
Estimation of Learning, Adoption and Diffusion
over a Network

Nir Hak∗

December 23, 2019

Click here for latest version.

Abstract

Firms often decide whether to adopt an innovation of uncertain value in markets
where the outcomes of earlier adopters are observed. This paper introduces a flexible
Bayesian model suitable for the analysis of social learning, competition, and diffusion
in such environments. Agents in the model have (potentially misspecified) theories of
how others’ profits relate to their own, and use these to make their adoption decisions.
When adopting, agents steal business from and inform others. I estimate the model
exploiting a unique reform in Illinois that legalized slot machines, and empirically study
how information and adoption diffuse through a network. This setting is well-suited
for such analysis, since gambling data are publicly available, adoption is a discrete
action, and the set of potential adopters (liquor license holders) is defined by law. I
find that establishments that observe more adoption or higher neighbors’ profits are
more likely to adopt themselves, yet learning could improve since they do not use
all the relevant information. Establishments have diffuse priors and they learn from
more neighbors than they compete with. The direction and extent to which learning
affects adoption are ex-ante ambiguous. In two counterfactual exercises I show that
increasing information availability or learning substantially increases both adoption
and total profits in the market.
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1 Introduction

Firms often have to make a decision whether to invest in a new product or technology. This
investment could be in the adoption of a new product to sell, or in research and develop-
ment. Firm typically have some uncertainty about the future outcome of such investment,
and would prefer investments that yield higher profits with greater certainty. These deci-
sions are not made in a vacuum—in many cases there are similar firms in the market that
have already made similar decisions. Therefore, past investment decisions made by some
firms could provide information to other firms. The information spillovers could affect their
future decisions. A change in learning behavior would then affect the diffusion patterns of
investment or adoption of the new product or technology. Adoption and diffusion of new
technology have been extensively documented and studied back to at least Griliches (1957);
the same is true of the effects of social learning on the actions taken by individuals or firms
(Foster and Rosenzweig, 1995; Conley and Udry, 2010; Kellogg, 2011). While extensively
studied in theoretical literature (e.g. by Board and Meyer-ter Vehn (2018); Sadler (2019)),
there is limited empirical research on how social learning affects adoption and the its impact
on market outcomes.

The extent to which agents learn depends on two factors: the availability of information,
and the agents’ interpretation of the available information. Learning occurs when firms
believe that their potential profits are correlated with the profits of other firms. Therefore,
when firms have informative observations of other firms’ profits, they update their beliefs
about own potential profits. The updating process is based on the firm’s perceptions about
this correlation in profits. This need not reflect the true correlation of profits. Modeling
the possibility of misspecified beliefs is key to understanding firms’ learning behavior, which
subsequently affects their observed decisions.

This paper develops a model in which agents (firms) in a competitive market socially
learn about the profitability of a new product and decide whether to adopt the product. An
agent that adopts both competes with and informs others. To distinguish between the two
effects I use the fact that realized profits are only affected by competition and not by learning.
When deciding whether to adopt, agents are risk averse and fully Bayesian, and believe that
their profits are spatially correlated with the profits of neighboring agents. The model allows
the agents’ priors to be misspecified—their beliefs about profits’ spatial covariance could be
different from the true spatial covariance. I use this property to distinguish between agents’
perceptions and the truth, which is in turn used to quantify learning and its effects on
decisions. Agents in the model, that have not yet adopted, observe the profits of agents that
have already done so and dynamically form posteriors on their own potential profits. Given
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these beliefs and local competition, agents then decide whether to adopt. To the best of my
knowledge, this is a first attempt to estimate the perceptions that explain the behavior of
Bayesian firms using real-world market data.

I estimate this model with data from the slot machine industry in the state of Illinois.
According to the available data, establishments slowly adopt slot machines over a few years.
There are several properties that make this setting ideal for such an analysis. First, the set of
potential adopters is defined by state law: only liquor license holders can install slot machines
in their establishments. Secondly, the adoption decision is clearly defined, as adoption of
slot machines requires an application to be approved by the Illinois Gaming Board (IGB).
Finally, state regulation requires that adoption decisions and monthly gambling profits be
publicly disclosed. Therefore, all market participants starting from the inception of this
market are observed. Most importantly, the public information allows the agents in the
model to observe others’ profits, since the data can be accessed freely on the IGB’s website.
This is a rare environment where data about small retail businesses is available, shedding
light on the decisions owners make and how they affect profits of other market participants.
However, this type of learning is not limited to either small firms or profit observation; firms
of any size could potentially learn from any outcome that is correlated with profits.1

I model agents’ beliefs about profits as determine by information from and competition
with others. To separate the effects estimation is carried broken into steps. In the first step,
I estimate the competition levels, that is, what an establishment should expect in the way of
business stealing when neighbors of different distances and types decide to adopt. I exploit
the variation in the number of neighbors of an establishments that adopt and their distances
to estimate how profits change with increased competition. This part of the estimation relies
on the feature of the environment that establishment owners do not directly engage in price-
setting behavior. I find that business stealing exists in the market and significantly affects
establishments’ profits. Moreover, the business stealing between establishments of the same
type (e.g., two bars) is three times as large as between establishments of different types (e.g.,
a bar and a restaurant).

A selection problem arises when estimating the rest of the model. I observe only the prof-
its of agents that decided to adopt, and the adoption decision depends on their beliefs when
they choose to adopt. The beliefs are unobserved to the econometrician. In the second step
of the estimation, I use variation in establishments’ characteristics, and a mild assumption
on the individuals’ initial (time-zero) beliefs, to identify profit-relevant parameters. To pin
down these parameters, I develop a new method that corrects for the selection problem us-

1Outcomes could include: sales, revenues, customers traffic, etc. For example, auto manufacturers that
try to decide if the invest in electric engines, observing sales of competitors of different similarity.
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ing a fixed-point algorithm. This algorithm imposes consistency of agents’ beliefs with their
adoption behavior. The final step is done using maximum likelihood estimation, maximizing
the probability of observing the adoption patterns observed in the data. Steps 2 and 3 are
intertwined: the fixed point in step 2 pins down the profit parameters given agents’ prior
beliefs, while step 3 pins down the parameters that define the agents’ priors.

Using the results of the model, I analyze two counterfactual environments. In the first
exercise, agents cannot learn from one another, simulating a baseline case of no information.
In many markets firms are not obligated to reveal their profit data, which makes learning
from others a harder task. This exercise demonstrates the learning effects on adoption and
profits we can expect from policies that require firms to report profits or other outcome data.
In the second counterfactual exercise, I examine how adoption and total profits would change
if agents knew the true correlations between their profits and those of other firms. Compared
to an environment without learning, this is the change that would expected if agents in a
market are more sophisticated, or if the product is similar to existing products sold in the
market and agents have better information about the correlations. In an environment in
which agents are not sophisticated, this counterfactual measures the potential benefits from
an intervention that informs the agents (such as newsletters or workshops that make profits
in the area and their meaning more salient).

I find that the maximum distance at which firms compete with one another (the com-
petition radius) is much smaller than their learning radius. Although firms compete only
with firms in a radius of about 0.7 miles, they learn from neighbors much further away, in
a radius of up to about 2 miles away. At the same time, the actual spatial correlation of
firms’ profits completely decays after about 13 miles. This means that agents ignore a lot of
the available information and that learning could be improved. I also check how well agents’
expected profits (in the period in which they choose to adopt) predict their realized profits.
I find that, on average, agents are not far from being correct: for every extra dollar agents
expect to earn, their realized profits are on average higher by about 85 cents.

Given the point estimates, I simulated two counterfactual environments. When agents
do not observe their neighbors, and therefore cannot learn, the total adoption over the
period of analysis drops by about 4.6%, while total market profits are expected to drop
by 3.4%. The yearly net revenue of the slot machine market in Illinois is greater than $1
billion, which means that tens of millions of dollars of yearly revenue could be attributed
to the government’s decision to make the data publicly available. In the second simulation
exercise, I checked how diffusion and profit patterns would change if agents’ priors were
correctly specified. If agents perfectly interpreted the information they observe about their
neighbors’ profits, total adoption would increase by about 3.1% compared to their baseline
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behavior, and total profits would increase by 3.6%.

Prior to estimating the model, I use features of the data to examine the adoption patterns.
I showed that establishments that observe more adoption in their surrounding area or higher
neighbors’ profits are more likely to adopt themselves. Although these correlative findings are
consistent with learning, they are also consistent with other stories. For example, adoption
pattern is due to installation cost shock that leads to higher adoption in the area. To
rule out this story and other alternative explanations that are consistent with heterogeneity
in individual preferences and shocks that are spatially correlated, I also employ a semi-
parametric method from Pakes and Porter (2016). I used this method to identify a lower
bound on the level of learning using moment inequalities.

I model the decisions of the establishments as a simple binomial choice and use a simple
revealed preferences idea: if agent i decides to adopt in some period t after not adopting
in periods s < t, i’s valuation of the choice “adopt” had to experience a more positive
change than the choice “not adopt.” The method’s advantages in this setting stem from the
richness of the unobserved heterogeneity that it allows. Namely, it allows for individual-
choice fixed effects as well as serially correlated shocks and separately spatially correlated
shocks to agents’ utilities. The estimation results are that observing neighbors’ adoption or
higher profits serve as signals that affect adoption probability in the same way. In particular,
comparing the period of adoption to earlier periods, observing extra neighbors’ adoption has
an effect equivalent to observing at least $2,700 in higher neighbors’ yearly profits.

The structural model in this paper builds on ideas from the theoretical social learning
and diffusion literatures. The social learning literature, an overview of which is in Golub
and Sadler (2017), goes back to seminal papers of Bikhchandani et al. (1992); Banerjee
(1992); Acemoglu et al. (2011); Bala and Goyal (1998); DeGroot (1974). This model set the
foundations for many future learning models in which agents that are arranged in a network
learn from one another. DeMarzo et al. (2003) and Molavi et al. (2018), for example, model
agents that observe one signal at time t = 0 and learn about a fixed state of the world.2 As
in Harel et al. (2017), my model has agents that observe signals in every period and learn
about a fixed state of the world. In all of the mentioned papers the state of the world is
a scalar, while in my case the state is a vector (of everyone’s profits) and each agent cares
about one component of the vector (her own profit). The diffusion literature goes back to
Bass (1969) and Bailey (1975), in which agents spontaneously adopt based on the fraction
of adopters. Pastor-Satorras and Vespignani (2001) added a basic network structure that
affects the probability of adoption. Conceptually, my paper is related to the environments in

2Frongillo et al. (2011) and Dasaratha et al. (2019) study agents that learn about a changing state of the
world and observe a signal in every period.
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Sadler (2019) and Board and Meyer-ter Vehn (2018) which analyze Bayesian agents that learn
about the value of adoption from their neighbors and decide whether to adopt themselves.

Early papers on the diffusion of innovation took a reduced-form perspective. In Griliches
(1957) and Coleman et al. (1966), diffusion of products is observed and the extent of it is
estimated, while in Banerjee et al. (2013) a mechanical diffusion model is estimated using
micro-level network data. The work by Bailey et al. (2019) and Kim et al. (2015) investigated
how consumers’ product adoption spreads, while Foster and Rosenzweig (1995) and Conley
and Udry (2010) established that farmers learn from their neighbors. The estimation in this
paper microfounds the learning process of the agents which influences their decisions, which
in turn explains the diffusion process.

In the industrial organization literature, papers like Benkard (2000) and Doraszelski et al.
(2018) structurally estimate how firms learn from own information and experience, though
not from others. A paper that microfounds a diffusion process is Holmes (2011), which
analyzes the diffusion of Walmart branches around the US. While both Holmes (2011) and
my paper analyze the spatial introduction of a new store or type of product to the market,
the mechanisms are very different. In my paper there are many separate one-time decisions
made by individuals, while in his paper there is an underlying multi-period single-agent
optimization problem.

Learning from others is examined in recent literature that investigates the decisions
made by oil extraction firms. Methodologically the papers by Covert (2015) and Hodgson
(2018) are closest to mine as they also use a Gaussian process to model a firm’s beliefs
about spatial correlation.3 Both of those papers assume firms have perfect knowledge of the
spatial correlation of oil reservoirs in the ground and perfectly learn from observing drilling
outcomes. Covert (2015) uses the spatial correlation in the data as a Bayesian prior. Later,
to rationalize his observations, he studies a heuristic model of agents who overweight their
own signals. In this paper, I study a structural model with incorrect beliefs about correlation.
I estimate the beliefs that Bayesian agents have that best explain their observed behavior.
More fundamentally, the market and the questions in this paper are very different: this
paper contributes to the understanding of the underlying processes and factors that affect
adoption and diffusion of a technology or a product in a competitive market.

Outline. Section 2 describes the setting and the data. Section 3 provides descriptive
evidence of spatial learning using non- and semi-parametric methods. Section 4 introduces
the core empirical model of the paper. Section 5 discusses the identification and estimation

3In these two papers the outcomes from oil drilling or fracking in some spot is similar independent of the
firm that chooses to do so, while in my paper the outcomes from adoption is unique for the establishments.
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procedures. Section 6 presents and discusses the estimation results. In section 7, I simulate
counterfactual environments. Section 8 discusses work in progress and future extensions.
Finally, section 9 concludes.

