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Abstract. Agents learn about a changing state using private signals and past actions

of neighbors in a network. When can they learn efficiently about recent changes? We

find two conditions are sufficient: (i) each individual’s neighbors have sufficiently diverse

types of private information; (ii) agents are sophisticated enough to use this diversity to

filter out outdated information and identify recent developments. If either condition fails,

learning can be bounded far from efficient levels—even in networks where, with a fixed

state, learning is guaranteed to be efficient without (i) or (ii). We thus identify learning

externalities that are distinctive to a dynamic environment, and argue that they can be

quite severe. The model we develop to make our argument provides a Bayesian foundation

for DeGroot learning in networks, permitting new counterfactual and welfare analyses for

that commonly-used behavioral model.
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1. Introduction

Consider workers who are trying to assess conditions in a labor market, which naturally

vary over time (e.g., due to demand shocks). The workers learn from their own experiences,

as well as from friends’ and coworkers’ actions (e.g., search efforts), which reflect those

people’s estimates of market conditions. Consider another example: analysts who estimate

changing economic variables, such as prices and interest rates varying over the business

cycle, have their own data and calculations, but they also use the reports of some others.

Because of the costs of acquiring and processing data, in general analysts may not access all

relevant estimates generated by others.1 This paper is a study of how individuals situated

in a network, each seeking to learn a changing state of interest, incorporate the information

of their neighbors, and whether that leads to timely aggregation of information.

We emphasize three features of the type of setting we are interested in. First, the

state of interest is dynamic. Second, individuals learn both from private signals and from

others’ observed actions or reported estimates. Third, because different agents learn from

different sources (i.e., without a central information aggregation device), estimates may

differ across a population. A central question is: When can the group respond to the

environment quickly, aggregating dispersed information efficiently in real time? In contrast,

when are estimates of present conditions confounded? How does this depend on the way

information is distributed throughout society? How much better off is a society of rational

updaters compared to more naive ones? These questions are important for understanding

the determinants of information aggregation and the welfare implications. They are also

relevant in design decisions—e.g., for a planner who can influence group composition or

information endowments with the aim of facilitating better learning.

Our first contribution, which is methodological, is to define and study equilibria in a

dynamic environment capturing the key features emphasized above. The state evolves ac-

cording to an AR(1) process, with an exogenous innovation added each period. There is

therefore some degree of persistence in the state, but also a constant arrival of innovations

to learn about. Agents receive private signals about the current state, with different dis-

tributions. Thus, some agents’ private signals may exogenously be more precise. There is

also endogenous learning: Agents’ actions reveal their expectations of the current state;

others learn from the actions they have observed before acting. These actions are relevant

because they contain information about recent states. A crucial feature of our setup is that

the environment in which agents learn is stationary—the distribution of states and signals

1See Sethi and Yildiz (2016) for a recent study of limits to information flow in networks due to the
investments needed to understand sources.
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is invariant to time shifts. This removes a time-dependence inherent in many models of

network learning, where society accumulates information over time about a fixed state: In

those models, the optimal way for agents to update depends on how much time has elapsed

since the start of the learning process, and it is often an eventual rate of learning about a

fixed state that is of interest (Harel et al., 2017). In our model, the state and the population

are refreshed over time, and the predictions concern a steady-state measure of learning qual-

ity. This provides a complementary way to analyze how efficiently a community aggregates

information, which is well-suited to learning about a dynamic state.

Importantly, this approach allows us to give a new foundation for a commonly used

type of learning rule, the DeGroot model; this is our second contribution. In our model,

Bayesians in stationary equilibrium update estimates by taking linear combinations of

neighbors’ estimates and their own private information, with the same coefficients over

time. The weights are endogenously determined because, when each agent extracts infor-

mation from neighbors’ estimates, the information content of those estimates depends on

the neighbors’ learning rules. Bayesians who understand the environment perfectly will

correctly account for all correlations in their observations. But, within the same environ-

ment, we can also study agents who ignore or underestimate the extent to which their

neighbors’ views are correlated by shared earlier observations, or exhibit other behavioral

deviations from Bayesian rationality. This gives a new framework for comparative statics,

welfare analysis, counterfactuals, and estimation exercises in social learning settings, under

various behavioral assumptions.

Turning from the methods to substantive findings, our third contribution is to analyze

the steady-state quality of learning, and how it depends on signal endowments, network

structure, and agents’ rationality or sophistication. First, we focus on a classical benchmark

of Bayesian agents in equilibrium, who correctly understand each other’s learning rules and

respond optimally. The main finding is that, in large populations, an essentially optimal

benchmark is achieved in an equilibrium, as long as each individual has access to a set of

neighbors that is sufficiently diverse (in the sense of having different signal distributions

from each other). If signal endowments are not diverse, then this result does not hold.

Indeed, equilibrium learning may be necessarily bounded away from efficiency even though

each agent has access to an unbounded number of observations, each containing independent

information. Diversity is, in a sense, more important than precision: giving everyone

better signals can hurt aggregation severely if it makes those signals homogeneous. A key

mechanism behind the value of diverse signal endowments is that it leads to diversity of

neighbors’ behavior, which helps agents form better statistical estimators. These estimators
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allow them to concentrate on new developments in the dynamic environment—in other

words, to successfully filter out older, less useful information. Thus, in stark contrast

with the analogous model with an unchanging state, Bayesian agents who understand the

environment perfectly are not guaranteed to be able to aggregate information well (see

Sections 4.4 and 4.5). We first make the points we have been discussing in the simplest

way we can—with one-dimensional variation in signals—but then remark in Sections 7.3

and 7.4 that the logic extends to much more general environments.

To achieve good learning when it is possible, agents must have a sophisticated under-

standing of the correlations in their neighbors’ estimates. Thus, the second contrast we

emphasize is between Bayesians who are correctly specified about their learning environ-

ment and agents who do not have sufficient sophistication about the correlations among

their observations to remove confounds. To make the point that such understanding is

essential to good aggregation, we examine some canonical types of learning rules, adapted

to our setting, in which the sophistication is absent (Eyster and Rabin, 2010). There, infor-

mation aggregation is essentially guaranteed to fall short of good aggregation benchmarks

for all agents. We then generalize these results to a broader class of learning rules in which

agents do not use sophisticated filtering techniques.

We argue that the deficiencies of naive learning rules different from and more severe

than those in similar problems with an unchanging state, and the requirements for good

learning more stringent. In analogous fixed-state environments where individuals have suf-

ficiently many observations, if everyone uses certain simple and stationary heuristics (re-

quiring no sophistication about correlations between neighbors’ behavior), they can learn

the state quite precisely. This point is made in the most closely analogous environments

by Golub and Jackson (2010) and Jadbabaie et al. (2012), where DeGroot-style rules guar-

antee asymptotically efficient learning. A changing state makes such imitative heuristics

quite inefficient. It is worth emphasizing that even Bayesians’ good learning in our en-

vironment depends on conditions—namely, signal diversity throughout the network—that

differ markedly from the conditions that play a role in the above-mentioned models with

an unchanging state.

Many of our results on the quality of learning use large random graphs. We thus also offer

evidence that neither the technical conditions imposed these graphs nor a reliance on very

large numbers is driving our principal conclusions. To this end, we first prove that even

in small networks, learning rules without filtering (in a sense we make precise in Section

5.3) lead to Pareto-inefficient aggregation. To show that the importance of signal diversity

manifests in realistic networks, we perform a numerical exercise: we calculate equilibria for
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real-world social networks both for diverse and non-diverse signal endowments, and show

that signal diversity does enable considerably better learning, even in networks with several

hundred agents, each having 10-20 neighbors.

Finally, we discuss some implications of our results for designers who wish to facilitate

better learning, and what distributions of expertise they would prefer. In particular, our re-

sults provide a distinctive rationale for informational specialization in organizations, which

we flesh out in Section 7.3.

An Example. We now present a simple example that illustrates our dynamic model,

highlights obstacles to learning that distinctively arise in a dynamic environment, and

gives a sense of some of the main forces that play a role in our results on the quality of

learning.

Consider an environment with a single perfectly informed source S; many media outlets

M1, . . . ,Mn with access to the source as well as some independent private information; and

the general public. The public consists of many individuals who learn only from the media

outlets. We are interested in how well each member of the public could learn by following

many media outlets. More precisely, we consider the example shown in Figure 1.1 and

think of P as a generic member of the large public.

Figure 1.1. The network used in the value of diversity example

. . .

P

S

M1 M2 M3 M4 M5 M6 Mn

The state θt follows a Gaussian random walk: θt = θt−1 + νt, where the innovations

νt are standard normal. Each period, the source learns the state θt and announces this

to the media outlets. The media outlets observe the source’s announcement from the

previous period, which is θt−1. At each time period, they also receive noisy private signals,

sMi,t = θt+ηMi,t with normally distributed, independent, mean-zero errors ηMi,t. They then
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announce their posterior means of θt, which we denote by aMi,t. The member of the public,

in a given period t, makes an estimate based on the observations aM1,t−1, . . . , aMn,t−1 of

media outlets’ actions in the previous period. All agents are short-lived: they see actions

in their neighborhoods one period ago, and then they take an action that reveals their

posterior belief of the state.

If we instead had a fixed state but the same signals and observation structure, learning

would trivially be perfect: the media outlets learn the state from the source and report it

to the public.

Now consider the dynamic environment. Given that P has no signal, an upper bound

on what she can hope for is to learn θt−1 (and use that as her estimate of θt). Can this

benchmark be achieved, and if so, when?

A typical estimate of a media outlet at time t is a linear combination of sMi,t and θt−1

(the latter being the social information that the media outlets learned from the source). In

particular, the estimate can be expressed as

aMi,t = wisMi,t + (1− wi)θt−1,

where the weight wi on the media outlet’s signal is increasing in the precision of that signal.

We give the public no private signal, for simplicity only.

Suppose first that the media outlets have identically distributed private signals. Because

the member of the public observes many symmetric media outlets, it turns out that her

best estimate of the state, aP,t, is simply the average of the estimates of the media outlets.

Since each of these outlets uses the same weight wi = w on its private signal, we may write

aP,t = w
n∑
i=1

sMi,t−1

n
+ (1− w)θt−2 ≈ wθt−1 + (1− w)θt−2.

That is, P ’s estimate is an average of media private signals from last period, combined with

what the media learned from the source, which tracks the state in the period before that.

In the approximate equality, we have used the fact that an average of many private signals

is approximately equal to the state, by our assumption of independent errors. No matter

how many media outlets there are, and even though each has independent information

about θt−1, the public’s beliefs are confounded by older information.

What if, instead, half of the media outlets (say M1, . . . ,Mn/2) have more precise private

signals than the other half, perhaps because these outlets have invested more heavily in

covering this topic? The media outlets with more precise signals will then place weight

wA on their private signals, while the media outlets with less precise signals use a smaller

weight wB. We will now argue that a member of the public can extract more information
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from the media in this setting. In particular, she can first compute the averages of the two

groups’ actions

wA

n/2∑
i=1

sMi,t−1

n/2
+ (1− wA)θt−2 ≈ wAθt−1 + (1− wA)θt−2

wB

n∑
i=n/2+1

sMi,t−1

n/2
+ (1− wB)θt−2 ≈ wBθt−1 + (1− wB)θt−2.

Then, since wA > wB, the public knows two distinct linear combinations of θt−1 and θt−2.

The state θt−1 is identified from these. So the member of the public can form a very precise

estimate of θt−1—which, recall, is as well as she can hope to do. The key force is that

the two groups of media outlets give different mixes of the old information and the more

recent state, and by understanding this, the public can infer both. Note that if agents are

naive, e.g., if they think that all of the signals from the media are not (strongly) correlated

conditional on the state, they will put positive weights on their observations and will again

be bounded from learning the state.

This illustration relied on a particular network with several special features, including

one-directional links and no communication among the media outlets or public. We will

show that the same considerations determine learning quality in a large class of random

networks in which agents have many neighbors, with complex connections among them.

Quite generally, diversity of signal endowments in their neighborhoods allows agents to con-

centrate on new developments in the state while filtering out old, less relevant information

and thus estimate the changing state as accurately as physical constraints allow.

Outline. Section 2 sets up the basic model and discusses its interpretation. Section 3

defines our equilibrium concept and shows that equilibria exist. In Section 4, we give our

main results on the quality of learning and information aggregation. In Section 5, we discuss

learning outcomes with naive agents and more generally without sophisticated responses

to correlations. Section 6 relates our model and results to the social learning literature.

In Section 7, we discuss our numerical exercise, structural estimation of our model, and

multidimensional states. Finally, we comment on how the main finding on the importance

of signal diversity can be generalized to more general signal distributions.

2. Model

2.1. Description. We describe the environment and game; complete details are formalized

in Appendix A.
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State of the world. There is a discrete set of instants of time,

T = Z = {. . . ,−2,−1, 0, 1, 2, . . .} .

(As an alternative, we will also discuss a specification with a starting time, T = Z≥0 =

{0, 1, 2, . . .}, but will focus on the doubly-infinite model.)

At each t ∈ T , there is a state of the world, a random variable θt taking values in R.

This state evolves as an AR(1) stochastic process. That is,

θt+1 = ρθt + νt+1,

where ρ is a constant with 0 < |ρ| ≤ 1 and νt+1 ∼ N (0, σ2
ν) are independent innovations.

We can write explicitly

θt =
∞∑
`=0

ρ`νt−`,

and thus θt ∼ N
(

0, σ2
ν

1−ρ2

)
. We make the normalization σν = 1 throughout.

Information and observations. The set of nodes is N = {1, 2, . . . , n}. Each node i has

a set Ni ⊆ N of other nodes that i can observe, called its neighborhood.

Each node is populated by a sequence of agents in overlapping generations. At each time

t, there is a node-i agent, labeled (i, t), who takes that node’s action ai,t. When taking her

action, the agent (i, t) can observe all actions taken in her node’s neighborhood in the m

periods leading up to her decision. That is, she observes aj,t−` for all nodes j ∈ Ni and lags

` ∈ {1, 2, . . . ,m}. (One interpretation is that the agent (i, t) is born at time t − m at a

certain location (node) and has m periods to observe the actions taken around her before

she acts.) She also sees a private signal,

si,t = θt + ηi,t,

where ηi,t ∼ N (0, σ2
i ) has a variance σ2

i > 0 that depends on the agent but not on the time

period. All the ηi,t and νt are independent of each other. A vector of all of agent (i, t)’s

observations—si,t and the neighbors’ past actions—defines her information. An important

special case will be m = 1, where there is one period of memory, so that the agent’s

information is (si,t, (aj,t−1)j∈Ni). The observation structure is common knowledge, as is the

informational environment (i.e., all precisions, etc.). We will sometimes take the network

G to mean the set of nodes N together with the set of links E, defined as the subset of

pairs (i, j) ∈ N ×N such that j ∈ Ni.
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Preferences and best responses. As stated above, in each period t, agent (i, t) at each

node i chooses an action ai,t ∈ R. Utility is given by

ui,t(ai,t) = −E[(ai,t − θt)2].

The agent makes the optimal choice for the current period given her information—i.e., does

not seek to affect future actions.2 By a standard fact about squared-error loss functions,

given the distribution of (aNi,t−`)
m
`=1, she sets:

(2.1) ai,t = E[θt | si,t, (aNi,t−`)m`=1].

Here the notation aNi,t refers to the vector (aj,t)j∈Ni . An action can be interpreted as an

agent’s estimate of the state, and we will sometimes use this terminology.

The conditional expectation (2.1) depends on the prior of agent (i, t) about θt, which

can be any normal distribution or a uniform improper prior (in which case all of i’s beliefs

about θt come from her own signal and her neighbors’ actions).3 We take priors, like the

information structure and network, to be common knowledge. In the rest of the paper, we

formally analyze the case where all agents have improper priors. Because actions under a

normal prior are related to actions under the improper prior by a simple bijection—and

thus have the same information content for other agents—all results extend to the general

case.

2.2. Interpretation. The agents minimize their loss function given the information they

have access to and their beliefs’ about others’ play. The canonical case is one in which

they are Bayesian and so everyone’s expectations assume the correct distribution of play

for others, though the model is readily adapted to other behavioral assumptions, as we will

discuss later. Much of our analysis is done for an arbitrary finite m; we view the restriction

to finite memory as an assumption that avoids technical complications, but because m can

be arbitrarily large, this restriction has little substantive content. The model generalizes

“Bayesian without Recall” agents from the engineering and computer science literature

(e.g., Rahimian and Jadbabaie, 2017), which, within our notation, is the case of m = 1.

Even when m is small, observed actions will indirectly incorporate signals from further in

the past, and so they can convey a great deal of information.

Note that an agent does not have access to the past private signals observed either at her

own node or at neighboring ones. This is not a critical choice—our main results are robust

2In Section 2.2 we discuss this assumption and how it relates to applications.
3With 0 < ρ < 1, one natural choice for a prior is the stationary distribution of the state.
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Figure 2.1. An illustration of the overlapping generations structure of the
model for m = 2.

At time t− 1, agent (i, t) is born and observes estimates from time t− 2. At time t agent
(i, t) observes estimates from t− 1, her private signal si,t and submits her estimate ai,t.

to changing this assumption—but it is worth explaining. Whereas ai,t is an observable

choice, such as a published evaluation of an asset or a mix of inputs actually used by an

agent in production, the private signals are not shareable.4

Finally, our agents act once and do not consider future payoffs, which shuts down the

possibility that they may distort reports to manipulate the future path of social learning

for their successors’ benefit. Equivalently, we could simply assume that agents sincerely

announce their subjective expectations of the state, as in Geanakoplos and Polemarchakis

(1982) and the literature following it. For discussions of this type of assumption in social

learning models, and ways to relax it, see, for instance Mueller-Frank (2013) and Mossel

et al. (2015).

