at age sixty.

We measure welfare of a given individual in consumption equivalents; how much
consumption would have to increase/decrease across the remaining lifetime of a refe-
rence person to yield the same expected level of utility as that obtained by the current
and potential future outcome bundles of the given individual. In our empirical appli-
cation, we compare consumption equivalents computed for each individual at the age
of sixty using the individual with the median utility ranking as our reference person.
This measure incorporates all expected inequalities in outcomes across individuals over
their remaining lives. It also accounts for welfare costs of uncertainty in outcomes after
sixty, providing a useful metric of ex-ante elderly welfare.

The most salient findings of our analysis can be summarized as follows:

1. There is substantial variation in the ex-ante welfare of individuals at age sixty.
The Gini coefficient for consumption-equivalent welfare in our benchmark cohort
is 0.66. Those at the ninetieth percentile of the welfare distribution have 23 times
higher welfare than those at the tenth percentile.

2. Health differences have important implications for the distribution of elderly well-
being. Excluding the utility cost of living with poor health and morbidities lowers

3See, for example, Chetty et al. 2016; Currie and Schwandt 2016; National Academies of Sciences,
Engineering, and Medicine 2015; Pijoan-Mas and Ríos-Rull 2014; Meara et al. 2008
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our welfare Gini coefficient by 23%. It significantly under-predicts relative welfare
for those in the top end of the distribution and over-predicts for those at the
bottom. This is driven by a positive correlation between health, consumption,
and mortality.

3. The largest drivers of elderly welfare inequality are health and mortality gaps
followed by gaps in consumption. Differences in leisure play a comparatively
minor role.

4. Welfare inequality among the elderly has increased over time due to growing gaps
in consumption, health, and mortality. Compared to the cohort of individuals
reaching age sixty between 1992-2001, the welfare Gini rose 9% for those reaching
sixty between 2002-07 and 22% for those reaching between 2008-14.

5. Ignoring dynamic uncertainty and the persistence in outcomes over the life-cycle
greatly underestimates welfare inequality. The Gini of age sixty flow utility is
only 70% of that based on our dynamic welfare measure.

A key implication of our results is that cross-sectional distributions of income and
consumption underestimate aggregate welfare inequality at age sixty. This occurs for
two primary reasons. First, cross-sectional measures ignore dynamic uncertainty and
the persistence of inequality over remaining life. Second, there is a positive correlation
between health and consumption, implying those with high consumption also enjoy
better health and longer lives on average. However, even in cases where economic out-
comes provide a reasonable approximation to aggregate welfare inequality, our results
suggest they may still provide a poor ranking of individual well-being. For example,
the rank correlation between consumption and welfare is a relatively modest 0.56 for
our benchmark cohort. Moreover, we find cross-sectional health utility at age sixty
to be a better predictor of remaining lifetime welfare rank, despite the fact that it
drastically underestimates aggregate welfare inequality.

Our paper builds on a large body of work attempting to extend measures of welfare
beyond income (see Fleurbaey (2009) for an extensive review). Recent examples include
Becker et al. (2005) who combine national income and expected longevity in a utility
framework to examine the changes in cross-country inequality over time. Fleurbaey
and Gaulier (2009) extend this work by examining level differences across countries and
incorporating leisure, health-adjusted life expectancy, and aggregate inequality. Our
welfare framework builds on recent work by Jones and Klenow (2016) who construct
an alternate cross-country measure of economic well-being. Our work is different from
these papers along many dimensions. Most notably, by using longitudinal data and
estimating the joint dynamic process of outcomes, we are able to construct welfare at
the individual as opposed to aggregate level. Moreover, we explicitly allow for health
to affect individual welfare by mapping subjective and objective measures directly into
utility. We also focus on the U.S. elderly and examine inequality evolution over birth
cohorts as opposed to cross-sectional changes over time.
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Our paper is also more broadly tied to the literature measuring economic well-
being at older ages. Using HRS data, Hurd and Rohwedder (2007) find that income
based poverty rates underestimate economic well-being of the elderly compared to
consumption based measures. Crystal and Shea (1990) argue that despite the increased
presence of social safety nets at older ages, economic inequalities are exacerbated with
aging due to the accumulation of “economic advantages and disadvantages” over the
entire life-course. Using longitudinal data, Crystal and Waehrer (1996) likewise find
that income inequality rises within cohorts as they age, but also document considerable
mobility in relative income position. More recently, Bosworth et al. (2016) document
that income inequality has increased for the elderly over the past three decades, though
more slowly than among the non-elderly perhaps due to wider availability of social
safety nets at older ages. We contribute to this line of research by providing estimates
of elderly well-being that incorporates consumption, leisure, and health into a single
measure rooted in economic and health theory.

Several limitations to our approach warrant mentioning at the outset. First, we do
not explicitly account for morbidity spillover effects such as the cost of caregiver time
and the numerous costs associated with the loss of a spouse. Likewise, we abstract
from other potentially important inputs into elderly welfare such as social interacti-
ons, bequests, and end-of-life care. Second, we estimate welfare based on common
preferences. Considering heterogeneity across individual’s preferences could reduce the
welfare costs of inequality along some components. Finally, we assume institutions
and relevant policies remain fixed moving forward. Significant anticipated changes to
Social Security or Medicare programs in the future, for example, could alter our welfare
measure, particularly for the younger cohorts we study.

The remainder of the paper is organized as follows. Section 2 outlines the theory
including our models of welfare and life-cycle dynamics. Section 3 provides details of
the data and empirical methods used in our analysis. Section 4 discusses our welfare
results including robustness to alternate modeling assumptions. Finally, section 5
provides concluding remarks.

2 Theory
This section outlines the expected utility framework used in the welfare analysis and
the life-cycle dynamics model used for estimating consumption, leisure, morbidity and
mortality profiles.

2.1 Welfare model
Our welfare concept aims to compare well-being across individuals of a given age j.
These individuals may differ along many dimensions due to their childhood environ-
ment, education, occupation, previous health behaviors, and numerous other factors.
We define individual welfare based on observed outcomes at age j and the potential
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realization of outcomes in the future based on these multi-dimensional differences. Alt-
hough individuals are heterogeneous, we make welfare comparisons through a common
preference specification. These preferences are defined by an expected lifetime utility
at age j given by:

E

 J∑
a=j

ψaβ
a−ju (ca, la, ha)


where c is consumption, l leisure, h health, and ψ survival probability. Expectations
are taken with respect to the uncertainty in the evolution of consumption, leisure,
health, and mortality probability after age j.

We use a consumption-equivalent variation (EV) measure to quantify welfare dif-
ferences across individuals. This approach requires choosing a reference person as the
basis for our welfare comparisons. Welfare λij is then the proportion of the reference
individual’s consumption that must be maintained at every age starting from j (in
all possible realizations of the world and holding health and leisure fixed) that would
make them indifferent to facing the current and potential future outcome bundles of
individual i. For example, if person i is relatively poor and unhealthy, we may have
a welfare measure λij = 0.3. This implies the reference individual would be ex-ante
indifferent between maintaining 30% of their own consumption every period from age
j or receiving the outcome bundle of person i at age j and facing person i’s stochastic
evolution of consumption, leisure, health, and mortality profiles moving forward. As
this measure is based on potential outcomes over the remaining life, it encompasses the
cross-sectional inequality in outcomes at age j as well as the likelihood of persistence
and emergence of inequalities in future outcomes.

Let Uij (λ) denote the expected lifetime utility at age j from the outcome bundles
of individual i if consumption is multiplied by a factor λ at each age and realization of
the world:

Uij (λ) = E

 J∑
a=j

ψiaβ
a−ju (λcia, lia, hia)

 .
The consumption-equivalent variation measure of welfare for individual i, λij, is derived
through the condition:

Umj (λij) = Uij (1) (1)

where Umj refers to the expected lifetime utility from the outcome bundles of the
reference individual.

In our benchmark model we assume that preferences are additively separable bet-
ween consumption and leisure and non-separable between health and the consumption-
leisure composite. The flow utility takes the following form:

u (c, l, h) = φ (h) [ū+ log (c) + ν (l)] . (2)
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The additive separability between consumption and leisure allows for a simple decom-
position of welfare effects but we check the robustness of our results to more general
preferences. Our treatment of health in the utility function follows from a large litera-
ture on quality-adjusted life years (QALYs) going back to the works of Klarman and
Rosenthal (1968); Fanshel and Bush (1970); Torrance et al. (1972); and Zeckhauser
and Shepard (1976). The central assumption is that health utility is a function of both
the length and quality of life. The QALY literature provides a framework to combine
these two aspects of health in a single index. Accordingly, preferences over health are
chosen such that period utility from whatever is regarded as the best possible health
state or “full health” equals one. In our framework, health function φ (h) ∈ [0, 1] scales
the utility from consumption and leisure such that φ (h) = 1 represents utility in the
perfect health state and φ (h) = 0 represents the dead state. At the same time, ψφ (h)
represents a measure of QALYs. For instance, ψφ (h) = 1 represents a year of life with
no morbidity; a single QALY.