2 Application: Slot Machines in Illinois

For many decades Nevada was the sole state allowing casino-like gambling. The opening of
the first casino in 1978 in Atlantic City marked the beginning of a rapid expansion of the
gambling industry in the US. In 2016, with 41 states that have casino-like gambling and
more than $70 billion in yearly revenues,4 gambling has become a major industry.

Casino gambling in Illinois started in September 1991, and there are 10 operating casinos
in the state to date.5 This industry has been a steady source of tax revenue to both the
state and the municipalities, with more than $400 million of yearly tax revenue since 1999.
In order to increase tax revenue, in July 2009 the state of Illinois enacted the Video Gaming
Act that allows the installation of up to five video gaming terminals (slot machines) in retail
establishments with pouring liquor licenses, veteran and fraternal establishments and Truck
Stops. After lengthy legal and political battles, slot machines went live in September 2012.
By the end of 2016 there were 24,840 active machines in 5,726 establishments. Slot machine
gaming produced more than $1.1 billion of revenue in 2016, of which $330 million in tax
payments went to the state and the local municipalities.6

An establishment owner that wishes to install slot machines is required to apply for a
license with the IGB. The approval process takes usually one to two months, after which slot
machines can be installed in the establishment by a terminal operator. Licensed by the IGB,
a terminal operator is an entity that owns, installs, operates, and maintains slot machines
in the establishments. By law, the post-tax revenue from the operation of the machines is
split equally between the establishment’s owner and the terminal operator.

Slot machine design has to comply with regulations defined in the Video Gaming Act.
Slot machines provide low-stakes betting, with a maximum wager of $2 and a maximum
jackpot of $500; lotteries also have to be i.i.d. with a minimum expected payout of 80% (i.e.,
the expected loss on a one-dollar bet is at most twenty cents). Moreover, all slot machines
have to be connected to a centralized communication system at the IGB. The information

4This is based on the American Gaming Association’s “State of the states” survey of the casino industry.
These revenues include commercial and tribal casinos and video lottery terminals such as the ones described
in this paper.

5Based on the IGB’s 2018 annual report.
6States received 25% of total revenue in the form of taxes, while municipalities received 5%. Some

municipalities also imposed application fees.
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from the slot machines is automatically aggregated at the business level and advertised
monthly on the IGB’s website.

The slot machine market in Illinois holds several advantages for analyzing the adoption
of a product in a new market. First, the set of potential adopters is well defined: only
businesses that are allowed to install slot machines are those that hold a pouring liquor
license.7 Secondly, adoption is well defined: an establishment that applies for slot machines
with the IGB is defined as an adopter. Moreover, the adoption decision is the only decision
made by the establishment owner; after the adoption there are no pricing decisions made by
the owners, and the operation of the machines is handled by the terminal operator. Finally,
by regulation all of the data are released on a monthly basis and are publicly available for
download, in the same website which establishment owners visit in order to apply for slot
machine licenses.

Establishment owners may take into account factors other than gambling profits when
deciding whether to adopt. A direct effect of installing slot machines is that they take up
space which was used to make profits in some other way, most likely replacing tables or seats.
Adoption could also have indirect effects: it could attract additional customers that wish to
gamble, or keep customers for longer, which could lead to an increase in non-gambling profits.
At the same time, customers who are deterred by gambling could be pushed away. Direct
fixed costs are not a concern for owners, as the installation is at the expense of the terminal
operator. However, in many cases establishment owners have some fixed costs, which could
be due to improvements that they need or choose to make (such as an electricity upgrade or
renovations).

2.1 Data and Descriptive Statistics

The analysis relies on data from three sources. The first is a panel dataset from the Illinois
Department of Revenue containing a panel of liquor licenses in Illinois from 2008 to 2017,
which defines the set of potential adopters. The dataset includes license numbers, addresses,
effective and expiration dates, and the type of license (on- or off-premises consumption). The
second source is Google Maps, a web-based map service that includes detailed information on
businesses from which I gathered establishment characteristics. The third and main source
is the IGB, from which I acquired multiple datasets:

• A panel dataset that contains monthly total gambling wagers and profits for all es-
tablishments that have ever adopted slot machines. The dataset is for the period

7As mentioned earlier, veteran and fraternal establishments as well as truck stops are also allowed to
install slot machines. In practice, many veteran establishments have liquor licenses and are included in the
analysis anyway, and the number of truck stops in the data is small.
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Mean Median S.D.
Bar profits $4,515 $3,873 $3,039

Others’ profits $3,783 $3,388 $2,796
Establishments per municipality 11 4 19

Neighbors (3 miles) 45 32 42

Table 1: Summary Statistics
Summary statistics of the distribution of gambling profits of the establishments, split into
bar-like types (bars, bar & grills, veterans establishments) and all other types (mostly
restaurants). Neighbors are defined as nodes within a 3-miles radius of another node as
used in section 3.

September 2012 through March 2017.

• A dataset that matches all liquor license numbers with gambling license numbers.

• A dataset that has application review dates for all applicants and the first day the
machines went live.

• A dataset that has the municipalities that initially opted out (prohibited gambling),
and if and when they opted in later.

Table 1 provides general summary statistics. Below are additional relevant institutional
details and stylized facts:

Potential adopters and adoption. The set of potential adopters is defined based on the
liquor-license dataset combined with the information on which municipalities opted out of
the new regulation. The initial set of potential adopters includes only businesses that had
on-premises consumption liquor licenses in September 2012, the month when machines were
first allowed to be installed. The restriction on license type is due to the regulation allowing
installation only in businesses with an on-premises consumption license. The restriction on
the existence of a license in September 2012 is to keep the dataset homogeneous, as many
other retail businesses (gas stations, laundromats, etc.) acquired a pouring liquor license for
the express purpose of installing slot machines. The set of potential adopters in each period
(month) was additionally restricted to account for municipalities opting in after the initial
period, and for businesses that were shut down (those whose liquor license was not renewed)
in later periods. In total there are 9,757 establishments in the dataset, of which 1,527 are in
municipalities that initially prohibited slot machines but allowed them in later periods.

The adoption period of each establishment is defined by the month in which its applica-
tion was reviewed by the board. This period is generally different from the first period of
operation, as it usually takes one to two months from application review to first activation
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day. In the dataset a total of 4,286 establishments adopted within the time frame of the
analysis. Figure 2.1 shows the pattern of adoption over time. About 75% of bar-like estab-
lishments adopted over the analysis period, while only 35% of the other businesses (mostly
restaurants) adopted within that time frame.

Characteristics. The establishments in the data have different characteristics that are
gathered from Google Maps. For each business, I gathered information about the price level
of food and alcohol in the establishment8, the number of reviews left on Google Maps by
customers, and the average consumer rating of the business (“stars”). See figure 2.3 for
details. For some of the businesses, some or all of the details are missing. I also observe the
Census municipality level population data.

In addition to the aforementioned characteristics, I gathered data on each establishment’s
type, which is the definition of the business. There are 415 establishment types in the data
(bar, restaurant, etc.), 1168 of which had no reported type. In the estimation, I used a total
of ten types. The first eight types are the most prevalent (“biggest”) types in the data. The
remaining types represent the businesses that do not have type information in Google Maps,
and the final type aggregates all the businesses of all other types. Therefore, each type’s
prevalence, average profits, and adoption rates presented in figure 2.2.

Theoretical and realized odds. By law, the expected value of each lottery has to be
at least 0.8 of the wager and lotteries have to be i.i.d. In practice, the vast majority of
businesses are far from this bound and, on average, the realized odds are about 0.92.

3 Reduced Form and Moment Inequalities

Learning occurs when agents observe other establishments and believe that their own out-
comes are correlated with those of others. Therefore, observing higher than expected profits
of others some nodes may choose to adopt. At the same time, adoption itself by others could
be a positive signal about the profitability of slot machines in that area, the reaction that
patrons have for slot machines9, how installation changes the characteristics of the typical
customer, etc.

The main contribution of this section is in establishing that there are patterns consistent
with learning, and rule out few alternative explanations to learning. First, I show that the

8Represented by number of dollar signs. Cheap bars usually receive one dollar sign (“$”); high-end
restaurants usually recieve three or four ($$$).

9In the model introduced in section 4 I assume that learning is only about gambling profits. In practice
learning could be about different dimensions.

9



Figure 2.1: Potential Adoption and Adopters over Time
Vertical axis: number of businesses; horizontal axis: is the period. Orange: number of

businesses that could adopt (potential set) over time as a result of municipalities opting in
later. Blue: number of adopters up to and including the period.

Figure 2.2: Statistics by Type
Left panel: frequency of establishments type. Middle panel: proportion of adopters of each

type. Right panel: average profits of each type. The graphs are the 9 largest types.

10



Figure 2.3: Google Maps Data
This figure represents the data gathered from Google Maps. Red squares: information
used, which includes (in this example) the business type (“sports bar”), price level (“$$”),
number of reviews (296), and business rating (4.4). The coordinates of the business were
also extracted.

future adoption probability of nodes increases with both more adoption of neighbors and
with higher neighbors’ profits. I then turn to a semi-parametric estimation method of a
simple binomial-choice model that is linear in observables. The estimation method is due
to Pakes and Porter (2016) and relies on revealed preferences to identify the parameters.
The method allows the errors to be serially and spatially correlated and allows for individual
fixed effects.

3.1 Descriptive Evidence

This subsection provides descriptive evidence of information spillovers. Let i be a node,
and let Ni be the set of nodes (or establishments) that lie within a 3-mile radius of i.10 To
check for information spillovers, I check whether i’s probability of adoption changes with
the number of i’s neighbors that active in a period Ai,t ⊆ Ni. I also show how the adoption
probability changes when the average profits in i’s neighborhood change over time. To do
so, I run the following simple regression:

ai,t+1 = β0∆0,1Ai + β1∆1,2Ai + β2∆2,3Ai + β3|Ai,t−3|︸ ︷︷ ︸
Neighbors’ adoption in recent periods

+ α0∆0,1πi + α1∆1,2πi + α2πi,t−2︸ ︷︷ ︸
Neighbors’ profits in recent periods

+ γNi︸︷︷︸
# Neighbors

+ εi,t,

10The exercise was repeated with different radii and yielded similar results.
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where ai,t+1 is a binary variable that takes the value 1 if i adopted in period t + 1 and
0 otherwise,11 ∆s,s+1Ai and ∆s,s+1πi represent respectively the changes in the number of
active neighbors of i between periods s and s + 1, and πi,t represents the average profits of
i’s neighbors in period t (in thousands of dollars).

As presented in table 2, observing more active neighbors that adopted in a recent periods
is correlated with a higher probability of adoption. Column (1) suggests that the effect is
substantial, with a baseline adoption probability of about 3%; observing any neighbor that
adopted within the three previous periods increases the adoption probability by more than
20% (compared to the baseline). Observing higher average neighbors’ profits in a period is
also correlated with increased probability of adoption, though the magnitudes are smaller.
The effect of changes in profits is small and disappears when period fixed effects are added
(column (2)).

The regression results coincide with a story of information spillovers and resulting learn-
ing. Nevertheless, they do not rule out many alternative explanations, such as period cost
shocks that induce higher adoption in some areas. In the next subsection I introduce a
simple reduced form choice model and use a flexible method that puts minimal restrictions
on the distribution of the errors in order to eliminate alternative stories.

3.2 Binomial-Choice Model

Let i be a node, with τi denoting the period in which i adopted slot machines. For every
period t ≤ τi, each node had to make a decision whether to adopt or not; let d ∈ {0, 1}
represent this decision, where 0 represents not adopting and 1 represents adopting. Since
less than 1% of businesses removed slot machines after adoption, it is assumed that a node
that adopts stays in forever. I check whether the number of neighbors of i that are active,
denoted |A`i,t|, and their average profits, π`i,t, had an effect on i’s adoption decision.

Let Vd,i,t denote i’s perceived or expected value from choice d at period t. I assume first
that i has additively separable preferences that take the form

Vd,i,t = d ·
[
β|A`i,t−1|+ απ`i,t−1

]
+ λd,i + εd,i,t.

The variable λd,i is a fixed effect for each decision by individual i. It is important to note
that the fixed effects are unrestricted so they could be spatially correlated.

The term εd,i,t represents a decision and period shock, observed by i but not by the econo-
metrician. The only distributional assumption is that εi,τi−k|xi,τi−k, xi,τi ,λi ∼ εi,τi |xi,τi−k, xi,τi ,λi,

11Note that the regression panel is unbalanced, since if i adopts in period t + 1 there are exactly t + 1
observations of “group” i.
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ai,t+1

(1) (2)
∆0,1Ai 0.007∗∗∗ 0.003∗∗∗

(0.001) (0.001)
∆1,2Ai 0.007∗∗∗ 0.003∗∗∗

(0.001) (0.001)
∆2,3Ai 0.006∗∗∗ 0.002∗∗∗

(0.001) (0.001)
Ai,t−3 −0.0002∗∗∗ 0.001∗∗∗

(0.0001) (0.0001)
∆0,1πi 0.002∗∗∗ 0.001

(0.001) (0.001)
∆1,2πi 0.0003 −0.001

(0.001) (0.001)
πi,t−2 0.001∗∗ 0.001∗∗

(0.0003) (0.0003)
Ni,t −0.0001∗∗∗ −0.0003∗∗∗

(0.00003) (0.00003)
Constant 0.029∗∗∗

(0.002)
Period Fixed Effect NO YES
Observations 182,102 182,102
R2 0.010 0.022
Adjusted R2 0.010 0.022
Residual Std. Error 0.174 0.173
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Regression of Adoption on Neighborhood Statistics
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where εi,t = {ε0,i,t, ε1,i,t}, λi = {λ0,i, λ1,i}, and xi,t =
{
|A`i,t−1|, π`i,t−1

}
. That is the errors

have the same marginal distribution but can be freely serially correlated.12

Adding the assumption that agents are weakly rational is done for the purpose of imposing
the following two inequalities:

V1,i,τi ≥ V0,i,τi and V1,i,τi−k ≤ V0,i,τi−k.