We discuss extensions of the basic model in various directions in Section 7.

3. Updating and equilibrium

In this section we study agents’ learning behavior and present a notion of stationary

equilibrium. We begin with the canonical case of Bayesian agents with correct models

4Though we model the signals for convenience as real numbers, a more realistic interpretation of these is
an aggregation of all of an agent’s experiences, impressions, etc., and these may be difficult to summarize
or convey.
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of others’ behavior; the analysis is adapted to other behavioral assumptions in Section 5

below.

3.1. Best-response behavior. The first step is to analyze best-response updating be-

havior given others’ strategies. The following observations apply whether the agents are in

equilibrium or not.

A strategy of an agent is linear if the action taken is a linear function of the variables

in her information set. We first discuss agents’ best responses to linear strategies, showing

that they are linear and computing them explicitly.

Suppose predecessors have played linear strategies up to time t.5 Then we can express

each action up until time t as a weighted summation of past signals. Because all innovations

νt and signal errors ηi,t are independent and Gaussian, it follows that the joint distribution

of any finite random vector of the past errors (ai,t−`′ − θt)i∈N,`′≥1 is multivariate Gaussian.

Thus, E[θt | si,t, (aNi,t−`)m`=1] is a linear function of si,t and (aNi,t−`)
m
`=1 (see (3.1) below for

details).

3.1.1. Covariance matrices. The optimal weights for an agent to place on her sources of

information depend on the variances and covariances of these sources. Given a linear

strategy profile played up until time t, let Vt be the nm × nm covariance matrix of the

vector (ρ`ai,t−` − θt)i∈N, 0≤`≤m−1. The entries of this vector are the differences between the

best predictors of θt based on actions ai,t−` during the past m periods and the current state

of the world. (In the case m = 1, this is simply the covariance matrix Vt = Cov(ai,t − θt).)
The matrix Vt records covariances of action errors: diagonal entries measure the accuracy

of each action, while off-diagonal entries indicate how correlated the two agents’ action

errors are. The entries of Vt are denoted by Vij,t.

3.1.2. Best-response weights. A strategy profile is a best-response if the weights each agent

places on the variables in her information set minimize her posterior variance. We now

characterize such weights in terms of the covariance matrices we have defined. Consider an

agent at time t, and suppose some linear strategy profile has been played up until time t.

Let VNi,t−1 be a sub-matrix of Vt−1 that contains only the rows and columns corresponding

5We will discuss this below in the context of our equilibrium concept; but one immediate motivation is that,
in the model with a starting time, where T = Z≥0, Bayesian agents’ updating at t = 0 is a single-agent
problem where optimal behavior is a a linear function of own signals only, and thus the hypothesis holds.
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to neighbors of i6 and let

Ci,t−1 =


0

VNi,t−1 0
...

0 0 . . . σ2
i

.
Conditional on observations (aNi,t−`)

m
`=1 and si,t, the state θt is normally distributed with

mean

(3.1)
1TC−1i,t−1

1TC−1i,t−11
·


ρaNi,t−1

...

ρmaNi,t−m

si,t

 .

(see Example 4.4 of Kay (1993)). This gives E[θt | si,t, (aNi,t−`)m`=1] (recall that this is the

ai,t the agent will play). Expression (3.1) is a linear combination of the agent’s signal and

the observed actions; the weights in this linear combination depend on the matrix Vt−1

(but not on realizations of any random variables). In (3.1) we use our assumption of an

improper prior.7

We denote by (Wt,w
s
t ) a weight profile in period t, with ws

t ∈ Rn being the weights

agents place on their private signals and Wt recording the weights they place on their

other information.8

3.1.3. The evolution of covariance matrices under best-response behavior. In view of the

formula (3.1) for the optimal weights, we can compute the resulting next-period covariance

matrix Vt from the previous covariance matrix. This defines a map Φ : V → V , given by

(3.2) Φ : Vt−1 7→ Vt.

This map gives the basic dynamics of the model: how a variance-covariance matrix Vt−1

maps to a new one when all agents best-respond to an arbitrary Vt−1. The variance-

covariance matrix Vt−1 (along with parameters of the model) determines (i) the weights

agents place on their observations and (ii) the covariances of the random variables that are

6Explicitly, VNi,t−1 are the covariances of (ρ`aj,t−` − θt) for all j ∈ Ni and ` ∈ {1, . . . ,m}.
7As we have mentioned, this is for convenience and without loss of generality. Our analysis applies equally
to any proper normal prior for θt: To get an agent’s estimate of θt, the formula in (3.1) would simply
be averaged with a constant term accounting for the prior, and everyone could invert this deterministic
operation to recover the same information from others’ actions.
8We do not need to describe the indexing of coefficients in Wt explicitly in general; this would be a bit
cumbersome because there are weights on actions at various lags.
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being combined. This yields the deterministic updating dynamic Φ. That is, the weights

agents place on observations are (commonly) known, and do not depend on any random

realizations.

Example 1. We compute the map Φ explicitly in the case m = 1. We refer to the weight

agent i places on aj,t−1 (agent j’s action yesterday) as Wij,t and the weight on si,t, her private

signal, as wsi,t. Note we have, from (3.1) above, explicit expressions for these weights. Then

(3.3) [Φ(V )] ij = (wsi )
2σ2

i +
∑

WikWik′(ρ
2Vkk′ + 1) and Vij =

∑
WikWjk′(ρ

2Vkk′ + 1).

3.2. Stationary equilibrium in linear strategies. We will now turn our attention to

stationary equilibria in linear strategies—ones in which all agents’ strategies are linear with

time-invariant coefficients—though, of course, we will allow agents to consider deviating at

each time to arbitrary strategies, including non-linear ones. Once we establish the existence

of such equilibria, we will use the word equilibrium to refer to one of these unless otherwise

noted.

A reason for focusing on equilibria in linear strategies comes from noting that, in the

variant of the model with a starting time, T = Z≥0, agents begin by using only private

signals, and they do this linearly. After that, inductively applying the reasoning of 3.1,

best-responses are linear at all future times. Taking time to extend infinitely backward is

an idealization that allows us to focus on exactly stationary behavior.

We now show the existence of stationary equilibria in linear strategies.9

Proposition 1. A stationary equilibrium in linear strategies exists, and is associated with

a covariance matrix V̂ such that Φ(V̂ ) = V̂ .

The proof appears in Appendix B.

At such an equilibrium, the covariance matrix and all agent strategies are time-invariant.

Actions are linear combinations of observations with stationary weights (which we refer to

as Ŵij and ŵsi ). The form of these rules has some resemblance to static equilibrium notions

studied in the rational expectations literature (e.g., Vives (1993); Babus and Kondor (2018);

Lambert, Ostrovsky, and Panov (2018); Mossel, Mueller-Frank, Sly, and Tamuz (2018)),

but here we explicitly examine the dynamic environment in which these emerge as steady

states. We discuss the relationship between our model and DeGroot learning, which has a

related form, in Section 6.

The idea of the argument is as follows. The goal is to apply the Brouwer fixed-point

theorem to show there is a covariance matrix V̂ that remains unchanged under updating.

9Because time in this game is doubly infinite, there are some subtleties in definitions, which are dealt with
in Appendix A.
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To find a convex, compact set to which we can apply the fixed-point theorem, we use the

fact that when agents best respond to any beliefs about prior actions, all variances are

bounded above and bounded away from zero below. This is because all agents’ actions

must be at least as precise in estimating θt as their private signals, and cannot be more

precise than estimates given perfect knowledge of θt−1 combined with the private signal.

Because the Cauchy-Schwartz inequality bounds covariances in terms of the corresponding

variances, it follows that there is a compact, convex set containing the image of Φ. This

and the continuity of Φ allow us to apply the Brouwer fixed-point theorem.

In the case of m = 1, we can use the formula of Example 1, equation (3.3), to write the

fixed-point condition Φ(V̂ ) = V̂ explicitly. More generally, for any m, we can obtain a

formula in terms of V̂ for the weights Ŵij and ŵsi in the best response to V̂ , in order to

describe the equilibrium V̂ij as solving a system of polynomial equations. These equations

have large degree and cannot be solved analytically except in very simple cases, but they

can readily be used to solve for equilibria numerically.10

The main insight is that we can find equilibria by studying action covariances; this idea

applies equally to many extensions of our model. We give two examples: (1) We assume

that agents observe neighbors perfectly, but one could define other observation structures.

For instance, agents could observe actions with noise, or they could observe some set of

linear combinations of neighbors’ actions with noise. (2) We assume agents are Bayesian

and best-respond rationally to the distribution of actions, but the same proof would also

show that equilibria exist under other behavioral rules.11

We show later, as part of Proposition 2, that there is a unique stationary linear equilib-

rium in networks having a particular structure. In general, uniqueness of the equilibrium is

an open question that we leave for future work.12 In Section 4.5 and Appendix D we study

a variant of the model in which there is a unique equilibrium outcome, without stationarity.

We now briefly touch on how agents could come to play the strategies posited above.

If other agents are using stationary equilibrium strategies, then best-responding is easy to

do under some conditions. For instance, if historical empirical data on neighbors’ error

10Indeed, we have used numerical solutions to study the system and to conjecture many of our results. In

practice, a fixed point V̂ is found by repeatedly applying Φ, as written in (3.3), to an initial covariance
matrix. In all our experiments, the same fixed point has been found, independent of starting conditions.
11What is important in the proof is that actions depend continuously on the covariance structure of an
agent’s observations; the action variances are uniformly bounded under the rule agents play; and there is
a decaying dependence of behavior on the very distant past.
12We have checked numerically that Φ is not, in general, a contraction in any of the usual norms (entrywise
sup, Euclidean operator norm, etc.). In computing equilibria numerically for many examples, we have not
been able to find a case of equilibrium multiplicity.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 14

variances and covariances are available (i.e., the entries of the matrix VNi,t discussed in

Section 3.1), then the agent needs only to use these to compute a best estimate of θt−1,

which is essentially a linear regression problem.

4. When is there fast information aggregation in large networks?

In this section, we consider the quality of learning outcomes in stationary equilibrium,

and when good aggregation can be achieved. To make this exercise precise, we first define

a benchmark of good information aggregation (Section 4.1). Our main results show that,

under certain conditions on the distribution of signals in the population, this benchmark can

actually be achieved in equilibrium, in a class of large networks. The conditions require that

signals are distributed in a suitably heterogeneous way within each neighborhood. These

conditions and results are described in Sections 4.2 and 4.3. We then show, in Section 4.4,

that this result is tight: without such signal diversity, aggregation can fail in the unique

equilibrium.

We then turn to the robustness of these results and the contrast with the case of a

fixed state. As an alternative to the fully stationary model, Section 4.5 discusses a variant

where there is an initial time period. Analogous results hold in that setting; indeed, in this

variant, which features a unique equilibrium, we are able to strengthen the prediction that

good learning obtains with signal diversity. We also use that variant to note that with an

unchanging state, good aggregation does not depend on signal diversity.

This section relies on asymptotics of large random graphs. Section 7.1 in the discussion

presents numerical results on some real-world networks, and verifies that the asymptotic

and random-graph assumptions made to facilitate the main analysis are not crucial to the

central point that signal diversity is helpful for learning.

4.1. The aggregation benchmark. Because agents cannot learn a moving state exactly,

we must define what it means for agents to learn well. Our benchmark is the expected

payoff that an agent would obtain given her private signal and perfect knowledge of the

state in the previous period. (The state in the previous period is the maximum that an

agent can hope to learn from neighbors’ information, since social information arrives with

a one-period delay.) Let V benchmark
ii be the error variance that player i achieves at this

benchmark: namely, V benchmark
ii = (σ−2i + 1)−1.

Definition 1. Agent i achieves the ε-perfect aggregation benchmark if

V̂ii
V benchmark
ii

≤ 1 + ε.
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An equilibrium achieves the ε-perfect aggregation benchmark if all agents do.

This says that all agents do nearly as well as if each knew her private signal and yester-

day’s state. Note agents can never infer yesterday’s state perfectly from observed actions in

any finite network (even if they have access to all signals previously observed by anyone),

and so we must have V̂ii
V benchmark
ii

> 1 for all i on any fixed network.

We give conditions under which ε-perfect aggregation is achieved for any ε > 0 on large

enough networks. To make this formal, we fix ρ and consider a sequence of networks

(Gn)∞n=1, where Gn has n nodes.

Example 2. We use a very simple example to demonstrate that the ε-perfect aggregation

benchmark can be achieved for any ε > 0. Suppose each Gn for n ≥ 2 has a connected

component with exactly two agents, 1 and 2, with σ2
1 = 1 and σ2

2 = 1/n. Then agent

2’s weight on her own signal converges to 1 as n → ∞. So V̂11 converges to V benchmark
11 =

(σ−21 + 1)−1 = 1
2

as n→∞. Thus, the learning benchmark is achieved.

The environment we have devised in this example is quite special: agent 1 can essentially

infer last period’s state because someone else has arbitrarily precise information. A much

more interesting question is whether anything similar can occur without anyone having

extremely precise signals. In the next section, we address this and show that perfect

aggregation can be achieved by all agents simultaneously even without anyone having very

precise signals.

4.2. Distributions of networks and signals. To study learning in large populations,

we specify two aspects of the environment: network distributions and signal distributions.

In terms of network distributions, we define a stochastic model that makes the analysis of

large networks tractable, but is flexible in that it allows us to encode rich heterogeneity in

network positions. We also specify signal distributions : how signal precisions are allocated

to agents, in a way that may depend on network position. We now describe these two

primitives of the model and make some assumptions that are maintained in Section 4.

Fix a set of network types k ∈ K = {1, 2, . . . , K}. There is a probability pkk′ for each pair

of network types, which is the probability that an agent of network type k has a link to a

given agent of network type k′. An assumption we maintain on these probabilities is that

each network type k observes at least one network type (possibly k itself) with positive

probability. There is also a vector (α1, . . . , αK) of population shares of each type, which we

assume are all positive. Jointly, (pkk′)k,k′∈K and α specify the network distribution.13 These

13This type of network is known as a stochastic block model (Holland et al., 1983).



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 16

parameters can encode differences in expected degree and also features such as homophily

(where some groups of types are linked to each other more densely than to others).

We next define signal distributions, which describe the allocation of signal variances to

network types. Fix a finite set S of private signal variances, which we call signal types.14

We let qkτ be the share of agents of network type k with signal type τ ; (qkτ )k∈K,τ∈S defines

the signal distribution.

Generating the networks. Let the nodes in network n be a disjoint union of sets

N1
n, N

2
n, . . . , N

K
n , with the cardinality |Nk

n | equal to bαknc or dαkne (rounding so that there

are n agents in the network). We (deterministically) set the signal variances σ2
i equal to

elements of S in accordance with the signal shares (again rounding as needed). Let (Gn)∞n=1

be a sequence of directed or undirected random networks with these nodes, so that i ∈ Nk
n

and j ∈ Nk′
n are linked with probability pkk′ ; these realizations are all independent.

Diversity of signals. The environment is described by the linking probabilities (pkk′)k,k′∈K,

the type shares α, and the signal distribution (qkτ )k∈K,τ∈S . We say that a signal type τ is

represented in a network type k if qkτ > 0.

Definition 2. We say that the environment satisfies signal diversity if at least two distinct

signal types are represented in each network type.

We will discuss environments that satisfy this condition as well as ones that do not, and

show that it is pivotal for information-aggregation.

4.3. Diverse signals. Our first main result is that signal diversity is sufficient for good ag-

gregation. Under this condition, the benchmark is achieved independently of the structural

properties of the network.

We say an event occurs asymptotically almost surely if for any ε > 0, the event occurs

with probability at least 1− ε for n sufficiently large.

Theorem 1. Let ε > 0. If an environment satisfies signal diversity, asymptotically almost

surely Gn has a equilibrium where the ε-perfect aggregation benchmark is achieved.

So on large networks, society is very likely to aggregate information as well as possible.

The uncertainty in this statement is over the network, as there is always a small probability

of a realized network which obstructs learning (e.g., an agent has no neighbors). We give

an outline of the argument next, and the proof appears in Appendix C.

14The assumptions of finitely many signal types and network types are purely technical, and could be
relaxed.
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Outline of the argument. To give intuition for the result, we first describe why the theorem

holds on the complete network15 with two signal types A and B in the m = 1 case. This

echoes the intuition of the example in the introduction. We then discuss the challenges

involved in generalizing the result to our general stochastic block model networks, and the

techniques we use to overcome those challenges.

Consider a time-t agent, (i, t). We define her social signal ri,t to be the optimal estimate

of θt−1 based on the actions she has observed in her neighborhood. On the complete

network, all players have the same social signal, which we call rt.
16

At any equilibrium, each agent’s action is a weighted average of her private signal and

this social signal:17

(4.1) ai,t = ŵsi si,t + (1− ŵsi )rt.

The weight ŵsi depends only on the precision of agent i’s signal. We call the weights of two

distinct signal types ŵsA and ŵsB.

Now observe that each time-(t + 1) agent can average the time-t actions of each type,

which can be written as follows using (4.1) and si,t = θt + ηi,t:

1

nA

∑
i:σ2

i=σ
2
A

ai,t = ŵsAθt + (1− ŵsA)rt +O(n−1/2),

1

nB

∑
i:σ2

i=σ
2
B

ai,t = ŵsBθt + (1− ŵsB)rt +O(n−1/2).

Here nA and nB denote the numbers of agents of each type, and the O(n−1/2) error terms

come from averaging the signal noises ηi,t of agents in each group. In other words, by the

law of large numbers, each time-(t+ 1) agent can obtain precise estimates of two different

convex combinations of θt and rt. Because the two weights, ŵsA and ŵsB, are distinct, she can

approximately solve for θt as a linear combination of the average actions from each type (up

to signal error). It follows that in the equilibrium we are considering, the agent must have

an estimate at least as precise as what she can obtain by the strategy we have described,

and will thus be very close the benchmark. The estimator of θt that this strategy gives will

place negative weight on 1
nA

∑
i:σ2

i=σ
2
A
ai,t−1, thus anti-imitating the agents of signal type

A. It can be shown that the equilibrium we construct in which agents learn will also have

agents anti-imitating others.

