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Abstract

In this chapter we propose using compound Poisson processes to

model trade-by-trade �nancial data. Our main focus will be on devel-

oping speci�c types of Cox processes in order to accurately depict the

trading process. We study the problem of signal extracting the intens-

ity of the trading process. We �nish by studying the implication for

price changes over pre-speci�ed intervals of times, such as 30 seconds, 20

minutes or a day and assessing the empirical plausibility of OU based

models for the intensity of the trading process..

Some keywords: Cox process; Durations; Kalman �lter; Intensity; Ornstein{

Uhlenbeck processes; Particle �lter; Trade-by-trade dynamics.

1 Introduction

1.1 The data and model

Most modern theoretical and empirical �nance is based on continuous time

models with continuous sample paths or, in other words, di�usion processes

which are driven by Wiener processes. Prominent recent references include

Du�e (1992) and Ait-Sahalia (1996), while the most well known example

is geometric Brownian motion used in the Black and Scholes (1973) option

pricing model.

In practice almost all the prices at which �nancial assets transact live on

a lattice structure. Figure 1 displays the transaction prices (in US Dollars)

for the IBM stock traded on the New York Stock Exchange (NYSE) on four

randomly selected days in 1995. This shows prices are integer multiples of 1/8

and that transactions are irregularly spaced in time. Although this multiple

or \tick" size varies with the �nancial market, the lattice structure is always

present and is often important. In the case of trades on the NYSE, the tick

size of 1/8 of a dollar was determined by the NYSE, and was set in order

to avoid unnecessary negotiations between seller and buyer (see, for example
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Figure 1: Plot of all traded IBM prices at the New York stock exchange on four

di�erent days in 1995. A trade is represented as a dot (�): I.e. what appears

as lines in the graphs are trades at the same price.

Hasbrouck (1996) and the references therein). In 1997 it was reduced to 1/16

of a dollar.

There are at least three di�erent ways of dealing with this kind of data:

1. Ignore the fact that the state space of the prices is a lattice and use a

continuous sample path model. The literature assessing the e�ect of this

type of misspeci�cation is surveyed by Campbell, Lo, and MacKinlay

(1997, pp. 109{128). Their broad conclusion is that methods which

use low frequency data (e.g. daily or monthly returns) are not overly

inuenced by discreteness, but higher frequency analysis can be sensitive.

2. Build a model assuming an underlying unobserved continuous sample

path process and a latent continuous exposure cost and then round it to

match the discreteness. This method is used by Hasbrouck (1999a) in

his model of discrete bid and ask quotes.

3. Directly model what is observed. Such models will have a state space

which is a lattice. This approach involves a distinct stochastic model for
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the times of trades as well as a model for the price changes at the times

of trades.

In this paper we will discuss the third of these approaches. To simplify our

exposition we have normed prices so that the tick size is one.

Our basic model structure will be a compound Poisson process in the wide

sense of, for example, Grandell (1997). Let p(u) denote the price of the asset

at time u, then we allow the non-stationary and non-linear price process to

follow

p(u) = p(0) +

N(u)X
t=1

Zt; u � 0; and
0X

t=1

Zt
def
= 0;

where fN(u)gu�0 is a counting process1 which counts the number of trades

recorded up until time u, and Zt is the price movement associated with the

t � th trade. It is important to note that Zt can be exactly zero, for many

trades take place without moving the price. There is no loss of generality

in writing down this representation since both fN(u)gu�0 and fZtgt2N+
can

be either continuous or discrete (for ease of notation we will use the slightly

abbreviated expressions fN(u)g and fZtg). However, we will tend to be more

speci�c than this. We suggest modelling fN(u)g as Cox process2, that is a

Poisson process with a random intensity3. In general, the dynamics of the Cox

and price movements processes can be adapted to a wide class of �ltrations

involving just their own past or more extensive information sets. This is purely

an issue of combining both the empirical evidence and a priori economic theory,

reecting both the purpose of the modelling exercise and the data generating

mechanism. A simple example of this is that the models we specify should

prevent the price process from going negative. This is easy to do by careful

modelling of the fZtg process, which must depend upon the level of the price
4.

1There are many equivalent de�nitions of a counting process. The one which is most

helpful in our context states that if fN(u)g
u�0 is a process with state space Z [ f+1g

and non{decreasing right continuous paths, then fN(u)g
u�0 is a counting process. Since

the paths are non{decreasing and right continuous we automatically get that fN(u)g
u�0 is

c�adl�ag (continu �a droit { limite �a gauche).
2An convenient example of a Cox process is the inuential autoregressive conditional

duration (ACD) model advocated by Engle and Russell (1998), which allows straightforward

likelihood based econometric inference.
3This is based on the assumption that the counting process is simple which means that

N(u) increases one unit at its epochs of increase, see Grandell (1991, p. 34). Such an

assumption is ful�lled if the intensity measure is continuous.
4In practice trading would probably be halted if information released caused very dramatic

falls in the share price. At, e.g. the NYSE there are speci�c rules about when trading should

be paused.
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1.2 Related work

Independently of our initial draft of this paper Rogers and Zane (1998) have

suggested a similar type of compound Poisson process for asset prices. This

paper will focus on the study of fN(u)g and only allow the fZtg to be modelled

by simple descriptive Markov chains. Papers which have previously looked at

the fN(u)g process include Engle and Russell (1998) and, subsequently, Med-

dahi, Renault, and Werker (1998), Rydberg and Shephard (1999), Ghysels,

Jasiak, and Gourieroux (1998) and Hasbrouck (1999b). We will compare our

suggestion to this earlier work in Section 5.