That means that in the period in which i decided to adopt, her value from adoption
was greater than her value from staying out, and that in every preceding period she had a
positive value from staying out. Subtracting the inequalities yields the following inequality:

(V1,i,τi − V1,i,τi−k)− (V0,i,τi − V0,i,τi−k) ≥ 0,

where taking expectations over this inequality yields the following inequality for every period
k:

β

α

(
|A`i,τi−1| − |A`i,τi−1−k|

)
+ π`i,τi−1 − π`i,τi−1−k + ∆ε1,i −∆ε0,i ≥ 0. (3.1)

The coefficient, β
α
, puts a value on observing another neighbor that adopts. It defines an

equivalence between seeing another neighbor of i that adopts and seeing that, on average,
i’s neighbors are making higher profits.

Estimation and interpretation To run this test, I define the set of neighbors that i
could observe and learn from as nodes that lie within a 3-miles radius of i. (alternative radii
were tested and yielded similar results.) I use the inequalities in (3.1) to define moments13

for the estimation14 of β
α
.

Since there is a large number of moments, I use the two-step method of Romano et al.
(2014) that selects moments to use in calculating the bound on the parameters. The result
of the estimation is that the lower bound on the 95% confidence set of β

α
is greater than 45.3.

This result means that when an agent observes another neighbor adopting, this information
affects her probability of adoption in the same way as observing her neighbors’ average profits
increase by at least $45.3 per month. Moreover, in the period of adoption a agent has on
average 5 more neighbors than in periods she did not yet adopt. These facts mean that in
the period i decides to adopt, the signals from others’ adoption are equivalent, on average,

12For simplicity λd,i, εd,i,t are additively separable, though in practice any function of the two, f(λd,i, εd,i,t),
is allowed.

13I also use Mega Millions national-lotteries jackpots as an instrument, which doubles the number of
moments.

14The estimation details, and a robustness check with a smaller number of moments, are presented in
appendix A.
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to i observing additional $2,700 of her neighbors’ yearly profits.
The flexibility of the model can account for spatial correlation and serial correlation,

which combined withe the estimation results help to rule out some alternative explanations,
such as the following:

• Adoption shocks: The profitability in an area is known ex ante, and adoption is due
only to different cost shocks. This explanation is indeed consistent with observations
of spatial correlation in adoption, though it is not consistent with the result that there
is additional adoption due to increases in neighbors’ profits.

• Imitation without learning: Businesses imitate each other as a result of changes in
fashion (one business paints green, and then the one next door also paints green).
This is another story that is consistent with spatial correlation, though not with the
equivalence between observing higher neighbors’ profits that lead to adoption.

Though this framework is flexible, it doesn’t eliminate all alternative explanations. The
literature on statistics of networks has shown that for every pattern of adoption over a
network, there is a sequence of spatially and serially correlated shocks that would explain
this pattern of adoption (Shalizi and Thomas, 2011). Explanations that are not eliminated
include those in which shocks are spatially and serially correlated at the same time, such as
traveling agents that drive between businesses over a period of months and persuade owners
to install slot machines.

4 Structural Model

In the previous section, I established that there are patterns in the data consistent with
learning: Owners that observe more agents that adopted or a higher profitability in their
neighborhoods (as defined in Section 3) are more likely to adopt themselves. However, the
estimates given there are only descriptive and cannot be used to make counterfactual infer-
ences. Therefore, in this section I introduce a structural learning model that is used to study
the extent to which learning affects adoption, and therefore how adoption patterns would
change under different information structures or different learning behaviors. I now model
the data generating process explicitly and use the estimates for counterfactual exercises.

Model overview. This is a model in which Bayesian agents decide in every period whether
to adopt slot machines and install them in their establishment or not. The agents in the
model believe that their profits are spatially correlated with the profits of their neighbors.
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The beliefs that they have could be misspecified in one specific way: The true spatial corre-
lation of the profits could be different from their beliefs about this correlation. Agents also
compete with each other and are aware of the level of competition they would face when
they make their adoption decisions.

In the rest of this section, I describe the environment and game. There is a set of
municipalities, M , that are assumed to be observationally independent; therefore in this
section I omit the municipality subscript. The estimation includes all municipalities and the
municipality-specific notation is reintroduced in section 5.

I use small standard font letters represent scalars, small bold font letters represent vectors,
and capital letters represent sets or matrices, which will be clarified explicitly or by context.

4.1 Description

Primitives. There is a set of agents N = {1, ..., n}. Each node i ∈ N is associated with
a deterministic vector of characteristics xi and type θi. Each node’s profit also has an
unobservable persistent stochastic part to it, denoted by ξi.

The nodes are positioned on a plane; the distance between nodes i and j is denoted by
dij where dii = 0.

Periods are discrete,
t ∈ {0, 1, 2, ...},

and at time t = 0 the vector of unobservables of all agents ξ is drawn from a joint normal
distribution

ξ ∼ N (0,ΣTrue) ,

where ΣTrue is the true covariance matrix that the unobservables are drawn from.
The true correlation matrix, KTrue, combined with the true scalar variance σ2

ξTrue, defines
the covariance matrix; ΣTrue = σ2

ξTrueKTrue.

Information and observations. All agents have perfect knowledge of the characteristics
and types of all agents and the full matrix of distances. Agents also have a common prior
about the distribution from which the vector ξ is drawn, N (0,Σ0), where Σ0 could be
different from ΣTrue.

At every period t there is a set At ⊆ N which includes active adopters up to and including
period t. The true gambling profits πgi,t for agent i ∈ At are

πgi,t = ξi + xiβ − Ci(At) + zt + εgj,t,
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where Ci(·) is a function that represents the level of competition faced by i when a set At
has already adopted, β is a vector of parameters, zt is a period fixed effect, and

εgi,t ∼ N
(
0, σ2

ε

)
is an i.i.d. profit shock. The parameters β, Ci, σ2

ε , and zt are known to the agents.
In period t the gambling profits πgi,t of each agent that adopted up to and including that

period, i ∈ At, are revealed and publicly observed. Additionally, agents in the model have
perfect recall, hence they remember all observations, and since information is public, the
information at period t is

It = (πgAs)
t
s=0.

The notation πgAs denotes the vector of profits in period s of all agents that adopted up to
and including period s.

Utility and adoption. When the game starts, the set of adopters is empty. Then, at every
period t ∈ {0, 1, 2, ....}, each agent i that has not yet adopted (i /∈ At) forms her estimate of
ξi|It.

In every period, each agent draws some period-specific i.i.d. adoption cost shock ηi,t from
some known common distribution. She observes this period-independent adoption cost shock
and chooses to adopt if and only if her discounted expected utility from adoption given her
information is greater than 0:

E
[
u
(
πgi,t + ∆πcorei,t + ηi,t

)
|It−1

]
> 0,

Where ∆πcorei,t represents the change in non-gambling profits as result of adoption (e.g. sales
of food and beverages)15. Since all available information is public, it is sufficient to condition
on the public information set It−1 to obtain the best estimate of one’s expected profits from
adoption. When agent j adopts, her expectations about her own profits are known to all other
agents in the municipality (since they also have perfect knowledge of her characteristics).
Therefore, the value of ηj,τj in j’s adoption period τj provides no information to others and
does not affect posterior beliefs about profits, that is,

E
[
πgi,s≥t|It

]
= E

[
πgi,s≥t|It,ηAt

]
, (4.1)

where ηAt represents the entire history of the adoption shocks of other agents, including
when they adopted.

15The term is further discussed in subsection 4.4
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If different agents had different (private) information at the time of adoption (or in the
case that the adoption shocks ηi,t were not i.i.d.) the equality in (4.1) would generally not
hold.

4.2 Interpretation

In every period, agents that did not yet adopt decide whether to adopt. Adoption is assumed
to be irreversible since less than 1% of adopters remove the slot machines (though many
establishments shutdown entirely). This means that after adoption establishments make no
decisions and their only role is in the information their profits provide to potential adopters.

One of the assumptions is that agents’ information in every period is the full history
of profits in their municipality. This assumption is made due to the structure in which all
gambling profits are published online by the IGB. As seen in figure 4.1, profits can be observed
in three ways: all establishments statewide, all establishments in a municipality, or a specific
establishment. The first and last options provide too much or very little information and
therefore less useful. Viewing profits in the municipality level would usually result an amount
of information that is significant, and that could be parsed and therefore establishments are
assumed to observe profits in their municipality.

Agents in the model form the best estimate of their profit in every period based on a
common prior and the public information available in that period. The assumption that the
mean of ξ is zero represents the idea that agents update their beliefs based on some deviation
from their expectations they have for an establishment’s profits given its characteristics.

The assumptions on common prior and public information generate an environment in
which an agent’s decision to adopt is “no surprise” to other agents. When j decides to adopt,
since i perfectly knows j’s characteristics and has the same information that is available to j,
the adoption decision itself doesn’t add any new information to i about her own unobservable
ξi or about her expected profits. Only when i observes j’s period profits does i update her
beliefs about her own profits.

Finally, at this point the utility function can be fairly flexible. The utility function itself
doesn’t have a direct effect on the way that agents learn from the information they observe,
it can affect the availability of information though.

4.3 Learning

The only object (other than profit i.i.d. shocks) the agents are uncertain about is their vector
of unobservables, ξ. This vector is drawn from a joint normal distribution. When agents
observe some information about components of this vector, that is, other nodes’ period
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Figure 4.1: Illinois Gaming Board Website
Snapshot of the Illinois Gaming Board web page from which data on slot machines’ profits
you can be generated and downloaded. Users can choose whether to observe data on either
the whole state, a specific municipality or a single establishment. The menu on the left has
a link to the page which contains the forms that establishments need to submit in order to
apply for slot machines.

profits, they can update their beliefs about their own unobservable. This in turn results in
a posterior distribution of ξ. Note that since the prior is common and the information is
public, the posterior is also common.

Let j be an agent that adopted in some period τj before t. Since all other agents know
the correct β and competition faced by j’s neighbors, when they observe her profit at period
t they can extract the following:

ξj,t ≡ ξj+εgj,t = πgj,t − xjβ + Cj(At)− zt. (4.2)

It is important to note that
ξj,t ∼ N

(
ξj, σ

2
ε

)
.

This means that a noisy signal around the true unobservable can be extracted from every
observation of per period profits of agents that adopted; recall that σε is common knowledge.

Let ωj,t = t − τj − 1 be the number of observations of j’s profits that are available at
time t, let P ω

t denote the diagonal precision matrix of all observations16 up to and including
period t, and let ξ̄j,t denote the average of the signals about the unobservable for agent j;
this average is distributed around the truth, ξ̄j,t ∼

(
ξj,

ωj,t
σ2
ε

)
.

16Nodes that have not yet adopted don’t have information hence the precision of these nodes’ “signals” is
0.
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The updated distribution of ξ’s for all of the agents in the municipality is a multivariate
normal with posterior covariance matrix equal to

Σt =
(
Σ−1

0 + P ω
t

)−1
, (4.3)

where posterior means equal to

µt =
(
Σ−1

0 + P ω
t

)−1
P ω
t ξ̄t. (4.4)

These define the best estimate of ξ for each agent in period t, µi,t ≡ E [ξi|It], σ2
i,t ≡ V ar [ξi|It].

On the equilibrium path of play, agents use these posterior distributions as inputs to their
utility functions, and these in turn define which agents adopt in each period.

4.4 Additional Parametric Assumptions

Additional parametric and functional form assumptions need to be made in order to estimate
the model. In this part I impose additional structure on several objects of interest, including
the competition function Cj (·), the prior distribution covariance Σ0, the change in profits of
the core business from adoption ∆πcorei,t , the utility function u (·), and the distribution of the
adoption cost shocks. I also specify the utility function of the agents; the specification in this
paper implies that agents are not forward looking and so don’t take into account potential
adoption of neighbors when adopting. In section 8 and appendix C I discuss current work
that alters these specifications in order to allow agents with forward-looking best responses.

Competition function. The competition function takes the following functional form:

Ci(At) = cs
∑

j∈ACi,t,θi=θj

sCij,t + cd
∑

j∈ACi,t,θi 6=θj

sCij,t.