15Note this is a special case of the stochastic block model.
16In particular, agent (i, t) sees everyone’s past action, including ai,t−1.
17Agent i’s weights on her observations si,t and ρaj,t−1 sum to 1, because the optimal action is an unbiased
estimate of θt.
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To use the same approach in general, we need to show that each individual observes a

large number of neighbors of each signal type with similar social signals. More precisely,

the proof shows that agents with the same network type have highly correlated social

signals. Showing this is more subtle, because the social signals at an equilibrium are

endogenous, and—if the network is arbitrary—will depend to some extent on many details

of the network.

A key insight allowing us to overcome this difficulty and get a handle on social signals is

that the number of paths of length two between any two agents is nearly deterministic in

our random graph model. While any two agents of the same network type may have very

different neighborhoods, their connections at distance two will typically look very similar.

(“Length two” is not essential: in sparser random graphs, this statement holds with a

different length, and the same arguments go through, as we discuss below.) This gives us

a nice expression for the social signal as a combination of private signals and the social

signals from two periods earlier. Using this expression, we show that if agents of the same

network type have similar social signals two periods ago, the same will hold in the current

period. We use this to show that Φ2 maps the neighborhood of covariance matrices where

all social signals are close to perfect to itself, and then we apply a fixed point theorem. �

Concerning the rate of learning as n grows, the proof implies that, under the assumptions

of the theorem, the error in agents’ estimates of θt−1 is O(n−1/2); thus they learn at the

same rate as in the central limit theorem, though the constants will depend considerably on

the details; in particular, if the difference between signal precisions is small, the constants

may be very bad. Section 7.1 offers numerical evidence on the quality of aggregation in

networks of practically relevant sizes.

Sparser random graphs. The random graphs we defined have held (pkk′) fixed for sim-

plicity. This yields expected degrees that grow linearly in the population size, which may

not be the desired asymptotic model. While it is important to have neighborhoods “large

enough” (i.e., growing in n) to permit the application of laws of large numbers, their rate

of growth can be considerably slower than linear: for example, our proof extends directly

to degrees that scale as nα for any α > 0. Instead of studying Φ2 and second-order neigh-

borhoods, we apply the same analysis to Φk and kth-order neighborhoods for k larger than

1/α.

4.4. Non-diverse signals. So far we have seen that assuming signal diversity, good ag-

gregation is obtained independently of the structure of the large random graph. We now
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show this result is tight: in environments without signal diversity, equilibrium aggregation

can (necessarily) be much worse.

To gain an intuition for this, note that it is essential to the argument from the previous

subsection that different agents have different signal precisions. Recall the complete graph

case we examined in our outline of the argument. From the perspective of an agent (i, t+1),

the fact that type A and type B neighbors place different weights on the social signal rt

allows i to prevent the social signal used by her neighbors from confounding her estimate

of θt. We now show that without diversity in signal quality, information aggregation may

be much worse.

We first study a class of networks with certain symmetries and show that for this class

there is a unique equilibrium, and at this equilibrium good aggregation is not achieved

(Section 4.4.1). We then present a corollary of this result showing that improving some

agents’ signals can hurt learning, which distinguishes this regime not only in terms of its

outcomes but also in its comparative statics.

A natural question is whether asymmetry in network positions can substitute for asym-

metry in signal endowments. We thus move beyond completely symmetric networks and

examine random graphs. We show there exists a similar equilibrium without good aggre-

gation on random graphs. This shows that some variation in network positions need not

give individuals enough power to identify the state, as they can under signal diversity.

4.4.1. Graphs with symmetric neighbors.

Definition 3. A network G has symmetric neighbors if Nj = Nj′ for any i and any

j, j′ ∈ Ni.

In the undirected case, the graphs with symmetric neighbors are the complete network

and complete bipartite networks.18 For directed graphs, the condition allows a larger variety

of networks.

Consider a sequence (Gn)∞n=1 of strongly connected graphs with symmetric neighbors.

Assume that all signal qualities are the same, equal to σ2, and that m = 1.

Proposition 2. Under the assumptions in the previous paragraph, each Gn has a unique

equilibrium. There exists ε > 0 such that the ε-perfect aggregation benchmark is not

achieved by any agent i at this equilibrium for any n.

All agents are bounded away from our learning benchmark at the unique equilibrium. So

all agents learn poorly compared to the diverse signals case. The proof of this proposition,

and the proofs of all subsequent results, appear in Appendix E.

18These are both special cases of our stochastic block model from Section 4.3.
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This immediately implies that in environments not satisfying signal diversity, there are

network distributions for which aggregation fails in a strong sense.

This failure of good aggregation is not due simply to a lack of sufficient information in

the environment: On the complete graph with exchangeable (i.e., non-diverse) signals, a

social planner who exogenously set weights for all agents could achieve ε-perfect aggrega-

tion for any ε > 0 when n is large. See Appendix G for a formal statement, proof and

numerical results.19 In this sense, the social learning externalities are quite severe: a fairly

small change in weights for each individual could yield a very large benefit in a world of

homogeneous signal types.

We now give intuition for Proposition 2. In a graph with symmetric neighbors, in the

unique equilibrium, the actions of any agent’s neighbors are exchangeable.20 So actions

must be unweighted averages of observations. This prevents the sort of inference of θt

that occurred with diverse signals. This is easiest to see on the complete graph, where all

observations are exchangeable. So, in any equilibrium, each agent’s action at time t+ 1 is

equal to a weighted average of his own signal and 1
|Ni|
∑

j∈Ni aj,t:

(4.2) ai,t+1 = ŵsi si,t+1 + (1− ŵsi )
1

|Ni|
∑
j∈Ni

aj,t.

By iteratively using this equation, we can see that actions must place substantial weight on

the average of signals from, e.g., two periods ago. Although the effect of signal errors ηi,t

vanishes as n grows large, the correlated error from past changes in the state never “washes

out” of estimates, and this is what prevents perfect aggregation.

We can also explicitly characterize the limit action variances and covariances. Consider

again the complete graph and the (unique) symmetric equilibrium. Let V ∞ denote the

limit, as n grows large, of the variance of any agent’s error (ai,t − θt). Let Cov∞ denote

the limit covariance of any two agent’s errors. By direct computations, these can be seen

to be related by the following equations, which have a unique solution:

(4.3) V ∞ =
1

σ−2 + (ρ2Cov∞ + 1)−1
, Cov∞ =

(ρ2Cov∞ + 1)−1

[σ−2 + (ρ2Cov∞ + 1)−1]2
.

This variance and covariance describe behavior not only in the complete graph, but in

any graph with symmetric neighbors where degrees tend uniformly to ∞. In such graphs,

too, the variances of all agents converge to V ∞ and the covariances of all pairs of agents

converge to Cov∞, as n→∞.21 This implies that, in large graphs, the equilibrium action

19We thank Alireza Tahbaz-Salehi for suggesting this analysis.
20The proof of the proposition establishes uniqueness by showing that Φ is a contraction in a suitable sense.
21This is established by the same argument as in the proof of Proposition 3.
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distributions are close to symmetric. Indeed, it can be deduced that these actions are equal

to an appropriately discounted sum of past θt−`, up to error terms (arising from ηi,t−`) that

vanish asymptotically.

4.4.2. A corollary: Perverse consequences of improving signals. As a consequence of The-

orem 1 and Proposition 2, we can give an example where making one agent’s private

information less precise helps all agents.

Corollary 1. There exists a network G and an agent i ∈ G such that increasing σ2
i gives

a Pareto improvement in equilibrium variances.

To prove the corollary, we consider the complete graph with homogeneous signals and

n large. By Proposition 2, all agents do substantially worse than perfect aggregation. If

we instead give agent 1 a very uninformative signal, all players can anti-imitate agent 1

and achieve nearly perfect aggregation. When the signals at the initial configuration are

sufficiently imprecise, this gives a Pareto improvement.

4.4.3. Non-diverse signals in large random graphs. Our results on non-diverse signals have

used graphs with symmetric neighbors. In those graphs, the unique prediction is that

learning outcomes fall far short of the perfect aggregation benchmark. We would like to

show that exact symmetry is not essential, and that the lack of good aggregation is robust

to adding noise. To this end, we now show that in Erdos-Renyi random networks, there

is an equilibrium with essentially the same learning outcomes when signal precisions are

homogeneous.

Let (Gn)∞n=1 be a sequence of directed or undirected random networks, with Gn having

n nodes, with any pair of distinct nodes linked (i.i.d.) with positive probability p. We

continue to assume all signal variances are equal to σ2 and m = 1.

Proposition 3. Under the assumptions in the previous paragraph, there exists ε > 0

such that asymptotically almost surely there is an equilibrium on Gn where the ε-perfect

aggregation benchmark is not achieved.

The equilibrium covariances in this equilibrium again converge to V ∞ and Cov∞ (for

any value of p). Thus, when there is only one signal type, we obtain the same learning

outcomes asymptotically on a variety of networks.

4.4.4. How much diversity is needed? The results in Section 4 can be summarized as say-

ing that, to achieve the aggregation benchmark of essentially knowing the previous period’s

state, there need to be at least two different private signal variances in the network. For-

mally, this is a knife-edge result: As long as private signal variances differ at all, then as
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Figure 4.1. Dependence of Learning on Signal Variances
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n → ∞, perfect aggregation is achieved; with exactly homogeneous signal endowments,

agents’ variances are much higher. In this section, we show numerically that for fixed val-

ues of n, the transition from the first regime to the second is actually gradual: Action error

remains well above the perfect aggregation benchmark when signal qualities differ slightly.

In Figure 4.1, we study the complete network with ρ = 0.9. The private signal variance of

agents of signal type A is fixed at σ2
A = 2. We then vary the private signal variance of agents

of type B (the horizontal axis), and compute the equilibrium variance of ai,t− θt for agents

of type A (plotted on the vertical axis). The variance of type A agents at the benchmark

is 2/3. We note several features: First, the change in aggregation quality is continuous, and

indeed reasonably gradual, for n in the hundreds as we vary σ2
B. Second, as n increases, we

can see that the curve is moving toward the theoretical limit: a discontinuity at σ2
B = 2.

Third, there are nevertheless considerable gains to increasing n, the number of agents:

going from n = 200 to n = 600 results in a gain of 5.2% in precision when σ2
B = 3.

4.5. Model with an initial time: Aggregation quality and contrast with a fixed

state. The same questions about the quality of information aggregation can be asked in

the alternative model with T = Z≥0. This analysis complements our main points above.

We summarize the analysis here and defer the details to Appendix D.

In the model with a starting time, there is an unambiguous prediction of behavior. Time-

zero agents have only their own signals to use, so they play simple linear strategies, and
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subsequent agents inductively set their weights based on the prior ones, as described in

Section 3.1.

We study the same environments (signal types and network distributions) discussed in the

previous subsections. The counterpart of Theorem 1, says that under the same conditions

on the environment as in that theorem, learning as good as the benchmark obtains for

all times t ≥ 1. The counterpart of Proposition 2 says that in graphs with symmetric

neighbors, without signal diversity, learning short of the benchmark is the unique long-run

outcome. And the counterpart of Proposition 3 says that, under the same conditions on

the environment, learning short of the benchmark is again the unique long-run outcome.

The first and third results sharpen the analysis relative to the stationary model, in that

there is no question of the possible existence of other equilibria. On the other hand, in

the T = Z≥0 model, updating weights are generally dynamic and thus more complex to

describe. We view the T = Z≥0 analysis as an important robustness check: it verifies that

exact stationarity is not crucial to the findings, and shows that the good learning outcomes

are the ones “selected” by the model with a starting time.

Finally, the model with a starting time allows us to contrast the findings of this section

with the case of an unchanging state. (That is, the evolution of θt is replaced by θt = θ

for all t, where θ is standard normal, and the model is otherwise the same.) Consider

any fixed, finite network where i ∈ Ni for each i, so that each agent observes an own-node

predecessor, and each agent has a signal with finite, positive precision. It is straightforward

to verify inductively that the precision of information held by (i, t) about the unchanging

state θ increases by at least some fixed δ > 0 every period, because that node can use

the (i, t− 1) estimate as well as a new independent signal. Thus, estimates will eventually

be arbitrarily precise. This prediction will not be sensitive to any other details of signal

or network structure, echoing the findings of DeMarzo et al. (2003) and Lobel and Sadler

(2015) on sufficient conditions good learning for Bayesians. This highlights the fundamental

difference between our changing-state model and a static analogue.

5. The importance of understanding correlations

In the positive result on achieving the perfect aggregation benchmark (Theorem 1), a

key aspect of the argument involved agents filtering out confounding information from their

neighbors’ estimates—i.e., responding in a sophisticated way to the correlation structure of

those estimates. In this section, we demonstrate that this sort of behavior is essential for

nearly perfect aggregation, and that more naively imitative heuristics yield outcomes far

from the benchmark. Empirical studies have found evidence (depending on the setting and
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the subjects) consistent with both equilibrium behavior and naive inference in the presence

of correlated observations (e.g., Eyster, Rabin, and Weizsacker (2015); Dasaratha and He

(2017); Enke and Zimmermann (2019)).

We begin with a canonical model of agents who do not account for correlations among

their neighbors’ estimates conditional on the state, and show by example that naive agents

achieve much worse learning than Bayesian agents, and thus fail to reach the perfect aggre-

gation benchmark. We then formalize the idea that accounting for correlations in neighbors’

actions is crucial to reaching the benchmark. This is done by demonstrating a general lack

of asymptotic learning by agents who use imitative strategies, rather than filtering in a so-

phisticated way. Finally, we show that even in fixed, finite networks, any positive weights

chosen by optimizing agents will be Pareto-dominated.

5.1. Naive agents. In this part we introduce agents who misunderstand the distribution

of the signals they are facing and who therefore do not update as Bayesians with a correct

understanding of their environment. We consider a particular form of misspecification that

simplifies solving for equilibria analytically:22

Definition 4. We call an agent naive if she believes that all neighbors choose actions equal

to their private signals and maximizes her expected utility given these incorrect beliefs.

Equivalently, a naive agent believes her neighbors all have empty neighborhoods. This is

the analogue, in our model, of “best-response trailing naive inference” (Eyster and Rabin,

2010). So naive agents understand that their neighbors’ actions from the previous period

are estimates of θt−1. But they think each such estimate is independent given the state, and

that the precision of the estimate is equal to the signal precision of the corresponding agent.

They then play their expectation of the state given this misspecified theory of others’ play.

In Figure 5.1, we compare Bayesian and naive learning outcomes. As in Figure 4.1,

we consider a complete network where half of agents have signal variance σ2
A = 3 and we

vary the signal variance σ2
B of the remaining agents. We observe that naive agents learn

substantially worse than rational agents, whether signals are diverse or not. Formal analysis

and formulas for variances under naive learning can be found in Appendix F.

5.2. More general learning rules: Understanding correlation is essential for

reaching the benchmark. We now show more generally that a sophisticated response to

22A seminal paper studying boundedly rational learning rules in networks is Bala and Goyal (1998). There
are a number of possible variants of our behavioral assumption, and it is straightforward to numerically
study alternative specifications of behavior in our model (Alatas, Banerjee, Chandrasekhar, Hanna, and
Olken (2016) consider one such variant).
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Figure 5.1. Bayesian and Naive Learning
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correlation is needed to achieve perfect aggregation on any sequence of growing networks.

To this end, we make the following definition:

Definition 5. The steady state associated with weights W and ws is the (unique) covari-

ance matrix V ∗ such that if actions have a variance-covariance matrix given by Vt = V ∗

and next-period actions are set using weights (W ,ws), then Vt+1 = V ∗ as well.

In this definition of steady state, instead of best-responding to others’ actual distributions

of play, agents use exogenous weights W in all periods.

By a straightforward application of the contraction mapping theorem, if agents use any

non-negative weights under which covariances remain bounded at all times, there is a unique

steady state.

Consider a sequence of networks (Gn)∞n=1 with n agents in Gn.

Proposition 4. Fix any sequence of steady states under non-negative weights on Gn. Sup-

pose that all private signal variances are bounded below by σ2 > 0 and that all agents place

weight at most w < 1 on their private signals. Then there is an ε > 0 such that, for all n,

the ε-aggregation benchmark is not achieved by any agent i at steady state.

The essential idea is that at time t+ 1 observed time-t actions all put weight on actions

from period t−1, which causes θt−1 to have a (positive weight) contribution to all observed
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actions. Agents do not know θt−1 and, with positive weights, cannot take any linear combi-

nation that would recover it. Even with a very large number of observations, this confound

prevents agents from learning yesterday’s state precisely.

To see why the weights on private signals must be bounded away from one, note that

an individual agent could learn well without adjusting for correlations by observing many

autarkic agents who simply report their private signals. But in this case, all of these

autarkic agents would be far from the benchmark. Without the bound on private signal

weights, some agent must still fail to achieve perfect aggregation.

On undirected networks, the proposition implies that perfect aggregation is not achieved

by naive agents or agents exhibiting various other specifications of non-Bayesian inference.

Moreover, the same argument shows that in any sequence of Bayesian equilibria on undi-

rected networks where all agents use positive weights, no agent can learn well.

5.3. Without anti-imitation, outcomes are Pareto-inefficient. The previous section

argued that anti-imitation is critical to achieving the perfect aggregation benchmark. We

now show that even in small networks, where that benchmark is not relevant, any equi-

librium without anti-imitation is Pareto-inefficient relative to another steady state. This

result complements our asymptotic analysis by showing a different sense (relevant for small

networks) in which anti-imitation is necessary to make the best use of information.