Under preferences given in (2), welfare condition (1) may be rewritten:

log (λij) = ψ̃ (Uij (1)− Umj (1)) (3)

where ψ̃ is the reciprocal of discounted quality-adjusted life expectancy (QALE) of the
reference individual:

ψ̃ = 1
E
[∑J

a=j ψmaβ
a−jφ (hma)

] .
Let uia denote flow utility unadjusted for health at age a given outcome bundles i:
[ū+ log (cia) + ν (lia)]. Adding and subtracting the discounted sum ofE [ψiaφ (hia)]E [uia]
and E [ψmaφ (hma)] (E [uia]− E [uma]) from the right-hand side of (3) yields the follo-
wing additive decomposition of welfare:

log (λij) =ψ̃
J∑
a=j

βa−j [(E [ψiaφ (hia)]− E [ψmaφ (hma)])E [uia] + Φ] QALE (4)

+ ψ̃
J∑
a=j

βa−jE [ψmaφ (hma)] (E [log (cia)]− E [log (cma)]) Cons. (5)

+ ψ̃
J∑
a=j

βa−jE [ψmaφ (hma)] (E [ν (lia)]− E [ν (lma)]) . Leisure (6)

where

Φ = (E [ψiaφ (hia)uia]− E [ψiaφ (hia)]E [uia])
− (E [ψmaφ (hma)uma]− E [ψmaφ (hma)]E [uma]) .

The first term in (4) is the the difference in quality-adjusted life expectancy weighted
by how much a healthy life year is worth—the expected flow utility from outcome
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bundles of individual i. The Φ term is an adjustment for the uncertainty of health and
mortality over the life-cycle. Combined these provide the approximate contribution to
welfare of health and mortality relative to the reference individual. The final two terms
give the utility difference in consumption (5) and leisure (6) weighted by the quality-
adjusted life expectancy of the reference individual. These provide the approximate
contributions of consumption and leisure to welfare.

2.2 Life-cycle dynamics model
Our expected lifetime utility approach to welfare requires the knowledge of all possi-
ble life-cycle path realizations for an individual. As only the realized outcome path
is observable in any longitudinal data set, we estimate a life-cycle dynamics model to
approximate the joint evolutionary process of consumption, leisure, health, and mor-
tality over time. In our application to the U.S. elderly population, we use the model
to simulate counterfactual outcome paths for each individual.

We define leisure as time not spent in the labor market. As our empirical focus
is on individuals nearing the end of working life, we limit labor considerations to the
extensive margin by modeling an absorbing retirement decision (R).4 Health at time t
is defined by state vector ht = {Mt, st} where M is a vector of indicators for a number
of absorbing morbidity conditions (e.g. ever diagnosed with diabetes, heart disease,
etc.) and s is a measure of general health (e.g. self-rated health).

Probit regression models are used to estimate the probabilities of entering the ab-
sorbing retirement, morbidity, and death states. Standard linear dynamic panel models
are used to estimate the life-cycle evolution of consumption and general health. Before
we lay out our dynamic model in detail, some clarification on notation is in order.
Included in all of our model equations are dummy indicators for age (µ), an equation
specific linear time trend (t), and a 2008 indicator (P ) to help control for the influence
of the great recession on outcomes. In modeling absorbing states, we include a vector of
observed time invariant individual characteristics (X). In the linear model for general
health we include a time invariant individual unobserved “health endowment” (ν) and
in the consumption model an unobserved “SES endowment” (π).5 These endowments
are modeled as fixed effects with no restriction on their correlation with other model
regressors. While the unobserved endowments are identified from the panel structure
of the linear models, we also include them as additional independent predictors in all
absorbing state models.6

4An extended model may include the intensive margin, partial retirement, and/or reentry into the
workforce but this comes with additional model complexity. Moreover, we find relatively small effects
of leisure on welfare in our empirical analysis and retirement is likely to be the first-order leisure effect
for this age group.

5The unobserved individual effect helps maintain the appropriate variance in health and consump-
tion across time by effectively acting as a person specific drift in the auto-regressive processes.

6As many individuals never enter a given absorbing state in the data, it is not possible to estimate
unique unobserved fixed effects for each individual for each absorbing state. As these estimates would
be required for our simulations, we do not include additional unobserved fixed effects in absorbing
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Conditional on being alive at time t− 1, survival to the following period of life for
individual i of age a is modeled as:

ψiat = I

Kψ∑
k=1

γψk hi,t−k + µψa + δψt+ ζψPt + βψXi + αψνi + κψπi + εψiat > 0
 (7)

where I (.) is an indicator function, h a lagged health state vector, and εψ an iid random
shock with standard normal distribution. Coefficient vector γψk allows the kth lag of the
health state vector to effect the current probability of survival. Including multiple lags
allows the onset of morbidities to have differential effects over time. For example, the
recent onset of diabetes may alter the probability of death more than if an individual
has been living with diabetes for an extended period of time.

Following a similar logic, the probability of realizing a given morbidity state is
allowed to depend on multiple lags of all other morbidities. Specifically, conditional on
survival to time t, each morbidity condition mq ∈M is modeled as:

mqiat = I

(
Km∑
k=1

γmqkM
q′

i,t−k + µmqa + δmq t+ ζmq Pt + βmq Xi + αmνi + κmπi + εmqiat > 0
)

(8)

where I (.) is an indicator function, M q′ a lagged vector of all q′ 6= q morbidities, and
εm is a random shock. While εm is assumed independent across individuals and time,
we allow an individual’s shocks to be contemporaneously correlated across morbidity
states (i.e. cov

(
εmqiat, ε

m
q′iat

)
6= 0). Contemporaneous morbidity shocks are assumed to

follow a standard multivariate normal distribution with an M ×M covariance matrix
given by Σ.

Given the realizations of morbidity states at time t, the evolution of general health
takes the following form:

siat =
Ks∑
k=1

γsksi,t−k +
Kd∑
k=0

γsmk Mi,t−k + µsa + δst+ ζsPt + νi + εsiat (9)

where νi is the unobserved health endowment and εs an iid shock distributed N (0, σ2
s).

The inclusion of lagged values of general health incorporates the persistence in general
health shocks over the life-course. Morbidities are allowed to influence general health
through lags as well as contemporaneously.

Turning to labor supply, conditional on working at time t− 1, retirement the follo-
wing period is modeled as:

Riat = I

(
Kr∑
k=1

γrkhi,t−k + µra + δrt+ ζrPt + βrXi + αrνi + κrπi + εriat > 0
)

(10)

where εr is an iid shock drawn from a standard normal distribution. Similar to survival,
lagged values of health (both general and specific morbidities) are allowed to influence

state models.
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the probability of retirement. This is important given the evidence that health effects
the retirement decision (Currie and Madrian, 1999).

Lastly, period t consumption depends on lagged consumption, retirement status,
and contemporaneous and lagged values of health:

log (ciat) =
Kc∑
k=1

γcklog (ci,t−k) +
Kch∑
k=0

γchk hi,t−k + γcrRit + µca + δct+ ζcPt + πi + εciat (11)

where πi is the unobserved SES endowment and εc an iid shock distributed N (0, σ2
c ).

This specification is consistent with evidence that consumption declines with retire-
ment (Hall, 2009). Allowing health to influence the evolution of consumption is also
important given the evidence that health impacts economic outcomes, particularly at
older ages (Smith, 1999). In contrast, the effects of economic status on health appear
concentrated during childhood and young adulthood when health trajectories are being
established (Smith, 1999).

3 Data and methods
Equipped with our theoretical framework, our empirical analysis involves three broad
steps.

1. We use data from the HRS to estimate the parameters of the life-cycle dynamics
model. Here we use data on all individuals aged fifty and older from all available
waves of the HRS from 1992-2014.

2. Using the parameter estimates and age sixty data as initial conditions, we repea-
tedly simulate remaining life-cycle shocks to mortality, health, consumption, and
leisure for a sub-sample of the HRS respondents. This simulation sample includes
all individuals with age sixty data and requisite lagged data for simulations.

3. We embed the simulated data within our expected utility framework to construct
a measure of ex-ante welfare at age sixty for each individual in our simulation
sample.

Our choice of age sixty for welfare comparisons is primarily driven by empirical consi-
derations. It provides a large enough sub-sample for analysis across three broad birth
cohorts included in the HRS after accounting for the sampling design of the survey
and lagged data requirements of our dynamic model. We compute the distribution of
elderly welfare within a birth cohort as well as compare welfare distributions across
cohorts to examine how it has changed over time. The remainder of this section details
the data used in our analysis, estimation and simulation of the dynamic model, and
calibration of parameters used in the welfare model.
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3.1 Data
The HRS is a longitudinal panel study surveying individuals in the U.S. over the age
of fifty and their spouses on a biennial basis. The study consists of five primary birth
cohorts—the initial HRS cohort (born 1931-1941), AHEAD cohort (born before 1924),
Children of Depression (born 1924-1930), War Babies (born 1942-1947), and Baby
Boomers (born 1948-1959).7 The core survey was conducted on alternate years starting
from 1992 for the initial HRS cohort with the other cohorts added over subsequent
waves of the survey. As such, a model period corresponds to be two calendar years and
individuals are grouped in two-year age intervals. To be clear, our welfare measure is
constructed for each individual at age sixty or sixty-one, though our model makes no
distinction between the two and for brevity we refer to this as welfare at age sixty.