The term sCij,t = 1− dij
rC

represents the proximity of i to j for some physical distance dij
between the two nodes and some threshold rC beyond which the competitive proximity is
0. This functional form takes into account that a closer neighbors steal more business from
each-other. This property is similar to how competition is modeled in Seim (2006), the main
difference is that she used a step function. The two separate sums in the function, multiplied
by the different coefficients, allows for different levels of business stealing between adopters
that are of the same type (cs) as i and these that are of different type (cd).
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Prior. At time t = 0, agents’ prior beliefs are a vector of unobservables ξ drawn randomly
from a joint normal distribution:


ξ1

ξ2
...
ξn

 ∼ N




0
0
...
0

 ,


Σ11 Σ12 · · · Σ1n

Σ21 Σ22
...

... . . . ...
Σn1 · · · · · · Σnn



 .

All diagonal terms have the same variance Σii = σ2
ξ , while the off-diagonal terms represent

the spatial covariances between the ξ’s, where

Σij = κ
(
dij|ρ, r`

)√
ΣiiΣjj.

The function κ(·) is a kernel function that defines the correlation between the unobserv-
ables of two location based on their distance:

κ
(
dij|ρ, r`

)
= ρ

((
1− dij

r`

)
+

)2

,

where the correlation between nodes for which dij ≥ r` is equal to zero.17 It is important to
note that the parameters in κ and the variance σ2

ξ are not necessarily the correct ones; they
are merely the beliefs that the agents have about the level of correlation.

The parameter ρ ∈ [0, 1] represents the maximum correlation with a distance-zero neigh-
bor. In some settings, such as Covert (2015); Hodgson (2018) that analyzes distribution of
oil in the ground, it is reasonable to assume perfect correlation when distance is 0, κ (0) = 1.
This would translate to assuming that ρ = 1. Since in this paper there is an inherent hetero-
geneity in establishments’ outcomes I allow ρ to be flexible. Therefore, two businesses that
are in the same location might have different levels of success when adopting slot machines.

Core profit difference. The value ∆πcorei,t represents the change in profits that establish-
ments would see in their “core” business if they choose to adopt (e.g., in sales of food or
alcohol). This term also takes into account the fixed cost due to alteration of their busi-
ness layout. Changes in profits would be determined by the extent to which slot machines
complement or substitute other products. Slot machines mechanically substitute part of the
business since they take up space in the bar that had an alternative use, they could further

17This kernel function guarantees positive definiteness of any covariance matrix (see Williams and Ras-
mussen (2006)).
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influence the number and type of customers which would affect the sales of food and alcohol
and most likely depend on the type of the establishment. Additional considerations of the
owners include their personal preferences regarding gambling, the potential change in atmo-
sphere, or their uncertainty about these outcomes. I also take into account the fact that
businesses that do not adopt for longer could on average differ not only on the information
they have but also on the cost side. Therefore the assumed functional form is:

∆πcorei,t =
∑
θ

γθ1θ=θi + γtt,

where γθ is the type fixed effect, 1θ=θi is an indicator function for the type, and γt is a time
trend coefficient.

Utility function. I assume that agents may be risk averse when they face their adoption
decision. In every period, agents have beliefs about their outcome based on the updating
process described in subsection 4.3.

Agents are expected utility maximizers, with a CARA utility function of the form

u(x) = −e−λx, λ ≥ 0.

Since all the terms here represent differences from agents’ outcomes if they did not adopt,
the outside option is to get 0 with certainty. In addition, since in the case of adoption all
agents’ realized period profits are drawn from a normal distribution, a known result18 is that
if x ∼ N (µx, σ2

x), then

EU(x) = −e−λ(µx−
λ
2 σx),

therefore agents that maximize utility adopt if and only if µx − λ
2σx ≥ 0.

Period adoption shocks. ηi,t is assumed to be an EV(1) logit shock with variance π2

6α for
some parameter α.

5 Estimation & Identification

To estimate the parameters of the model, I use a procedure which finds the parameters that
match best the adoption behavior observed in the data. The estimation procedure has three

18See derivation for example Sargent (1987).

22



main steps: (i) estimation of the competition function, (ii) estimation of β that is nested
in step (iii) that estimates of Σ0, and the parameters of the utility function. I later use the
estimates of β to estimate the parameters of ΣTrue. This section starts with describing the
variation and identifying assumptions, followed by the likelihood function maximization and
the stages of the estimation.

5.1 Variation and Identification

The estimation procedure uses three types of variation in the data in order to identify the
parameters:

• competition (business stealing) is measured using changes in nodes’ profits with vari-
ation in the set of active neighbors over time;

• firms’ baseline profit parameters (β) are measured using changes in baseline firms’
profits with variation in firms’ characteristics and types;

• priors and adoption decision parameters are measured using the changes in likelihood
of adoption given variation in information (neighbors profits) different establishments
observe.

Using these sources of variation, there are three model features that are used for identifica-
tion:

1. The period profit shocks are i.i.d. normally distributed: εgi,t ∼ N (0, σ2
ε ).

2. The period adoption cost shocks, ηi,t, which are i.i.d. logit shocks.

3. The expected ex-ante values of all of the unobservables are zero: E[ξi] = 0 for all i.

While the first two identifying assumptions are standard, the third is used to ensure that
knowing the agents’ beliefs in the period of adoption is sufficient to correct for bias due
to selection based on unobserved beliefs. This is an initial condition that ensures that the
expected value of the unobservable of each of the first adopters was 0.

5.2 Likelihood Function and Maximization

Under the assumptions given in section 4, agent i adopts in period t if and only if

ṽi,t ≡ (µi,t + xjβ − Cj(At) + zt)︸ ︷︷ ︸
E[πgi,t]

− λ

2σi,t + γθi + γtt︸ ︷︷ ︸
πcorei,t

+ ηi,t ≥ 0.
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While ηi,t is observed by the agents, it is not observed by the econometrician, which
yields an implied probability of adoption given by

pi,t = exp (vi,t)
1 + exp (vi,t)

,

where vi,t = ṽi,t − ηi,t. Hence the likelihood of observing adoption based on the parameters
for municipality m is

Lm (Ψ) =
∏

i∈Nm,t≤τi

[
1ai,t=1pi,t + 1ai,t=0 (1− pi,t)

]
,

where Ψ ≡ {β, cs, cd, σξ, σε, ρ, r`,γ, λ} is the set of parameters that enter the estimation.
The estimated parameters would be

Ψ∗ = arg max
Ψ

∏
m∈M

Lm (Ψ) (5.1)

5.3 Step 1: Competition

The model assumes that the only action that an agent takes is deciding whether to adopt in
every period in which they are not yet in the market. After adoption, agents stay idle and
see a stream of profits. I use this assumption and the variation of a node’s profits over time
to measure the effect of business stealing.

Since both ξi and xi are fixed over time, in the first step of the estimation I can recover
the coefficients for the same type, cs, and for other types, cd, by running a simple linear
regression,

πgi,t = fi︸︷︷︸
ξi+xiβ

+ cs
∑

j∈ACi,t,θi=θj

sCij,t + cd
∑

j∈ACi,t,θi 6=θj

sCij,t + zt + εgi,t,

where fi and zt represent establishment and period fixed effects.
The estimates of the establishment fixed effects, fi, play a crucial role in the rest of

the estimation—they are the baseline establishment profits, net of competition, and used in
subsection 5.4 to estimate β. In addition, the standard deviation of εgi,t will be used as the
estimate of σε. I assume that the standard deviation, σε, of the period i.i.d. profit shocks,
εgi,t, is known to all agents and is used as the observations’ signal variance.

Estimating rC. In subsection 4.4 I introduced the parameter rC that defines the maximal
distance: the distance beyond which competition is set to 0. This radius parameter is
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estimated offline and is taken as exogenous in most of the estimation process. In order to
estimate this parameter, I count the number of adopters in bands (“donuts”) of some radius
around an agent that has already adopted. I then regress the profitability of the agents on
these counts, including time and node fixed effects, in a fashion similar to the regression
described earlier in this section.

I choose the radius rC as the value after which I observe that the correlation decays to
0, as described in section 6.

5.4 Step 2: Estimating β

5.4.1 Why not a simple regression? - Accounting for selection

The next step of the estimation recovers the coefficients in β by projecting fi on the charac-
teristics space xi and type fixed effects19. The problem: since agents self select to adopt, a
linear regression of fi on characteristics generally result in biased parameters. Namely, from
the model we know that

fi = xiβ + ξi, (5.2)

and adoption depends on characteristics and observations of others’ profits. Therefore, in
general, E [ξi|xi, i’s adoption] 6= 0, and linear regression would lead a bias in β. We solve
this issue by using the agents’ beliefs at adoption as an estimator for ξi.

The unobservable of each agent that adopted can be written in the following way ξi =
µi,τi + εi where µi,τi is i’s expectations of her unobservable in the period she decided to
adopt, τi; εi is i’s prediction error. Her error has two components, the first is a result of her
misspecified prior (Σ0 6= ΣTrue), denoted εpi , and the second is due to the random draw of
ξi, denoted εξi . Therefore we can rewrite 5.2:

fi = xiβ + µi,τi + εpi + εξi .

As mentioned in subsection 4.1, I assume that all agents in a municipality have the same
information, i.e. there is no private information. This means that i updates her beliefs about
her own profits base only the observed profits of others. Additionally, the real ξi assumed to
be independent of xi, and therefore E

[
εξi |xi, Iτi

]
= 0.

Lemma 1. Under the model assumptions, the mean of εpi conditional on the observations at
adoption is zero:

E [εpi |Iτi ] = 0. (5.3)
19Type fixed effects account for ξ’s being drawn from a distribution with mean different than 0.
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Proof. See appendix D.

This lemma implies that even though agents have an incorrect prior, the expectation
their prediction error is zero given their observations.

Therefore, E [εi|xi, Iτi ] = 0, if µi,τi is known, β can be estimated with the following
regression:

Fi − µi,τi = xiβ + εi. (5.4)

5.4.2 Estimation Procedure

Although all agents in the market know the values of the coefficients β, this parameter vector
is unknown to the econometrician, and therefore pose a difficulty in determining the values of
µi,τi for all adopters. Without knowing µi,τi for all i that have ever adopted, it is impossible
to determine the values of β, while without knowing β it is impossible to determine µi,τi of
all i. Therefore, what is needed is a method that estimates the two jointly and ensures that
they are internally consistent. The equilibrium solution holds for a given Σ0. In subsection
5.5 I search over the parameters that define Σ0.

A candidate solution has two components: a vector µτ c of length equal to the number of
agents ever adopted, representing the expectations of the unobservable each establishment
had at adoption, and a vector of parametersβc. At equilibrium:

1. The beliefs at adoption, µcτ yield β∗ (using the regression (5.4)).

2. The parameters βc can be used to calculate the realized beliefs at adoption, µ∗τ , using
the updating process in subsection 4.3 (given a prior Σ0).

3. In equilibrium µcτ = µ∗τ , βc = β∗.

The parameters β∗ are the ones for which the parameters are consistent with agents’ beliefs.
In order to find such equilibrium, an iterative algorithm is used. Starting with candidate

beliefs, µcτ , the candidate parameters, βc, are calculated. Then, βc is used to calculate the
realized beliefs at adoption, denoted µc+1

τ . Therefore, in equilibrium condition 3, the part
about βc holds by definition. If µcτ = µc+1

τ then candidate is an equilibrium solution. If not,
µc+1
τ is the new candidate. I repeat this iterative process until convergence.20 A detailed

description of the algorithm is described in appendix E.1; appendix E.2 uses simulated data
to show how this algorithm recovers the correct parameters when the data is selected.

20Computational convergence, below some specified tolerance.
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5.5 Matching Adoption Decision

So far I showed how I estimated some of the model parameters. First, the competition
function Ci(At) was estimated, using only post-adoption data on the nodes’ profits. Then β
was estimated with a method that accounts for the selection problem that arises due to the
fact that agents’ adoption is correlated with their expectations of profits. This second step
of the estimation used a fixed guess of the parameters of the kernel correlation function ρ, r`,
and the standard deviation parameter σξ. The first two steps were agnostic as to the reasons
for agents’ adoption, as long as the adoption decision itself did not provide information about
other nodes’ expected profits—and that, on average, the expected profits were correct.

The third and last step of the estimation provides some functional form assumptions on
the value of adoption. I then match these calculated values of adoption and match them
with the observed adoption in the data, pinning down parameters ρ, r`, and σξ, and the
other parameters in the value function.

5.5.1 MLE: Matching on adoption

This part directly follows the functional form and the maximization from subsection 5.2. As
a reminder, the probability that agent i adopts at period t is

pi,t = exp (vi,t)
1 + exp (vi,t)

,

with
vi,t = (µi,t + xjβ − Cj(At) + Ft)−

λ

2σi,t + γθi + γtt. (5.5)

I maximize the likelihood function to obtain

(ρ∗, r`∗, λ,γ∗) = arg max
ρ,r`,γ

∏
i∈Nm,t≤τi

[
1ai,t=1pi,t + 1ai,t=0 (1− pi,t)

]
,

by searching over the values of ρ, r` and σξ nonlinearly. For every guess, I use the values of
µi,t and σi,t estimated in the previous steps as inputs, running a simple logit regression to
recover the parameters γπ, λ,γθ, and γt.

5.6 Estimating true parameters

When recovering the true covariance parameters between agents’ unobservables (σξTrue, ρTrue
and r`True) only estimates of a subset of the populations’ unobservables are available, which
may lead to a selection problem. To solve this issue I rely on the fact that when some agent
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i adopts in period t, using the true prior parameters and current data would result in the
best estimate of the joint distribution of i’s and previous adopters’ unobservables (given the
information available at period t, regardless of the reason that i chose to adopt).