Proposition 5. Suppose the network G is strongly connected and some agent has more

than one neighbor. Given any naive equilibrium or any Bayesian equilibrium where all

weights are positive, the variances at that equilibrium are Pareto-dominated by variances

at another steady state.

The basic argument behind Proposition 5 is that if agents place marginally more weight

on their private signals, this introduces more independent information that eventually ben-

efits everyone. In the proof in Appendix E, we state and prove a more general result with

weaker hypotheses on behavior.

In a review of sequential learning experiments, Weizsäcker (2010) finds that subjects

weight their private signals more heavily than is optimal (given the empirical behavior of

others they observe). Proposition 5 implies that in our environment with optimizing agents,

it is actually welfare-improving for individuals to “overweight” their own information rela-

tive to best-response behavior.

Discussion of conditions in the proposition. We next briefly discuss the sufficient

conditions in the proposition statement. First, it is clear that some condition on neighbor-

hoods is needed: If every agent has exactly one neighbor and updates rationally or naively,
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there are no externalities and the equilibrium weights are Pareto optimal.23 Second, the

condition on equilibrium weights says that no agent anti-imitates any of her neighbors.

This assumption makes the analysis tractable, but we believe the basic force also works in

finite networks with some anti-imitation.

Proof sketch. The idea of the proof of the rational case is to begin at the steady state

and then marginally shift the rational agent’s weights toward her private signal. By the

envelope theorem, this means agents’ actions are less correlated but not significantly worse

in the next period. We show that if all agents continue using these new weights, the

decreased correlation eventually benefits everyone. In the last step, we use the absence of

anti-imitation, which implies that the updating function associated with agents using fixed

(as opposed to best-response) weights is monotonic in terms of the variances of guesses. To

first order, some covariances decrease while others do not change after one period under

the new weights. Monotonicity of the updating function and strong connectedness imply

that eventually all agents’ variances decrease.

The proof in the naive case is simpler. Here a naive agent is overconfident about the

quality of her social information, so she would benefit from shifting some weight from her

social information to her signal. This deviation also reduces her correlation with other

agents, so it is Pareto-improving.

An illustration. An example illustrates the phenomenon:

Example 3. Consider n = 100 agents in an undirected circle—i.e., each agent observes

the agent to her left and the agent to her right. Let σ2
i = σ2 be equal for all agents and

ρ = .9. The equilibrium strategies place weight ŵs on private signals and weight 1
2
(1− ŵs)

on each observed action.

When σ2 = 10, the equilibrium weight is ŵs = 0.192 while the welfare-maximizing sym-

metric weights have ws = 0.234. That is, weighting private signals substantially more is

Pareto improving. When σ2 = 1, the equilibrium weight is ŵs = 0.570 while the wel-

fare maximizing symmetric weights have ws = 0.586. The inefficiency persists, but the

equilibrium strategy is now closer to the optimal strategy.

6. Related literature

The question of whether decentralized communication can facilitate efficient adaptation

to a changing world is a fundamental one in economic theory, related to questions raised

23 In fact, the result of Proposition 5 (with the same proof) applies to a larger class of networks: rather
than strongly connectedness it is sufficient that, starting at each agent, there are two paths of some length
k to a rational agent and another distinct agent.
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by Hayek (1945) 24 and of primary interest in some applied problems, e.g., in real business

cycle models with consumers and firms learning about evolving state. Nevertheless, there

is relatively little modeling of Bayesian learning of dynamic states in the large literature

on social learning and information aggregation in networks. We now put our contribution

in the context of the most closely related papers on social learning in networks.25

Play in the stationary linear equilibria of our model closely resembles behavior in the

DeGroot (1974) model, where agents update by linearly aggregating network neighbors’

past estimates, with constant weights on neighbors over time. DeMarzo, Vayanos, and

Zweibel (2003), in an environment with an unchanging state, derive DeGroot learning as

a boundedly-rational heuristic. Each agent has one initial signal about the state, and this

determines her t = 0 estimate, which is shared with neighbors. Assuming all randomness

is Gaussian, the Bayesian rule for forming estimates at t = 1 is linear with certain weights.

DeMarzo, Vayanos, and Zweibel (2003) made the behavioral assumption that in subse-

quent periods, agents treat the informational environment as being identical to that of the

first period—even though past learning has, in fact, induced redundancies and correlations.

Molavi, Tahbaz-Salehi, and Jadbabaie (2018) have offered new bounded-rationality foun-

dations for the DeGroot rule. We give an alternative, Bayesian microfoundation for the

same sort of rule by studying a different environment. Our foundation relies on the fact

that the stationary environment admits a stationary equilibrium in which fixed updating

rules are best responses.26 In the introduction, we have discussed the contrast between the

predictions about outcomes that our model makes and the analysis of fixed-state bench-

marks.

Several recent papers in computer science and engineering study dynamic environments

similar to ours. Shahrampour, Rakhlin, and Jadbabaie (2013) study an exogenous-weights

version, interpreted as a set of Kalman filters under the control of a planner; they focus

on computing or bounding various measures of welfare in terms of network invariants and

the persistence of the state process (ρ). Frongillo, Schoenebeck, and Tamuz (2011) study

(in our notation) a θt that follows a random walk (ρ = 1). They examine agents who

24“If we can agree that the economic problem of society is mainly one of rapid adaptation to changes in the
particular circumstances of time and place. . . there still remains the problem of communicating to [each
individual] such further information as he needs.” Hayek’s main concern was aggregation of information
through markets, but the same questions apply more generally.
25For more complete surveys of different parts of this literature, see, among others, Acemoglu and Ozdaglar
(2011), Golub and Sadler (2016), and Mossel and Tamuz (2017). See Moscarini et al. (1998) for an early
model in a binary-action environment, where it is shown that a changing state can break information
cascades.
26Indeed, agents behaving according to the DeGroot heuristic even when it is not appropriate might have
to do with their experiences in stationary environments where it is closer to optimal.
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learn using fixed, exogenous weights on arbitrary networks. They characterize the steady-

state distribution of behavior with arbitrary (non-equilibrium) fixed weights. They also

give a formula for equilibrium weights on a complete network and show these weights are

inefficient. Our Proposition 5 on Pareto-inefficiency on an arbitrary network documents a

closely related inefficiency. Our main question, the quality of equilibrium learning in large

networks, is a topic not considered in these papers.

In economics, the model in Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016)

most closely resembles ours. There, agents are not Bayesian, ignoring the correlation be-

tween social observations, similarly to our naive models. The model is estimated using

data on social learning in Indonesian villages, where the state variables are the wealths of

villagers. As we show, how rational agents are in their inferences plays a major role in the

accuracy of such aggregation processes. Our model provides foundations for structural esti-

mation with Bayesian behavior as well as testing of the Bayesian model against behavioral

alternatives such as that of Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016);

we discuss this below in Section 7.2.

Some recent learning models—e.g., Sethi and Yildiz (2012) and Harel et al. (2017)—con-

sider other obstacles to learning in environments with Gaussian signals and a fixed state. In

Sethi and Yildiz (2012), learning outcomes depend on whether individuals’ (heterogeneous)

priors are independent or correlated. Harel et al. (2017), among others, study the rate of

social learning in a Gaussian setting. Bad learning corresponds to this rate being low. In

our setting, we can focus on steady-state errors, which provide an alternative measure of

the quality of learning.

Finally, a robust aspect of rational learning in sequential models is the phenomenon of

anti-imitation (Eyster and Rabin, 2014). They give general conditions for fully Bayesian

agents to anti-imitate in the sequential model. We find that anti-imitation also is an

important feature in our dynamic model, and in our context is crucial for good learning.

Despite this similarity, there is an important contrast between our findings and standard

sequential models. In those models, while rational agents do prefer to anti-imitate, in

many cases individuals as well as society as a whole could obtain good outcomes using

heuristics without any anti-imitation: for instance, by combining the information that can

be inferred from one neighbor with one’s own private signal. Acemoglu, Dahleh, Lobel, and

Ozdaglar (2011) and Lobel and Sadler (2015) show that such a heuristic leads to asymptotic

learning in a sequential model. Our dynamic learning environment is different, as shown

in Proposition 4: to have any hope of approaching good aggregation benchmarks, agents
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must respond in a sophisticated way, with anti-imitation, to their neighbors’ (correlated)

estimates.

7. Discussion and extensions

7.1. Aggregation and its absence without asymptotics: Numerical results. To

examine whether the large network results above work in realistic networks with moderate

degrees, we present numerical evidence based on the data in Banerjee, Chandrasekhar,

Duflo, and Jackson (2013). This data set contains the social networks of villages in rural

India.27 There are 43 networks in the data, with an average network size of 212 nodes

(standard deviation = 53.5), and an average degree of 19 (standard deviation = 7.5). For

each network, we calculated the equilibrium for two different situations. The first is the

homogeneous case, with all signal variances set to 2. The latter is a heterogeneous case,

where a majority has the same signal distribution as in the first case, but a minority has a

substantially worse signal. More precisely, we kept the signal variances of people that have

access to electricity (92% of the nodes) at 2, while setting the signal variances of the rest

at 5.28

In Figure 7.1(a), the green points show that in the vast majority of networks, the median

agent in terms of learning quality has a lower error variance (i.e., more precise estimates

of the state) in the heterogeneous case. Now consider an agent who is at the 25th per-

centile in terms of error variance (and thus estimates the state better than 75 percent of

agents); the red points show that the advantage of the heterogeneous case becomes even

more stark for these agents. Theysee an improvement of 0.35 standard deviations com-

pared to their homogeneous case counterparts. In Figure 7.1(b), we pool all the agents

together across all networks and depict the empirical distribution of error variance. In the

homogeneous case (red histogram), there is bunching around the asymptotic variance for

the homogeneous-signal case. When we introduce heterogeneity in signal quality (blue his-

togram), a substantial share of households have prediction variance below this boundary,

thus benefiting from the heterogeneity. Overall, we see that even in networks with relatively

small degree our results hold both qualitatively and quantitatively: adding heterogeneity

27We take the networks that were used in the estimation in Banerjee, Chandrasekhar, Duflo, and Jackson
(2013). As in their work, we take every reported relationship to be reciprocal for the purposes of sharing
information. This makes the graphs undirected.
28We made the heterogeneous signals dependent on electricity status because we believe signal precision
would in practice be correlated with, e.g., access to communication technology (or similar attributes). In
the figure, we plot outcomes of the nodes with access to electricity—i.e., those whose signal variances did
not change in our exercise.
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Figure 7.1. Prediction Variance In Indian Villages
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(a) The error variance of the agent in the 25th, 50th and 75th percentiles in each village, in
the homogeneous and heterogeneous cases. (b) Histograms of error variance (we pool all
the agents together across all networks) for the homogeneous (red) and heterogeneous

(blue) case. Vertical lines show the asymptotic variance for the complete graph as n→∞
for the two cases.

helps learning in the population, while even with a small group of agents with the new,

inferior signal type the influence on at least some nodes in the network can be sizable.

7.2. Identification and testable implications. One of the main advantages of the

parametrization we have studied is that standard methods can easily be applied to estimate

the model and test hypotheses within it. The key feature making the model econometri-

cally well-behaved is that, in the solutions we focus on, agents’ actions are linear functions

of the random variables they observe. Moreover, the evolution of the state and arrival of

information creates exogenous variation. We briefly sketch how these features can be used

for estimation and testing.

Assume the following. The analyst obtains noisy measurements ai,t = ai,t+ ξi,t of agent’s

actions (where ξi,t are i.i.d., mean-zero error terms). He knows the parameter ρ governing

the stochastic process, but may not know the network structure or the qualities of private

signals (σi)
n
i=1. Suppose also that the analyst observes the state θt ex post (perhaps with

a long delay).29

29We can instead assume that the analyst observes (a proxy for) the private signal si,t of agent i; we
mention how below.
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Now, consider any steady state in which agents put constant weights Wij on their neigh-

bors and wsi on their private signals over time. We will discuss the case of m = 1 to save

on notation, though all the statements here generalize readily to arbitrary m.

We first consider how to estimate the weights agents are using, and to back out the

structural parameters of our model when it applies. The strategy does not rely on unique-

ness of equilibrium. We can identify the weights agents are using through standard vector

autoregression methods. In steady state,

(7.1) ai,t =
∑
j

Wijρaj,t−1 + wsi θt + ζi,t,

where ζi,t = wsi ηi,t −
∑

jWijρξj,t−1 + ξi,t are error terms i.i.d. across time. The first

term of this expression for ζi,t is the error of the signal that agent i receives at time t.

The summation combines the measurement errors from the observations aj,t−1 from the

previous period.30 Thus, we can obtain consistent estimators W̃ij and w̃si for Wij and wsi ,

respectively.

We now turn to the case in which agents are using equilibrium weights. First, and

most simply, our estimates of agents’ equilibrium weights allow us to recover the network

structure. If the weight Ŵij is non-zero for any i and j, then agent i observes agent j.

Generically the converse is true: if i observes j then the weight Ŵij is non-zero. Thus,

network links can generically be identified by testing whether the recovered social weights

are nonzero. For such tests (and more generally) the standard errors in the estimators can

be obtained by standard techniques.31

Now we examine the more interesting question of how structural parameters can be

identified assuming an equilibrium is played, and also how to test the assumption of equi-

librium.

The first step is to compute the empirical covariances of action errors from observed data;

we call these Ṽ ij. Under the assumption of equilibrium, we now show how to determine

the signal variances using the fact that equilibrium is characterized by Φ(V̂ ) = V̂ and

recalling the explicit formula (3.3) for Φ. In view of this formula, the signal variances σ2
i

30This system defines a VAR(1) process (or generally VAR(m) for memory length m).
31Methods involving regularization may be practically useful in identifying links in the network. Manresa
(2013) proposes a regularization (LASSO) technique for identifying such links (peer effects). In a dynamic
setting such as ours, with serial correlation, the techniques required will generally be more complicated.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 33

are uniquely determined by the other variables:

(7.2) V̂ii =
∑
j

∑
k

ŴijŴik(ρ
2V̂jk + 1) + (ŵsi )

2σ2
i .

Replacing the model parameters other than σ2
i by their empirical analogues, we obtain

a consistent estimate σ̃2
i of σi. This estimate could be directly useful—for example, to

an analyst who wants to choose an “expert” from the network and ask about her private

signals directly.

Note that our basic VAR for recovering the weights relies only on constant linear strate-

gies and does not assume that agents are playing any particular strategy within this class.

Thus, if agents are using some other behavioral rule (e.g., optimizing in a misspecified

model) we can replace (7.2) by a suitable analogue that reflects the bounded rationality in

agents’ inference. If such a steady state exists, and using the results in this section, one

can create an econometric test that is suitable for testing how agents are behaving. For

instance, we can test the hypothesis that they are Bayesian against the naive alternative

of our Section 5.1.

7.3. Multidimensional states and informational specialization. So far, we have

been working with a one-dimensional state and one-dimensional signals, which varied only

in their precisions. Our message about the value of diversity is, however, better interpreted

in a mathematically equivalent multidimensional model.

Consider Bayesian agents who learn and communicate about two independent dimensions

simultaneously (each one working as in our model). If all agents have equally precise

signals about both dimensions, then society may not learn well about either of them. In

contrast, if half the agents have superior signals about one dimension and inferior signals

about the other (and the other half has the reverse), then society can learn well about

both dimensions. Thus, the designer has a strong preference for an organization with

informational specialization where some, but not all, agents are expert in a particular

dimension.32

Of course, there are many familiar reasons for specialization, in information or any other

activity. For instance, it may be that more total information can be collected in this case,

or that incentives are easier to provide. Crucially, specialization is valuable in our setting

for a reason distinct from all these: it helps agents with their inference problems.

32This raises important questions about what information agents would acquire, and whom they would
choose to observe, which are the focus of a growing literature. For recent papers on this in the context of
networks, see Sethi and Yildiz (2016) and Myatt and Wallace (2017), among others.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 34

7.4. General distributions. The example of the previous subsection involved trivially

extending our model to several independent dimensions. We now briefly discuss a more

substantive extension, which applies to more realistic signal structures.

Our analysis of stationary linear learning rules relied crucially on the assumptions that

the innovations νt and signal errors ηi,t are Gaussian random variables. However, we believe

the basic logic of our result about good aggregation with signal diversity (Theorem 1) does

not depend on this particular distributional assumption, or the exact functional form of

the AR(1) process.

Suppose we have

θt = T(θt−1, νt) and si,t = S(θt, ηt)

and consider more general distributions of innovations νt and signal errors ηt. For simplicity,

consider the complete graph and m = 1.33 Because θt−1 is still a sufficient statistic for the

past, an agent’s action in period t will still be a function of her subjective distribution

over θt−1 and her private signal. An agent with type τ (which is observable) who believes

θt−1 is distributed according to D takes an action equal to f(τ,D, si,t). Here, τ could

reflect the distribution of agent i’s signal, but also perhaps her preferences. We no longer

assume that an agent’s action is her posterior mean of the random variable: it might be

some other statistic, and might be multi-dimensional. Similarly, information need not be

one-dimensional, or characterized only by its precision.

This framework gives an abstract identification condition: agents can learn well if, for any

feasible distribution D over θt−1, the state θt can be inferred from the observed distributions

of actions, i.e., distribution of (τ, f(τ,D, si,t)), which each agent would essentially know

given enough observations.34

Now consider a time-t agent i. Suppose now that any possible distribution that time-

(t − 1) agents might have over θt−2 can be fully described by a finite tuple of parameters

d ∈ Rp (e.g., a finite number of moments). For each type τ of t− 1 agent that i observes,

the distribution of f(τ, d, si,t) gives an agent a different measurement of d, which is a

summary of beliefs about θt−2, and θt−1. Assuming there is not too much “collinearity,”

these measurements of the finitely many parameters of interest should provide linearly

33These states and signals may now be multidimensional.
34The easiest way to ensure this is to consider a complete network and a large number of agents. However,
notice that even if the neighborhood of an agent changes from period to period, if some of the individuals
in that neighborhood are randomly sampled, this can provide information about the empirical distribution
of actions of various types in the same way. That, in turn, can facilitate the identification of recent states,
as we are about to explain.
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independent information about θt−1. Thus, as long as the set of signal types τ is sufficiently

rich, we would expect the identification condition to hold.