We use the cleaned RAND HRS data file (v.P), available through the HRS website,
to obtain data on health, work, and other individual characteristics from 1992 to 2014.8
We define retired individuals as those reporting less than 500 annual hours of work in
the current or any previous survey wave.9 As fixed characteristics (Xi) in our morbidity,
mortality, and retirement models we use indicators for gender, education level, race,
census division, census occupation code, and birth cohort.

Our primary morbidity measures include eight binary indicators for ever having
been diagnosed by a doctor with the following health problems—(1) high blood pres-
sure or hypertension; (2) diabetes or high blood sugar; (3) cancer or a malignant tumor
of any kind except skin cancer; (4) chronic lung disease except asthma such as chronic
bronchitis or emphysema; (5) heart attack, coronary heart disease, angina, congestive
heart failure, or other heart problems; (6) stroke or transient ischemic attack (TIA);
(7) emotional, nervous, or psychiatric problems; and (8) arthritis or rheumatism. As
a final measure of morbidity, we include an indicator for ever reported difficulty with
any activity of daily living (ADL). Difficulty with ADLs are a commonly used morbi-
dity metric among the elderly and include activities such as walking across the room,
bathing, and getting dressed. Finally, as our general health measure (s) we use self-
rated health status reported on a five-point scale from poor (one) to excellent (five).
Self-rated health has been shown to be predictive of mortality, even after controlling
for other health conditions and socioeconomic characteristics (Idler and Benyamini,
1997).

Consumption data comes from the Consumption and Activities Mail Survey (CAMS).
From 2001, the CAMS was sent to a random sub-sample of HRS participants during off
years of the core survey. We use the cleaned RAND CAMS data file (v.D2) containing
annual consumption data from 2001-2011. An estimate of total household consump-

7Baby Boomers are split into two groups by the HRS (early and mid) but we group them together
as very few mid Baby Boomers have the lagged data required for estimation of the dynamic model or
simulations.

8Data available at http://hrsonline.isr.umich.edu.
9 We combine data on weekly hours worked and weeks worked per year to estimate annual hours

worked.
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tion is provided inclusive of durables, non-durables, housing, and transportation. We
subtract out-of-pocket health spending to create an adjusted measure of household
consumption.10 We use this adjusted household consumption divided by the number
of household members as our individual consumption measure.11 As consumption data
is only available in between the core HRS waves, we merge each CAMS wave with the
HRS core data from the previous wave.12 One of the biggest challenges to our analysis
is that consumption data is missing for all waves before 2000 and after 2010 and for
about 80% of the HRS sample from 2000-2010. However, closely related data is availa-
ble across all survey waves including detailed measures of wealth and income. We use
this additional information to address the missing consumption data issue by using the
multiple imputation method proposed by Honaker and King (2010) for cross-sectional
time-series data (see appendix A for details).

The pooled sample used to estimate the dynamic model includes all individuals
born prior to 1960 and aged fifty and over at the time of the survey. This consists
of 35,889 unique individuals and 216,626 total individual-year observations. Table 1
shows descriptive statistics for modeled outcomes for each cohort in the HRS (additi-
onal descriptives shown in appendix Table 12). Incidence of each morbidity state was
substantial among respondents, allowing for relatively precise estimates of their effects
on dynamic processes. However, there was still significant variation in incidence rates
across morbidity states. For example, in the HRS cohort, over 50% of observations
reported arthritis while only 6% reported having suffered a stroke. In terms labor
supply, share of retired individuals ranged from 26% in the most recent Baby Boomer
cohort to 94% in the (much older) AHEAD cohort. Annual real consumption averaged
between $23-$29,000 across cohorts.

Modeling the evolution of outcomes in our dynamic framework allows us to disen-
tangle the age and cohort effects present in the observed data. This enables us to isolate
welfare differences across individuals and over time. The dependency structure of our
life-cycle dynamics model is motivated by the observed correlations in consumption,
health, and labor supply found in the data (see Figure 1). There are positive associ-
ations of varying strength across morbidities highlighting the importance of modeling
their evolution jointly. Morbidity states have a strong negative correlation with self-
rated health and a more modest positive association with retirement. Consumption
is positively associated with self-rated health and negatively associated with retire-
ment and all morbidities except cancer. Cancer is the clear outlier with the weakest
co-morbidity correlations and a small positive correlation with consumption.

The positive relationship between self-rated health and consumption—and negative
relationship with morbidities—suggests using consumption as the sole basis of a well-
being metric could understate the inequality among the elderly. On the other hand,
the negative association between consumption and retirement suggests a possible over-

10Health spending includes health insurance, medication, health services, and medial supplies.
11We use the CPI-U to convert all waves to 2010 dollars.
12This is the recommended procedure for use of the RAND CAMS data file and is also consistent

with the time structure of our dynamic model.
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Table 1: Estimation sample descriptive statistics by cohort

AHEAD CODA HRS WB BB

Individuals 7,758 4,231 10,498 3,615 9,787
Observations 36,896 27,522 88,450 26,805 36,953
Age (mean) 81.59 75.02 64.44 59.63 56.08
Hypertension (%) 54.31 57.01 49.28 45.97 42.94
Diabetes (%) 14.74 18.14 16.42 16.65 16.07
Cancer (%) 17.38 17.39 12.14 10.46 7.38
Lung disease (%) 9.79 10.40 8.85 7.03 6.62
Heart disease (%) 35.92 30.01 20.47 15.85 12.75
Stroke (%) 15.21 12.00 6.02 5.11 3.43
Psyche problem (%) 11.47 11.86 11.66 16.52 18.85
Arthritis (%) 55.42 60.64 53.62 48.88 41.29
Difficulty with ADLs (%) 39.34 28.25 20.38 20.51 16.51
Self-rated health (mean) 2.87 3.06 3.26 3.35 3.33
Retired (%) 93.90 88.45 64.09 48.05 31.58
Annual consumption ($1000s, mean) 23.52 26.02 28.21 29.30 27.15
Notes: Mean and percentage estimates use base year sampling weights. Children of the Depression
denoted by CODA, War Babies by WB, and Baby Boomers by BB. Consumption is reported in real
2010 dollars.
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Figure 1: Outcome correlations

statement of welfare inequality as those with low consumption may enjoy more leisure.
Our welfare model allows us to gauge the relative strength of these channels.
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3.2 Estimation and simulation of life-cycle dynamics
The dependency structure in models (7)-(11) does not introduce simultaneity into the
system allowing for equation-by-equation estimation for all models with iid shocks.
Self-rated health is treated as a continuous measure allowing models for general health
(9) and consumption (11) to follow the structure of a standard linear dynamic panel
data model with lagged dependent variables and individual level fixed effects. It is
well known that OLS estimates of such models suffer from Nickell (1981) bias. As a
bias correction, we use the bootstrap-based method proposed by Everaert and Pozzi
(2007).13 Our modeling approach assumes shocks to be serially uncorrelated. Allowing
for a single period lag (two calendar years) of health on consumption (Kch = 1) and
two lags (four years) for all other variables (Kc = Ks = Kd = 2) is sufficient to meet
this requirement.14

Turning to absorbing states, models for mortality (7) and retirement (10) are esti-
mated independently using standard probit regressions. The evolution of morbidities
described by equation (8) follows a multivariate probit structure with correlated shocks.
Given our large number of observations and binary morbidity outcomes, we estimate
the multivariate probit model via the computationally feasible method of using a chain
of bivariate probit estimators proposed by Mullahy (2016). Finally, we use two lags
of independent variables in the absorbing state models for consistency with the linear
models for health and consumption (Kψ = Km = Kr = 2).

3.2.1 Estimation results

Select estimation results are provided in Figure 2 while the full set of results are
shown in Tables 13-15 in appendix B. The first two columns in Figure 2 provide the
estimated contemporaneous association between morbidity states, self-rated health,
and consumption. The final two columns provide the association between current
health states and the odds of retirement/mortality the following period.

Outcomes evolve through the system in interdependent ways. Take the case of
heart disease and consumption. Heart disease has a small contemporaneous direct
association with log consumption with a point estimate of 0.007. However, heart disease
is associated with a decline in self-rated health of 0.324. A unit decline in self-rated
health in turn lowers consumption by 0.039 log points. The net contemporaneous
impact of the onset of heart disease is thus a decline in consumption of about 2%
(0.007 + 0.324× 0.039). Moreover, these relationships continue to evolve dynamically
throughout the system over time (see impulse response Figure 11 in appendix B which
demonstrates the dynamic relationships for heart disease).

As with heart disease, each morbidity has a strong negative association with self-
rated health. In turn, lower self-rated health is associated with a significant increase

13We implement the bootstrap with De Vos et al. (2015) Stata routine xtbcfe.
14First order autocorrelation was tested for consumption and general health using the approach of

Born and Breitung (2016) and implemented in Stata with Wursten et al. (2016).

14



Hypertension

Diabetes

Cancer

Lung Disease

Heart
Disease

Stroke

Psyche
Problem

Arthritis

Difficulty
with ADLs

Self-rated
health

-0.6 -0.4 -0.2 0

Self-rated health

-.1 -.05 0 .05 .1

Log consumption

.5 1 1.5 2

Mortality odds ratio

.8 1 1.2 1.4 1.6

Retirement odds ratio

Figure 2: Select estimation results for self-rated health, consumption, retirement, and
mortality models
Notes: Dependent variables across columns. Contemporaneous associations reported for self-rated health and consump-
tion. Lagged associations reported for retirement and mortality. Spikes indicate 95% confidence intervals.

in the probability of death and retirement and a decrease in contemporaneous con-
sumption. Independent of self-rated health, individual morbidity states have diverse
associations with other outcomes. Arthritis, for example, is the only morbidity not
directly associated with mortality, though it does have a positive independent relati-
onship with the probability of retirement. In contrast, a recent stroke is associated with
an increased probability of death, retirement, and a loss of consumption independently
of the effect through self-rated health.