Following an initial draft of this paper, Rydberg and Shephard (1998) have

studied the dynamics of the fZtg process within the context of our compound

Poisson process framework, while not discussing the speci�cation of the count-

ing process fN(u)g. Another approach to modelling the dynamics of the fZtg

has also been previously proposed by Russell and Engle (1998). These two

models have rather di�erent features since the models proposed in Rydberg

and Shephard (1998) could potentially include discrete as well as continuous

returns, whereas the model in Russell and Engle (1998) only allows fZtg to

live on a �xed number of points.

Our models are also related to stochastic volatility (SV) or time deformation

models, see e.g. Clark (1973), Hull and White (1988), Stein and Stein (1991),

Ghysels, Harvey, and Renault (1996) and Barndor�-Nielsen and Shephard

(1998). In SV models Brownian motion is deformed, while in the compound

Poisson process the Cox process is a deformed Poisson process, the intensity

process playing the role of that of the volatility for the Brownian motion.

Barndor�-Nielsen and Shephard (1998) have studied the connection between

the modelling framework we propose and a SV model in a thickly traded

market. Those results have been elaborated by Frey and Runggaldier (1998).

Compound Poisson processes with discrete innovations resemble binomial

models of stock prices (see, for example, Dothan (1990)), because they also

live on a grid. Our framework is more complicated since binomial models

typically live in discrete time, with independent and identically distributed

price movements only occurring at deterministic points in time.

Jump di�usions models, which allow discontinuous sample paths for prices,

have also been used in �nance. The discontinuities are usually introduced as

a standard Poisson process (see e.g. Merton (1976)) and are used to model big

events such as interventions by government or monetary authorities. They are

not appropriate for the empirical phenomenon we are modelling in this paper.

Compound Poisson processes are extensively used in insurance mathematics

as a model for the capital of an insurance company. The capital is e�ected



Prices and times of trades 5

by the known income from premiums and the randomly arriving stream of

insurance claims from policy holders. The earliest reference we know of to

the use of Cox processes in this context is Ammeter (1948), while a textbook

exposition of this literature is given in Grandell (1991).

The paper is organized as follows. In Section 2 we look at some descript-

ive statistics for the trade-by-trade data we are analysing | studying both

the basic features of the counting process fN(u)g and the price innovations

process fZtg. Section 3 looks at the general properties of counting processes

in our context. In Section 4 we discuss using two signal extraction methods

for estimating the current level of intensity of trading in the market. Two

alternatives are studied in Section 5, while in Section 6 we look at the im-

plication of our model structure for the dynamics of changes in the price level

over intervals of length �. In Section 7 we look at connecting our theoretical

model of N(u) and the price changes with the empirical evidence. We draw

our conclusions in Section 8.

2 Basic features of trade-by-trade data

2.1 The data

The trade data used in this paper is for the IBM share recorded electronically

at the New York Stock Exchange in 1995 (NYSE TAQ{data base). The market

itself is not electronic but is open out cry and there is one market maker for

each stock. Each market maker can make the market in several stocks, for

an excellent exposition of market micro structure, see O'Hara (1995). The

precision of the time stamp is one second and it is the duty of the seller to

report the trade. We �rst construct a time series for each day on which the

exchange was open, computing the price changes at each trade (rescaling the

data to have a tick size of one). We cut out all trades registered after 16.00

as this is the o�cial closing of the exchange and our initial data analysis

suggested the data was signi�cantly di�erent when it had a time stamp which

was after 16.00. Also all trades occurring with an error mark are discarded

and in order to reduce the size of the data set we only consider trades which

took place at the NYSE.

2.2 Price movements

The dynamics of the price level in calendar time is determined by the proper-

ties of fN(u)g and fZtg. In order to formulate models for these processes, we
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�rst look at their basic empirical features. We start with the price movements

fZtg.

The log10 of the counts of fZt; Zt�1g is given in Figure 2. This shows the

dramatic concentration of the data on 0; 0 which accounts for 60% of the data

and substantial mass along the lines

fZt = k; Zt�1 = 0gk and fZt = 0; Zt�1 = kgk :

Most importantly there is mass along the diagonal

fZt = k; Zt�1 = �kgk ;

which represents a move in the price which is reversed at the next trade. A

high proportion of this represents a single tick up (down) which are followed by

an immediate reversal of one tick down (up). This is caused by the discreteness

of the sample space and the action of bid/ask bounce. This very signi�cant

diagonal is not matched by one along

fZt = k; Zt�1 = kgk

which has almost no mass.

-10 -5 0 5

-1
0

-5
0

5

0 1 2 3 4 5

Figure 2: This �gure shows in a log 10 scale the number of observations in

each coordinate. To all cells 1 was added before taking log in order to avoid

problems with log's of zero.
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Figure 2 implies the fZtg process has extremely signi�cant negative �rst

order autocorrelation. However, Figure 3 shows that by lag two this correlation

is close to zero (although lags up to 6 are statistically di�erent than zero).

This suggests, up to a very rough Wold representation, the fZtg are a Markov

process.

1 6 11 16 21

-.2

-.1

0

Correlogram of the {Z} series. 

1 200 400 600 800 1000

0

.05

.1

Correlogram of the {|Z|} series. 

-7.5 -5 -2.5 0 2.5

50000

1e5

Histogram for {Z} series

-7.5 -5 -2.5 0 2.5

1

2

3

4

5

Log-histogram for {Z} series

Figure 3: (a) shows the correlogram of Zt, the price movements. (b) shows

correlogram for jZtj. (c) is histogram of Zt, while (d) is the log of the histogram

plus one.

Figure 3(c) counts the numbers of price movements of the fZtg equal to

particular integers. It demonstrates that most of the trades on the NYSE

do not move the price and only rarely does the price move by many ticks.

The vast majority of the data is one of �2;�1; 0; 1; 2, while the density is

seemingly slightly skewed to the left. This is more easily seen by looking at

the log-histogram which is again given in Figure 3(d).