To estimate the true covariance parameters I first recover the ξi,ts of all adopters using
the parameter estimates from this section (see equation 4.2). The true correlation parame-
ters maximize the likelihood of the realized unobservables taking into account the available
information at each agent’s adoption period. Let i be an agent that adopts in period τi,
for a guess of true parameters I calculate the Bayesian posterior covariance of i’s unobserv-
able with unobservables of all adopter up to the period, Aτi (given observations up to the
period). This posterior for each i is used to construct a covariance matrix of the joint dis-
tribution of unobservables of all adopters at the period in which each adopted. I construct
such covariance matrix for each municipality and use the matrices to calculate the likelihood
of observing the realized unobservables. I choose σξTrue, ρTrue and r`True that maximize this
likelihood.

6 Estimation Results

In this section I describe the parameter estimates and the economic interpretation of these
parameters. I start by describing them in the same order in which they were estimated
in section 5. In subsection 6.2 I analyze the implications of the model regarding the way
agents learn, and I describe additional estimates of the true spatial covariance parameters
described in subsection 4.1. This section ends with analysis of the model fit. Note that the
confidence intervals and standard errors were conservatively calculated using bootstrap at the
municipality level (except for the competition estimates that are presented in table 4, which
were produced in a simple linear regression). Note that the parameters in steps 1 and 2 of
the estimation (described in subsections 5.3 and 5.4) are estimated using all of the available
data. The final step of the estimation (subsection 5.5) uses a subset of the establishments.
To prevent biases21 in adoption decisions, only establishments in municipalities that allowed
adoption from the inception of the market are included. In appendix B, I show that the
results are robust to using all the nodes.

21There is a concern that nodes in municipalities that initially prohibited adoption would have greater
information in the period of adoption.
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6.1 Parameter Estimates

Competition. I start with estimation of rC . To determine its value, I regress the gambling
period profits of establishments that have already adopted on the numbers of their neighbors
that have already adopted. The area around a node is divided into bands, and the node’s
neighbors are divided into groups based on these bands. Table 3 shows the results of this
regression under two different band systems, and with different combinations of fixed effects.
While all the specifications have node fixed effects, some specifications also have period fixed
effects and county time trends. I can see that business stealing (i.e., competition) disappears
after about 0.7 miles, and therefore rC would take this value.

Given that value of rC , the values of cs = 229.86 and cd = 77.03 are reported in column
(1) of table 4. These values represent the business stealing that an additional next-door
neighbor imposes when it decide to adopt. The former value represents the business stealing
imposed by a node of the same type, while the latter value represents the business stealing
that occurs when an agent of a different type adopts. This means that if i and j are neighbors
of the same type, j’s adoption has three times the effect than if the type of j is different
that of i. Columns (2) and (3) show that the values of these coefficients are robust to the
different fixed effects that are included in the estimation.

β and selection correction. The estimates of β are reported in table 5. The “with
correction” column represents the estimates of β from the model, controlling for the beliefs
of adopting agents at the period of adoption and using the procedure described in subsection
5.4. In general, establishments should ex ante expect a few thousands of dollars in monthly
profits from installation of slot machines, while, bar-like establishments (bars, bar and grills,
and veteran organizations) generally have higher profits. However, missing information, such
as no reported price level or a lack of a reported rating of the business, significantly lowers the
expected profits from gambling. The result is that there are situations in which businesses
should expect low monthly profits (for example, a Mexican restaurant that has no reported
price level and has never been rated could expect profits that are lower than $1,000).

The “without correction” column represents the estimates of β that would have been
produced without accounting for selection at adoption. The selection problem is due to
the fact that the profits observed in the data are only those of agents that chose to adopt
based on their beliefs. The data in that column are reported for purpose of comparison to
the true parameters, and the rightmost column in the table is the percentage change in the
parameters as a result of the selection correction procedure. I can see that baseline profits of
all types decreased, with the maximum decrease reaching more than 8%, while the changes
in other parameters went in both directions and reached up to 13.6%.

29



πg
i,t

(1) (2) (3) (4) (5) (6)
|Ai| 0–0.1 miles −154.915∗∗∗ −117.950∗∗∗ −137.968∗∗∗

(49.634) (44.739) (45.996)

|Ai| 0.1–0.2 miles −92.227∗ −48.752 −60.746
(51.351) (46.859) (47.565)

|Ai| 0.2–0.3 miles −81.233 −83.176 −96.993
(64.402) (59.505) (60.814)

|Ai| 0.3–0.4 miles 73.363 78.222 66.208
(68.219) (66.748) (66.877)

|Ai| 0.4–0.5 miles −45.320 −77.858 −84.894
(57.838) (54.628) (55.398)

|Ai| 0–0.5 miles −68.884∗∗∗ −55.769∗∗∗ −68.489∗∗∗

(22.806) (20.544) (21.440)

|Ai| 0.5–0.6 miles −51.208 −51.136 −64.845 −44.593 −48.302 −61.095
(56.958) (53.072) (54.298) (56.927) (53.069) (54.217)

|Ai| 0.6–0.7 miles −36.105 −72.108 −83.596∗ −36.544 −72.115 −83.297∗

(49.759) (47.302) (47.910) (49.411) (47.177) (47.743)

|Ai| 0.7–0.8 miles 14.337 −17.421 −32.109
(57.407) (54.363) (55.190)

|Ai| 0.7–0.75 miles 49.904 4.070 −14.133
(85.913) (83.074) (83.827)

|Ai| 0.75–0.8 miles −16.818 −34.378 −44.420
(82.056) (76.401) (77.417)

|Ai| 0.8–0.9 miles 63.559 12.424 2.324 68.564 15.846 6.284
(49.577) (47.068) (47.854) (49.743) (47.238) (47.995)

|Ai| 0.9–1 miles 48.020 36.187 18.177 54.653 37.469 20.198
(57.817) (50.227) (51.215) (57.645) (50.075) (50.965)

Period Fixed Effects Yes No Yes Yes No Yes
Node Fixed Effects Yes Yes Yes Yes Yes Yes
County Time Trend No Yes Yes No Yes Yes
Observations 153,623 153,623 153,623 153,623 153,623 153,623
R2 0.826 0.827 0.833 0.826 0.827 0.833
Adjusted R2 0.821 0.822 0.828 0.821 0.822 0.828
Residual Std. Error 1,559.823 1,555.256 1,527.369 1,560.231 1,555.555 1,527.696

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Period Profits on Number of Adopters in Bands
Regression of profits of existing adopters on the number of their neighbors that adopted in

different radius bands.
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πgi,t

(1) (2) (3)
Competition: Other Types −77.034∗∗ −55.508∗ −77.125∗∗

(36.600) (33.252) (35.559)

Competition: Same Type −229.856∗∗∗ −228.268∗∗∗ −255.202∗∗∗
(76.850) (70.381) (71.789)

Period Fixed Effects Yes No Yes
Node Fixed Effects Yes Yes Yes
County Time Trend No Yes Yes
Observations 153,623 153,623 153,623
R2 0.826 0.827 0.833
Adjusted R2 0.821 0.822 0.828
Residual Std. Error 1,560.089 1,555.419 1,527.568

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Competition: Period profits on total neighbors proximity
Regression of profits of existing adopters on total proximity of neighboring adopters as

defined in subsection 5.3.

The correction procedure shifts the parameters in both directions, although most of the
parameters decrease there are some parameter values that go up. In order to understand the
total impact of the selection correction procedure we need to understand its total effect on
the ex-ante expected profits of the establishments (xiβ). In figure 6.1 I plot the distributions
of the ex-ante expected profits of all establishments, with and without correction. The mean
value of xiβ goes down by about 5%, and it is apparent that the the values of xiβ shift to the
left. Running a Kolmogorov Smirnov test confirms that the distributions are significantly
different.

Belief parameters. The estimates of the updating parameters are presented in table 6.
The correlation estimates ρ0 and r`0 indicate that agents believe that the maximum correlation
with a zero-distance neighbor is about 0.2, and that the correlation with their neighbors
decays after a little more than 2 miles, about three times the radius of the competition they
face. Even though all of the model’s parameters are identified, in practice there is a problem
with the estimation of σξ0. The values of σξ0 are too large to be computationally estimable.
When σξ0 is large, changing its value has negligible effect on the rest of the parameters.
Therefore, in the estimation, I calibrate σξ0 to a very large number. At the limit the values
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With Correction Without Correction ∆
No Price Dummy -1926.676∗∗∗ -1850.816∗∗∗ -4.1%

(301.833) (271.89)
Price Level -909.399∗∗∗ -837.577∗∗∗ -8.6%

(206.904) (186.30)
No Rating Dummy -1397.593∗∗ -1588.13∗∗ +12%

(654.334) (566.21)
Rating -210.012 -233.801∗∗ -9.9%

(131.837) (118.6)
Population/|N | 0.025∗∗∗ 0.022∗∗∗ +13.6%

(0.0086) (0.003)
American Restaurant 6621.499∗∗∗ 6779.421∗∗∗ -2.23%

(903.338) (667.12)
Bar 6641.801∗∗∗ 6814.336∗∗∗ -3.25%

(905.276) (577.1)
Bar and Grill 7035.818∗∗∗ 7184.183∗∗∗ -2.1%

(917.15) (600.9)
Italian Restaurant 5792.791∗∗∗ 6184.658∗∗∗ -6.6%

(1392) (759.446)
Mexican Restaurant 4113.553∗∗∗ 4483.172∗∗∗ -8.3%

(1073.3) (690.72)
Missing Type 6431.563∗∗∗ 6702.122∗∗∗ -4%

(989.97) (647.273)
Pizza Restaurant 5935.446∗∗∗ 6170.37∗∗∗ -3.9%

(1075.7) (653.29)
Restaurant 5402.674∗∗∗ 5552.862∗∗∗ -2.8%

(962.256) (632.89)
Veterans Organization 6686.412∗∗∗ 7018.335∗∗∗ -4.8%

(1094.04) (657.9)
Small Types 6424.562∗∗∗ 6664.113∗∗∗ -3.7%

(968.8) (596.38)
Observations 4286 4286
R2 0.065 0.058
Adjusted R2 0.062 0.055
Residual Std. Error 3134.452 3173.386
F Statistic 21.065∗∗∗ 18.739∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: β without and with selection correction
Estimates of the vector of parameters β. Column (1) has the model estimates. Column (2)
has the estimates without selection correction. Column (3) has the percentage difference
between the two. Note: standard errors in (2) do not account for error from the first stage

of the estimation therefore smaller.
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Figure 6.1: Distribution of xiβ
Orange: distribution of ex-ante expected profits without correcting for selection. Blue:
distribution of ex-ante expected profits correcting for selection.
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of σξ0 and λ are not separately identified, though the product of the two is. This part is
formally stated and proved in appendix F. A very high σξ0 suggests that agents have a diffuse
prior and therefore put very low or no weight on it; they behave as if they were frequentists.
Therefore, the moment they observe a signal about another node’s profits, they immediately
update based only on the correlation they believe they have with that node.

The estimated parameters are presented in table 7. The value of −λ
2σξ0 represents the

initial influence that the uncertainty and risk aversion have on the value of the certainty equivalent
of choosing to adopt slot machines. The other parameters are components of the change in core
profits that firms would see if they decided to adopt, ∆πCorei,t . One interpretation of the value
of γt is that, on average, adoption is more costly and the slot machines are more of a substitute
for establishments that choose not to adopt for more periods. It turns out that, on average, slot
machines complement the core business for bars that adopted up to period 52 providing positive
core value. On the other hand, a restaurant that adopts at around period 20 or later expects on
average a loss to their core business.

6.2 Agents’ Beliefs at Adoption and True Spatial Correlation

In the model I made the uncommon assumption that agents’ perceptions about the spatial
correlation may be different from the real spatial correlation of their profits. This kind of
learning behavior could lead to a prediction that is less accurate than it could be, or to a
prediction that is potentially incorrect. In this subsection I first find how well the agents
predict. I then present the parameters of the true spatial correlation in the data and see
how the agents’ beliefs compare to the truth.

Agents’ unobservable predictions. Using the estimates of β and the other parameters
that were recovered in the estimation process, I also recover estimates of the true unobserv-
ables of all agents that have ever adopted. Given the estimates of the model, I also know the
beliefs that each agent had at the period in which they adopted, µi,τi . In table 8 and figure
6.2 I see that the agents beliefs about their unobservable (albeit noisy) are predictive of their
true profits at adoption: An agent that believes that its profits will be higher by a dollar
have, in expectation, profits that are higher by about 85 cents. Moreover, the hypothesis
that the coefficient of µi,τi is different from 1 cannot be rejected (although only barely).
Therefore, we cannot reject that, at adoption, agents’ expectations about their profits are
correct on average.

Spatial covarinace: beliefs vs. truth. Using the estimates of the unobservables that
were recovered in the estimation process, I can estimate the true spatial correlation param-
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Parameter Estimate Confidence Interval
ρ0 0.198 [0.0755, 0.99]
r`0 2.09 [1.4, 18.12]
σε 1537.9 [1477, 1596.5]

Table 6: Beliefs Parameters
Estimates and confidence intervals parameters that are the agents’ priors and which they

use when updating their beliefs about their unobservable.