3.2.2 Simulations

We use the estimated dynamic models to construct expected remaining lifetime utility
for each sixty year old in our sample. Specifically, using age sixty data as initial
conditions, we simulate the remaining life outcomes and associated utility 5,000 times
for each individual and average across simulations to obtain a measure of expected
lifetime utility.15 Note that as the HRS began in 1992, age sixty data is not available
for the older AHEAD or CODA cohorts so our simulations are limited to the initial

15Initial conditions also include unobserved endowments ν and π estimated from models (9) and
(11) using the prediction method of De Vos et al. (2015).
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HRS, War Babies, and Baby Boomers cohorts. Moreover, the HRS is structured such
that individuals were initially surveyed at various ages implying age sixty data is not
available for all individuals within the younger three cohorts.

Limiting our sample to those with the requisite data leaves a simulation sample of
6,544 individuals from the initial HRS cohort (reaching age sixty between 1992-2001),
2,547 War Babies (2002-2007), and 3,437 Baby Boomers (2008-2014).16 Our aggregate
welfare statistics are estimated separately for each of the three cohorts to analyze the
change in inequality over time (we also check robustness of results to fixed two-year
birth cohorts). Table 2 provides a summary of initial conditions in the simulation
sample. By most measures, there was an average decline in age sixty health over
cohorts as well as a fall in the share retired. Average age sixty consumption increased
for War Babies but declined for Baby Boomers, presumably due to the timing of the
great recession which hit when Baby Boomers were in their late fifties.

Table 2: Simulation sample initial conditions by cohort

HRS WB BB

Individuals 6,544 2,547 3,437
Age (mean) 60.00 60.00 60.00
Hypertension (%) 40.14 46.71 50.93
Diabetes (%) 11.93 16.75 20.01
Cancer (%) 7.63 10.97 9.59
Lung disease (%) 6.87 7.51 8.29
Heart disease (%) 14.51 15.65 16.06
Stroke (%) 3.53 5.25 4.37
Psyche problem (%) 9.79 16.95 21.89
Arthritis (%) 46.48 51.38 52.42
Difficulty with ADLs (%) 15.37 22.29 22.29
Self-rated health (mean) 3.34 3.31 3.28
Retired (%) 47.17 46.87 42.07
Annual consumption ($1000s, mean) 29.10 30.10 27.56
Notes: Mean and percentage estimates use base year sampling weights.
War Babies denoted by WB and Baby Boomers by BB. Consumption is
reported in real 2010 dollars.

A comparison between the mean and standard deviations of the simulated life-
cycle profiles and those based on available data is shown by cohort in Figures 12-
16 in appendix B. Overall, the simulations match the available aggregated data well
suggesting our life-cycle dynamics model provides a reasonable approximation to the
underlying data generating processes.

16Those born after 1953 do not have the requisite data for simulations, leaving the Baby Boomer
simulation cohort as those born 1948-1953.
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3.3 Calibration of welfare model
Analysis using our welfare model requires calibration of preference parameters. These
include parameters of the functions φ (h) and ν (l) mapping health states and leisure
into flow utility. Additional parameters include the discount rate β and flow intercept
ū. Here we detail our calibration strategy and estimates.

We assume health utility depends linearly on our health state vector: φ (ht) = γht.
However, we bound φ (ht) ∈ [0, 1] to be consistent with our QALY framework. We
use the Health Utilities Index Mark 3 (HUI3) instrument as the conceptual basis of
our health utility function (see Horsman et al. (2003) for a detailed discussion on the
HUI3). This choice is motivated by two main features of the HUI3. First, it provides
a comprehensive description of health status that has been shown to be responsive to
changes in health over time (Barr et al., 1997; Furlong et al., 2001; Blanchard et al.,
2003). Second, it provides a direct estimate of QALYs which is our preferred measure
of health in this analysis.

The HUI3 questionnaire was included as a module for a subset of approximately
1,200 of the participants in the 2000 wave of the HRS with the associated utility scores
available through the HRS website.17 We use the HUI multi-attribute utility score
(hui3ou) in our analysis (see Furlong et al. (1998); Feeny et al. (2002) for details on
construction). It is a health related quality of life measure where death is defined by a
score of zero and perfect health by a score of one.18

The vector of utility weights γ is estimated by regressing the HUI3 utility score on
self-rated health and all morbidity indicators. Table 3 provides the linear regression
results.19 Self-rated health has a strong and highly significant positive association with
utility. The estimated weight implies a one unit increase in self-rated health impro-
ves flow utility by 9.0 percentage points. Conditions such as hypertension, diabetes,
and cancer have little independent effect on health utility after controlling for their
association with self-rated health and other co-morbidities. Other morbidities such
as stroke and arthritis have larger (and statistically significant) independent negative
effects. The most influential morbidity indicator is difficulty with ADLs, which lowers
utility an estimated 17.9 percentage points.

Leisure is normalized to one for retired individuals. We assume workers supply 2,000
annual hours to the labor market and set associated leisure to 0.66 = 1− (2000/5, 840)
where 5,840 = 16 hours a day × 365 days. Preferences over leisure are defined by ν (l) =
− θε

1+ε (1− l)
1+ε
ε , where ε is a constant Frisch elasticity of labor supply (the elasticity of

labor supply with respect to wage, holding the marginal utility of consumption fixed).
Empirical studies of the Frisch elasticity vary considerably, with estimates ranging
from 0.5 to nearly 2 (Chetty, 2012; Hall, 2009). We follow Jones and Klenow (2016)
and choose a benchmark value of ε = 1 while testing the sensitivity of our results to
alternate values. Likewise, we choose a discount factor β = 0.98 corresponding to an

17Researcher contribution file HUI3 (v.1.0).
18Negative scores are possible and represent health states that are worse than death.
19Results are insensitive to use of a Tobit regression.
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Table 3: Estimated health utility weights

Measure Weight SE

Self-rated health 0.090 0.007
Hypertension 0.010 0.013
Diabetes -0.005 0.018
Cancer 0.013 0.018
Lung disease -0.034 0.023
Heart disease -0.031 0.015
Stroke -0.088 0.023
Psych problem -0.085 0.021
Arthritis -0.059 0.013
Diff with ADL -0.179 0.017
Constant 0.543 0.028
Notes: Results from regression of HUI3 score on self-rated
health and morbidities. SE denotes standard error. R2 = 0.48.
N = 1,089.

annual discounting of one percent. Note that there is additional implicit discounting
in the expected utility framework due to mortality.

The standard first-order condition for the labor-leisure decision equates the mar-
ginal cost and benefit of leisure: ul = w (1− τ)uc, where w is the wage rate and τ is
the marginal tax rate. Given our function forms, the implied disutility weight on labor
supply θ = w (1− τ) (1− l)−1/ε /c. Using earnings and hours worked data from the
HRS and a marginal tax rate of 0.38 from 2002 (Barro and Redlick, 2011), we calculate
the implied θ for each working sixty year old in the sample. Selecting the median of
these values yields our benchmark θ = 7.56.20

Finally, we set the intercept in flow utility ū so that the median value of remaining
life for sixty year olds in our simulation sample is $50,000 per QALY.21 In a review of the
literature, Ryen and Svensson (2015) estimate mean and median values across studies
of approximately $98,000 and $32,000. Traditional values in the U.S. often range from
$50,000 to $100,000 (Kaplan and Bush, 1982). Using $50,000 as our benchmark and
normalizing consumption to thousands of 2010 dollars gives ū = −0.385.22

4 Welfare results
Our simulation sample for welfare analysis includes three birth cohorts—the initial
HRS cohort, War Babies, and Baby Boomers. We use the initial HRS cohort as our

20As noted by Jones and Klenow (2016), this calibration strategy implicitly invokes wedges (i.e.
labor market frictions) to explain individual deviations from the static first-order condition.

21The value of life per QALY at age j is given by V OLj/E
[∑J

a=j ψaβ
a−jφ (ha)

]
where V OLj =

Uij (1) cj .
22It is possible for an individual to obtain negative expected remaining lifetime utility in this

framework but this occurs for less than 0.4% of our sample.
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benchmark group as it is the earliest of the three and contains the longest panel of
available data. The reference person for all welfare calculations is the individual with
the age sixty initial conditions that yield the median expected lifetime utility within
the HRS cohort. The same reference person is used to calculate welfare for the later
War Babies and Baby Boomers cohorts. This approach allows for direct comparison of
welfare across cohorts as the reference person is held fixed. At the end of this section,
we check robustness of welfare estimates to the choice of reference individual as well
as other modeling assumptions.

4.1 Elderly welfare inequality
We begin by examining the distribution of our consumption-equivalent measure of
welfare across the sample of sixty year olds from the initial HRS cohort. The first
row in Table 4 provides different summary measures of welfare inequality in our fully
specified “benchmark” model. In order to assess the importance of morbidity on our
welfare calculations, we also provide measures where we exclude the utility cost of less
than perfect health from preferences (i.e. φ (h) = 1 ∀h). The results from this model
are labeled as “no health” in the table.