The simplest example of this is one in which the state is still AR(1) Gaussian, but now

d-dimensional. Private signals, now also multidimensional, are arbitrary linear functions of

θt. If these linear functions are generic and there are sufficiently many distinct signal types,

then observing actions will allow an observer to back out both θt−2, and θt−1. The essential

observation about what is needed for good learning by Bayesians is that there are enough

linearly independent action rules to identify the underlying d dimensions of fundamental

uncertainty. In the Gaussian case such linear independence is guaranteed by having at least

d+ 1 generic signal types.
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Appendix A. Details of definitions

A.1. Exogenous random variables. Fix a probability space (Ω,F ,P). Let (νt, ηi,t)t∈Z,i∈N

be normal, mutually independent random variables, with νt having variance 1 and ηi,t hav-

ing variance σ2
i . Also take a stochastic process (θt)t∈Z, such that for each t ∈ Z, we have

(for 0 < |ρ| ≤ 1)

θt = ρθt−1 + νt.

Such a stochastic process exists by standard constructions of the AR(1) process or, in the

case of ρ = 1, of the Gaussian random walk on a doubly infinite time domain. Define

si,t = θt + ηi,t.

A.2. Formal definition of game and stationary linear equilibria.

Players and strategies. The set of players (or agents) is A = {(i, t) : i ∈ N, t ∈ Z}. The

set of (pure) responses of an agent (i, t) is defined to be the set of all Borel-measurable

functions σ(i,t) : R × (R|N(i)|)m → R, mapping her own signal and her neighborhood’s

actions, (si,t, (aNi,t−`)
m
`=1), to a real-valued action ai,t. We call the set of these functions

Σ̃(i,t). Let Σ̃ =
∏

(i,t)∈A Σ̃(i,t) be the set of response profiles. We now define the set of

(unambiguous) strategy profiles, Σ ⊂ Σ̃. We say that a response profile σ ∈ Σ̃ is a strategy

profile if the following two conditions hold

1. There is a tuple of real-valued random variables (ai,t)i∈N,t∈Z on (Ω,F ,P) such that

for each (i, t) ∈ A, we have

ai,t = σ(i,t) (si,t, (aNi,t−`)
m
`=1) .

2. Any two tuples of real-valued random variables (ai,t)i∈N,t∈Z satisfying Condition 1

are equal almost surely.

That is, a response profile is a strategy profile if there is an essentially unique specification

of behavior that is consistent with the responses: i.e., if the responses uniquely determine
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the behavior of the population, and hence payoffs.35 Note that if σ ∈ Σ, then it can be

checked that σ̃ = (σ′(i,t), σ−(i,t)) ∈ Σ whenever σ′(i,t) ∈ Σ̃(i,t). Thus, if we start with a strategy

profile and consider agent (i, t)’s deviations, they are unrestricted: she may consider any

response.

Payoffs. The payoff of an agent (i, t) under any strategy profile σ ∈ Σ is

ui,t(σ) = −E
[
(ai,t − θt)2

]
∈ [−∞, 0],

where the actions ai,t are taken according to σ(i,t) and the expectation is taken in the

probability space we have described. This expectation is well-defined because inside the

expectation there is a nonnegative, measurable random variable, for which an expectation

is always defined, though it may be infinite.

Equilibria. A (Nash) equilibrium is defined to be a strategy profile σ ∈ Σ such that, for

each (i, t) ∈ A and each σ̃ ∈ Σ such that σ̃ = (σ′(i,t), σ−(i,t)) for some σ′(i,t) ∈ Σ(i,t), we have

ui,t(σ̃) ≤ ui,t(σ).

For p ∈ Z, we define the shift operator Tp to translate variables to time indices shifted

p steps forward. This definition may be applied, for example, to Σ.36 A strategy profile

σ ∈ Σ is stationary if, for all p ∈ Z, we have Tpσ = σ.

We say σ ∈ Σ is a linear strategy profile if each σi is a linear function. Our analysis

focuses on stationary, linear equilibria.

Appendix B. Existence of equilibrium: Proof of Proposition 1

Recall from Section 3.1 the map Φ, which gives the next-period covariance matrix Φ(Vt)

for any Vt. The expression given there for this map ensures that its entries are continuous

functions of the entries of Vt. Our strategy is to show that this function maps a convex,

compact set, K, to itself, which, by Brouwer’s fixed-point theorem, ensures that Φ has a

fixed point V̂ . We will then argue that this fixed point corresponds to a stationary linear

equilibrium.

We begin by defining the compact set K. Because memory is arbitrary, entries of Vt

are covariances between pairs of neighbor actions from any periods available in memory.

Let k, l be two indices of such actions, corresponding to actions taken at nodes i and j

35Condition 1 is necessarily to rule out response profiles such as the one given by σi,t (si,t, ai,t−1) = |ai,t−1|+
1. This profile, despite consisting of well-behaved functions, does not correspond to any specification of
behavior for the whole population (because time extends infinitely backward). Condition 2 is necessary to
rule out response profiles such has the one given by σi,t (si,t, ai,t−1) = ai,t−1, which have many satisfying
action paths, leaving payoffs undetermined.
36I.e., σ′ = Tpσ is defined by σ(i,t) = σ(i,t−p).
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respectively (at potentially different times), and let σ2
i = max{σ2

i , ρ
m−1σ2

i + 1−ρm−1

1−ρ }. Now

let K ⊂ V be the subset of symmetric positive semi-definite matrices Vt such that, for any

such k, l,

Vkk,t ∈
[
min

{
1

1 + σ−2i
,
ρm−1

1 + σ−2i
+

1− ρm−1

1− ρ

}
,max

{
σ2
i , ρ

m−1σ2
i +

1− ρm−1

1− ρ

}]
Vkl,t ∈ [−σiσj, σiσj].

This set is closed and convex, and we claim that Φ(K) ⊂ K.
To show this claim, we will first find upper and lower bounds on the variance of any

neighbor’s action (at any period in memory). For the upper bound, note that a Bayesian

agent will not choose an action with a larger variance than her signal, which has variance

σ2
i . For a lower bound, note that if she knew the previous period’s state and her own

signal, then the variance of her action would be 1
1+σ−2

i

. Thus an agent observing only noisy

estimates of θt and her own signal can do no better.

By the same reasoning applied to the node-i agent from m periods ago, the error variance

of ρmai,t−m− θt is at most ρmσ2
i + 1−ρm

1−ρ and at least ρm

1+σ−2
i

+ 1−ρm
1−ρ . This establishes bounds

on Vkk,t for observations k from either the most recent or the oldest available period. The

corresponding bounds from the periods between t−m+ 1 and t are always weaker than at

least one of the two bounds we have described, so we need only take minima and maxima

over two terms.

This established the claimed bound on the variances. The bounds on covariances follow

from Cauchy-Schwartz.

We have now established that there is a variance-covariance matrix V̂ such that Φ(V̂ ) =

V̂ . By definition of Φ, this means there exists some weight profile (Ŵ , ŵs) such that,

when applied to prior actions that have variance-covariance matrix V̂ , produce variance-

covariance matrix V̂ . However, it still remains to show that this is the variance-covariance

matrix reached when agents have been using the weights (Ŵ , ŵs) forever.

To show this, first observe that if agents have been using the weights (Ŵ , ŵs) forever, the

variance-covariance matrix Vt in any period is uniquely determined and does not depend

on t; call this V̌ .37 This is because actions can be expressed as linear combinations of

private signals with coefficients depending only on the weights. Second, it follows from our

construction above of the matrix V̂ and the weights (Ŵ , ŵs) that there is a distribution

37The variance-covariance matrices are well-defined because the (W,ws) weights yield unambiguous strat-
egy profiles in the sense of Appendix A.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 40

of actions where the variance-covariance matrix is V̂ in every period and agents are using

weights (Ŵ , ŵs) in every period. Combining the two statements shows that in fact V̌ = V̂ ,

and this completes the proof. Note that this argument also establishes that the response

profile we have constructed is a strategy profile: under the responses used, we can write

formally the dependence of actions on all prior signals, and verify using the observations

on decay of dependence across time that the formula is summable and hence defines unique

actions.

Appendix C. Proof of Theorem 1

C.1. Notation and key notions. Let S be the (by assumption finite) set of all possible

signal variances, and let σ2 be the largest of them. The proof will focus on the covariances of

errors in social signals. Take two arbitrary agents i and j. Recall that both ri,t and rj,t have

mean θt−1, because each is an unbiased estimate38 of θt−1; we will thus focus on the errors

ri,t− θt−1. Let At denote the variance-covariance matrix (Cov(ri,t − θt−1, rj,t − θt−1))i,j and

let W be the subset of such covariance matrices. For all i, j note that Cov(ri,t− θt−1, rj,t−
θt−1) ∈ [−σ2, σ2] using the Cauchy-Schwarz inequality and the fact that Var(ri,t − θt−1) ∈
[0, σ2] for all i. This fact about variances says that no social signal is worse than putting

all weight on an agent who follows only her private signal. Thus the best-response map Φ

is well-defined and induces a map Φ̃ on W .

Next, for any ψ, ζ > 0 we will define the subset Wψ,ζ ⊂ W to be the set of covariance

matrices in W such that both of the following hold:

1. for any pair of distinct agents39 i ∈ Gk
n and j ∈ Gk′

n ,

Cov(ri,t − θt−1, rj,t − θt−1) = ψkk′ + ζij

where (i) ψkk′ depends only on the network types of the two agents (k and k′, which

may be the same); (ii) |ψkk′ | < ψ; and (iii) |ζij| < ζ;

2. for any single agent i ∈ Gk
n,

Var(ri,t − θt−1) = ψk + ζii

where (i) ψk only depends on the network type of the agent; (ii) |ψk| < ψ, and (iii)

|ζii| < ζ.

This is the space of covariance matrices such that each covariance is split into two parts.

Considering (1) first, ψkk′ is an effect that depends only on i’s and j’s network types, while

38This is because it is a linear combination, with coefficients summing to 1, of unbiased estimates of θt−1.
39Throughout this proof, we abuse terminology by referring to agents and nodes interchangeably when the
relevant t is clear or specified nearby.
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ζij adjusts for the individual-level heterogeneity arising from different link realizations. The

description of the decomposition in (2) is analogous.

C.2. Proof strategy.

C.2.1. A setWψ,ζ of outcomes with good learning. Our goal is to show that as n grows large,

Var(ri,t−θt−1) becomes very small, which then implies that the agents asymptotically learn.

We will take ψ and ζ to be arbitrarily small numbers and show that for large enough n,

with high probability (which we abbreviate “asymptotically almost surely” or “a.a.s.”) the

equilibrium outcome has a social error covariance matrix At in the set Wψ,ζ . In particular,

Var(ri,t−θt−1) becomes arbitrarily small in this limit. In our constructions, the ζij (resp., ζi)

terms will be set to much smaller values than the ψkk′ (resp., ψk) terms, because group-level

covariances are more predictable and less sensitive to idiosyncratic realizations.

C.2.2. Approach to showing that Wψ,ζ contains an equilibrium. To show that the equilib-

rium outcome has (a.a.s.) a social error covariance matrix At in the set Wψ,ζ , the plan is

to construct a set so that (a.a.s.) W ⊂ Wψ,ζ and Φ̃(W) ⊂ W . This set will contain an

equilibrium by the Brouwer fixed point theorem, and therefore so will Wψ,ζ .

To construct the set W , we will fix a positive constant β (to be determined later), and

define

W =W β
n
, 1
n
∪ Φ̃(W β

n
, 1
n
).

We will then prove that, for large enough n, (i) Φ̃(W) ⊆ W and (ii) for another suitable

positive constant λ,

W ⊂W β
n
,λ
n
.

This will allow us to establish that (a.a.s.) W ⊂Wψ,ζ and Φ̃(W) ⊂ W , with ψ and ζ being

arbitrarily small numbers.

The following two lemmas will allow us to deduce (immediately after stating them)

properties (i) and (ii) of W .

Lemma 1. There is a function λ(β) ≥ 1 such that the following holds. For all large enough

β and all λ ≥ λ(β), for n sufficiently large we have Φ̃(W β
n
, 1
n
) ⊂ W β

n
,λ
n

with probability at

least 1− 1
n

.

Lemma 2. For all large enough β, for n sufficiently large, Φ̃2(W β
n
, 1
n
) ⊂ W β

n
, 1
n

, with prob-

ability at least 1− 1
n

.under40

40The notation Φ̃2 means the operator Φ̃ applied twice.
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Putting these lemmas together, a.a.s. we have,

Φ̃2(W β
n
, 1
n
) ⊂ W β

n
, 1
n

and Φ̃(W β
n
, 1
n
) ⊂ W β

n
,λ
n
.

From this it follows that W =W β
n
, 1
n
∪ Φ̃(W β

n
, 1
n
) is mapped to a subset of itself by Φ̃, and

contained in W β
n
,λ
n
, as claimed.

C.2.3. Proving the lemmas by analyzing how Φ̃ and Φ̃2 act on sets Wψ,ζ. The lemmas are

about how Φ̃ and Φ̃2 act on the covariance matrix At, assuming it is in a certain setWψ,ζ , to

yield new covariance matrices. Thus, we will prove these lemmas by studying two periods

of updating. The analysis will come in five steps.

Step 1: No-large-deviations (NLD) networks and the high-probability event.

Step 1 concerns the “with high probability” part of the lemmas. In the entire argument,

we condition on the event of a no-large-deviations (NLD) network realization, which says

that certain realized statistics in the network (e.g., number of paths between two nodes)

are close to their expectations. The expectations in question depend only on agents’ types.

Therefore, on the NLD realization, the realized statistics do not vary much based on which

exact agents we focus on, but rather depend only on their types. Step 1 defines the NLD

event E formally and shows that it has high probability. We use the structure of the NLD

event throughout our subsequent steps, as we mention below.

Step 2: Weights in one step of updating are well-behaved. We are interested in Φ̃

and Φ̃2, which describe how the covariance matrix At of social signal errors changes under

updating. How this works is determined by the “basic” updating map Φ, and so we begin

by studying the weights involved in it and then make deductions about the matrix At.

The present step establishes that in one step of updating, the weight Wij,t′ that agent

(i, t′), where t′ = t + 1, places on the action of another agent j in period t, does not

depend too much on the identities of i and j. It only depends on their (network and

signal) types. This is established by using our explicit formula for weights in terms of

covariances. We rely on (i) the fact that covariances are assumed to start out in a suitable

Wψ,ζ , and (ii) our conditioning on the NLD event E. The NLD event is designed so that

the network quantities that go into determining the weights depend only on the types of

i and j (because the NLD event forbids too much variation conditional on type). The

restriction to At ∈ Wψ,ζ ensures that covariances in the initial period t did not depend too

much on type, either.

Step 3: Lemma 1: Φ̃(W β
n
, 1
n
) ⊂ W β

n
,λ
n
. Once we have analyzed one step of updating, it

is natural to ask what that does to the covariance matrix. Because we now have a bound

on how much weights can vary after one step of updating, we can compute bounds on
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covariances. This step shows that the initial covariances At being in W β
n
, 1
n

implies that

after one step, covariances are in W β
n
,λ
n
. Note that the introduction of another parameter

λ on the right-hand side implies that this step might worsen our control on covariances

somewhat, but in a bounded way. This establishes Lemma 1.

Step 4: Weights in two steps of updating are well-behaved. The fourth step estab-

lishes that the statement made in Step 2 remains true when we replace t′ by t+ 2. By the

same sort of reasoning as in Step 2, an additional step of updating cannot create too much

further idiosyncratic variation in weights. Proving this requires analyzing the covariance

matrices of various social signals (i.e., the At+1 that the updating induces), which is why

we needed to do Step 3 first.

Step 5: Lemma 2: Φ̃2(W β
n
, 1
n
) ⊂ W β

n
, 1
n
. Now we use our understanding of weights from

the previous steps, along with additional structure, to show the key remaining fact. What

we have established so far about weights allows us to control the weight that a given agent’s

estimate at time t + 2 places on the social signal of another agent at time t. This is Step

5(a). In the second part, Step 5(b), we use that to control the covariances in At+2. It is

important in this part of the proof that different agents have very similar “second-order

neighborhoods”: the paths of length 2 beginning from an agent are very similar, in terms of

their counts and what types of agents they go through. We carefully separate the variation

(across agents) in covariances in At into three pieces and use our control of second-order

neighborhoods to bound this variation such that At+2 ∈ W β
n
, 1
n
.

C.3. Carrying out the steps.

C.3.1. Step 1. Here we formally define the NLD event, which we call E. It is given by

E = ∩5i=1Ei, where the events Ei will be defined next.

(E1) Let X
(1)
i,τk be the number of agents having signal type τ and network type k who

are observed by i. The event E1 is that this quantity is close to its expected value in the

following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X
(1)
i,τk] ≤ X

(1)
i,τk ≤ (1 + ζ2)E[X

(1)
i,τk].