Parameter Value Confidence Interval
−λ

2σξ0 −33435.4 [−476228,−3357]
γt −310.7 [−1947,−234]
γbar 16101.6 [−91240, 129565]

γbar&grill 15636 [−89516, 128992]
γVeteran 15044.1 [−99454, 128732]

γMissingType 11139.1 [−133919, 125997]
γAmerican 10900.3 [−130355, 125421]
γrestaurant 10627.2 [−140070, 125611]
γOtherTypes 9189.32 [−143517, 124171]
γPizzaPlace 7951.1 [−151335, 123014]
γItalian 7085.1 [−161208, 122060]
γMexican 5699.1 [−178417, 122127]

Table 7: Adoption Decision Parameters
Estimates and confidence intervals of the parameters that represent initial risk (−λ

2σξ0) and
that define the change in core profits (∆πCorei,t ).

35



Figure 6.2: Realized Unobservable and Beliefs at Adoption
Blue: the regression line and confidence interval of the regression in table 8. Green: group-
ing at $500 bins of establishment’s beliefs at adoption, the averages of the best estimates
(realization) of establishments’ unobservables and confidence intervals are plotted. Orange:
45 degree line.

Realized ξ
µτi 0.858∗∗∗ 0.847∗∗∗

(0.077) (0.08)

const 25.001
(49.634)

Observations 4287 4286
R2 0.028 0.026
Adjusted R2 0.028 0.025
Residual Std. Error 3128.083 3128.355
F Statistic 125.064∗∗∗ 112.986∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Realized Unobservable and Beliefs at Adoption
Regression of the best estimate of adopters’ unobservables on the beliefs those adopters

had at the period in which they decided to adopt36



eters that the ξ’s are drawn from. The estimates of these parameters are σξTrue = 3128.16,
ρTrue = 0.155, and r`True = 13.5. First, I notice that the true standard deviation of the
distribution of the unobservables is about twice the signal standard deviation σε, which
implies that agents should weight their prior when observing signals and updating their be-
liefs. Moreover, agents believe their correlation with very close neighbors is higher than the
actual correlation (ρTrue = 0.155 < 0.198 = ρo) therefore they overweight them. However,
they ignore valuable information—they take into account neighbors in about a 2-mile radius,
while the spatial correlation decays after about 13.5 miles. Figure 6.3 shows the difference
between the beliefs agents have about the spatial correlation with neighbors of different dis-
tances (blue) and the actual spatial correlation with neighbors of different distances (orange).
The smaller radius could be a result of different beliefs that the agents could have, though
there are alternative scenarios which will result in the same pattern. For example, if not
all agents observe profits through the website, and instead talk to their neighbors or just
observe the changes in traffic in neighboring businesses, it will shrink the estimated radius
parameters.

6.3 Adoption Behavior and Model Fit

The core question of this model and the pattern that this paper set out to explain is what
caused agents to delay adoption of an existing product for many months and sometimes even
a few years. The channel that I explore is that agents observe adoption by others and update
their beliefs about both the profitability of the product and the riskiness of the adoption.
Even if agents have some expectations about the profitability of the product, they might be
averse to adoption because they are unsure of how this action would affect their business.

In fact, in the estimates and in the data, I an indication that a decrease in agents’
uncertainty, given their expected profits, has positive impact on adoption. One way to see
this result is in figure 6.4, where I analyze the set of bar-like establishments that waited at
least fifteen periods before they eventually decided to adopt. These nodes had ample time
and most likely multiple observations, when they decided to adopt. I show (in blue) that in
the 15 periods prior adoption, agents initially saw an increase in their expected profits from
adoption (changes in µi,t). Around 10 periods before adoption this change in expected value
halts and remains approximately constant until the period in which agents adopt. Even
though the expected values do not change, the certainty equivalent (µi,t − λ

2σi,t, depicted in
green) continues to rise until the period of adoption, since over time agents observe more
signals from more neighbors. In the 15 periods before adoption, establishment owners see
an average increase in the value of adoption of around $900. Analysis of the levels of profit
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Figure 6.3: Spatial Correlation: Beliefs vs. Truth
The vertical axis represents how much spatial correlation there is between two nodes, with
distance on the horizontal axis. The blue curve represents the correlation agents believe
they have with their neighbors. The orange curve represents the true spatial correlation in
the data.
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Figure 6.4: Pre-adoption Expectation and Certainty Equivalent.

and of restaurants and all other businesses, before adoption, is presented in appendix G.

Model fit. To check the model fit, I use the estimated true spatial correlation parameters
to simulate unobservables for all agents. Then I forward simulate adoption, and therefore
the implied observations all agents have and the competition that they face in every period.
I repeated the simulation 100 times and average the adoption level in every period. As
seen in figure 6.5, the fit of the model is good, the curve of predicted adoption follows the
actual adoption pattern fairly closely. The maximal deviation in the number of cumulative
predicted adopters compared to the actual number of adopters is 218, which is about 5.5% of
the total number of adopters. In the final period available in the data set, the total deviation
is only about 1.2%. In
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(a)

(b)

Figure 6.5: Model Fit
In both panels the blue curve indicates the number of adopters over time in the data; The

orange curve provides the simulated adoption pattern. Panel (a) is has cumulative
adoption while (b) has in-period adoptions.
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7 Counterfactual Analysis

In this section I examine two environments. In the first (no learning), agents have no infor-
mation about their neighbors’ profits and therefore cannot learn about their own profitability
from their neighbors’ profits. In the second environment (true correlations), I assume that
agents have perfect knowledge of the true spatial correlation between everyone’s unobserv-
ables, and therefore use the available information properly.22 In these exercises I simulate the
market’s diffusion pattern, as well as how total market profits would change, and compare
them to a baseline in which agents learn according to their estimated beliefs (model fit).

The no-learning exercise simulates an environment that is similar to most markets with
non-public firms. In most cases private firms do not reveal their periodic profits, which
creates an environment that is not conducive to learning. Using this exercise, I can test for
how adoption would change if policy makers were to obligate firms to reveal their profits on
new products. This is an extreme case in which firms have no information at all; in most
cases firms would probably observe some noisy signal about the success of some product (e.g.,
changes in consumer traffic, price levels, or advertising). The quality of the signal would
vary substantially and could be confounded by many factors and by the levels of success of
other dimensions of the business which they observe.

The true-correlations exercise simulates an environment in which agents are more knowl-
edgeable. In this exercise, I check how adoption patterns and total profits would change if
agents had perfect information and knew exactly how to interpret it. The greater sophisti-
cation of agents in this environment could result from advertisement campaign or workshops
that better inform them about the profitability levels in the area or how to interpret the
information that is available to them. (This scenario would be of greater relevance if the
assumption that all establishments are aware of everyone’s profits is incorrect.) One way to
interpret this exercise is as the effects information spillovers would have in markets with more
sophisticated sellers, or for new products that sellers are more familiar with (for example, in
this case, a new beer).

Theoretically, the direction of the change in adoption patterns under the two exercises
is not ex ante clear. The effect of decreasing uncertainty from observing more and better
information would generally make adoption more likely, though it would greatly depend on
the observations themselves. Observing neighbors’ profits that are disappointing would deter
potential adopters.

The simulated diffusion patterns under the three simulations are presented in figure 7.1.
I can see that providing more information to the agents leads to more and earlier adoption.

22Note that for technical reasons I maintain the assumption of infinite prior variance.
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Compared to no learning, adoption under the model fit exercise increases by 4.8%, while the
total profits in the market over that period increase by only 3.5%. In the true correlations
exercise, adoption increases by another 3.1%, for an overall effect of 8%, and total profits
increase by additional 3.6%, for an overall effect of 7.2%.

The results of the simulation suggest that making gambling profits public on IGB’s
website resulted in an yearly revenue increase in the order of tens of millions of dollars. For
example, in 2016 about $38 million of net revenue can be attributed to learning, resulting in
$11.5 million in taxes. While adding information increases both adoptions rates and profits,
the two are not increasing at the same rate. Comparing the relative increase between the
two levels of learning in the simulation, we see that the change in profits between true
correlation and model fit are higher than the change between model fit and no learning,
while the opposite is true for the change in adoption. This finding would suggest that
additional information leads not only to more adoption but leads to more efficient adoption
by more profitable establishments. If there is some fixed cost of adoption, this would increase
the effects of information on efficiency by even more.

8 Extensions and Robustness in Progress

Dynamics - Forward looking agents. The agents in the current model are not taking
into account how potential future adoption by firms which would affect their profits or the
level of information available to them when they make their adoption decision in every
period. It is reasonable to believe that when agents decide whether to adopt, they take into
account the fact that others around them might also adopt. Future adoption of neighbors
could affect their decision in a few ways. First, expecting adoption by neighbors would lead
to lower expected profits and might deter adoption, though this expectation might also lead
to early adoption if one thinks they would deter others. Secondly, there is an option value in
waiting: If one is not sure whether adoption is worthwhile, they can free ride the information
from neighbors. This effect might lead to delayed adoption.

In order to determine the magnitude of these dynamic effects, the beliefs of the agents
about adoption by establishments around them have to be modeled. Modeling these beliefs
poses additional problems. First, the state space is very large, since agents need to have
beliefs about the probability of observing each combination of neighbors that adopted in
every period; thus number of states for each agent grows exponentially with the number
of neighbors. Secondly, agents could be strategic about their behavior. Finally, agents’
beliefs affect their probability of adoption, which in turn affects the observations of others;
therefore, agents’ beliefs are a function of their behavior. Agents’ beliefs and actions should
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Figure 7.1: Counterfactual Estimation
In the figure are simulated adoption patterns over time. Blue: using the estimated beliefs
of the agents (the model’s fit). Green: if agents cannot learn from their neighbors. Orange:
if agents have perfect knowledge of the correlation with their neighbors.
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be consistent with each other.
In an ongoing extension I suggest a model that deals with those issues. To deal with

the first and second issues, I reduce the state space and the dimensionality of the agents’
beliefs, by implementing the method suggested by Krusell and Smith (1998) in a way similar
to Lee (2013). To solve the final problem, I use the normality of the signals, and the fact
that adoption decisions are based on a threshold rule of the agents, to determine the value of
adoption in every period by backward induction and find parameters that imply that agents
are consistent. Additional details are provided in appendix C.

Learning from Different Types. When estimating the model, the spatial competition,
that is, the level of business stealing, is allowed to depend on the types of the establishments.
Indeed, I found that the competition between establishments of the same type is fiercer. At
the same time, learning differently from different types is restricted in the model, forcing
agents to learn in the same way from all types.

In the preliminary analysis, I allowed for agents’ potential profits to have different levels
of correlation with the same and different types by adding a parameter that attenuates the
learning from agents of different types. The result of the estimation was that agents learn
equally from neighbors of the same type as from those different types (no attenuation).
However, additional investigation should be made into these results to see how robust they
are to the definitions and the number of types.

9 Conclusion

This paper provided evidence that the information firms gain from observing adoption and
outcomes of others has a substantial effect on their decision to adopt products in a new
market. I estimated a model which separates agents’ perceptions about spatial correlation
of outcomes from the true correlation. This property is especially relevant in markets of a
new product where agents have no prior information and where an assumption that they
have perfect knowledge of the distribution of profits would make little economic sense. Using
this model, I also estimated the spatial competition between agents.

Counterfactual exercises showed that additional information leads to more adoption and
higher market profits. It also showed that agents undervalue the informativeness of others’
profits, and therefore do not use all the information available to them. Moreover, if agents
used all of the available information, not only adoption and profits but also the profit per
adopter would increase, suggesting that firms would adopt earlier or more efficiently.

This paper also developed a framework to correct for the selection problem in adoption
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when the actions of firms are based on their beliefs which in turn depend on the actions of
other firms. The method relies on consistency or equilibrium-like notions: the parameters
and primitives of the model lead to certain beliefs on the part of agents when they adopt,
and these beliefs in turn imply certain values of parameters of the model, when the model
estimates are a fixed point of this mapping.

While this paper has agents that compete and learn from one another based on their
physical distances, the methods introduced can be implemented in many competitive envi-
ronments where there is a measure of similarity between firms and social learning is key.
One well suited example would be the car manufacturers with “distances” defined based on
some similarity measure that decide whether to invest in electric engines, learning about the
profitability from success of competitors of different levels of similarity.

45



References

Acemoglu, D., M. A. Dahleh, I. Lobel, and A. Ozdaglar (2011): “Bayesian learn-
ing in social networks,” The Review of Economic Studies, 78, 1201–1236.

Bailey, M., D. M. Johnston, T. Kuchler, J. Stroebel, and A. Wong (2019):
“Peer Effects in Product Adoption,” NBER Working Paper No. w25843. Available at
SSRN: https://ssrn.com/abstract=3390991.

Bailey, N. T. (1975): The mathematical theory of infectious diseases and its applications,
Hafner Press/ MacMillian Pub. Co.

Bala, V. and S. Goyal (1998): “Learning from neighbours,” The review of economic
studies, 65, 595–621.

Banerjee, A., A. G. Chandrasekhar, E. Duflo, and M. O. Jackson (2013): “The
diffusion of microfinance,” Science, 341, 1236498.