Table 4: Summary measures of welfare inequality at age sixty for initial HRS cohort

Measure Gini 10/50 ratio 90/50 ratio ρ

Benchmark λ 0.667 0.226 5.215 -
No health λ (φ (h) = 1) 0.515 0.319 3.172 0.966
Notes: Estimates use base year sampling weights. No health measure removes health from flow utility. Spearman’s
rank correlation between the two welfare measures denoted by ρ.

There is substantial variation in welfare across individuals—the benchmark Gini
coefficient is 0.667. Moreover, welfare at the tenth percentile of the distribution is only
22.6% of the median welfare while that of the ninetieth percentile is over five folds higher
than the median. Ignoring the utility costs of poor health largely preserves the rank
ordering of welfare (ρ = 0.966) but significantly under-estimates the inequality—the
Gini coefficient is under-estimated by about 23%. Moreover, this morbidity bias occurs
at both ends of the distribution. For example, relative to our benchmark measure,
welfare at the tenth percentile increases to 31.9% of the median while that at the
ninetieth falls to just over three fold.

The difference in welfare measures between the two models suggests substantial
and varied individual utility costs of living with poor health and morbidities among
the elderly. Figure 3 plots remaining life expectancy at age sixty against the ratio of
QALE to life expectancy for each individual in the initial HRS cohort.23 The positive
correlation implies those with higher life expectancy also expect better health over
remaining life. For example, those with a remaining life expectancy of 29 years have

23Life expectancy at age j defined by E
[∑J

a=j ψa

]
and QALE as E

[∑J
a=j ψaφ (ha)

]
.
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a quality-adjusted life expectancy of about 25 healthy life years—or about 85%. In
contrast, those at the bottom end of the distribution expect greater utility losses from
poor health (with considerably more variability). For example, those with a remaining
life expectancy of 10 years expect anywhere from about 2 to 6 quality-adjusted life
years.
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Figure 3: Life expectancy and quality-adjusted life expectancy (QALE) at age sixty

We turn now to the welfare impact of QALE relative to consumption and leisure.
Table 5 shows welfare and its decomposition averaged within each decile of the welfare
distribution. Consumption and QALE are the largest source of welfare loss for those in
the bottom of the distribution. Low consumption and quality-adjusted life expectancy
costs the bottom decile an average of 69.7 and 113.7 log points in welfare relative to
the median individual. Higher leisure adds a comparatively modest 1.6 log points to
welfare. In contrast, the top of the distribution experiences the highest consumption
and quality-adjusted life expectancy, though marginally less leisure.

Recall that welfare for each individual is estimated using potential outcome bundles
of a reference person. While the reference individual has the median expected lifetime
utility by definition, their expected levels of consumption, leisure, and quality-adjusted
life expectancy could be somewhat arbitrary. Comparing average log point gaps across
deciles provides a more robust examination of the strength of the relative components
across the welfare distribution. For example, the log point gap in consumption between
the highest and lowest decile is 174.2 = 104.5+69.7. The analogous gaps for leisure and
QALE are −7.6 and 248.4. Overall, these gaps suggest the strongest driver of welfare
inequality are differences in health and mortality followed by consumption differences.

In order to see the pattern of health and consumption driving the welfare gaps,
Figure 4 plots quality-adjusted life expectancy against annual consumption at age sixty
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Table 5: Mean welfare by decile of distribution

Decomposition

Welfare Decile Mean λ Mean log λ Consumption Leisure QALE

Lowest 0.170 -1.818 -0.697 0.016 -1.137
2nd 0.285 -1.269 -0.295 -0.005 -0.968
3rd 0.432 -0.847 -0.125 -0.019 -0.703
4th 0.619 -0.485 0.009 -0.036 -0.458
5th 0.859 -0.156 0.132 -0.043 -0.245
6th 1.174 0.156 0.236 -0.044 -0.037
7th 1.631 0.483 0.331 -0.046 0.198
8th 2.401 0.866 0.465 -0.052 0.452
9th 3.874 1.334 0.641 -0.056 0.750
Highest 14.687 2.332 1.045 -0.060 1.347

Notes: Estimates use base year sampling weights.

for individuals in the top and bottom deciles of the welfare distribution. A majority
of sixty year olds in the highest decile had a QALE of over 15 years. There was more
substantial variation in annual consumption in the group with values ranging from
around $20,000 to more than $100,000. This suggests health as the major driver of
welfare at the top end of the distribution. A majority of individuals in the lowest decile
had annual consumption under $30,000 and a QALE of less than 10 years. However,
some had relatively higher QALE but low welfare due to very low consumption.
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Figure 4: Age sixty consumption and QALE by decile of welfare distribution

Finally, Figure 5 plots average expected life-cycle profiles for select welfare deciles to
gain a sense of the differences across individuals. Consumption, leisure, and health gaps
are largest at age sixty and gradually decline as individuals age. However, substantial
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gaps remain for consumption and health even among individuals who survive into
their late nineties. Over the entire remaining life-cycle, the gaps in consumption are
relatively small between the first and fifth deciles compared to the much higher average
consumption in the top decile. In contrast, the health and leisure gaps are substantially
larger between the bottom and middle deciles with a smaller difference between the
middle and the top.
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Figure 5: Average life-cycle profiles by select deciles of welfare distribution
Notes: Consumption, leisure, and health profiles are expected values conditional on survival.

4.2 Welfare over cohorts
We next examine how welfare has changed across time by comparing individuals in the
initial HRS cohort (reaching age sixty between 1992-2001) to War Babies (2002-2007)
and Baby Boomers (2008-2014). Note that aggregate welfare differences across cohorts
stem from two sources—the distribution of age sixty initial conditions, and a time
trend and cohort specific intercept in all modeled outcome processes. Table 6 provides
summary welfare measures for each cohort/time period.

Comparing War Babies to the HRS cohort, welfare decreased 2.4% at the median
but increased 27.5% on average, suggesting an unequal shift in the welfare distribu-
tion. This pattern was maintained but stronger for Baby Boomers with median welfare
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Table 6: Summary welfare measures by cohort

Cohort Median λ Mean λ Gini 10/50 ratio 90/50 ratio

HRS 1.000 2.612 0.667 0.226 5.215
War Babies 0.976 3.331 0.726 0.216 6.368
Baby Boomers 0.928 5.598 0.813 0.207 7.563
Notes: Estimates use base year sampling weights.

declining 4.9% while the mean increased 68.1% over War Babies. Turning to the dis-
parity measures provides further evidence of a sustained increase in welfare inequality
over time. Relative to the HRS cohort, the welfare Gini rose 8.8% for War Babies and
21.9% for Baby Boomers.24 At the bottom end of the distribution, the welfare of the
tenth percentile declined from 22.6% of the median to 21.6% among War Babies and
20.7% among Baby Boomers. The welfare at the top also pulled further away from
the center—the 90/50 ratio increased by 45.0% between the HRS and Baby Boomer
cohorts.

Table 7 provides the decomposition of mean log welfare for each of the three cohorts.
The gain in mean welfare for War Babies over the HRS cohort was driven by an average
increase of 1.3 log points from consumption and 1.1 log points from quality-adjusted
life expectancy. There was also a 0.3 log point decline in average welfare due to delayed
retirement and consequently less leisure. Comparing Baby Boomers to War Babies, the
decomposition reveals that while health and longevity continued to improve—average
QALE contribution to welfare rose 11.1 log points—consumption declines cost average
welfare 11.3 log points. The consumption decline is presumably driven by the timing
of the 2008 recession which hit when Baby Boomers were in their late fifties (see Figure
18 in appendix B).

Table 7: Welfare decomposition by cohort

Decomposition

Cohort Mean log λ Consumption Leisure QALE

HRS 0.059 0.174 -0.034 -0.080
War Babies 0.081 0.187 -0.037 -0.069
Baby Boomers 0.066 0.074 -0.050 0.042
Notes: Estimates use base year sampling weights.

Figure 6 provides the distribution of log welfare, expected remaining lifetime con-
sumption, life expectancy, and QALE at age sixty across cohorts for closer examination.
The welfare distribution became flatter and more skewed over time demonstrating the
rise in welfare inequality. Compared to the HRS cohort, welfare improved for the top
end of the War Babies distribution but declined somewhat for the bottom end. Simi-

24The pattern of increased inequality over time also holds when examining two-year birth cohorts
(see appendix Figure 17).
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larly, the distribution of welfare for Baby Boomers increased slightly over War Babies
at the top but a fatter left tail implies a more substantial welfare decline for the bottom
end. Expected remaining lifetime consumption follows a similar pattern as the welfare
distribution with initial gains concentrated at the top end for War Babies followed by
substantial declines concentrated in the bottom end for Baby Boomers.
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Figure 6: Distribution of welfare, consumption, and life expectancy over cohorts

While life expectancy has shown broad improvements over time, the distribution has
increased in skewness for War Babies and Baby Boomers. This implies mortality gains
have disproportionately benefited those in the top of the distribution. This is consistent
with the existing evidence of increasing socioeconomic gradients in mortality. When
adjusting life expectancy for quality of health, the distribution becomes more disperse.
The fattening left tail in QALE relative to previous cohorts shows that life expectancy
gains are even outweighed by health losses at the bottom end of the distribution.
Overall, cohort results demonstrate an increase in welfare inequality driven primarily by
a combination of increasing gaps in consumption and quality-adjusted life expectancy.