Figure 3(b) also gives the correlogram of the jZtj. This has a large number

of lags which are signi�cantly di�erent from zero and take a great deal of time

to die down. Indeed there are indications of long-memory type behaviour in

this plot. This is not surprising as this is close to the usual volatility cluster-

ing that is often observed in �nancial returns over 5 minute or daily intervals.
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See, for example, the econometric literature on autoregressive conditional het-

eroskedastic (ARCH) and SV models (Bollerslev, Engle, and Nelson (1994),

Ghysels, Harvey, and Renault (1996) and Shephard (1996)). This feature of

the data will not be the focus of this paper. Instead we look at a broadbrush

analysis of the data, for which we maintain the Markov assumption on fZtg.

For a thorough analysis of the fZtg process, see Rydberg and Shephard (1998).

2.3 Trading times

2.3.1 Stylized intra{day, week and monthly e�ects

The intensity of trading on the NYSE varies considerably through time. In

this subsection we study the basic features of the observed sequence of fN(u)g

for the IBM stock. We do this via a di�erence operator

Nn = N [f(n+ 1)�g�]�N(n�); � > 0; (2.1)

which creates a discrete time series from the time continuous counting process

by recording the number of trades which occurred in time intervals, or bins, of

length �. Typically in this paper we take � to equal one second. Note that

Nn is well de�ned, since fN (u)g is c�adl�ag, and counts all arrivals with time

stamps �t such that n� � �t < (n+ 1)�:

The top graph of Figure 4 shows an estimate of the average number of

trades which occur at each second for each day of the week. The estimate is

generated using a natural cubic spline with a di�erent bandwidth selected by

generalised cross-validation for each day of the week (see, for example, Green

and Silverman (1994)). We can see that for each day trading is brisk in the

morning hours, slows down around lunch time and picks up again in the after-

noon. In addition there are changes in these patterns between the days of the

week. In particular Monday mornings and Friday afternoons are comparat-

ively inactive, while the �rst 30 minutes of Friday mornings are the most active

trading period of the week during 1995 for the IBM stock. Finally, we can see

that the �rst ten minutes of each day are unlike most of the rest of the day |

for the activity rate changes very dramatically during this time. Patterns of

intra{day trading has been studied by several researchers, e.g. Andersen and

Bollerslev (1997), Andersen and Bollerslev (1998) and Guillaume, Dacorogna,

Dave, Muller, Olsen, and Pictet (1997).

The bottom graph of Figure 4 shows the number of trades on each day that

the NYSE was open. We can see very signi�cant changes in the activity level

during the year, with low levels at the beginning of the year and high levels

in September and October. Some of the variation of this series arises due to
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9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

.02

.03

.04

.05

.06

Estimated average number of trades per second

Monday Tuesday
Wednesday Thursday
Friday

1 2 3 4 5 6 7 8 9 10 11 12

500

1000

1500

Trades per day that the market is open

Figure 4: Top graph is the intensity of the trading per second. Estimated daily

curves using a spline with the smoothness penalty selected using generalised

cross validation. Bottom graph is the number of trades per day for each day

the market is open during the year. The x{axis indicates the month.

a seasonal component. However, there is also important serial dependence in

the series.

2.4 Dynamics of fNng

Throughout we will study the dynamics of the fNng process with � set to

one second, focusing on the stochastic properties rather than the deterministic

seasonal features. Our �rst analysis is to look at the daily time series gener-

ated by looking at the di�erence between the fNng sequence in each day and

the corresponding daily seasonal pattern given in Figure 4. For each day we

computed the correlogram and plotted the average of these 251 correlograms

in Figure 5. This picture shows a negative correlation at lag one, followed by

very signi�cant (although quite small) correlations at longer lags. These die

down quite slowly, but are mostly irrelevant after 5000 seconds.

The negative correlation at lag one indicates that there are less runs of trades

in the series than one would expect if the trades were independently spread



10 Rydberg & Shephard

1 6 11 16 21 26 31 36 41 46 51

-.01

0

.01

.02

1 2500 5000 7500 10000 12500 15000 17500 20000 22500

-.015

-.01

-.005

0

Figure 5: Averaged correlogram for 251 active days. For each day we computed

the correlogram for the day using the 23,400 second by second data. Top

correlogram shows �rst 50 lags, bottom a thinned version of 23,400 lags.

throughout the day. This is almost certainly due to the inability of the market

maker to record trades quickly enough at active times of the market. The

positive correlations at other lags are more important to the overall dynamics

of the counting process as they are sustained over a large number of lags.

A di�culty with the above analysis is that it may not be picking up very

long pieces of memory in the series which wash over from one day onto the

next. We now try to measure this. To carry this out we will construct 4 time

series each of length 60 working days by simply sticking together 60 days of

the di�erence between fNng sequence in each day and the corresponding daily

seasonal pattern. Each of these series has 1,404,000 observations. Figure 6

gives the correlograms for each of these massive series. On the left we give

a thinned version of the correlogram up to 50,000 lags, plotting every 200th

correlation to make it easier for the eye to pick up patterns. On the right

we plot the �rst 100 correlations in order to easily see the very short run

correlations in the series. These pictures are remarkably similar over the four

periods of 60 days and show very long levels of persistence in the correlations
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Figure 6: Correlogram for 60 days of collatted data minus seasonal pattern.

Length of series is 1,404,000 observations.

which are qualitatively di�erent from the averaged correlogram approach that

we showed earlier.

We can reconcile the long time series analysis with the average correlogram

�gure by working with the bottom of Figure 4 which shows the number of

trades on each day that the NYSE was open. This series reveals a great deal

of memory (or a neglected seasonal pattern) between days which will thus

impact on the correlograms of the massive time series but have no impact on

the averaged correlograms. In order to adjust for this feature of the fNng

we have constructed an adjusted massive series which multiplies the seasonal

term by the ratio of the number of trades in the previous day to the average

number of trades in the year.