Banerjee, A. V. (1992): “A simple model of herd behavior,” The quarterly journal of
economics, 107, 797–817.

Bass, F. M. (1969): “A new product growth for model consumer durables,” Management
science, 15, 215–227.

Benkard, C. L. (2000): “Learning and forgetting: The dynamics of aircraft production,”
American Economic Review, 90, 1034–1054.

Bikhchandani, S., D. Hirshleifer, and I. Welch (1992): “A theory of fads, fashion,
custom, and cultural change as informational cascades,” Journal of political Economy, 100,
992–1026.

Board, S. and M. Meyer-ter Vehn (2018): “Learning Dynamics in Social Networks,”
Tech. rep., Working Paper.

Coleman, J. S., E. Katz, and H. Menzel (1966): Medical innovation: A diffusion
study, Bobbs-Merrill Co.

Conley, T. G. and C. R. Udry (2010): “Learning about a new technology: Pineapple
in Ghana,” American economic review, 100, 35–69.

Covert, T. R. (2015): “Experiential and social learning in firms: the case of hydraulic
fracturing in the Bakken Shale,” Available at SSRN 2481321.

46



Dasaratha, K., B. Golub, and N. Hak (2019): “Learning from Neighbors About a
Changing State,” Working Paper.

DeGroot, M. H. (1974): “Reaching a consensus,” Journal of the American Statistical
Association, 69, 118–121.

DeMarzo, P. M., D. Vayanos, and J. Zwiebel (2003): “Persuasion bias, social influ-
ence, and unidimensional opinions,” The Quarterly journal of economics, 118, 909–968.

Doraszelski, U., G. Lewis, and A. Pakes (2018): “Just starting out: Learning and
equilibrium in a new market,” American Economic Review, 108, 565–615.

Foster, A. D. and M. R. Rosenzweig (1995): “Learning by doing and learning from
others: Human capital and technical change in agriculture,” Journal of political Economy,
103, 1176–1209.

Frongillo, R. M., G. Schoenebeck, and O. Tamuz (2011): “Social learning in a
changing world,” in International Workshop on Internet and Network Economics, Springer,
146–157.

Golub, B. and E. Sadler (2017): “Learning in social networks,” Available at SSRN
2919146.

Griliches, Z. (1957): “Hybrid corn: An exploration in the economics of technological
change,” Econometrica, Journal of the Econometric Society, 501–522.

Harel, M., E. Mossel, P. Strack, O. Tamuz, et al. (2017): “Groupthink and the
Failure of Information Aggregation in Large Groups,” arXiv preprint arXiv:1412.7172.

Hodgson, C. (2018): “Information Externalities, Free Riding, and Optimal Exploration in
the UK Oil Industry,” Working Paper.

Holmes, T. J. (2011): “The diffusion of Wal-Mart and economies of density,” Econometrica,
79, 253–302.

Kellogg, R. (2011): “Learning by drilling: Interfirm learning and relationship persistence
in the Texas oilpatch,” The Quarterly Journal of Economics, 126, 1961–2004.

Kim, D. A., A. R. Hwong, D. Stafford, D. A. Hughes, A. J. O’Malley, J. H.
Fowler, and N. A. Christakis (2015): “Social network targeting to maximise popu-
lation behaviour change: a cluster randomised controlled trial,” The Lancet, 386, 145–153.

47



Krusell, P. and A. A. Smith, Jr (1998): “Income and wealth heterogeneity in the
macroeconomy,” Journal of political Economy, 106, 867–896.

Lee, R. S. (2013): “Vertical integration and exclusivity in platform and two-sided markets,”
American Economic Review, 103, 2960–3000.

Molavi, P., A. Tahbaz-Salehi, and A. Jadbabaie (2018): “A Theory of Non-Bayesian
Social Learning,” Econometrica, 86, 445–490.

Pakes, A. and J. Porter (2016): “Moment inequalities for multinomial choice with fixed
effects,” Tech. rep., National Bureau of Economic Research.

Pastor-Satorras, R. and A. Vespignani (2001): “Epidemic spreading in scale-free
networks,” Physical review letters, 86, 3200.

Romano, J. P., A. M. Shaikh, and M. Wolf (2014): “A practical two-step method for
testing moment inequalities,” Econometrica, 82, 1979–2002.

Sadler, E. (2019): “Diffusion games,” Available at SSRN 2624865.

Sargent, T. J. (1987): Macroeconomic Theory: 2nd (second) Edition, Emerald Group
Publishing Limited.

Seim, K. (2006): “An empirical model of firm entry with endogenous product-type choices,”
The RAND Journal of Economics, 37, 619–640.

Shalizi, C. R. and A. C. Thomas (2011): “Homophily and contagion are generically
confounded in observational social network studies,” Sociological methods & research, 40,
211–239.

Williams, C. K. and C. E. Rasmussen (2006): Gaussian processes for machine learning,
vol. 2, MIT press Cambridge, MA.

48



A Semi-Parametric Estimation Details

This appendix provides details of the estimation described in section 3.
The moments used in the estimation are achieved by taking the expectation over inequal-

ity (3.1):

Ei

βα
(
|A`i,τi−1| − |A`i,τi−1−k|

)
+ π`i,τi−1 − π`i,τi−1−k︸ ︷︷ ︸

∆Vi,k

 ≥ 0.

These expectations can be estimated by averages of the observations for each k. Ad-
ditional moments can be created by multiplying each element ∆Vi,k by a weakly positive
number hi,τi−k that depends on the characteristics of i. These moments are

1
|Nk|

∑
i∈Nk

[∆Vi,khi,τi−k] ≥ 0,

where Nk = {i|τi − k ≥ 0} is the set of all agents that waited at least k periods before
adopting. The values of hi,τi−k that I use are defined as

hi,τi−k =

mτi−k, mτi−k > m̄

0, mτi−k ≤ m̄,

where mt is the size of the jackpot of the first Mega Millions lottery in period t and m̄ is
the average of mt. This means that I multiply values in periods where the jackpot was high
by the value of the jackpot, and the values in other periods by 0. Since the data set has 55
periods, with two instruments: the jackpots instrument and constant vector, there are 108
moments that can be used to give a lower bound to β

α
.23

Since there is a large number of moments, with many potentially far from binding, I use
the two-step method in Romano et al. (2014) that selects moments with which to calculate
the bound on the parameters. As mentioned in the main text, the result of the estimation is
that the lower bound on the 95% confidence set of β

α
is greater than 45.3. This means, that

when an agent observes another neighbor adopting, this information affects her probability
of adopting in the same way as observing her neighbors’ average profits increase by at least
$45.3 per month. Given that this represents a lower bound, and that on average an agent
observes adoption of about 5 neighbors between her adoption period and any preceding
period, this would translate to an equivalent of having observed an increase of more than

23Since only adoption is observed and in practice there is no exit, only a lower bound can be calculated.
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$2,700 in yearly profits.
One issue is that in the last few periods there are only a few adopters, which means that

for high k there are not many observations. Therefore, one might be concerned that the
covariance matrix of the moments is not accurately estimated and hence the results might
be biased. To alleviate this concern, I ran the same exercise limited to periods with at least
2,500 observations, which translated to k ∈ {1, ..., 8}. In this setup the results were similar,
with β

α
> 63.6, and average adoption of 3.3 nodes between an agent’s adoption period and

any preceding period.

B Robustness: All Municipalities

This section provides estimates for the model parameters without removing nodes in munic-
ipalities that initially prohibited adoption, as described in the first paragraph of section 6.
Since competition is estimated offline, the estimates are the same and therefore not reported
for this exercise.

The reported estimates are similar in sign and magnitude to the ones in the main text,
where municipalities that initially prohibited adoption were excluded from the second part
of the analysis.

Table 11: Adoption Decision Parameters

Parameter Value Confidence Interval
−λ

2σ0 −23000.93353660123 [−107257,−3619]
γt −312.8563745 [−2658,−204]

γAmerican −3410.525342 [−206999, 80317]
γbar 2852.874509 [−206999, 80317]

γbar&grill 2396.961355 [−141317, 83563]
γItalian −7826.736723 [−143176, 83225]
γMexican −9803.907215 [−255907, 76750]

γMissingType −3498.456434 [−287930, 76448]
γPizzaPlace −6724.532465 [−210664, 79801]
γrestaurant −4364.550335 [−241638, 77288]
γVeteran 1028.813781 [−224755, 79380]

γOtherTypes −5723.088948 [−158106, 82362]
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Table 9: β Estimates

Parameter Value SE
pop/Nm 0.02531138 0.00973083(***)

Rating (0-5) -206.9918717 152.5865952
No Rating Reported -1369.642018 746.0134164(*)
Price Level (1,2,3,4) -922.6888963 220.8321112(***)

No Price Level Reported -1940.59901 315.8133797(***)
βAmerican 6611.321771 1132.563941(***)
βbar 6617.8685 1091.665016(***)

βbar&grill 7016.111362 1094.747158(***)
βItalian 5734.092723 1613.743986(***)
βMexican 4071.444886 1332.811259(***)

βMissingType 6392.465508 1195.043283(***)
βPizzaPlace 5899.182716 1331.286606(***)
βrestaurant 5386.172002 1170.31366(***)
βVeteran 6639.290589 1272.325301(***)

βOtherTypes 6390.839606 1169.508027(***)

Table 10: Beliefs Parameters

Parameter Value Confidence Interval
ρ 0.253098 [0.0814733, 0.99999]
r` 1.93054 [1.206, 38.845]
σε 1537.88 [1490.57, 1583.25]
σ0 Large Large

C Dynamics: Forward-Looking Agents

This part models only the value function that agents use when deciding when to adopt.
Agents learn from observations, as described in the main text.

This model is an infinite-horizon model in which agents believe that if they do not adopt
until the last period they will never adopt, though if they adopt at some period t they will
receive their expected profit in perpetuity; therefore, the expected value of adoption is

Vi,t(ηi,t,Ωi,t) =

max
{
δ(1− δ)−1µ̃i,t − E [∑∞s=1δ

sCi,t+s|Ωi,t, ai,t = 1]− FC + ηi,t,

δE [Vi,t+1(ηi,t+1,Ωi,t+1)|Ωi,t]} ,
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where the first term in the max function is the expected profit from adoption and the second
term is the expected profit from staying out, with µ̃i,t = µi,t + Xiβ and ηi,t being and i.i.d.
logit shock that represents the adoption cost.

Therefore, let EV (Ωi,t) represent the expected value function given the state. Then

EVi(Ωi,t) ≡
∫
ηi,t
Vi,t(ηi,t,Ωi,t)dP (ηi,t)

= ln
(
exp

(
δ(1− δ)−1µ̃i,t − E [∑∞s=1δ

sCi,t+s|Ωi,t, ai,t = 1]− FC
)

+ exp (δE [EVi(Ωi,t+1)|Ωi,t])) .

The agents have some beliefs, or a misspecified model, about the definition of the state of
the world and how this state of the world evolves. There is a discrete state space, where each
node i in period t is in one of the states. This state of the world is a vector of size 3, where
the first coordinate is the fraction of competitors that adopted

(
f ci,t
)
, the second coordinate

represents the fraction of neighbors that could learn from those that adopted
(
f li,t
)
, and the

third coordinate is the “era” the period is in. The first two coordinates partition the set
of neighbors of node i into pc and pl , and there are 9 “eras” of length 6 months in order
to reduce the size of the state space; therefore, the size of the state space is pc × pl × 9.
Explicitly, the assumption here is that

Ω̃i,t =
(
fCi,t, f

l
i,t, ai,t, e(t)

)
,

where e(t) =
⌈
t
9

⌉
. A reasonable partition of the other two would be dividing each into 4

parts, making the state space of size 144. Node i believes that the state of the world can
transition to any other state of the world with some probability, according to some Markov
matrix of transition probabilities:

Pθ(i)
(
Ω̃i,t+1|Ω̃i,t

)
,

which also depends on the type θ(i) of the node.
Agent i also has some primitive characteristics, such as θi, NC

i , N l
i are, respectively,

the set of neighbors that are competitors of i and the set that i could learn from; Ci which
represents the agent’s maximal potential competition; and Σi, which is the minimal potential
variance that i could observe. These two bounds are achieved when all of i’s competitors
and other neighbors adopt.

For a given parameter ρ, and a given state of the world Ω̃i,t, there is a distribution of
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Ω̃i,t+k for every k > 0. Measures of the competition and variance at a future state are

C̃t+k
i = Ct

i +
(
Ci − Ct

i

)
f̄Ci,t,k

and

Σ̃t,t+k
ii = Σt

iiΣii

f̄ li,t,kΣt
ii +

(
1− f̄ li,t,k

)
Σii

,

where f̄Ci,t,k and f̄ li,t,k are the expected fraction of competition and learning neighbors that
adopted between the two periods:

f̄Ci,t,k =
fCi,t+k − fCi,t

1− fCi,t
; f̄ li,t,k =

f li,t+k − f li,t
1− f li,t

.

For these two measures, I assume that i believes that both competition and information
arrive uniformly.

In period final decision period T , i’s decision problem is fairly simple, which is adopt if
and only if

EV t
i,1(ΩT ) ≡ β(1− β)−1 [µ̃i,T − E [Ci,T+1|Ωi,T , ai,T = 1]]− FC︸ ︷︷ ︸

µ̃ΩT

+ ηi,T > 0 ≡ EV t
0 (ΩT ).