4.3 Comparison with other measures of well-being
Our welfare measure incorporates inequality of various components of well-being into a
single metric. Moreover, our measure captures the static welfare effect of each compo-
nent at age sixty as well as their expected joint dynamic influence throughout remaining

24



life. As a comparison, Table 8 provides inequality statistics across alternate measures
of well-being for the age sixty population in the initial HRS cohort. The final column
provides Spearman’s rank correlation coefficient between our welfare measure and each
alternative measure.

Table 8: Comparing measures of inequality at age sixty

Measure Gini 10/50 ratio 90/50 ratio ρ

Welfare (λ) 0.667 0.226 5.215 -
Income 0.519 0.228 2.971 0.508
Consumption 0.435 0.353 2.649 0.568
Health utility 0.121 0.610 1.221 0.772
Flow utility 0.465 0.347 3.022 0.789
Notes: Estimates for initial HRS cohort using base year sampling weights. Income, consumption, and health utility are
cross-sectional measures at age sixty. Flow utility is calculated using cross-sectional consumption, leisure, and health
along with our benchmark preferences. Spearman’s rank correlation between λ and each measure denoted by ρ.

Cross-sectional income inequality is lower than welfare inequality, though income
does well predicting welfare at the bottom end of the distribution—the 10/50 ratio is
similar in the two measures. However, the rank correlation of 0.50 between welfare and
income is quite low. So while income may provide a reasonable measure of aggregate
inequality, relative income and welfare can be quite different at the individual level.
Cross-sectional consumption at age sixty provides a somewhat better ranking of indi-
vidual welfare, but under-estimates welfare inequality substantially more than income.
The improved rank correlation is perhaps unsurprising as consumption directly enters
preferences used in our welfare model. Age sixty health alone severely under-estimates
aggregate welfare inequality, although it provides a better individual ranking than in-
come or consumption. This speaks to the substantial influence of health and mortality
in determining the distribution of our welfare measure.

The final row of Table 8 provides an estimate of welfare incorporating age sixty
consumption, leisure, and health into our benchmark flow utility specification (2) but
ignoring the subsequent life-cycle dynamics. Incorporating all three components in
a static framework provides the best ranking of individual welfare, but ignoring the
dynamics substantially under-estimates welfare inequality. For example, the Gini of
age sixty flow utility is only 70% of that based on our dynamic welfare measure.

Figure 7 further illustrates the nuanced relationship between health and economic
outcomes by plotting quality-adjusted life expectancy against the ratio of consumption
to welfare at age sixty. There is a clear negative correlation between the two measures
with consumption over-predicting welfare for those of poor health and under-predicting
for those of good health. This pattern is consistent with the positive correlation bet-
ween consumption and health found in the raw data. However, there is also substantial
variation in the plotted relationship explaining the relatively modest rank correlation
between welfare and consumption. A key takeaway here is even in cases where eco-
nomic outcomes provide a reasonable approximation to aggregate welfare inequality,
they may still fail to be an adequate welfare measure at the individual level.
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Figure 7: Variation in relationship between age sixty consumption, welfare, and QALE
Notes: Ratio of relative consumption to welfare given by (ci/cm) /λ where c is age sixty consumption. Plot includes
HRS cohort only.

Finally, Table 9 provides Gini coefficients by cohort for age sixty distributions of our
welfare and other measures. Welfare inequality has grown significantly more than age
sixty cross-sectional income, consumption, or health inequality. This implies disparity
measures based on economic outcomes such as income or consumption have become
worse estimates of welfare inequality over time (as inequality has increased) at least
partially due to growing gaps in health and mortality.

Table 9: Gini coefficients of welfare measures over cohorts

Cohort Welfare (λ) Income Consumption Health utility QALE

HRS 0.667 0.519 0.435 0.121 0.216
War Babies 0.726 0.485 0.438 0.133 0.228
Baby Boomers 0.813 0.505 0.458 0.139 0.238
Notes: Estimates use base year sampling weights. Income, consumption, and health utility are cross-sectional measures
at age sixty. QALE is quality-adjusted life expectancy at age sixty.

4.4 Robustness
Table 10 provides sensitivity results estimated under alternate modeling assumptions
from our benchmark specification. While the magnitude of inequality measures are
somewhat sensitive to underlying assumptions, the finding that welfare inequality is
substantial and has grown over time is quite robust across specifications. Moreover, the
rank correlation between welfare and alternate well-being measures remain relatively
stable.

26



Table 10: Robustness results

Gini by cohort

Measure λ 10/50 λ 90/50 HRS WB BB ρ

Benchmark 0.226 5.215 0.667 0.726 0.813 0.568
Compensating variation 0.033 3.442 0.561 0.594 0.619 0.549
Reference 90th %tile 0.340 3.312 0.503 0.553 0.618 0.568
Age 70 0.198 8.777 0.790 0.837 - 0.575
$100k per QALY 0.059 15.336 0.848 0.886 0.937 0.485
β = 0.90 0.244 4.040 0.583 0.635 0.691 0.608
ε = 0.5 0.199 6.186 0.706 0.762 0.842 0.567
ε = 2 0.232 5.552 0.680 0.739 0.824 0.567
θ = 15.5 0.221 5.728 0.692 0.752 0.837 0.567
Notes: Estimates use base year sampling weights. War Babies denoted by WB and Baby Boomers by BB. Spearman’s
rank correlation between welfare and cross-sectional consumption at age sixty denoted by ρ.

Our benchmark welfare measure is calculated in terms of consumption equivalent
variation (EV). Alternatively, we could use the inverse of a compensating variation
(CV) measure—what share of individual i’s consumption would the median individual
need to be ex-ante compensated to make them indifferent to receiving the current and
potential future outcome bundles of individual i. Consumption-compensating variation
satisfies:

log
(
λCVij

)
= Uij (1)− Umj (1)
E
[∑J

a=j ψiaβ
a−jφ (hia)

]
where the only difference with the EV measure is the denominator is now the QALE for
individual i as opposed to the median individual. The new measure effectively weights
the benefit/loss of a consumption change by the flow utility of individual i as opposed
to the median. This implies gaps in QALE are more detrimental to welfare for those
below the median and less beneficial for those above.

The second row of Table 10 shows the sensitivity of inequality measures to the
choice of consumption variation metric. Welfare at the tenth percentile is 22.6% of
the median based on the baseline EV measure, compared to only 3.3% using CV. CV
welfare estimates are also substantially lower at the top end of the distribution netting
an overall lower Gini coefficient. However, the CV based measure still finds welfare in-
equality increased over cohorts, was higher than cross-sectional income or consumption
inequality, and maintained only a modest rank correlation with consumption.

The third row of Table 10 shows sensitivity of results when using the individual at
the ninetieth percentile of welfare in the HRS cohort as the reference person instead of
the median. The magnitude of inequality measurements are sensitive to the reference
individual chosen—the welfare Gini falls to a lower but still substantial 0.50. This puts
aggregate welfare inequality closer in line with cross-sectional income and consumption
at age sixty. Nonetheless, individual rank correlation does not change (by definition)
and a substantial increase in inequality across cohorts remains.
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The fourth row of Table 10 shows welfare results using age seventy data as initial
conditions in our simulations. Relative to the age sixty benchmark, there is an increase
in inequality at both ends of the welfare distribution for the HRS cohort. While Baby
Boomers lack the requisite data for estimating age seventy welfare, there remains an
increase in welfare inequality between HRS and War Baby cohorts. Additionally, the
Gini coefficient for the older CODA cohort at age seventy is estimated to be 0.775—less
than the HRS cohort. There is only a small increase in the rank correlation between
welfare and consumption at age seventy compared to the age sixty benchmark.

Next we examine the impact of assuming a higher monetary value per QALY to ca-
librate the flow intercept ū. Ryen and Svensson (2015) document substantial variation
across estimates of willingness to pay for a QALY, most notably with conversions based
on revealed preferences of the value of statistical life (VSL) averaging 5-7 times higher
than those based directly on stated preferences.25 As a robustness check, we double our
target to $100,000 per QALY, which aligns more closely with VSL studies. The change
results in a higher ū placing additional weight on health and longevity differences in
the welfare calculations. Inequality is substantially higher across all measurements but
continues to increase across cohorts. The rank correlation with consumption also falls
to 0.48.

The final four rows in Table 10 indicate sensitivity of other preference parameters.
With a lower time discount rate β, our measure indicates somewhat less welfare in-
equality as differences in mortality and future consumption and health declines are
less important. However, the pattern of main results hold. Main conclusions are also
insensitive to alternate values of the Frisch elasticity of labor supply ε or altering the
disutility weight on labor supply θ such that the first order condition holds for the
sixty year old at the 75th percentile of the distribution (as opposed to our benchmark
choice of the median).