(E2) Let X
(2)
ii′,τk be the number of agents having signal type τ and network type k who

are observed by both i and i′. The event E2 is that this quantity is close to its expected

value in the following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X
(2)
ii′,τk] ≤ X

(2)
ii′,τk ≤ (1 + ζ2)E[X

(2)
ii′,τk].
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(E3) Let X
(3)
i,τk,j be the number of agents having signal type τ and network type k who

are observed by agent i and who observe agent j. The event E3 is that this quantity is

close to its expected value in the following sense, simultaneously for all possible values of

the subscript:

(1− ζ2)E[X
(3)
i,τk,j] ≤ X

(3)
i,τk,j ≤ (1 + ζ2)E[X

(3)
i,τk,j].

(E4) Let X
(4)
ii′,τk,j be the number of agents having signal type τ and network type k who

are observed by both agent i and i′ and who observe j. The event E4 is that this quantity

is close to its expected value in the following sense, simultaneously for all possible values

of the subscript:

(1− ζ2)E[X
(4)
ii′,τk′,j] ≤ X

(4)
ii′,τk′,j ≤ (1 + ζ2)E[X

(4)
ii′,τk′,j].

(E5) Let X
(5)
i,τk,jj′ be the number of agents of signal type τ and network type k who are

observed by agent i and who observe both j and j′. The event E5 is that this quantity is

close to its expected value in the following sense, simultaneously for all possible values of

the subscript:

(1− ζ2)E[X
(5)
i,τk,jj′ ] ≤ X

(5)
i,τk,jj′ ≤ (1 + ζ2)E[X

(5)
i,τk,jj′ ].

We claim that the probability of the complement of the event E vanishes exponentially.

We can check this by showing that the probability of each of the Ei vanishes exponentially.

For E1, for example, the bounds will hold unless at least one agent has degree outside the

specified range. The probability of this is bounded above by the sum of the probabilities of

each individual agent having degree outside the specified range. By Chebyshev’s inequality,

the probability a given agent has degree outside this range vanishes exponentially. Because

there are n agents in Gn, this sum vanishes exponentially as well. The other cases are

similar.

For the rest of the proof, we condition on the event E.

C.3.2. Step 2. As a shorthand, let ψ = β/n for a sufficiently large constant β, and let

ζ = 1/n.

Lemma 3. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wψ,ζ and all agents are optimizing in period t+ 1. Then there is a γ so that

for all n sufficiently large,
Wij,t+1

Wi′j′,t+1

∈
[
1− γ

n
, 1 +

γ

n

]
.
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whenever i and i′ have the same network and signal types and j and j′ have the same

network and signal types.

To prove this lemma, we will use our weights formula:

Wi,t+1 =
1TC−1i,t

1TC−1i,t 1
.

This says that in period t + 1, agent i’s weight on agent j is proportional to the sum of

the entries of column j of C−1i,t . We want to show that the change in weights is small as

the covariances of observed social signals vary slightly. To do so we will use the Taylor

expansion of f(A) = C−1i,t around the covariance matrix A(0) at which all ψkk′ = 0, ψk = 0

and ζij = 0.

We begin with the first partial derivative of f at A(0) in an arbitrary direction. Let

A(x) be any perturbation of A0 in one parameter, i.e., A(x) = A(0) + xM for some

constant matrix M with entries in [−1, 1]. Let Ci(x) be the matrix of covariances of

the actions observed by i given that the covariances of agents’ social signals were A(x).

There exists a constant γ1 depending only on the possible signal types such that each entry

of Ci(x)−Ci(x
′) has absolute value at most γ1(x− x′) whenever both x and x′ are small.

We will now show that the column sums of Ci(x)−1 are close to the column sums of

C(0)−1i . To do so, we will evaluate the formula

(C.1)
∂f(A(x))

∂x
=
∂Ci(x)−1

∂x
= Ci(x)−1

∂Ci(x)

∂x
Ci(x)−1

at zero. If we can bound each column sum of this expression (evaluated at zero) by a

constant (depending only on the signal types and the number of network types K), then

the first derivative of f will also be bounded by a constant.

Recall that S is the set of signal types and let S = |S|; index the signal types by numbers

ranging from 1 to S. To bound the column sums ofCi(0)−1, suppose that the agent observes

ri agents from each signal type 1 ≤ i ≤ S. Reordering so that all agents of each signal type

are grouped together, we can write

Ci(0) =


a111r1×r1 + b1Ir1 a121r1×r2 aS11r1×rS

a121r2×r1 a221r2×r2 + b2Ir2
...

. . .

a1S1rS×r1 · · · aSS1rs×rs + bsIrs


Therefore, Ci(0) can be written as a block matrix with blocks aij1ri×rj + biδijIri where

1 ≤ i, j ≤ S and δij = 1 for i = j and 0 otherwise.
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We now have the following important approximation of the inverse of this matrix.41

Lemma 4 (Pinelis (2018)). Let C be a matrix consisting of S×S blocks, with its (i,j) block

given by

aij1ri×rj + biδijIri

and let A = aij1riÖrj be an invertible matrix. As n → ∞, then the (i, i) block of C−1 is

equal to

1

bi
Iri −

1

biri
1ri×ri +O(1/n2)

while the off-diagonal blocks are O(1/n2).

Proof. First note that the ij-block of C−1 has the form

cij1ri×rj + diδijIri

for some real cij and di.

Therefore, CC−1 can be written in matrix form as∑
k(aik1ri×rk + biδikIri)(ckj1rk×rj + dkδkjIrk) =

(aijdj +
∑

k(aikrk + δikbk)ckj) 1ri×rj + bidiδijIri .(C.2)

Note that the last summand is the identity matrix.

Let Dd denote the diagonal matrix with di in the (i, i) diagonal entry, let D1/b denote

the diagonal matrix with 1/bi in the (i, i) diagonal entry, etc. Breaking up the previous

display (C.2) into its diagonal and off-diagonal parts, we can write

ADd + (ADr +Db)C = 0 and Dd = D1/b.

Hence,

C = −(ADr +Db)
−1ADd

= −(Iq +D−1r A−1Db)
−1(ADr)

−1AD1/b

= −(Iq +D−1r A−1Db)
−1D1/(br)

= −D1/(br) +O(1/n2)

41We are very grateful to Iosif Pinelis for suggesting this argument.
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where br := (b1r1, . . . , bqrq). Therefore as n → ∞ the off-diagonal blocks will be O(1/n2)

while the diagonal blocks are

1

bi
Iri −

1

biri
1ri×ri +O(1/n2)

as desired. �

Using Lemma 4 we can analyze the column sums of42

Ci(0)−1MCi(0)−1.

In more detail, we use the formula of the lemma to estimate both copies of Ci(0)−1, and

then expand this to write an expression for any column sum of Ci(0)−1MCi(0)−1. It follows

straightforwardly from this calculation that all these column sums are O(1/n) whenever all

entries of M are in [−1, 1].

We can bound the higher-order terms in the Taylor expansion by the same technique: by

differentiating equation C.1 repeatedly in x, we obtain an expression for the kth derivative

in terms of Ci(0)−1 and M :

f (k)(0) = k!Ci(0)−1MCi(0)−1MCi(0)−1 · . . . ·MCi(0)−1,

where M appears k times in the product. By the same argument as above, we can show

that the column sums of f (k)(0)
k!

are bounded by a constant independent of n. The Taylor

expansion is

f(A) =
∑
k

f (k)(0)

k!
xk.

Since we take A ∈ Wψ,ζ , we can assume that x is O(1/n). Because the column sums of

each summand are bounded by a constant times xk, the column sums of f(A) are bounded

by a constant.

Finally, because the variation in the column sums is O(1/n) and the weights are propor-

tional to the column sums, each weight varies by at most a multiplicative factor of γ1/n

for some γ1. We find that the first part of the lemma, which bounded the ratios between

weights Wij,t+1/Wi′j′,t+1, holds.

C.3.3. Step 3. We complete the proof of Lemma 1, which states that the covariance matrix

of ri,t+1 is inWψ,ζ′ . Recall that ζ ′ = λ/n for some constant n, so we are showing that if the

covariance matrix of the ri,t is in a neighborhood Wψ,ζ , then the covariance matrix in the

42Recall we wrote A(x) = A(0) + xM , and in (C.1) we expressed the derivative of f in x in terms of the
matrix we exhibit here.
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next period is in a somewhat larger neighborhood Wψ,ζ′ . The remainder of the argument

then follows by the same arguments as in the proof of the first part of the lemma: we now

bound the change in time-(t + 2) weights as we vary the covariances of time-(t + 1) social

signals within this neighborhood.

Recall that we decomposed each covariance Cov(ri,t − θt−1, rj,t − θt−1) = ψkk′ + ζij into

a term ψkk′ depending only on the types of the two agents and a term ζij, and similarly

for variances. To show the covariance matrix is contained inWψ,ζ′ , we bound each of these

terms suitably.

We begin with ζij (and ζi). We can write

ri,t+1 =
∑
j

Wij,t+1

1− wsi,t+1

ai,t =
∑
j

Wij,t+1

1− wsi,t+1

(wsj,tsj,t + (1− wsj,t)rj,t).

By the first part of the lemma, the ratio between any two weights (both of the form Wij,t+1,

wsi,t+1, or wsj,t) corresponding to pairs of agents of the same types is in [1− γ1/n, 1 + γ1/n]

for a constant γ1. We can use this to bound the variation in covariances of ri,t+1 within

types by ζ ′: we take the covariance of ri,t+1 and rj,t+1 using the expansion above and then

bound the resulting summation by bounding all coefficients.

Next we bound ψkk′ (and ψk). It is sufficient to show that Var(ri,t+1 − θt) is at most

ψ. To do so, we will give an estimator of θt with variance less than β/n, and this will

imply Var(ri,t+1 − θt) < β/n = ψ (recall ri,t+1 is the estimate of θt given agent i’s social

observations in period t+ 1). Since this bounds all the variance terms by ψ, the covariance

terms will also be bounded by ψ in absolute value.

Fix an agent i of network type k and consider some network type k′ such that pkk′ > 0.

Then there exists two signal types, which we call A and B, such that i observes Ω(n) agents

of each of these signal types in Gk
n.43 The basic idea will be that we can approximate θt

well by taking a linear combination of the average of observed agents of network type k

and signal type A and the average of observed agents of network type k and signal type B.

In more detail: Let Ni,A be the set of agents of type A in network type k observed by i

and Ni,B be the set of agents of type B in network type k observed by i. Then fixing some

agent j0 of network type k,

1

|Ni,A|
∑
j∈Ni,A

aj,t−1 =
σ−2A

1 + σ−2A
θt +

1

1 + σ−2A
rj0,t−1 + noise

where the noise term has variance of order 1/n and depends on signal noise, variation in

rj,t, and variation in weights. These bounds on the noise term follow from the assumption

43We use the notation Ω(n) to mean greater than Cn for some constant C > 0 when n is large.
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that the covariance matrix of the ri,t is in a neighborhoodWψ,ζ and our analysis of variation

in weights.Similarly

1

|Ni,B|
∑
j∈Ni,B

aj,t−1 =
σ−2B

1 + σ−2B
θt +

1

1 + σ−2B
rj0,t−1 + noise

where the noise term has the same properties. Because σ2
A 6= σ2

B, we can write θt as a linear

combination of these two averages with coefficients independent of n up to a noise term of

order 1/n. We can choose β large enough such that this noise term has variance most β/n

for all n sufficiently large. This completes the Proof of Lemma 1.

C.3.4. Step 4: We now give the two-step version of Lemma 3.

Lemma 5. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wψ,ζ and all agents are optimizing in periods t + 1 and t + 2. Then there is

a γ so that for all n sufficiently large,

Wij,t+2

Wi′j′,t+2

∈
[
1− γ

n
, 1 +

γ

n

]
.

whenever i and i′ have the same network and signal types and j and j′ have the same

network and signal types.

Given what we established about covariances in Step 3, the lemma follows by the same

argument as the proof of Lemma 3.

Step 5: Now that Lemma 5 is proved, we can apply it to show that

Φ̃2(Wψ,ζ) ⊂ Wψ,ζ .

We will do this by first writing the time-(t + 2) behavior in terms of agents’ time-t obser-

vations (Step 5(a)), which comes from applying Φ̃ twice. This gives a formula that can be

used for bounding the covariances44 of time-(t+ 2) actions in terms of covariances of time-t

actions. Step 5(b) then applies this formula to show we can take ζij and ζi to be sufficiently

small. (Recall the notation introduced in Section C.1 above.) We split our expression for

ri,t+2 into several groups of terms and show that the contribution of each group of terms

depends only on agents’ types up to a small noise term. Step 5(c) notes that we can also

take ψkk′ and ψk to be sufficiently small.

44We take this term to refer to variances, as well.
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Step 5(a): We calculate:

ri,t+2 =
∑
j

Wij,t+2

1− wsi,t+2

ρaj,t+1

= ρ(
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 +
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1ρaj′,t)

= ρ(
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 + ρ(
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1w
s
j′,tsj′,t

+
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t)rj′,t)).

Let cij′,t be the coefficient on rj′,t in this expansion of ri,t+2. Explicitly,

(C.3) cij′,t =
∑
j

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t).

The coefficient cij′,t adds up the influence of rj′,t on ri,t+2 over all paths of length two.

First, we establish a lemma about how much these weights vary.

Lemma 6. There exists γ such that for n sufficiently large, when i and i′ have the same

network types and j′ and j′′ have the same network and signal types, the ratio cij′,t/ci′j′′,t

is in [1− γ/n, 1 + γ/n].

Proof. Fix i and j′. For each network type k′′ and signal type s, consider the number of

agents j of network type k′′ and signal type s who are observed by i and who observe j′.

This number varies by at most a factor ζ2 as we change i and j′, preserving signal and

network types. For each such j, the contribution of that agent’s action to cij′,t is (recalling

(C.3))
Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t).

By applying Lemma 3 repeatedly, we can choose γ1 such that each of these contributions

varies by at most a factor of γ1/n as we change i in Gk and j′ in Gk′ . Thus, cij′,t is a sum of

terms which vary by at most a multiplicative factor of γ1/n as we change i and j′ preserving

signal and network types. If we can show that the sum of the absolute values of these terms

is bounded, then it will follow that cij′,t varies by at most a multiplicative factor of γ/n for

some n. This bound on the sum of absolute values follows from the calculation of weights

in the proof of Lemma 3. �

Step 5(b): We first show that fixing the values of ψkk′ and ψk in period t, the variation

in the covariances Cov(ri,t+2 − θt+1,ri′,t+2 − θt+1) of these terms as we vary i and i′ over
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network types is not larger than ζ. From the formula above, we observe that we can

decompose ri,t+2 − θt+1 as a linear combination of three mutually independent groups of

terms:

(i) signal error terms ηj,t+1 and ηj′,t;

(ii) the errors rj′,t − θt in the social signals from period t; and

(iii) changes in state νtand νt+1 between periods t and t+ 2.

Note that the terms rj′,t − θt are linear combinations of older signal errors and changes

in the state. We bound each of the three groups in turn:

(i) Signal Errors: We first consider the contribution of signal errors. When i and i′ are

distinct, the number of such terms is close to its expected value because we are conditioning

on the events E2 and E4 defined in Section C.1. Moreover the weights are close to their

expected values by Step 2, so the variation is bounded suitably. When i and i′ are equal,

we use the facts that the weights are close to their expected values and the variance of an

average of Ω(n) signals is small.

(ii) Social Signals: We now consider terms rj′,t − θt, which correspond to the third

summand in our expression for ri,t+2. Since we will analyze the weight on νt below, it is

sufficient to study the terms rj′,t − θt−1.
By Lemma 6, the coefficients placed on rj′,t by i and on rj′′,t by i′ vary by a factor of at

most 2γ/n. Moreover, the absolute value of each of these covariances is bounded above by

ψ and the variation in these terms is bounded above by ζ. We conclude that the variation

from these terms has order 1/n2.

(iii) Innovations: Finally, we consider the contribution of the innovations νt and νt+1.

We treat νt+1 first. We must show that any two agents of the same types place the same

weight on the innovation νt+1 (up to an error of order 1
n2 ). This will imply that the

contributions of timing to the covariances Cov(ri,t+2 − θt+1,ri′,t+2 − θt+1) can be expressed

as a term that can be included in the relevant ψkk′ and a lower-order term which can be

included in ζii′ .

The weight an agent places on νt+1 is equal to the weight she places on signals from

period t+ 1. So this is equivalent to showing that the total weight

ρ
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1

agent i places on period t+ 1 depends only on the network type k of agent i and O(1/n2)

terms. We will first show the average weight placed on time-(t + 1) signals by agents of

each signal type depends only on k. We will then show that the total weights on agents of

each signal type do not depend on n.
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Suppose for simplicity here that there are two signal types A and B; the general case is

the same. We can split the sum from the previous paragraph into the subgroups of agents

with signal types A and B:

ρ
∑

j:σ2
j=σ

2
A

Wij,t+2

1− wsi,t+2

wsj,t+1 + ρ
∑

j:σ2
j=σ

2
B

Wij,t+2

1− wsi,t+2

wsj,t+1.

Letting WA
i =

∑
σ2
j=σ

2
A

Wij,t+2

1−wsi,t+2
be the total weight placed on agents with signal type A and

similarly for signal type B, we can rewrite this as:

WA
i ρ

∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

wsj,t+1 +WB
i ρ

∑
j:σ2

j=σ
2
B

Wij,t+2

WB
i (1− wsi,t+2)

wsj,t+1.

The coefficients
Wij,t+2

WA
i (1−wsi,t+2)

in the first sum now sum to one, and similarly for the second.

We want to check that the first sum
∑

j:σ2
j=σ

2
A

Wij,t+2

WA
i (1−wsi,t+2)

wsj,t+1 does not depend on k, and

the second sum is similar.

For each j in group A,

wsj,t+1 =
σ−2A

σ−2A + (ρ2κj,t+1 + 1)−1
,

where we define κ2j,t+1 = Var(rj,t+1−θt) to be the error variance of the social signal. Because

κj,t+1 is close to zero, we can approximate wsj,t+1 locally as a linear function µ1κj,t+1 + µ2

where µ1 < 1 (up to order 1
n2 terms).