Additionally, from Lemma 2 we know that Vart(µt+ki ) = Σt
ii − Σt+k

ii , and since agents
are Bayesian, E [µ̃i,T |µ̃i,t] = µ̃i,t. Therefore in any period t, and for every possible state in
periods t′ > t, we know that

µ̃ti,Ωt′ ∼ N

β(1− β)−1µ̃i,t −
∞∑

s=t′+1
βs−t

′
E [Ci,s|Ωt′ ]− FC,Σt

ii − Σ̃t,t′

ii︸ ︷︷ ︸
σtΩt′


Since if i stays out at period T she will get 0, we can use the truncated normal formula to
get that

EV t
i (Ωi,T ) = E

[
µ̃ti,ΩT

]
+
σti,ΩTφ

(
−µ̃ti,ΩT
σti,ΩT

)
1− Φ

(
−µ̃ti,ΩT
σti,ΩT

) .
Using that result, we can calculate the value of staying out at period T − 1,

EV t
i,0(Ωi,T−1) = β

∑
ΩT
Pr (ΩT |Ωi,T−1) · EV t

i (ΩT ),
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and the expected value of adopting,

EV t
i,1(ΩT−1) = β(1− β)−1µ̃i,T−1 −

∞∑
s=T

βs+1−TE [Ci,s|Ωi,T−1, ai,t′ = 1]− FC + ηi,T−1

Therefore, the expected value in period T − 1 is

EV t
i (ΩT−1) = E

[
µ̃ti,ΩT−1

]
+
σtΩTφ

(
EV ti,0(Ωi,T−1)−µ̃ti,ΩT−1

σtΩi,T−1

)
1− Φ

(
EV ti,0(Ωi,T−1)−µ̃tΩi,T−1

σtΩi,T−1

) .
Continuing in this fashion, using backwards induction, we can calculate the expected value
in every period, arriving at EV t

i,1(Ωt) and EV t
i,0(Ωt).

In equilibrium;

1. in each period t, agent i chooses to adopt if and only if EV t
i,1(Ωt, ηi,t) ≥ EV t

i,0(Ωt),
given the beliefs regarding transition probabilities Pθ(i)

(
Ω̃i,t+1|Ω̃i,t

)
.

2. The beliefs about transition probabilities are consistent with the realized values of
EV t

i,d(ΩT−1, ηi,t), which are consistent with actions taken.

Now since there is an expected value in every period t for every agent i and decision d ∈ {0, 1},
the moments to match are that the expected adoption in each period equals the actual
adoption:

mt ≡

∣∣∣∣∣∣
∑

i/∈At−1

exp
(
EV t

i,1(Ωt, ηi,t)
)

exp
(
EV t

i,1(Ωt, ηi,t)
)

+ exp
(
EV t

i,0(Ωt)
) − (At − At−1)

∣∣∣∣∣∣ ,
and we choose ρ, β, FC that satisfy

arg min
ρ,β,FC

∑
t

mt.

Lemma 2. Let  x

y

 ∼ N

 µx

µy

 ,
 Σx Σxy

Σ′xy Σyy

 ,
where x is a scalar and y is a vector. Then

Var(E(x|y)) = Σx − Var(x|y).

Proof. See appendix D.
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The Evolution of Variance

The belief of agent i in period t is that

ξi,t ∼ N(µti,Σt
ii).

Denote by x an independent normal signal that combines all of the information that i
could still potentially receive. In other words, an independent signal that would reduce her
variance to the variance shed had in the case she had perfect knowledge of her neighbors’
unobservables, Σii. Formally, using a known result for optimal combination of private normal
signals

V ar

(
Σxξi,t + Σt

iix

Σx + Σt
ii

)
= Σii

and isolating Σx, we get
Σx = ΣiiΣt

ii

Σt
ii − Σii

.

If we assume that x is an average of many “smaller” independent signals with identical vari-
ance, and that i observes only a fraction f̄ li,t,k of these signals, the variance of the equivalent
signal, xf , would be

Σxf = Σx

f
= ΣiiΣt

ii

f(Σt
ii − Σii)

Combined optimally,

Σ̃t,t+k
ii = V ar

(
Σxf ξi,t + Σt

iix

Σxf + Σt
ii

)
= Σt

iiΣii

f̄ li,t,kΣt
ii +

(
1− f̄ li,t,k

)
Σii

.

D Proofs

D.1 Lemma 1

Proof. Let At = {1, ...,m− 1} represent the set of agents that adopted up to and including
period t, where the indices of the agents represent the order in which they adopted. For
simplicity of notation, we assume that only one agent adopted at a time, and that they
adopt in their index period (i.e., i adopted in period i), though it is easily generalized.

The expectation of agent m’s beliefs, in period m is

µm,m = Σ̂m,Am

(
Σ̂Am + σεDAm,m

)−1

︸ ︷︷ ︸
ŵm

ξ̄Am,m,
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where Σ̂Am is the prior beliefs about the covariance matrix of the subset of agents Am, and
Σ̂m,Am is the prior beliefs of the correlationsm with the existing adopters. Dm,Am is a diagonal
matrix in which each diagonal element is the inverse of the number of observations of profits
made by the relevant agent in period m, and ξ̄Am,m is the average of these observations.
The expression that is multiplied by ξ̄Am,m is a vector of the weights ŵm that m puts on
her signals when she updates her own beliefs. Similarly, I denote by wm the weights she
would’ve put on these beliefs if she had the correct prior.

The error that is due to her incorrect beliefs is exactly

εBeliefsm = (wm − ŵm) ξ̄Am,m =
m∑
i=1

(
wim − ŵim

)
ξ̄i,m,

where ŵim represents the weights that m puts on i, and ξ̄i,m represents the average of obser-
vations made by i in period m.

The rest of the proof uses induction. By assumption, the error of person 1 is exactly
zero, since her beliefs under the two priors are 0. The error of the second adopter is

εBeliefs2 =
(
w1

2 − ŵ1
2

)
ξ̄1,2

We know that ex ante E [ξ1] = 0; therefore, E
[
ξ̄1,2

]
= 0 and E

[
εBeliefs2

]
= 0. By definition,

we can write ξ2 = µ̂2 + εBeliefs2 + εξ2, hence

ξ2 = ŵ1
2 ξ̄1,2 +

(
w1

2 − ŵ1
2

)
ξ̄1,2 + εξ2

and E [ξ2] = 0. Therefore, for agent 3 we have

εBeliefs3 =
(
ŵ1

3 − w1
3

)
ξ̄1,3 +

(
ŵ2

3 − w2
3

)
ξ̄2,3,

and hence E
[
εBeliefs3

]
= 0. This procedure can be repeated for any m.

D.2 Lemma 2

Proof. A known result is that if y is observed, then

x|y ∼ N(µx|y,Σx|y),

with
E(x|y) = µx + ΣxyΣ−1

yy(y− µy)
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Var(x|y) = Σx − ΣxyΣ−1
yyΣ′xy.

If it is known that y is to be revealed but its value is not yet known, then

Var(E(x|y)) = Var(µx + ΣxyΣ−1
yy(y− µy))

= Var(ΣxyΣ−1
yyy) = ΣxyΣ−1

yyΣ′xy = Σx − Var(x|y).

E Computation of β and Simulation

E.1 Computation Of β

Here I describe the details of the algorithm that gives an unbiased estimate of β. This is
given a guess of ρ and r`, θ, meaning that one knows or assumes the parameters of the kernel
function κ. Knowing the function κ means that for every municipality there is one constant
correlation matrix K.

The main idea of this algorithm is to iteratively update nodes’ prior beliefs, and beliefs
about their observables in the period in which they adopt until we find the beliefs that will
satisfy the equilibrium described in the main text.

In the first step, I initialize the vector of beliefs at adoption for every agent that entered,
µ0
τ , to a vector of zeros.
Given this initialization, we describe the process of each iteration c:

1. Given µcτ , a regression of F − µcτ of X is used to do the following:

(a) generate βc;

(b) generate the observations ξcj,t = πgj,t−xjβc+Cj(At) that are used in the updating
process.

2. Using Σ0 and the objects calculated in 1, the beliefs of every agent in every period
calculated, in particular µc+1

τ .

3. If ∑
i(µc+1

τi
− µcτi)

2

N
< εtolerance ≡ 10−12,

then stop. Else, repeat for c+ 1.
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E.2 Simulation

In order to show that the algorithm above actually works on some data, I generated data
using some initial parameters, and tried to recover the parameters using the procedure
described above. I repeated the process for 1,020 simulation draws.

In each iteration of the simulation, there is one municipality of size N = 800, and each
node’s longitude and latitude are each drawn from N (0, 4). Using a correlation parameter
ρ = 0.7, and each node is randomly assigned into one of two types with equal probabilities,
type 1 has µθ=1 = 800 and σθ=1 = 2000, and type 2 has µθ=2 = 700 and σθ=2 = 1000.
Signal variance is σε = 20. Each node is also assigned an independent Xi ∼ N (40, 225)
and the parameter that is multiplied by X is defined to be β = 20. These define the true
Fi = Xiβ + ξi.

Afterwards, an adoption procedure was simulated in which there is a constant fixed cost
of adoption equal to FC = 55F̄ . Simulating adoption logit shock, each node adopts with
probability

pi,t = exp (xiβ + µi,t)
exp (xiβ + µi,t) + exp (FC) .

For each node that adopts, there is a realization of an observation Fi + εi,t, and the
neighbors of node i update according to the updating process in subsection 4.3. These
determine µi,t and hence the probability of adoption.

With the simulated data, I used the procedure described above in order to estimate the
parameters of β and also to see how close the estimates of µθ and σθ are to the actual
realized ones in every iteration. I also added an estimate done by a linear regression as a
benchmark comparison. Estimation using this procedure seems to be consistent, while the
regression is biased, as seen in the figure Figure E.1 on page 59.

F Estimation of −λ
2σξ0

In section 6 I presented the estimation results for the parameter −λ
2σξ0 that represents the

total effect of risk aversion and uncertainty on the certainty equivalent of adoption. I do so
since in the data the value of σξ0 is too large numerically estimate in a meaningful way, and
that when σξ0 →∞ the parameters λ and σξ0 are not separately identified.

Lemma 3. Under the assumptions of the model in section 4. If σξ0 →∞, then the param-
eters λ and σξ0 are not separately identified.

Proof. The value of the variance of agents i at period t that observed the profits of the agents
in At is:
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Figure E.1: Comparing β Estimates to Truth

Red line: (which almost coincides with the yellow line) the true parameter; Yellow:
parameter estimated with the fixed point procedure; Blue: regression estimator. Orange
and blue histograms: distributions of estimators for the fixed point procedure and
regression respectively.
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σ2
i,t = σ2

ξ0 − Σi,AtΣ−1
At ΣAt,i,

where Σi,At and ΣAt,i are row and column vectors of the covariance of i with all current
adopters, while ΣAt is the covariance of the ξ’s of all current adopters. These can be further
separated to the matching correlation vectors ρi,At and ρAt,i, and the correlation matrix KAt :

σ2
i,t = σ2

ξ0 − σ2
ξ0ρi,At

(
σ2
ξ0KAt + σ2

εdiag(ωAt)
)−1

σ2
ξ0ρAt,i.

At the limit, as σ2
ξ0 → ∞ the value of σ2

i,t is of course also going to infinity. With that
said, in the model, the value λ also depends on values of σ2

i,t. Therefore, since σε � σξ0:

lim
σ2
ξ0→∞

λσi,t = λ

√
σ2
ξ0 − σ2

ξ0ρi,At
(
σ2
ξ0KAt

)−1
σ2
ξ0ρAt,i

= λσξ0

√(
1− ρi,AtK−1

At ρAt,i
)

and since at the limit σi,t is a linear function of σξ0, λ and σξ0 are not separately identified.

G Pre-adoption analysis

In subsection 6.3 I analyzed how the beliefs of bar-like establishments evolved in the period
preceding the period of adoption. Figure 6.4 shows that their expected profits and certainty
equivalent increased by about $900 before they adopted. In figure G.1 we see the levels of
beliefs that bars owners have in the period before adoption. Bar owners believe that they will
make in expectations more than $3500 when they decide to adopt, though the risk makes
the owners’ certainty equivalent of the lottery at less than negative $12,000. However, if
we believe that not all bar owners make an active decision whether to adopt every month,
the certainty equivalent of choosing adoption increases significantly: If each agent considers
adoption with probability 1/3, the model estimation results in certainty equivalents of more
than negative $7,500. If agents make an adoption decision in expectation once every five
months, the certainty equivalent is greater than negative $5,000.
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Figure G.1: Beliefs Levels before Adoption: bars

Bar owners’ beliefs before adoption. In blue we see their expected gambling profits before
adoption. The green dots show the change in their certainty equivalent. The dashed and
solid lines are the certainty equivalents in models where agents decide whether to adopt in
every period with probability 1/3 and 1/5 respectively.
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Figure G.2: Beliefs Change and Levels before Adoption: Other businesses

The analysis in this figure is the same analysis as in figures 6.4 and G.1 but applied to all
non-bar-like businesses.
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