The resulting correlograms for the new massive series are given in Figure 7.

They show moderate correlations after about 15,000 lags which seems much

more in line with the averaged correlogram analysis. Further, the analysis

looks remarkably stable over time as each of these four series looks basically

the same. As a result we will focus our analysis on this type of series. However,

before we carry out some empirically based modelling we need to improve our
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Figure 7: Correlogram for 60 days of collatted data minus seasonal pattern

adjusted by dynamics of day by day data.

understanding of the basic theory of Cox processes in order to model accurately

fNng. This is carried out in the next section.

3 Specifying a framework for Cox processes

3.1 Background

The focus in this section will be on constructing simple models which generate

the counting process fN(u)g, which counts the number of trades up to time u.

These will be based upon the framework of Cox or doubly stochastic Poisson

processes.

We �rst recall that a stochastic process f�(u)g with

�(0) = 0; �(u) <1 for all u <1

and non{decreasing realizations is called a random measure. Then let
n eN(u)

o
be a standard Poisson process and further let � and eN be independent of each

other. Then the point process fN(u)g =
n eN f�(u)g

o
is called a Cox process
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(see, for example, Grandell (1997)). A elegant discussion of Cox processes

from the viewpoint of subordination is given in Cox and Miller (1965, p. 154).

The random measure � is linked to the intensity � via the integral equation

�(u) =

Z u

0
�(s)ds;

where f�(u)g is a c�adl�ag positive stochastic process, which implies that f�(u)g

is continuous.

The previous subsection analysed the number of trades in the n-th bin

denoted by Nn, which occurred in intervals or bins of length one second. We

call this a binned time series. Since

fN(u)�N(v)j�(u) � �(v)g � Po f�(u)� �(v)g

where Po denotes the Poisson distribution, we know that

Nnj�n � Po(�n); where �n = � f(n+ 1)�g � �(n�): (3.1)

Note that we do not need � [f(n+ 1)�g�] since f�(u)g is continuous by

construction. Furthermore, since the Cox process conditionally on f� (u)g

has independent increments we have that the binned counts are conditionally

independent. An interesting special case of this is where � is very small, in

which case

Pr (Nn = 0j�n) = 1� �n + o(�):

3.2 Generic properties of the bins

It is possible to work out the autocorrelation pattern of fNng simply under the

condition that f�(u)g is covariance stationary. This work follows closely some

related ideas on stochastic volatility due to Barndor�-Nielsen and Shephard

(1998). These general results will be helpful in allowing us to derive empirically

realistic and simple models for the counting process.

Let �, !2 and r denote, respectively, the mean, the variance and the auto-

correlation function of the process f�(u)g. It is useful to de�ne the notation

r
� for the cumulative autocorrelation function, i.e.

r
�(t) =

Z t

0
r(u)du and R

�(t) =

Z t

0
r
�(u)du:

For use below we note thatZ t

0

Z t

0
r(u� v)dudv = 2R�(t)
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and consequently, assuming that �(t) is square integrable,

Varf�(u)g = 2!2R�(u)

and

Covf�n; �n+sg = !
2 [R�

f(s+ 1)�g � 2R�(s�) +R
�
f(s� 1)�g]

= !
2
}R

�(�s); (3.2)

where }R�(s) is de�ned as

}R
�(s) = R

�(s+�)� 2R�(s) +R
�(s��):

The moments of Nn follow immediately. Notice

E (Nn) = E(�n) = ��;

Var (Nn) = Var (�n) + E(�n) = 2!2R�(�) +��;

Further

Cov (Nn; Nn+s) = E (NnNn+s)� E (Nn)
2 (3.3)

= Cov (�n; �n+s) = !
2
}R

�(�s) (3.4)

The implication is that

Cor (Nn; Nn+s) = q}R
�(�s), where q =

!
2

2!2R�(�) +��
:

Example Suppose that

r(s) = e
��jsj

for some � > 0. Such autocorrelation functions occur when we use the

Ornstein-Uhlenbeck process

d�(u) = ���(u)dt+ dz(�u); (3.5)

with 0 < � < 1. The process z is a homogeneous L�evy process5 with pos-

itive increments (also termed a subordinator). They are studied at length

in Barndor�-Nielsen and Shephard (1998). Exactly the same autocorrelation

function results from the `constant elasticity of variance' process

d�(u) = ��

n
�(u)� �

o
dt+  f�(u)gd dW (u); d � 1=2, (3.6)

5Note that Varf� (u)g = !2 does not depend on �. This is due to the reparametrisation

used on the de�nition of Ornstein{Uhlenbeck processes, where the � enters the time of z:
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where W (u) is standard Brownian motion. This general structure, which

is always covariance (and strictly) stationary if 0 < � < 1, has been re-

cently highlighted by Meddahi and Renault (1996) who strongly argue that it

provides a great deal of tractability in terms of studying temporal aggregation

of stochastic volatility using di�erent information sets. Then,

R
� (�) =

1

�2

�
��+ e

���
� 1

�
and for s > 0,

}R
�(�s) = �

�2(1� e
���)2e���(s�1)

which falls exponentially with s. Hence

Var (Nn) =
2!2

�2

�
e
(���)

� 1
�
+�

 
� +

2!2

�

!

which is linear for large �. Furthermore, we get that

CorfNn; Nn+sg =
!
2

2!2R�(�) +��
}R

�(�s) = ce
���(s�1)

: (3.7)

where

c =
!
2(1� e

���)2

2!2 (��+ e��� � 1) + �2��
:

Note that 0 < c < 1 and that Nn has a Wold representation which is a

ARMA(1,1) process with weak white noise errors.