So we can write the sum of interest as∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

(µ1

∑
j′,j′′

Wjj′,t+1Wjj′′,t+1(ρ
2Vj′j′′,t + 1) + µ2).

By Lemma 3, the weights vary by at most a multiplicative factor contained in [1−γ/n, 1 +

γ/n]. The number of paths from i to j′ passing through agents of any network type k′′

and any signal type is close to its expected value (which depends only on i’s network

type), and the weight on each path depends only on the types involved up to a factor in

[1 − γ/n, 1 + γ/n]. The variation in Vj′j′′,t consists of terms of the form ψk′k′′ , ψk′ , and

ζj′j′′ , all of which are O(1/n), and terms from signal errors ηj′,t. The signal errors only

contribute when j = j′, and so only contribute to a fraction of the summands of order 1/n.

So we can conclude the total variation in this sum as we change i within the network type

k has order 1/n2.

Now that we know each the average weight on private signals of the observed agents of

each signal type depends only on k, it remains to check that WA
i and WB

i only depend on
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k. The coefficients WA
i and WB

i are the optimal weights on the group averages∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 and
∑

j:σ2
j=σ

2
B

Wij,t+2

WB
i (1− wsi,t+2)

ρaj,t+1,

so we need to show that the variances and covariance of these two terms depend only on

k. We check the variance of the first sum: we can expand

∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 =
∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρ(wsj,t+1sj,t+1 + (1− wsj,t+1)rj,t+1).

We can again bound the signal errors and social signals as in the previous parts of this

proof, and show that the variance of this term depends only on k and O(1/n2) terms. The

second variance and covariance are similar, so WA
i and WB

i depend only on k and O(1/n2)

terms.

This takes care of the innovation νt+1. Because we have included any innovations prior

to νt in the social signals rj′,t, to complete Step 5(b) we need only show the weight on νt

depends only on the network type k of an agent.

The analysis is a simpler version of the analysis of the weight on νt+1. It is sufficient to

show the total weight placed on period t social signals depends only on the network type

of k of an agent i. This weight is equal to

ρ2
∑
j,j′

Wij,t+2

1− wsi,t+2

·Wjj′,t+1 · (1− wsj′,t).

As in the νt+1 case, we can approximate (1−wsj′,t) as a linear function of κj′,t up to O(1/n2)

terms. Because the number of paths to each agent j′ though a given type and the weights

on each such path cannot vary too much within types, the same argument shows that this

sum depends only on k and O(1/n2) terms.

Step 5(b) is complete.

Step 5(c): The final step is to verify that we can take ψkk′ and ψk to be smaller than

ψ. It is sufficient to show that the variance Var(ri,t+2 − θt+1) of each social signal about

θt+1 is at most ψ. The proof is the same as in Step 2(b).

Appendix D. Model with a starting time

In introducing the model (Section 2), we made the set of time indices T equal to Z, the

set of all integers. Here we study the variant with an initial time period, t = 0: thus, we

take T to be Z≥0, the nonnegative integers.
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We let θ0 be drawn according to the stationary distribution of the state process: θ0 ∼
N
(

0, 1
1−ρ

)
. After this, the state random variables θt satisfy the AR(1) evolution

θt+1 = ρθt + νt+1,

where ρ is a constant with 0 < |ρ| < 1 and νt+1 ∼ N (0, σ2
ν) are independent innovations.

Actions, payoffs, signals, and observations are the same as in the main model, with the

obvious modification that in the initial periods, t < m, information sets are smaller as

there are not yet prior actions to observe.45 To save on notation, we write actions as if

agents had an improper prior, understanding that the adjustment for actions taken under

the natural prior θt ∼ N
(

0, 1
1−ρ

)
is immediate.

In this model, there is a straightforward prediction of behavior:

Fact 1. In the model with T = Z≥0, there is a unique Nash equilibrium, and it is in linear

strategies. The initial generation (t = 0) plays a linear strategy based on private signals

only. In any period t > 0, given linear strategies from prior periods, players’ best responses

are linear. For time periods t > m, we have

Vt = Φ(Vt−1).

This fact follows from the observation that the initial (t = 0) generation faces a problem

of forming a conditional expectation of a Gaussian state based on Gaussian signals, so

their optimal strategies are linear. From then on, the analysis of Section 3.1 characterizes

best-response behavior inductively..

Our main purpose in this section is to give analogues of the main results on learning in

large networks. We use the same definition of an environment—in terms of the distribution

of networks and signals—as in Section 4.2. For simplicity, we work with m = 1, though

the arguments extend straightforwardly.

The analogue of Theorem 1 is:

Theorem 2. Consider the T = Z≥0 model and let ε > 0. If an environment satisfies signal

diversity, asymptotically almost surely Gn is such that the ε-perfect aggregation benchmark

is achieved in the unique Nash equilibrium at all times t ≥ 1.

We sketch the proof, which uses the material we developed in Appendix C. We define At

as in that proof (Section C.1). Take a β > 0, to be specified later, and consider

W =W β
n
, 1
n
∪ Φ̃(W β

n
, 1
n
).

45The actions for t < 0 can be set to arbitrary (commonly known) constants.
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First, for large enough β, we have that A1 ∈ W : In the unique Nash equilibrium, at

t = 1, agents simply take weighted averages of their neighbors’ signals, weighted by their

precisions. Formally, this is implied by Lemma 2 for β sufficiently large. Second, we use the

previously established fact (recall Section C.2.2) that Φ̃(W) ⊂ W to deduce that At ∈ W
at all future times. Finally, we use Lemma 1 to deduce that for large enough n we have

W ⊆Wψ,ζ with ψ and ζ being arbitrarily small numbers.

Without signal diversity, bad learning can occur forever, in the unique equilibrium. The

analogue of Proposition 2 is immediate. In graphs with symmetric neighbors, Φ is a con-

traction, and so iteration of it arrives at the unique fixed point, and thus a learning outcome

far from the benchmark.

Even when a random graph creates some structural diversity, the same result obtains.

Let (Gn)∞n=1 be a sequence of directed or undirected random networks, with Gn having n

nodes, with any pair of distinct nodes linked (i.i.d.) with positive probability p. We assume

all signal variances are equal to σ2 and that m = 1. The analogue of Proposition 3 is now:

Proposition 6. Consider the T = Z≥0 model and maintain the assumptions in the previous

paragraph. There exists ε > 0 such that asymptotically almost surely in the unique Nash

equilibrium, at all times t > 1 the ε-perfect aggregation benchmark is not achieved by any

agent i.

The randomness in the statement is, as usual, in the realization of Gn.

The proof of this result is analogous to that of Proposition 3, in Section E.1 of the Online

Appendix. Step 1 is to observe that, in period t = 1, for any ε′ > 0, with high probability

all agents achieve ε′-perfect aggregation for n large. Step 2 is to argue that, conditioning

on this event, after a finite number of periods t = 2, ..., T (in which ε-perfect aggregation

fails for ε sufficiently small), the matrix AT lies in a small neighborhood of V̂ sym(n). Step

3, which is identical to Step 5 of the Proposition 3 argument, shows that Φ maps this

neighborhood to itself, and thus At remains in that neighborhood in future times.

It remains only to fill in the details for Step 2. This is done as follows. Consider first an

artificial process, where all t = 1 agents know θ0 exactly, and in addition observe a private

signal about θ1. Their updating is given by

ai,1 = w(1)θ0 + (1− w(1))si,1.

Now, t = 2 agents each observe a neighborhood of approximately (n − 1)p others taking

such actions, and a private signal. Thus, they essentially observe

R1 = w(1)θ0 + (1− w(1))θ1
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as well as a private signal. Their updating is given by

ai,2 = w(2)R1 + (1− w(2))s2.

And so on. The sequence of weights can be computed explicitly, and it can be seen that they

converge to V̂ sym(n). Then, by arguments analogous to those in the proof of Proposition 3,

it is shown that the noise in exact neighborhood realizations does not change the sequence

of weights much. This concludes the argument.

Appendix E. Remaining proofs (online appendix)

E.1. Proof of Proposition 2. We first check there is a unique equilibrium and then prove

the remainder of Proposition 2.

Lemma 7. Suppose G has symmetric neighbors. Then there is a unique equilibrium.

Proof of Lemma 7. We will show that when the network satisfies the condition in the propo-

sition statement, Φ induces a contraction on a suitable space. For each agent, we can

consider the variance of the best estimator for yesterday’s state based on observed actions.

These variances are tractable because they satisfy the envelope theorem. Moreover, the

space of these variances is a sufficient statistic for determining all agent strategies and

action variances.

Let ri,t be i’s social signal—the best estimator of θt−1 based on the period t− 1 actions

of agents in Ni—and let κ2i,t be the variance of ri,t − θt−1.
We claim that Φ induces a map Φ̃ on the space of variances κ2i,t, which we denote Ṽ .

We must check the period t variances (κ2i,t)i uniquely determine all period t + 1 variances

(κ2i,t+1)i: The variance Vii,t of agent i’s action, as well as the covariances Vii′,t of all pairs

of agents i, i′ with Ni = Ni′ , are determined by κ2i,t. Moreover, by the condition on our

network, these variances and covariances determine all agents’ strategies in period t + 1,

and this is enough to pin down all period t+ 1 variances κ2i,t+1.

The proof proceeds by showing Φ̃ is a contraction on Ṽ in the sup norm.

For each agent j, we have Ni = Ni′ for all i, i′ ∈ Nj. So the period t actions of an agent

i′ in Nj are

(E.1) ai′,t =
(ρ2κ2i,t + 1)−1

σ−2i′ + (ρ2κ2i,t + 1)−1
· ri,t +

σ−2i′

σ−2i′ + (ρ2κ2i,t + 1)−1
· si′,t

where si′,t is agent (i′)’s signal in period t and ri,t the social signal of i (the same one that i′

has). It follows from this formula that each action observed by j is a linear combination of

a private signal and a common estimator ri,t, with positive coefficients which sum to one.
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For simplicity we write

(E.2) ai′,t = b0 · ri,t + bi′ · si′,t

(where b0 and bi′ depend on i′ and t, but we omit these subscripts). We will use the facts

0 < b0 < 1 and 0 < bi′ < 1.

We are interested in how κ2j,t+1 = Var(rj,t+1 − θt) depends on κ2i,t = Var(ri,t − θt−1).

The estimator rj,t+1 is a linear combination of observed actions ai′,t, and therefore can be

expanded as a linear combination of signals si′,t and the estimator ri,t. We can write

(E.3) rj,t+1 = c0 · (ρri,t) +
∑
i′

ci′si′,t

and therefore (taking variances of both sides)

κ2j,t+1 = Var(rj,t+1 − θt) = c20Var(ρri,t − θt) +
∑
i′

c2i′σ
2
i′

= c20(ρ
2κ2i,t + 1) +

∑
i′

c2i′σ
2
i′

The desired result, that Φ̃ is a contraction, will follow if we can show that the derivative
dκ2j,t+1

dκ2i,t
= c20ρ

2 ∈ [0, δ] for some δ < 1. By the envelope theorem, when calculating this

derivative, we can assume that the weights placed on actions ai′,t by the estimator rj,t do

not change as we vary κ2i,t, and therefore c0 and the ci′ above do not change. So it is enough

to show the coefficient c0 is in [0, 1]. �

The intuition for the lower bound is that anti-imitation (agents placing negative weights

on observed actions) only occurs if observed actions put too much weight on public infor-

mation. But if c0 < 0, then the weight on public information is actually negative so there

is no reason to anti-imitate. This is formalized in the following lemma.

Lemma 8. Suppose j has symmetric neighbors. Then agent j’s social signal places non-

negative weight on a neighbori’s social signal from the previous period, i.e., c0 ≥ 0.

Proof. To check this formally, suppose that c0 is negative. Then the social signal rj,t+1

puts negative weight on some observed action—say the action ak,t of agent k. We want to
check that the covariance of rj,t+1 − θt and ak,t − θt is negative. Using (E.2) and (E.3), we
compute that

Cov(rj,t+1 − θt, ak,t − θt) = Cov

c0(ρri,t − θt) +
∑
i′∈Nj

ci′(si′,t − θt)), b0(ρri,t − θt) + bk(sk,t − θt)


= c0b0Var(ρri,t − θt) + ckbkVar(sk,t − θt)
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because all distinct summands above are mutually independent. We have b0, bk > 0, while

c0 < 0 by assumption and ck < 0 because the estimator rj,t+1 puts negative weight on ak,t.

So the expression above is negative. Therefore, it follows from the usual Gaussian Bayesian

updating formula that the best estimator of θt given rj,t+1 and ak,t puts positive weight

on ak,t. However, this is a contradiction: the best estimator of θt given rj,t+1 and ak,t is

simply rj,t+1, because rj,t+1 was defined as the best estimator of θt given observations that

included ak,t. �

We now complete the proof of Lemma 7.

Proof. Now, for the upper bound c0 ≤ 1, the idea is that rj,t+1 puts more weight on agents

with better signals while these agents put little weight on public information, which keeps

the overall weight on public information from growing too large.

Note that rj,t+1 is a linear combination of actions ρai′,t for i′ ∈ Nj, with coefficients

summing to 1. The only way the coefficient on ρri,t in rj,t+1 could be at least 1 would be

if some of these coefficients on ρai′,t were negative and the estimator rj,t+1 placed greater

weight on actions ai′,t which placed more weight on ri,t.

Applying the formula (E.1) for ai′,t, we see that the coefficient b0 on ρri,t is less than 1

and increasing in σi′ . On the other hand, it is clear that the weight on ai′,t in the social

signal rj,t+1 is decreasing in σi′ : more weight should be put on more precise individuals. So

in fact the estimator rj,t+1 places less weight on actions ai′,t which placed more weight on

ri,t.

Moreover, the coefficients placed on private signals are bounded below by a positive

constant when we restrict to covariances in the image of Φ̃ (because all covariances are

bounded as in the proof of Proposition 1). Therefore, each agent i′ ∈ Nj places weight at

most one on the estimator ρri,t−1. Agent j’s social signal rj,t+1 is a sum of these agents’

actions with coefficients summing to 1 and satisfying the monotonicity property above. We

conclude that the coefficient on ρri,t in the expression for rj,t+1 is at most one. �

This completes the proof of Lemma 7. We now prove Proposition 2.

Proof of Proposition 2. By Lemma 7 there is a unique equilibrium on any network G with

symmetric neighbors. Let ε > 0.

Consider any agent i. Her neighbors have the same private signal qualities and the same

neighborhoods (by the symmetric neighbors assumption). So there exists an equilibrium

where for all i, the actions of agent i’s neighbors are exchangeable. By uniqueness, this in

fact holds at the sole equilibrium.
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So agent i’s social signal is an average of her neighbors’ actions:

ri,t =
1

|Ni|
∑
j∈Ni

aj,t−1.

Suppose the ε-perfect aggregation benchmark is achieved. Then all agents must place

weight at least (1+ε)−1

(1+ε)−1+σ−2 on their social signals. So at time t, the social signal ri,t places

weight at least (1+ε)−1

(1+ε)−1+σ−2 on signals from at least two periods ago. Since the variance of

any linear combination of such signals is at least 1 + ρ, for ε sufficiently small the social

signal ri,t is bounded away from a perfect estimate of θt−1. This gives a contradiction. �

E.2. Proof of Corollary 1. Consider a complete graph in which all agents have signal

variance σ2 and memory m = 1. By Proposition 2, as n grows large the variances of all

agents converge to A > (1 + σ−2)−1.

Choose σ2 large enough such that A > 1. To see that we can do this, note that as σ2

grows large, the weight each agent places on their private signal vanishes. So the weight

on signals from at least k periods ago approaches one for any k. Taking σ2 such that this

holds for k sufficiently large, we haveA > 1.

Now suppose that we increase σ2
1 to∞. Then a1,t = r1,t in each period, so all agents can

infer all private signals from the previous period. As n grows large, the variance of agent 1

converges to 1 and the variances of all other agents converge to (1 + σ−2)−1. By our choice

of σ2, this gives a Pareto improvement. We can see by continuity that the same argument

holds for σ2
1 finite but sufficiently large.

E.3. Proof of Proposition 3. We begin by outlining the argument, and then carry out

the steps. In Step 1, we construct a symmetric version of the Erdos-Renyi network and

show there exists a symmetric equilibrium V̂ sym(n) on this symmetric network. In Step 2,

we show variances and covariances (the entries of At, in the notation of Section C.1) at the

equilibrium V̂ sym(n) converge to V ∞ and Cov∞. The remainder of the proof shows there is

an equilibrium on Gn near V̂ sym(n). Step 3 defines a no-large-deviations event depending

on the realized Erdos-Renyi network, and we condition on this event. Step 4 shows that Φ

maps a small neighborhood of V̂ sym(n) to itself. Finally, in Step 5 we apply the Brouwer

fixed point theorem to conclude there exists an equilibrium on Gn in this neighborhood.

Step 1: We first consider a symmetric and deterministic version Gsym
n of the network

Gn on which all agents observe exactly pn other agents and any pair of agents commonly

observes exactly p2n other agents.

Let Vsym ⊂ V be the space of covariance matrices for which each entry V (n)ij depends

only on whether i and j are equal and not on the particular agents. Even if such a Gsym
n
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network does not exist (for combinatorial reasons), updating as if on such a network induces

a well-defined map Φsym : Vsym → Vsym. This map Φsym must have a fixed point, which we

call V̂ sym(n). We will next show that the variances and covariances at V̂ sym(n) converge

to V ∞ and Cov∞. The remainder of the proof will show that for n large enough, there

exists an equilibrium V̂ (n) on Gn close to the equilibrium V̂ sym(n) on Gsym
n .