Finally, we examine the robustness of results to a more general form of flow utility
given by:

u (c, l, h) = φ (h)
[
ū+ c1−γ

1− γ

(
1− (1− γ) θε

1 + ε
(1− l)

1+ε
ε

)γ
− 1

1− γ

]

which reduces to our benchmark case with γ = 1. These preferences follow those
proposed by Trabandt and Uhlig (2011) and Jones and Klenow (2016) which maintain
a constant Frisch elasticity of labor supply. With γ > 1 there is more curvature over
consumption and the welfare cost of consumption inequality increases. However, leisure
and consumption become less substitutable implying welfare inequality may be reduced
if the inputs are strongly negatively correlated across individuals.

We examine sensitivity of results to increases in curvature to γ = 1.5 and γ = 2.
However, with higher curvature over consumption than the benchmark, it is no longer

25The VSL studies reviewed by Ryen and Svensson (2015) are by definition measuring value of
length of life, while stated preference studies elicited willingness to pay for pure quality of life impro-
vements, pure length of life, or a mixture of both.
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Table 11: Robustness results

EV 10/50 ratio by cohort CV 90/50 ratio by cohort

Measure HRS WB BB HRS WB BB ρ

γ = 1 0.226 0.216 0.207 3.442 3.945 4.245 0.568
γ = 1.5 0.172 0.169 0.162 4.466 5.155 5.388 0.502
γ = 2 0.182 0.185 0.168 5.225 6.167 5.896 0.450
Notes: Estimates use base year sampling weights. War Babies denoted by WB and Baby Boomers by BB. Spearman’s
rank correlation between EV measure of welfare and cross-sectional consumption at age sixty denoted by ρ.

possible to calculate EV welfare for those at the very top of the distribution as no
amount of consumption increase would provide the same expected life-time utility to
the median individual. Likewise, using the CV measure is not possible for the worst off
as no amount of consumption would be enough to compensate the median individual.
Under these feasibility considerations, Table 11 provides the 10/50 welfare ratio based
on the EV measure and the 90/50 ratio based on CV for alternate curvatures.

The 90/50 ratio monotonically increases with the curvature parameter suggesting
welfare inequality may be under-predicted in the benchmark case. The change in 10/50
ratio is non-monotonic but both robustness experiments suggest increased inequality
relative to the benchmark as well. Looking more closely across cohorts, with the highest
curvature the 10/50 ratio no longer declines for War Babies relative to the HRS cohort.
However, there continues to be a substantial increase in dispersion indicated by the
90/50 ratio. In contrast, the 90/50 ratio falls for Baby Boomers relative to War Babies
while the decline in 10/50 ratio is larger than the benchmark. While these patterns are
inconclusive, they suggest the increase in inequality across cohorts could be somewhat
muted with higher curvature. Finally, there is some decline in the rank correlation
with consumption as leisure and consumption are less substitutable in welfare and are
negatively correlated across individuals.

5 Conclusion
We propose and estimate an individual measure of welfare incorporating heterogeneity
and uncertainty in future consumption, leisure, health, and mortality at age sixty.
Our measure broadly indicates that inequality is larger and has increased more rapidly
than suggested by other welfare metrics such as income or consumption. We also find
health and mortality gaps are more important than consumption in explaining welfare
inequality among the elderly in our sample, with leisure playing a comparatively minor
role. Moreover, health at age sixty is a better indicator of individual well-being rank
than income or consumption.

It is important to recognize that we have opted to model life-cycle dynamics as
a statistical process to be estimated directly from the data. Alternatively, modeling
explicit dynamic maximization of lifetime utility would allow for a richer set of coun-
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terfactual policy analyses when outcomes are endogenous. The major difficulty with
the latter approach arises from specifying and solving an intertemporal model of en-
dogenous savings, labor supply, and multivariate health behaviors and investments.
While our model falls short of a fully specified structural model, the equations can be
viewed as approximations of the underlying decision rules mapping state variables to
individual choices.

While we rely on direct estimation of outcome dynamics, we are limited by the
length of our longitudinal data, particularly for the more recent cohorts we analyze,
requiring assumptions on the potential future paths of consumption and health. Incor-
porating longer panel data in our life-cycle models would potentially improve the fit of
the model providing more precise predictions. While there are some limitations to our
approach, the framework provides ample opportunities for insight and further analy-
ses. As our framework allows estimation of welfare for each individual, it is possible
to compare welfare distributions across various sub-groups of the population (see ap-
pendix B for examples of welfare breakdowns by education, region, gender, and race).
While we focus on welfare at age sixty, changes in welfare can also be calculated and
analyzed over the elderly life-course, for example comparing our measure with welfare
at age seventy or eighty. Our measure could also be used as an outcome in designed
or natural experiments, for example to examine the effect of healthcare policy on the
distribution of welfare. Moreover, our framework could be extended in multiple di-
rections to examine additional cohorts, younger ages, or welfare inequality differences
across countries.
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A Imputation of consumption and other missing data
The CAMS collected consumption data for approximately 20% of the HRS sample
starting from 2001. In order to estimate our dynamic panel models and construct
simulated life-cycle paths for the remaining sample, we multiply impute their con-
sumption data. We use the computationally attractive EM-bootstrapping algorithm
allowing for cross-sectional time-series data proposed by Honaker and King (2010) and
implemented through the freely available Amelia II software program (Honaker et al.,
2011). This approach provides m separate complete datasets in which all analyses are
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conducted independently. Results are then combined into a single estimate.26 We set
m = 12 but test the sensitivity of results to higher values of m.

There are two primary assumptions underlying the proposed imputation method.
First, the complete data is assumed be multivariate normal. While this may seem
somewhat restrictive, it has been shown that multivariate normal imputation models
provide an adequate approximation to the true underlying distribution in a variety of
settings, even in the presence of categorical or mixed data (Schafer, 1997). Second is the
standard required assumption that data is missing at random (MAR)—any nonrandom
pattern of missingness can be accounted for by the observed data included in the model.
Note this is less restrictive than the requirement data be missing completely at random
(MCAR). In practice, we know that missing data is not at random, at least for years
falling outside of the CAMS window (1992-1998 and 2012-2014). However, by including
a rich set of related covariates in the imputation model, we argue that missing data
can be treated as MAR in the statistical sense. While there is no way to empirically
test this assumption, we run a number of diagnostic tests to check the credibility of
the imputation model in search of any obvious deficiencies.

Variables from the RAND HRS data file (v.P) included in our imputation model
are age (AGEY_E), aged squared, number of household members (HHRES), total we-
alth (ATOTA), wealth squared, log household income (ITOT), log income squared, and
dummy indicators for labor force status (LBRF), gender (RAGENDER), race (RARA-
CEM), education (RAEDUC), marital status (MSTAT), census division (CENDIV),
1980 census occupation code for longest reported tenure (JLOCC), self-reported he-
alth (SHLT), ADLs (ADLA), and eight doctor diagnosed health conditions (HIBPE,
DIABE, CANCRE, LUNGE, HEARTE, STROKE, PSYCHE, ARTHRE). The model
also included our constructed indicator for retirement and hours worked. In order to
allow for the time-series structure of the data, lags and leads of consumption, wealth,
income, and hours worked are included in the imputation model. While we are prima-
rily imputing consumption data, Amelia II also provides imputed values for all other
missing variables included in the model.27

A useful check of the viability of the imputation model is to compare the distri-
butions of the imputed values against the observed data. While there is no need for
these distributions to be the same, the comparison gives a sense of the plausibility of
imputations (Honaker et al., 2011). Figure 8 plots the density of observed and impu-
ted values of consumption. The imputed values are taken as the mean across the m
imputed datasets. The comparison suggests no unusual pattern in the distribution of
imputed values, providing cursory support of model plausibility.

Another diagnostic tool proposed by Honaker et al. (2011) is overimputing. While

26Assuming asymptotically normally distributed statistics implies a simple average across datasets
(Rubin, 2004).

27If the observed data used in the imputation model has a poorly behaved likelihood, the conver-
gence of the EM algorithm could be sensitive to the staring values chosen. We found no evidence
of local convergence issues using the overdispersed start values diagnostic test proposed by Honaker
et al. (2011).
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Figure 8: Distributions of observed and imputed values of consumption

it is impossible to examine if the imputed values are close to the missing values they
are attempting to recover, observed values can be used to test the accuracy of the im-
putation process. Overimputing sequentially treats each of the observed consumption
values as if they were missing and then imputes their values several hundred times.
This provides a mean imputed value and confidence interval that can be compared
to the actual observed data. Figure 9 plots all observed consumption values against
the mean of their imputed values and the associated 95% confidence interval. A vi-
sual inspection of the diagnostic plot suggests the model does fairly well predicting
values other than the lowest values. However, few individuals lie in this extreme end
of the distribution—less than 0.3% of the observations fall below zero ($1,000 annual
consumption). Honaker et al. (2011) suggest a good imputation model should have
at least 90% of the confidence intervals containing the true values (i.e. 90% of the
confidence intervals should cross the y = x line). In our case, 94% of the observed
values are within the confidence bounds.