4 Signal extraction

4.1 Estimation of intensity

We could think of Nnj�n � Po(�n) as a state space model and then perform

signal extraction on the random integrated intensity, �n. In this section we will

study two ways of performing signal extraction in this context: a best linear

method generated by the Kalman �lter and an e�cient method computed

using a particle �lter. Both are adapted to our case from the treatment of

stochastic volatility developed by Barndor�-Nielsen and Shephard (1998).

The number of trades in the n�th interval of length � is

Nn = �n + (Nn � �n) = �n + un;

where fung is a Martingale di�erence sequence. Further, so long as f�ng is

covariance stationary, fung is a zero mean, white noise process. We will write
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the variance of fung as �2u. If we were to adopt the Barndor�-Nielsen and

Shephard (1998) model for �(t), given in (3.5), then we have two available ap-

proaches: a discrete time approximation or the exact continuous time version.

For ease of exposition we have set � = 1 throughout and we will only discuss

the discrete time case. The extension to the continuous time version follows

using results in Barndor�-Nielsen and Shephard (1998).

4.2 Discrete time model

First we can take a Euler style approximation to �n so that

�n+1 = e
��
�n +

�
1� e

��
�
�n; and E(�n) = E(�n) = �: (4.1)

Here f�ng are independent and identically distributed strictly positive random

variables. Then this model is in a linear state space form and so the Kalman

�lter provides the best linear estimator, written an+1jn, of the unobserved �n+1

given N1; :::; Nn. In particular the Kalman �lter is given by the

an+1jn = e
��

(
anjn�1 +

pnjn�1

pnjn�1 + 1

�
Nn � anjn�1

�)
+
�
1� e

��
�
�;

and its associated mean square error �2upn+1jn, where vn =
�
1� e

��
�
(�n � �),

pn+1jn =
e
�2�

pnjn�1

pnjn�1 + 1
+
�
2
v

�2u

; where �
2
v = Var(vn):

In many senses the Kalman �lter solution is unsatisfactory for it does not

give f(�n+1jFn), nor in particular the fully e�cient estimator E(�n+1jFn).

We employ the auxiliary sampling importance resampling particle �ltering of

Pitt and Shephard (1999) to carry out this task.

We use the notation f(�n+1j�n) to denote the Markov evolution of the

unobserved intensity over time of the discrete time model. The particle �lter

has the following basic structure. The density of �njFn is approximated by

a sample �1;n; :::; �M;n. The particle �lter regenerates these points into an

approximate sample from �n+1jFn+1 by sampling from

bf (�n+1jFn+1) / f (Nn+1j�n+1)
MX
k=1

f (�n+1j�k;n) : (4.2)

This is carried out by sampling kj with probability proportional to

f

�
Nn+1j�

k
n+1

�
; where �

k
n+1 = E(�n+1j�k;n);
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and then drawing from �j;n+1 � �n+1j�kj ;n. This is carried out R times. The

resulting population of particles are given weights proportional to

wj =
f (Nn+1j�j;n+1)

f

�
Nn+1j�kj ;n+1

� ; �j =
wjPR
i=1wi

; j = 1; :::; R:

We resample this population with probabilities f�jg to produce a sample of

size M , �1;n+1, :::, �M;n+1. This sample is approximately from �n+1jFn+1. In

this way we update the sample at each time step through the entire sample,

n = 1; 2; :::; T . We can estimate E (�n+1jFn) by

e
�� 1

M

MX
j=1

�j;n +
�
1� e

��
�
�:

In practice when we have applied the ASIR particle �lter in this context we

have taken, in the order of, M = 10; 000 and R = 3M .

5 Alternatives models of N(u)

5.1 Time between trades

In the preceding section we have studied the stochastic properties of the num-

ber of trades up to time u, writtenN(u). We did this via modelling the number

of trades occurring in bins of length �, Nn = N [f(n+ 1)�g�]�N(n�). An

alternative is to model the time between trades, also termed durations. Let �t

be the time of the t� th trade. Then it is given by

�t = min
u
fN(u) = tg ; t = 1; 2; :::; N(S);

recalling that N(S) is the number of trades in the period of length S we are

studying. Then the length of time between trades is

Lt = �t � �t�1; t = 1; 2; :::

For our data a small number of these times are exactly zero.

>From a statistical viewpoint we can think of fLtg as a time series of dur-

ation times. There is an enormous literature on the analysis of durations,

although most of it does not have a time series interpretation. We refer to

Lancaster (1990), Synder and Miller (1991) and Cox and Oakes (1984) for

general discussions of this literature.

In the econometric literature an inuential model of the durations is the

autoregressive conditional duration (ACD) model of Engle and Russell (1998).

This puts

Lt = "t t; "t > 0; E("t) = 1
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and the "t's are independent identical distributed (i:i:d:), with

 t = �+

pX
j=1

jLt�j +

qX
j=1

�j t�j :

Here  t = E(LtjFt�1), the conditional expected waiting time, where Ft is a

�ltration, potentially containing all information up til time t�1. The mathem-

atical structure of this model is identical to that of the square of an GARCH

model associated with the work of Engle (1982) and Bollerslev (1986). The

model has many similarities with earlier work by Wold (1948) and Cox (1972).

In practice Engle and Russell (1998) have used an exponential or Weibull

distribution on the f"tg. Straightforward alternative structures would be to

parameterise the log t instead of the  t.

A key feature of this model is that, conditional on  0, the likelihood can

be computed via a prediction decomposition. Further the number of terms

that need to be evaluated is only N(S), rather than the number of seconds.

However, if the focus is on events in calender time this model has a serious

drawback, namely that the intensity �n cannot be calculated analytically, this

is discussed in more detail in Rydberg and Shephard (1999).