Step 2: At V̂ sym(n), each agent’s social signal is:

ri,t =
∑
j∈Ni

aj,t−1
pn

.

So the variance of the social signal about θt−1 is

κ2i,t =
V̂ sym(n)11,t

pn
+

(pn− 1)V̂ sym(n)12,t
pn

.

Thus the covariance of any two distinct agents solves

V̂ sym(n)12,t =
(ρ2κ2i,t + 1)−1

(σ−2 + (ρ2κ2i,t + 1)−1)2

(
(ρ2V̂ sym(n)11,t + 1)

p2n
+

(p2n− 1)(ρ2V̂ sym(n)12,t + 1)

p2n

)
.

As n→∞, the right-hand side approaches

(ρ2V̂ sym(n)12,t + 1)−1

[σ−2 + (ρ2V̂ sym(n)12,t + 1)−1]2
,

and the unique real solution to this equation is Cov∞. Computing V̂ sym(n)11,t in terms of

V̂ sym(n)12,t, we also see the variances converge to V ∞.

Step 3: We will show that when ζ = 1
n
, the updating map Φ on the network Gn maps

a small neighborhood around V̂ sym(n) to itself. Let Vn ⊂ V be the subset of covariance

matrices such that

V (n)ij ∈ [V̂ sym(n)ij − ζ, V̂ sym(n)ij + ζ]

for all i and j. We will show in Steps 3 and 4 that Φ(Vn) ⊂ Vn for n large enough.

We first show that the network is close to symmetric with high probability. We will

consider the event E = E1 ∩ E2, where the Ei are defined by:

E1 : The degree of each agent i is between 1 − ζ2 times its expected value and 1 + ζ2

times its expected value, i.e., in [(1− 1
n2 )pn, (1 + 1

n2 )pn].

E2 : For any two agents i and i′, the number of agents observed by both i and i′ between

1− ζ2 times its expected value and 1+ ζ2 times its expected value, i.e., in [(1− 1
n2 )p2n, (1+

1
n2 )p2n].
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We can show as in the proof of Theorem 1 that the probability of the complement of

event E vanishes exponentially in n. We will condition on the event E, which occurs with

probability converging to 1, for the remainder of the proof.

Step 4: Assume all agents observe period t actions with covariances in Vn and then act

optimally in period t + 1. We can show as in the proof of Lemma 3 that there exists a

constant γ such any agent’s weight Wij,t+1 on an observed neighbor is in [(1− γ/n) 1
n
, (1 +

γ/n) 1
n
]. The relevant matrix Ci(0) now has only one block because we have only signal

type, so the calculation is in fact simpler.

We have

ri,t+1 =
∑
j

Wij,t+1aj,t,

and therefore for i and i′ distinct,

Cov(ri,t+1 − θt+1, ri′,t+1 − θt+1) =
∑
j,j′

Wij,t+1Wi′j′,t+1(ρ
2Vjj′,t + 1).

The termsWij,t+1Wi′j′,t+1 sum to 1, and each non-zero term is contained in [ (1−γ/n)
2

n2 , (1+γ/n)
2

n2 ].

The terms Vjj′,t are each contained in [V̂ sym(n)12− 1
n
, V̂ sym(n)12 + 1

n
] (for j and j′ distinct)

and the terms Vjj,t are each contained in [V̂ sym(n)11 − 1
n
, V̂ sym(n)11 + 1

n
]. So∣∣∣∣∣Cov(ri,t+1 − θt+1, ri′,t+1 − θt+1)−

(ρ2V̂ sym(n)11,t + 1)

p2n
− (p2n− 1)(ρ2V̂ sym(n)12,t + 1)

p2n

∣∣∣∣∣
≤ ρ2

n
+O(

1

n2
),

where the terms of order 1
n2 come from variation in weights and variation in the network.

The term
(ρ2V̂ sym(n)11,t + 1)

p2n
+

(p2n− 1)(ρ2V̂ sym(n)12,t + 1)

pn

is the covariance of two distinct social signals in Gsym
n .

Similarly∣∣∣∣∣Var(ri,t+1 − θt+1, ri′,t+1 − θt+1)−
(ρ2V̂ sym(n)11,t + 1)

pn
− (pn− 1)(ρ2V̂ sym(n)12,t + 1)

pn

∣∣∣∣∣
≤ ρ2

n
+O(

1

n2
).

The term
(ρ2V̂ sym(n)11,t + 1)

pn
+

(pn− 1)(ρ2V̂ sym(n)12,t + 1)

pn
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is the covariance of two distinct social signals in Gsym
n .

We compute from these inequalities that the variances Vii,t+1 and covariances Vii′,t+1 of

actions are within 1
n

of V̂ sym(n)11 and V̂ sym(n)12, respectively. This shows that Φ(Vn) ⊂ Vn.

Step 5: By the Brouwer fixed point theorem, there exists an equilibrium V̂ (n) on Gn

with the desired properties. Because V ∞ > (1 + σ−2)−1, there exists ε > 0 such that the

ε-perfect aggregation benchmark is not achieved at this equilibrium for any n.

E.4. Proof of Proposition 4. For each agent i, we can write

ai,t = wsi si,t +
∑
j

Wijρaj,t−1 = wsi si,t +
∑
j

Wij(ρw
s
jsj,t +

∑
j′

Wjj′ρaj′,t−2).

Because we assume wsi < w < 1 andwsj < w < 1 for all j, the total weight
∑

j,j′WijWjj′ρ

on terms aj′,t−2 is bounded away from zero. Because the error variance of each of these

terms is greater than 1, this implies agent i fails to achieve perfect aggregation.

E.5. Proof of Proposition 5. We prove the following statement, which includes the

proposition as special cases.

Proposition 7. Suppose the network G is strongly connected. Consider weights W and

ws and suppose they are all positive, with an associated steady state Vt. Suppose either

(1) there is an agent i whose weights are a Bayesian best response to Vt, and some agent

observes that agent and at least one other neighbor; or

(2) there is an agent whose weights are a naive best response to Vt, and who observes

multiple neighbors.

Then the steady state Vt is Pareto-dominated by another steady state.

We provide the proof in the case m = 1 to simplify notation. The argument carries

through with arbitrary finite memory.

Case (1): Consider an agent l who places positive weight on a rational agent k and

positive weight on at least one other agent. Define weights W by W ij = Wij and wsi = wsi
for all i 6= k, W kj = (1 − ε)Wkj for all j ≤ n, and wsk = (1 − ε)wsk + ε, where Wij and

wsi are the weights at the initial steady state. In words, agent k places weight (1 − ε) on

her equilibrium strategy and extra weight ε on her private signal. All other players use the

same weights as at the steady state.

Suppose we are at the initial steady state until time t, but in period t and all subsequent

periods agents instead use weights W . These weights give an alternate updating function

Φ on the space of covariance matrices. Because the weights W are positive and fixed,
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all coordinates of Φ are increasing, linear functions of all previous period variances and

covariances. Explicitly, the diagonal terms are

[Φ(Vt)]ii = (wsi )
2σ2

i +
∑
j,j′≤n

W ijW ij′Vjj′,t

and the off-diagonal terms are

[Φ(Vt)]ii′ =
∑
j,j′≤n

W ijW i′j′Vjj,t′ .

So it is sufficient to show the variances Φ
h
(Vt) after applying Φ for h periods Pareto

dominate the variances in Vt for some h.

In period t, the change in weights decreases the covariance Vjk,t of k and some other

agent j, who l also observes, by f(ε) of order Θ(ε). By the envelope theorem, the change in

weights only increases the variance Vkk by O(ε2). Taking ε sufficiently small, we can ignore

O(ε2) terms.

There exists a constant δ > 0 such that all initial weights on observed neighbors are at

least δ. Then each coordinate [Φ(V )]ii is linear with coefficient at least δ2 on each variance

or covariance of agents observed by i.

Because agent l observes k and another agent, agent l’s variance will decrease below its

equilibrium level by at least δ2f(ε) in period t + 1. Because Φ is increasing in all entries

and we are only decreasing covariances, agent l’s variance will also decrease below its initial

level by at least δ2f(ε) in all periods t′ > t+ 1.

Because the network is strongly connected and finite, the network has a diameter. After

d + 1 periods, the variances of all agents have decreased by at least δ2d+2f(ε) from their

initial levels. This gives a Pareto improvement.

Case (2): Consider a naive agent k who observes at least two neighbors. We can write

agent k’s period t action as

ak,t = wsksi,t +
∑
j∈Ni

Wkjρaj,t−1.

Define new weights W as in the proof of case (1). Because agent k is naive and the sum-

mation
∑

j∈NiWkjρaj,t−1 has at least two terms, she believes the variance of this summation

is smaller than its true value. So marginally increasing the weight on sk,t and decreasing

the weight on this summation decreases her action variance. This deviation also decreases

her covariance with any other agent. The remainder of the proof proceeds as in case (1).
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Appendix F. Naive Agents (online appendix)

In this section we provide rigorous detail for the analysis given in 5.1. We will describe

outcomes with two signal types, σ2
A and σ2

B.46 We use the same random network model

as in Section 4.3 and assume each network type contains equal shares of agents with each

signal type.

We can define variances

(F.1) V ∞A =
ρ2κ2t + 1 + σ−2A(

1 + σ−2A
)2 , V ∞B =

ρ2κ2t + 1 + σ−2B(
1 + σ−2B

)2
where

κ−2t = 1− 1

(σ−2A + σ−2B )

(
σ−2A

1 + σ−2A
+

σ−2B
1 + σ−2B

)
.

Naive agents’ equilibrium variances converge to these values.

Proposition 8. Under the assumptions in this subsection:

(1) There is a unique equilibrium on Gn.

(2) Given any δ > 0, asymptotically almost surely all agents’ equilibrium variances are

within δ of V ∞A and V ∞B .

(3) There exists ε > 0 such that asymptotically almost surely the ε-perfect aggregation

benchmark is not achieved, and when σ2
A = σ2

B asymptotically almost surely all agents’

variances are larger than V ∞.

Aggregating information well requires a sophisticated response to the correlations in

observed actions. Because naive agents completely ignore these correlations, their learn-

ing outcomes are poor. In particular their variances are larger than at the equilibria we

discussed in the Bayesian case, even when that equilibrium is inefficient (σ2
A = σ2

B).

When signal qualities are homogeneous (σ2
A = σ2

B), we obtain the same limit on any

network with enough observations. That is, on any sequence (Gn)∞n=1 of (deterministic)

networks with the minimum degree diverging to ∞ and any sequence of equilibria, the

equilibrium action variances of all agents converge to V ∞A .

F.1. Proof of Proposition 8. We first check that there is a unique naive equilibrium.

As in the Bayesian case, covariances are updated according to equations ??:

Vii,t = (wsi,t)
2σ2

i +
∑

Wik,tWik′,t(ρ
2Vkk′,t−1 + 1) and Vij,t =

∑
Wik,tWi′k′,t(ρ

2Vkk′,t−1 + 1).

46The general case, with many signal types, is similar.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 65

The weights Wik,t and wsi,t are now all positive constants that do not depend on Vt−1.

So differentiating this formula, we find that all partial derivatives are bounded above by

1− wsi,t < 1. So the updating map (which we call Φnaive) is a contraction in the sup norm

on V . In particular, there is at most one equilibrium.

The remainder of the proof characterizes the variances of agents at this equilibrium. We

first construct a candidate equilibrium with variances converging to V ∞A and V ∞B , and then

we show that for n sufficiently large, there exists an equilibrium nearby in V .

To construct the candidate equilibrium, suppose that each agent observes the same num-

ber of neighbors of each signal type. Then there exists an equilibrium V̂ sym where covari-

ances depend only on signal types, i.e., V̂ sym is invariant under permutations of indices

that do not change signal types. We now show variances of the two signal types at this

equilibrium converge to V ∞A and V ∞B .

To estimate θt−1, a naive agent combines observed actions from the previous period with

weight proportional to their precisions σ−2A or σ−2B . The naive agent incorrectly believes

this gives an almost perfect estimate of θt−1. So the weight on older observations vanishes

as n → ∞. The naive agent then combines this estimate of θt−1 with her private signal,

with weights converging to the weights she uses if the estimate is perfect.

Agent i observes |Ni|
2

neighbors of each signal type, so her estimate rnaivei,t of θt−1 is

approximately:

rnaivei,t =
2

|Ni|(σ−2A + σ−2B )

σ−2A ∑
j∈Ni,σ2

j=σ
2
A

aj,t−1 + σ−2B
∑

j∈Ni,σ2
j=σ

2
B

aj,t−1

 .
The actual variance of this estimate converges to:

(F.2) Var(rnaivei,t − θt−1) =
1

(σ−2A + σ−2B )

[
σ−4A Cov∞AA + σ−4B Cov∞BB + 2σ−2A σ−2B Cov∞AB

]
where Cov∞AA is the covariance of two distinct agents of signal type A and Cov∞BB and

Cov∞AB are defined similarly.

Since agents believe this variance is close to 1, the action of any agent with signal variance

σ2
A is approximately:

ai,t =
rnaivei,t + σ−2A si,t

1 + σ−2A
.
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We can then compute the limits of the covariances of two distinct agents of various signal

types to be:

Cov∞AA =
ρ2κ2t + 1(
1 + σ−2A

)2 ; Cov∞BB =
ρ2κ2t + 1(
1 + σ−2B

)2 ; Cov∞AB =
ρ2κ2t + 1(

1 + σ−2A
) (

1 + σ−2B
) .

Plugging into F.2 we obtain

κ−2t = 1− 1

(σ−2A + σ−2B )

(
σ−2A

1 + σ−2A
+

σ−2B
1 + σ−2B

)
.

Using this formula, we can check that the limits of agent variances in V̂ sym match

equations F.1.

We must check there is an equilibrium near V̂ sym with high probability. Let ζ = 1/n.

Let E be the event that for each agent i, the number of agents observed by i with private

signal variance σ2
A is within a factor of [1− ζ2, 1 + ζ2] of its expected value, and similarly

the number of agents observed by i with private signal variance σ2
B is within a factor of

[1 − ζ2, 1 + ζ2] of its expected value. This event implies that each agent observes a linear

number of neighbors and observes approximately the same number of agents with each

signal quality. We can show as in the proof of Theorem 1 that for n sufficiently large, the

event E occurs with probability at least 1− ζ. We condition on E for the remainder of the

proof.

Let Vε be the ε-ball around in V̂ sym the sup norm. We claim that for n sufficiently large,

the updating map preserves this ball: Φnaive(Vε) ⊂ Vε. We have Φnaive(V̂ sym) = V̂ sym up

to terms of O(1/n). As we showed in the first paragraph of this proof, the partial derivatives

of Φnaive are bounded above by a constant less than one. For n large enough, these facts

imply Φnaive(Vε) ⊂ Vε. We conclude there is an equilibrium in Vε by the Brouwer fixed

point theorem.

Finally, we compare the equilibrium variances to perfect aggregation and to V ∞. It is

easy to see these variances are worse than the perfect aggregation benchmark, and therefore

by Theorem 1 also asymptotically worse than the Bayesian case when σ2
A 6= σ2

B.

In the case σ2
A = σ2

B, it is sufficient to show that Bayesian agents place more weight on

their private signals (since asymptotically action error comes from past changes in the state

and not signal errors). Call the private signal variance σ2. For Bayesian agents, we showed

in Theorem 1 that the weight on the private signal is equal to σ−2

σ−2+(ρ2Cov∞+1)−1 where Cov∞

solves

Cov∞ =
(ρ2Cov∞ + 1)−1

[σ−2 + (ρ2Cov∞ + 1)−1]2
.
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For naive agents, the weight on the private signal is equal to σ−2

σ−2+1
, which is smaller since

Cov∞ > 0.

Appendix G. Socially optimal learning outcomes with non-diverse signals

(online appendix)

In this section, we show that a social planner can achieve asymptotically perfect aggrega-

tion even when signals are non-diverse. Thus, the failure to achieve perfect aggregation at

equilibrium with non-diverse signals is a consequence of individual incentives rather than

a necessary feature of the environment.

Let Gn be the complete network with n agents. Suppose that σ2
i = σ2 for all i and

m = 1.

Proposition 9. Let ε > 0. Under the assumptions in this section, for n sufficiently large

there exist weights weights W and ws such that at the corresponding steady state on Gn,

the ε-perfect aggregation benchmark is achieved.

Proof. An agent with a social signal equal to θt−1 would place weight σ−2

σ−2+1
on her private

signal and weight 1
σ−2+1

on her social signal. Let wsA = σ−2

σ−2+1
+ δ and wsB = σ−2

σ−2+1
− δ,

where we will take δ > 0 to be small.

Assume that the first bn/2c agents place weight wsA on their private signals and weight

1−wsA on a common social signal rt we will define, while the remaining agents place weight

wsB on their private signals and weight 1 − wsB on the social signal rt. As in the proof of

Theorem 2,

1

bn/2c

bn/2c∑
j=1

aj,t−1 = wsAθt−1 + (1− wsA)rt−1 +O(n−1/2),

1

dn/2e

n∑
j=bn/2c+1

aj,t−1 = wsBθt−1 + (1− wsB)rt−1 +O(n−1/2).

There is a linear combination of these summations equal to θt−1 + O(n−1/2), and we can

take rt equal to this linear combination. Taking δ sufficiently small and then n sufficiently

large, we find that ε-perfect aggregation is achieved. �

In Figure G.1, we conduct the same exercise as in Figure 4.1 with n = 600. The difference

is that we now also add the prediction variance of group A when a social planner minimizes

the total prediction variance (of both groups). The weights that each agent puts on her

own private signal and the other agents are set to depend only on the groups. Under these



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 68

Figure G.1. Social Planner and Bayesian Learning
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socially optimal weights agents learn very well, and heterogeneity in signal variances only

has a small impact.