As a final examination of the imputation model we try to get a sense of how it
predicts missing values in a time series. While it is infeasible to examine the imputed
time trends for each individual in the sample, Figure 10 provides time series for a
random sub-set of ten individuals with at least one observed consumption value. The
mean of the imputed values are plotted in red with 95% confidence bounds (based
on 100 imputations). The isolated black points without bounds are observed data.
Broadly, the imputed values fall in line with the observed data and no egregious outliers
emerge. Note that prior to wave five (2000) and after wave ten (2010) all values are
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Figure 9: Overimputed values of consumption

imputed as these waves are outside of our CAMS data window.
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Figure 10: Observed and imputed consumption over time for a random sub-sample
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B Additional Figures and Tables

Table 12: Additional estimation sample descriptive statis-
tics by cohort

AHEAD CODA HRS WB BB

Male (%) 37.69 43.87 45.73 45.58 46.02
Education (%)
<HS 38.62 30.98 26.17 18.39 14.98
HS 31.19 32.23 33.80 30.73 24.66
Some College 16.79 17.84 20.20 24.94 28.94
College 13.40 18.95 19.83 25.94 31.42

Race (%)
White 91.01 88.67 87.27 85.45 80.88
Black 7.27 8.08 9.45 9.81 10.75
Other 1.71 3.25 3.28 4.74 8.37

Census division (%)
New England 6.07 5.25 5.36 3.78 4.37
Mid Atlantic 14.04 12.24 14.42 11.51 11.84
EN Central 18.40 17.73 15.34 16.83 18.35
WN Central 9.44 9.47 8.91 8.48 7.38
S Atlantic 17.95 20.65 20.63 26.54 20.19
ES Central 4.93 5.73 6.21 5.59 6.72
WS Central 10.42 9.18 9.12 9.94 9.66
Mountain 4.63 5.34 5.80 5.44 7.85
Pacific 14.10 14.36 14.10 11.79 13.59
Not US 0.02 0.04 0.12 0.11 0.07

Notes: Mean and percentage estimates use base year sampling weights. War
Babies denoted by WB and Baby Boomers by BB.
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Table 14: Dynamic model estimates ADLs, self-rated health, mortality, retirement,
and consumption

ADLs Self-rated health Mortality Retirement Consumption

Variable Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE

Hyper 0.071 0.031 -0.183 0.009 0.068 0.029 0.048 0.037 -0.009 0.013
Diab 0.109 0.040 -0.130 0.015 0.105 0.036 0.042 0.052 -0.025 0.022
Cancer 0.112 0.044 -0.466 0.017 0.652 0.029 0.104 0.063 0.032 0.020
Lung 0.236 0.049 -0.251 0.022 0.397 0.035 0.211 0.077 -0.009 0.024
Heart 0.130 0.034 -0.324 0.013 0.192 0.027 0.005 0.053 -0.007 0.022
Stroke 0.464 0.047 -0.327 0.015 0.261 0.032 0.291 0.103 -0.063 0.026
Psych 0.392 0.044 -0.241 0.017 0.226 0.033 0.285 0.067 -0.071 0.022
Arthritis 0.224 0.026 -0.147 0.012 -0.133 0.029 0.118 0.033 0.014 0.015
ADL -0.413 0.010 0.357 0.021 0.252 0.045 -0.070 0.015
Health -0.147 0.009 -0.024 0.011 0.039 0.004
Lag Hyper -0.005 0.031 0.069 0.013 -0.030 0.029 -0.015 0.038 -0.005 0.012
Lag Diab 0.033 0.042 0.065 0.015 0.055 0.037 -0.029 0.056 0.001 0.019
Lag Cancer -0.025 0.047 0.302 0.017 -0.433 0.031 -0.067 0.069 -0.005 0.021
Lag Lung -0.002 0.054 0.117 0.022 -0.091 0.038 -0.086 0.086 0.002 0.020
Lag Heart -0.035 0.036 0.162 0.017 -0.023 0.028 0.052 0.057 0.009 0.019
Lag Stroke -0.194 0.053 0.196 0.019 -0.045 0.035 -0.190 0.116 0.011 0.023
Lag Psych -0.131 0.047 0.148 0.020 -0.120 0.035 -0.120 0.072 0.027 0.020
Lag Arthre 0.078 0.026 0.067 0.014 0.058 0.028 -0.071 0.034 -0.009 0.013
Lag ADL 0.187 0.008 -0.090 0.021 -0.178 0.053 0.018 0.017
Time -0.029 0.005 -0.042 0.007 0.024 0.004 -0.030 0.006 -0.001 0.009
2008 0.058 0.023 -0.045 0.007 0.149 0.019 0.163 0.029 0.014 0.007
CODA 0.083 0.029 -0.062 0.025 0.131 0.076
HRS 0.087 0.042 -0.095 0.037 0.119 0.088
War Babies 0.107 0.059 -0.257 0.055 0.186 0.103
Boomers 0.170 0.073 -0.431 0.069 0.190 0.116
Black 0.088 0.019 0.028 0.018 0.036 0.024
Other race 0.018 0.034 -0.119 0.035 -0.070 0.038
HS grad -0.097 0.017 0.039 0.016 -0.032 0.024
Some college -0.051 0.020 0.046 0.020 -0.041 0.027
College grad -0.083 0.025 0.055 0.024 -0.032 0.031
Female 0.012 0.015 -0.193 0.014 0.106 0.018
Health FE -0.441 0.015 -0.168 0.017 -0.191 0.021
SES FE -0.112 0.021 -0.088 0.021 -0.038 0.026
Constant -0.529 0.083 -2.286 0.177 -0.816 0.124
Lag Health 0.239 0.004 0.005 0.008 -0.004 0.011 0.002 0.004
Lag2 Health 0.134 0.003
Retired -0.049 0.014
Lag Con 0.170 0.005
Lag2 Con 0.082 0.004

Notes: Dependent variable across columns. Multivariate probit results reported for ADLs as dependent outcome.
Standard probit results reported for mortality and retirement as dependant outcomes. Linear dynamic panel estimates
reported for self-rated health and consumption as outcomes. All regressions also include dummies for age. Regressions
for ADLs, mortality, and retirement also include dummies for occupation and census division. Regression for self-rated
health also includes second lags for all morbidities.
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Table 15: Morbidity shock covariance matrix (Σ)

Hyper Diabetes Cancer Lung Heart Stroke Psych Arthritis ADLs

Hyper 1.00 0.26 0.04 0.08 0.28 0.29 0.14 0.09 0.09
Diabetes 0.26 1.00 0.07 0.05 0.10 0.14 0.06 0.03 0.07
Cancer 0.04 0.07 1.00 0.12 0.02 0.05 0.11 0.05 0.13
Lung 0.08 0.05 0.12 1.00 0.22 0.10 0.17 0.10 0.19
Heart 0.28 0.10 0.02 0.22 1.00 0.28 0.16 0.10 0.14
Stroke 0.29 0.14 0.05 0.10 0.28 1.00 0.21 0.10 0.39
Psych 0.14 0.06 0.11 0.17 0.16 0.21 1.00 0.15 0.29
Arthritis 0.09 0.03 0.05 0.10 0.10 0.10 0.15 1.00 0.26
ADLs 0.09 0.07 0.13 0.19 0.14 0.39 0.29 0.26 1.00
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Figure 11: Impulse response to incidence of heart disease at age 62
Notes: Results plot percentage difference in expected outcomes with the exogenous onset of heart disease at age sixty-
two relative to remaining without heart disease at sixty-two. Sample includes all individuals in the simulation sample
without heart disease at age sixty. Expected outcomes are conditional on survival.
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Figure 12: Mean of life-cycle morbidity profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 13: Mean of life-cycle morbidity profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 14: Mean of life-cycle health, mortality, and retirement profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 15: Mean of life-cycle consumption and health utility profiles by cohort
Notes: “Data” plots mean of all available data (inclusive of imputed missing values) in HRS by two-year age interval
and cohort. “Simulated” plots mean of expected simulated outcome for each observation in the data (i.e. the expected
outcome for each person-year observation in the data).
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Figure 16: Standard deviation of consumption and health utility life-cycle profiles by
cohort
Notes: “Data” plots standard deviation of all available data (inclusive of imputed missing values) in HRS by two-year
age interval and cohort. “Simulated” plots mean of standard deviations of simulated outcome for each observation in
the data (i.e. the mean of standard deviations calculated for each of the 5,000 simulation runs using only person-year
observations that also appear in the data).
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Figure 17: Welfare (λ) Gini by two-year birth cohort
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Figure 18: Average life-cycle profiles by cohort
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Table 16: Welfare decomposition in HRS cohort and welfare Gini for each cohort by
select characteristics

Decomposition Welfare Gini by cohort

Median
λ

Mean
log λ

Cons. Leisure QALY HRS War Boomers

Education
<HS 0.436 -0.744 -0.249 -0.015 -0.480 0.532 0.549 0.640
HS grad 1.022 0.029 0.134 -0.031 -0.075 0.567 0.616 0.639
Some college 1.295 0.305 0.331 -0.042 0.015 0.616 0.703 0.766
College grad 2.538 0.956 0.658 -0.059 0.357 0.647 0.687 0.795

Gender
Male 0.908 -0.023 0.215 -0.054 -0.184 0.654 0.674 0.766
Female 1.100 0.129 0.139 -0.018 0.008 0.673 0.752 0.832

Race
White 1.103 0.148 0.229 -0.036 -0.046 0.661 0.721 0.810
Black 0.461 -0.676 -0.237 -0.019 -0.419 0.594 0.539 0.743
Other 0.764 -0.153 -0.101 -0.039 -0.013 0.674 0.640 0.727

Notes: Estimates use base year sampling weights.
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Figure 19: Median welfare by census division for HRS cohort
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