5.2 Modelling the price level

The ACD model implies the following structure for the price level of the stock.

It has the evolution according to the process

p

 
nX
t=1

Lt

!
= p(0) +

nX
t=1

Zt;

which tells us the price at n irregularly space time points. In continuous time

this has a less elegant expression as

p(u) = p(0) +

N(u)X
t=1

Zt; where N(u) = argmax
n

(
nX
t=1

Lt � u

)
:

Note that we need
Pn

t=1 Lt � u in order for N(u) to be c�adl�ag. This implies

Nn = N [f(n+ 1)�g�]�N(n�)

= argmax
r

(
rX

t=1

Lt < (n+ 1)�

)
� argmax

r

(
rX

t=1

Lt � n�

)
:

The complexity of the relationship between the fLtg and fNng implies study-

ing the behaviour of returns in calendar time implied by ACD style models is

di�cult.

Other di�culties with the ACD style of model include the following.
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1. The intra-day seasonal pattern of changing activity has quite a complic-

ated impact on the conditional waiting times, for the index t does not

correspond to a physical time. This is quite important in this context

as the intra-day pattern is very strong and quite quickly changing.

2. The conditional duration is only changed when there is a trade in the

stock. However, in terms of economic theory it maybe easier to paramet-

erise the model if we were to allow the conditional waiting time to change

with any new information arriving in the market. At the most re�ned

level this would argue that the conditional intensity should change every

second.

3. At the end of each trading day, there is a period which does not result

in a trade. This has an impact on the likelihood function, although this

is easy to compute.

5.3 A BIN model

In a recent paper Rydberg and Shephard (1999) have suggested a simple direct

model for fNng in discrete time. That is they model, as a time series, the

number of counts in the interval of length �. In their simplest model they

write, with FN
n as the natural �ltration of the fNng sequence,

NnjF
N
n�1 � Po(�n); where �n = �+ Nn�1 + ��n�1.

They impose the constraints that �; ; � > 0. Rydberg and Shephard (1999)

show that for this model the following results hold

1. The conditional likelihood f(N1; :::; NT j�1) can be computed.

2. The process is covariance stationary if and only if  + � < 1.

3. If the process is stationary then

Cor(Nn; Nn+1) =
 f1� � ( + �)g

1 + �2 � 2� ( + �)
;

Cor(Nn; Nn+s) = Cor(Nn; Nn�1)
s�1

; s = 2; 3; ::::

This is the same autocorrelation as that derived from a Cox process for

fN(u)g when the intensity was an Ornstein{Uhlenbeck process, see formula

(3.7).

This model allows us to predict future fNng or time aggregations of that

process. As a result is seems ideally placed if our goal is to model the price

process.
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6 The properties of returns

6.1 Model structure

In this section we will attempt to put together a model for the intensities and

the price movements in order to produce some simple properties of returns

over discrete periods of time, which are given by

pn = p [f(n+ 1)�g�]� p(n�):

pn is well de�ned since fp (u)g is c�adl�ag. We will use the structure

p(u) = p(0) +

N(u)X
t=1

Zt;

together with three basic assumptions.

1. The fZtg are a zero mean, �rst order moving average process, with

autocorrelation �Z(1) and unconditional variance �2Z . Sometimes it will

be helpful to write this out explicitly in terms of Zt = "t + �"t�1, where

f"tg is an i:i:d: zero mean process. An important consequence of this

structure is that j�Z(1)j �
1
2 and

Cov(Zt; Zt�1) = �Var("t) =
�

1 + �2
�
2
Z :

2. Trades occurring irregularly in time according to a Cox process.

3. The price movements will be stochastically independent of the timing of

trades.

Assumptions (1) or (3) are not entirely reasonable however, to a �rst ap-

proximation, they will be helpful. For a detailed discussion and model of this

process, see Rydberg and Shephard (1998).

6.2 Two moments

We �rst discuss the linear structure of the model. We immediately get that

E fp(u)g = p(0):

For the variance, by using that �eN (u) = E fN(u)jN(u) > 0g ; we get the

following structure:

Var fp(u)g = E

24Var
8<:

N(u)X
t=1

Zt

������N(u)

9=;
35 (6.1)

= �
2
Z Pr fN(u) > 0g [�eN (u) + 2 f�eN (u)� 1g �Z (1)] (6.2)

= �
2
Z [E fN(u)g f1 + 2�Z (1)g � 2�Z (1) Pr fN(u) > 0g] :(6.3)
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If u is quite large then for an active stock N(u) must also be large. Thus

Var fp(u)g ' �
2
Z f1 + 2�Z(1)gE fN(u)g ; for large u.

In practice we have found that 2�Z(1) to be around �0:5, so the depend-

ence in the price movements has a very considerable inuence on this volat-

ility measure. An important feature of this result is that Varfp (u)g is ap-

proximately proportional to E fN(u)g for large u, with the constant being

�
2
Z f1 + 2�Z (1)g. However, is should be noted that u has to be pretty large

in practice for this to hold. If � = 30 seconds then Pr fN(u) > 0g is around
1
2 . One use of this result is that

Var (pn) = E

"
Var

(
NnX
t=1

Zt

�����Nn

)#
= Var fp (�)g ;

and so for large � the

Var (pn) ' �
2
Z f1 + 2�Z (1)gE fN(�)g : (6.4)

When � is very small we have that Pr fN(u) > 0g ' E fN(�)g and so

Var(pn) ' �
2
ZE fN(�)g ; for small �: (6.5)

These results for returns are not immediately obvious, but they are important.

For small � it is very rare to get more than a single price movement and so

the presence of correlation amongst the price movements is irrelevant (note

the variance would be exactly �2ZE fN(�)g if the fZtg are i:i:d: and have zero

mean). For larger � it is possible to get more than a single price movement

occurring in the interval and hence the correlation reduces the variation in the

returns and causes the non{linearity in the relationship between Var(pn) and

E fN(�)g.

6.3 Conditional independence

In order to study the dependence between pn and pn+s it is helpful to work

conditionally on

Nn; N f(n+ s)�g �N f(n+ 1)�g ; Nn+s:

A crucial feature of our setup is that

pn k pn+s

���Nn; Nn+s; N f(n+ s)�g �N f(n+ 1)�g > 0;

that is the returns will be conditionally independent if there are trades in{

between these time periods. Hence when we look at any dependence structure
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we will only be interested in situations where N f(n+ s)�g = N f(n+ 1)�g.

An implication of this, which we will use twice in our calculations, is that we

can write (
pn = "N(n�+�) + x

pn+s = �"N(n�+�) + y

)
; (6.6)

where (
x = �"N(n�+�)�1 + ZN(n�+�)�1 + :::+ ZN(n�)+1

y = ZNf(n+s)�+�g + :::+ ZNf(n+s)�g+2 + "N(n�+�)+1

)
:

We can think of x as shocks to the price which occur before "N(n�+�), while

y are the shocks after that period. The only shared shock in this frame-

work is "N(n�+�). As a result y, "N(n�+�) and x are conditionally (on

Nn+s; Nn; N f(n+ s)�g �N f(n+ 1)�g = 0), mutually independent.

6.4 Autocorrelation

Let p(s) = Cov(pn+s; pn). The only way there can be linear dependence is

if there is a trade between times n�; n� + �, then no trade in the interval

(n+ 1)�; (n+ s)� and �nally a trade in times (n+ s)�; (n+ s+ 1)�. Thus

the autocorrelation p(s) equals

Cov
n
"N(n�+�); �"N(n�+�)

o
�Pr [Nn+s > 0; N f(n+ s)�g = N f(n+ 1)�g ; Nn > 0] ;

which in turn equals

�
2
Z�Z(1) Pr [Nn+s > 0; N f(n+ s)�g = N f(n+ 1)�g jNn > 0] Pr (Nn > 0) :

Hence

�p(s) = Cor(pn+s; pn)

=
�Z(1) Pr [Nn+s > 0; N f(n+ s)�g = N f(n+ 1)�g jNn > 0]

Var(pn)
:

As �Z(1) < 0, this correlation will be negative for every s > 0. If s = 1, then

as � ! 0 this correlation approaches zero, as there is little chance there will

be two contiguous trades and so there cannot be any linear dependence. For

larger � the dependence becomes apparent with a strong negative correlation,

but for large � the series will be basically uncorrelated. All of these e�ects

weaken as s increases beyond one due to the requirement that there is no trade

in the interval (n+ 1)�; (n+ s)�.
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6.5 Volatility clustering

6.5.1 No dependence case

In order to study volatility clustering we will initially assume the fZtg are

independent over time. Then let s > 0,

p2(s) = Cov(p2n+s; p
2
n)

= E
n
Cov

�
p
2
n+s; p

2
njNn+s; Nn

�o
+Cov

n
E
�
p
2
n+sjNn+s);E(p

2
njNn

�o
= Cov fVar (pn+sjNn+s);Var(pnjNn)g

= �
4
ZCov (Nn+s; Nn)

= �
4
Z!

2
}R

�(�s),

using (3.3) and Cov
�
p
2
n+s; p

2
njNn+s; Nn

�
= 0. This is a completely general

expression for volatility clustering under the overly strong independence as-

sumption on the fZtg.

6.5.2 Dependence case

We are interested in the problem where there is dependence amongst the fZtg.

We start by noting that we still have

p2(s) = E
n
Cov

�
p
2
n+s; p

2
njNn+s; Nn

�o
+Cov fVar (pn+sjNn+s);Var(pnjNn)g

and that, using (6.1),

Var(pnjNn)� E fVar(pnjNn)g

= �
2
Z

*
f1 + 2�Z(1)g [Nn � E fN(�)g]

�2�Z(1) [I fNn > 0g � Pr fN(�) > 0g]

+
:

As a result, for s > 0

Cov fVar (pn+sjNn+s);Var(pnjNn)g (6.7)

= �
4
Z

* f1 + 2�Z(1)g
2Cov (Nn+s; Nn)

+4�Z(1)
2Cov [I fNn+s > 0g ; I fNn > 0g]

�4 f1 + 2�Z(1)g �Z(1)Cov [I fNn+s > 0g ; Nn]

+
:

For large values of �, in a thickly traded market Nn+s > 0 and so

Cov [I fNn+s > 0g ; Nn] = 0

and

Cov [I fNn+s > 0g ; I fNn > 0g] = 0:
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The implication will be that

Cov fVar (pn+sjNn+s);Var(pnjNn)g ' f1 + 2�Z(1)g
2Cov (Nn+s; Nn) : (6.8)

For small �,

Cov (Nn+s; Nn) ' Cov [I fNn+s > 0g ; Nn]

' Cov [I fNn+s > 0g ; I fNn > 0g]

and so

Cov fVar (pn+sjNn+s);Var(pnjNn)g ' Cov (Nn+s; Nn) ; (6.9)

which again reects the irrelevance of the dependence amongst the Zt for small

�.

In order to evaluate E
�
Cov

�
p
2
n+s; p

2
njNn+s; Nn

�	
it will be convenient to

use the structure introduced in (6.6). Then

Cov
�
p
2
n+s; p

2
njNn+s > 0; Nn > 0; N f(n+ s)�g = N f(n+ 1)�g

�
= Cov

��
�"N(n�+�) + y

�2
;

�
"N(n�+�) + x

�2����Nn+s; Nn

�
= �

2Var
�
"
2
N(n�+�)

���Nn+s; Nn

�
= �

4
Z�Z(1)

2

Of course unconditionally

E
n
Cov

�
p
2
n+s; p

2
njNn+s; Nn

�o
= �

4
Z�Z(1)

2E [Nn+s > 0; Nn > 0; N f(n+ s)�g = N f(n+ 1)�g] :

If s = 1 this term can have a reasonably important contribution when � is

small. Then

p2(1) '
n
1 + 2�Z(1)

2
o
Cov (Nn+1; Nn) ;

but for larger values of s it is likely to be swamped by (6.7) and is thus

irrelevant. For large values of � the contribution of this term will be basically

irrelevant even at lag 1.

The dominant terms in these expressions are given in (6.9) and (6.8). They

suggest the dynamics features of the autocorrelations amongst the squares

changes with � in an important way which is not apparent when there is no

dependence in the price movements or in the corresponding SV type model.

It is the combination of discreteness and serial dependence which is needed in

order to get this feature of the model.
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7 Empirical analysis

7.1 The arrivals

Let us briey study the behaviour of the arrival process. Recall that in the

example in Section 3.2 we discussed Ornstein{Uhlenbeck processes as possible

models for the intensity process. For such types the autocorrelation function

is of the type

r(s) = e
��jsj

for some � > 0, and

R
� (�) =

1

�2

�
��+ e

���
� 1

�
:

This implies that the overdispersion of the counts is

Var (Nn)� E(Nn) =
2!2

�2

�
��+ e

���
� 1

�
:

In order to investigate if this very simple type of model, is at least in the

right ball park, we randomly chose four days in 1995. The four days are rather

di�erent in intensity levels, the lowest of the four was 21 February where the

average duration was 62.6 seconds while the highest was on 27 June where the

average duration was 31.7 seconds, almost twice as busy. In order not to have

to deal with individual day e�ects we for each of these four days calculated

the empirical values of Var (Nn) � E(�n) for 1 � � � 300 and estimated the

two parameters � and !2. The results can be found in Figure 8. For all the

days the shape of the curve seem to capture the relationship quite well. There

is some variation in both � and !2 showing di�erent levels of over{dispersion

and memory. The estimated values of � correspond to half{lives of between

80 and 127 seconds. This is not quite enough to capture all of the memory we

have seen in the intensity process in Figures 5 and 6.

One way to go forward from here could be to assume that the intensity pro-

cess follows a sum of Ornstein{Uhlenbeck processes, studied in e.g. Barndor�-

Nielsen and Shephard (1999) as a way of modelling the volatility process. For

such processes the autocorrelation function is given by

r(s) =
kX
i=1

wie
��ijsj

for some �i > 0 and
Pk

i=1wi = 1. Furthermore,

R
� (�) =

kX
i=1

wiR
�
i (�)
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Figure 8: The observed relationship between Var(Nn)�E(Nn) and � (repres-

ented as a �) and the estimated curve resulting from the assumption that the

intensity process can be modelled as an Ornstein{Uhlenbeck process (represen-

ted as a solid line).

where

R
�

i (�) =
1

�2i

�
�i�+ e

��i� � 1
�
:

This implies that

Var (Nn)� E(Nn) =
kX
i=1

$i

�
2
i

�
�i�+ e

��i� � 1
�
;

where $i = 2!2wi. The di�erent decay rates could then represent the persist-

ence of di�erent types of shocks to the intensity level.

7.2 Price changes

In Section 6 we studied a simple model which did allow for serial dependence

between price changes in that they where assumed to follow a �rst order

moving average process. We furthermore assumed that the arrivals where
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stochastically independent of the price changes. In this setting we have that

the variance of pn can be estimated by:

dVar(pn) = �̂
2
Z

h
�̂1� f1 + 2�̂Z (1)g � 2�̂Z (1)

�
1� e

��̂1�
�i
; (7.1)

where �̂2Z is the estimate of the variance of the price changes, �̂Z (1) is the

estimate of the �rst order correlation and �̂1 is the estimate of the mean

intensity when � = 1.
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Figure 9: The observed relationship between Var(pn) and � (represented as a

�) and the estimated curve resulting from the assumption that the variance can

be described by (7.1) (represented as a solid line). The approximations given

by 6.5 and 6.4 are plotted as a dotted and a dashed line.

In Figure 9 we have plotted Var (pn) for 1 � � � 300 and the estimated

curve resulting from the assumption that the variance can be described by

(7.1), again for four randomly chosen days. The estimate from 7.1 does not

seem too far of, but it is obvious that we have to build a more sophisticated

model for the fZtg process (this is the topic of Rydberg and Shephard (1998)).

We have also plotted the approximations given by (6.5) and (6.4). From the

graph it is seen that (6.5) works reasonably well for � < 20 and that (6.4)

seriously underestimates the variance when ��̂Z (1) is large.
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8 Conclusion

In this paper we have set out a framework for the study of the trade{by{

trade price movements of speculative assets traded on major stock markets.

The emphasis has been on the discrete nature of prices, irregularly spaced

trading and returns (price movements) over intervals of length �. We have

used compound processes as the basis of our modelling, with trading occurring

at times determined by a Cox process. We studied the use of signal extraction

methods for estimating the time varying intensity of this process. In Section

7.1 of the paper we studied the implications of this style of model for the

dynamics of price changes in the market. The empirical evidence suggests

that we are on the right track but that the models have to be some what

more sophisticated. Further developement of the structure for the arrival rate

process was hinted at in Section 3.2 and is developed in Rydberg and Shephard

(1999). Also the model for the price changes only included the most dominant

feature, the �rst order moving average term, this is extended in Rydberg and

Shephard (1998), where also other explanatory variables, such as duration and

volume, are included.
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